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ABSTRACT

A traditional view is that the ocean outside of the tropics responds passively to atmosphere forcing, which

implies that air–sea heat fluxes are mainly driven by atmosphere variability. This paper tests this viewpoint

using state-of-the-art air–sea turbulent heat flux observational analyses and a climate model run at different

resolutions. It is found that in midlatitude ocean frontal zones the variability of air–sea heat fluxes is not

predominantly driven by the atmosphere variations but instead is forced by sea surface temperature (SST)

variations arising from intrinsic oceanic variability. Meanwhile in most of the tropics and subtropics wind is

the dominant driver of heat flux variability, and atmosphere humidity is mainly important in higher latitudes.

The predominance of ocean forcing of heat fluxes found in frontal regions occurs on scales of around 700 km

or less. Spatially smoothing the data to larger scales results in the traditional atmosphere-driving case, while

filtering to retain only small scales of 58 or less leads to ocean forcing of heat fluxes over most of the globe. All

observational analyses examined (18OAFlux; 0.258 J-OFURO3; 0.258 SeaFlux) show this general behavior. A

standard resolution (18) climate model fails to reproduce the midlatitude, small-scale ocean forcing of heat

flux: refining the ocean grid to resolve eddies (0.18) gives a more realistic representation of ocean forcing but

the variability of both SST and of heat flux is too high compared to observational analyses.

1. Introduction

Recent studies have shown that air–sea flux variability

associated with oceanic small-scale features such as

mesoscale eddies has a different character from that

associated with broader basin scales. Much attention has

been paid to the air–sea momentum flux variability (Xie

et al. 1998; Chelton et al. 2001; Small et al. 2008;

Schneider andQiu 2015) but less to the air–sea turbulent

heat flux variability.

Air passing over the relatively strong gradients of sea

surface temperature (SST) associated with eddies and

fronts is forced out of equilibrium with the underlying

sea surface. Large differences between SST and air

temperature arise, and also between the air humidity

and the saturated humidity at the ocean surface tem-

perature, especially under strong background wind

speeds (Xie 2004; Hausmann et al. 2017). The resulting

changes to surface stability and roughness, and also

changes to wind speed (Small et al. 2008), give rise to the

anomalies in surface heat flux. More heat flux out of the

ocean is seen over warm SST, and less upward heat flux

over the colder SST. Hence there is a positive correla-

tion between surface heat flux and SST, where the sign

convention used throughout this paper is that positive

heat flux denotes heat loss from the ocean. At lower

Supplemental information related to this paper is available at

the Journals Online website: https://doi.org/10.1175/JCLI-D-18-

0576.s1.

Corresponding author: R. Justin Small, jsmall@ucar.edu

15 APRIL 2019 SMALL ET AL . 2397

DOI: 10.1175/JCLI-D-18-0576.1

� 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright
Policy (www.ametsoc.org/PUBSReuseLicenses).

Unauthenticated | Downloaded 08/27/22 06:26 PM UTC

http://journals.ametsoc.org/page/climateimplications
https://doi.org/10.1175/JCLI-D-18-0576.s1
https://doi.org/10.1175/JCLI-D-18-0576.s1
mailto:jsmall@ucar.edu
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses


background wind speeds the atmosphere temperature

and humidity will adjust more to the rapidly chang-

ing SST, and the heat flux anomalies will be weaker

(Hausmann et al. 2017).

The behavior described above contrasts with that seen

at larger scales, where heat loss from the ocean would be

associated with a cooling of the ocean (Xie 2004, and

references therein). In that case the overlying air is more

in equilibrium with the slow sea surface temperature

changes: there is very small simultaneous correlation

between heat flux and SST, but the SST responds in a

lagged fashion to the heat flux.

These relationships have been encapsulated in ideal-

ized stochastic models of air–sea interaction by, for ex-

ample, Frankignoul and Hasselmann (1977), Barsugli

and Battisti (1998), von Storch (2000), and Wu et al.

(2006). As reviewed in Bishop et al. (2017), when these

models include a substantial amount of atmosphere

noise (i.e., the weather systems), the SST tendency re-

sponds to the approximated air–sea heat flux term,

giving a negative simultaneous correlation between heat

flux and SST tendency, and also near-zero simultaneous

correlation between SST and heat flux. In contrast, when

the oceanic noise term is strong, there is near-zero si-

multaneous correlation between heat flux and SST

tendency, but heat flux and SST has a positive simulta-

neous correlation [see summary Fig. 1 in Bishop et al.

(2017)].

In the latter case, the SST is not forced locally by the

air–sea heat flux, and thus we refer to the SST variability

as intrinsic variability in this paper. (Note that on

monthly time scales, as will be shown later, most of the

air–sea interactions are quite local; in other words, the

SST anomaly does notmove far onmonthly time scales.)

This definition follows the finding by Sérazin et al.

(2015) that in high-resolution models most of the small-

scale SSH variability is intrinsic, and intrinsic motions

also contribute in a nonnegligible fashion to large-scale

variability of SSH. This notion will be expanded upon

in a follow-on paper that aims to separate out the con-

tributions of heat content variability due to atmosphere-

forcing by air–sea heat fluxes, versus atmosphere forcing

by Ekman heat fluxes, versus oceanic motions.

The relationship of surface heat flux to SST has ap-

plications to atmosphere variability (Kuo et al. 1991; Ma

et al. 2017) and to ocean variability (Ma et al. 2016). It is

therefore useful to know whether climate models re-

produce the surface heat flux response. Kirtman et al.

(2012) briefly discussed the different air–sea heat flux

behavior of coupled models with low versus high ocean

resolution. They found that the case with a high-

resolution ocean gave results consistent with the sto-

chastic model described above with strong ‘‘oceanic

noise,’’ and the low-resolution case was consistent with a

more pure atmospheric noise driving. Smirnov et al.

(2014) used a linear inverse model, applied to observa-

tional analyses and the Kirtman et al. (2012) model runs,

to show that most of the SST variability in the Kuroshio

and Oyashio Extension systems was intrinsic to the

ocean, whereas in the northeast Pacific Ocean it was

driven by the atmosphere.

Roberts et al. (2016) found that both an eddy-

resolving and an eddy-permitting ocean model gave

similar ocean-driven results when employed in a fully

coupled system. Putrasahan et al. (2017) looked at the

air–sea interaction processes in the Gulf of Mexico in

detail, showing that the high-resolution climatemodel of

Kirtman et al. (2012) agreed with the observed ocean

driving of heat fluxes at monthly time scales, and further

found that oceanic advection gave rise to the SST

anomalies that drove the surface heat flux.

In this paper we will update and expand on the ob-

servational and modeling results discussed above, and

make a detailed assessment of the ability of climate

models to reproduce the observed behavior. In partic-

ular we analyze the causes of air–sea heat flux variability

in state-of-the-art high-resolution air–sea heat flux

products, and in the Community Earth System Model

version 1 (CESM1; Hurrell et al. 2013).

For submonthly time scales, synoptic atmosphere

variability dominates heat flux variability in many storm

track locations (see section 5b). Meanwhile for decadal

and longer-term variability, the observational record is

short, although some interesting findings have been

made for subpolar gyre variability on these time scales

by, for example, Gulev et al. (2013), Clement et al.

(2015), Zhang et al. (2016), Delworth et al. (2017), Cane

et al. (2017), and O’Reilly and Zanna (2018). For these

reasons, we focus on monthly to interannual variability,

at which frequency ocean eddy variability is strong, so

that the inclusion of small scales in the ocean is more

likely to have a notable impact, and there is sufficient

data for analysis.

In particular we address the following questions:

1) How much of turbulent heat flux variance is ex-

plained by SST variability versus atmosphere state

variability (wind, air temperature, and air humidity)?

2) How realistic are the models, for different resolu-

tions, in terms of SST and heat flux variances, and

their correlation?

3) Do the scales of variability in the model match

observations?

The paper is organized as follows: Section 2 de-

scribes the model and observed product data, and the

methods of analysis, including latent heat flux (LHF)
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decomposition and feedback parameter. LHF is focused

on because of its dominance of the net heat flux term

response to SST (see section 2 below). Section 3 de-

scribes the variability and covariability of SST and LHF

in models and data, and then section 4 presents two

methods of fully decomposing the LHF variability into

parts due to SST, wind, and humidity. Section 5 covers

the scale dependence of the SST–LHF relationship as a

function of space and time. Section 6 discusses further

questions about SST variability, the transition scale, and

the response of the atmosphere and ocean to the fluxes.

This is followed by conclusions in section 7.

2. Methods

a. Models

CESM1 as applied here is composed of the Commu-

nity Atmosphere Model 5.2 using a spectral element

dynamical core (Park et al. 2014), Parallel Ocean Pro-

gram version 2 (POP2; Smith et al. 2010), Community

Ice Code version 4 (Hunke and Lipscomb 2008), Com-

munity Land Model version 4 (Lawrence et al. 2011),

and CESM Coupler 7 with the Large and Yeager (2009)

air–sea flux routine. The highest-resolution simulation

used here, with 0.258 resolution in the atmosphere and

nominal 0.18 in the ocean, is described in full in Small

et al. (2014). It was run for 100 years under ‘‘present-

day’’ (year 2000) greenhouse gas conditions and is re-

ferred to here as CESM-High Ocean Resolution

(CESM-HR). This is compared to a simulation with the

same 0.258 atmosphere resolution but a nominal 18

ocean resolution, where ocean eddies are parameterized

(Gent andMcWilliams 1990). This 90-yr run under fixed

year 2000 conditions is referred to as CESM-LowOcean

Resolution (CESM-LR). [It is different from the CESM

with standard resolution described in Small et al. (2014),

which had an atmosphere resolution of 18.] For both

simulations, 35 years of data from the end of the run

have been analyzed.

b. Observational products of SST and latent heat flux

In this paper the observational analysis of SST used

as a benchmark is Reynolds et al. (2007), a daily dataset

of 0.258 SST obtained from satellite and in situ data. The

in situ and satellite data are combined using optimal

interpolation with error correlation scales ranging from

50km in western boundary currents and their extensions

(referred to together in this paper as WBCs) to 200 km.

A dataset with satellite data from AVHRR is available

(starting in 1981), as is a dataset with both AVHRR and

AMSR (2002–11 only). We use the AVHRR-only

dataset for its greater length and avoiding any jump

issue with including AMSR. The AVHRR dataset will

have reduced sampling on a daily basis due to the per-

sistent cloud cover over WBCs (Reynolds et al. 2013):

however, for our purposes a comparison of monthly SST

variability from the two products for their common

length of record revealed negligible differences. The

Reynolds et al. (2007) dataset will be referred to by

OISST in the remainder of this paper. Note that for

analysis of the correlation (or related statistics) between

SST and LHF for observational analyses listed next, the

SST provided with the analysis is used.

For analyses of air–sea heat fluxes, a number of

products exist in the community, based on in situ data,

satellite data, reanalysis data, or some combination of

these. As shown in, for example, Jin and Yu (2013) and

Zhang et al. (2018), the products give a wide range of

turbulent heat flux values, both for climatology and for

variability. It is not the aim of this paper to choose the

‘‘best’’ product due to the large spread in analysis

products and limited validation datasets (buoys etc.).

Instead we choose three representative analyses of air–

sea heat fluxes: one blended dataset, which should not be

biased too much to a particular data source, and two

high-resolution and mainly satellite-based datasets, as

our main interest is in small scales.

The Japanese Ocean Flux Datasets with Use of Re-

mote Sensing Observations version 3 (J-OFURO3) is

the evolution of the original J-OFURO dataset (Kubota

et al. 2002; Tomita et al. 2010). The new version is

available for 1996–2013 with daily and monthly-mean

temporal resolution at 0.258 spatial resolution. The focus

of this study is on the monthly mean output. The dataset

is derived solely from satellite data except for 2-m air

temperature taken from the NCEP–DOE reanalysis

(Kanamitsu et al. 2002). Daily averaged SST is an en-

semble median of multiple satellite data sources and of

Reynolds et al. 2007 OISST. The fluxes are computed

using the COARE 3.0 bulk flux algorithm (Fairall et al.

2003). We use the latter years 2002–13 when more sat-

ellite data was available. Full details of the dataset are

given in Tomita et al. (2019).

The Objectively Analyzed Air–Sea Fluxes (OAFlux)

product (Yu andWeller 2007) uses variational objective

analysis to combine satellite retrievals of wind and hu-

midity and SST with reanalysis data of the same vari-

ables and also air temperature. The COARE 3.0 bulk

flux algorithm (Fairall et al. 2003) was used to compute

bulk fluxes. The product is available at 18 for global ice-

free oceans and extends from 1958 to near present, with

the period prior to the 1980s being governed by

reanalysis-only data [NCEP–NCAR (Kalnay et al. 1996)

and ERA-40 (Uppala et al. 2005)]. The analysis here

uses monthly-averaged LHF data from 1985–2014. Note
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that a high-resolution (0.258) version of OAFlux is un-

der development [L. Yu 2018, personal communication;

Jin and Yu (2013) use a preliminary version] but is not

used here.

SeaFlux is a global dataset of surface turbulent heat

fluxes and associated variables compiled 3 hourly and

at 0.258 from 1998. In contrast to the above products,

all variables and fluxes are derived from satellite data.

A neural network approach is used to derive the

near-surface atmospheric temperature and humidity

(Roberts et al. 2010). Daily averaged SST is obtained

fromReynolds et al. (2007) OISST and SSMI brightness

temperatures. Diurnally varying SST is parameterized

and used for the fluxes (Clayson and Bogdanoff 2013).

Further details can be found in Roberts et al. (2010) and

Clayson and Bogdanoff (2013). As with the above da-

tasets, SeaFlux uses the COARE 3.0 for bulk fluxes

(Fairall et al. 2003).

c. Analysis methods

This paper focusses on the LHF component of the net

surface heat flux. The reason for this is that many pre-

vious studies have identified that the LHF response to

SST dominates the net flux response, with much smaller

contributions from sensible heat fluxes and the radiative

fluxes (e.g., Frankignoul and Kestenare 2002; Park et al.

2005). Part of this is to be expected from theBowen ratio

[ratio of sensible heat flux to LHF; see, e.g., Andreas

et al. (2013) for a detailed study of the Bowen ratio],

which is typically much less than 1.

LHF is given in bulk flux form as

Q
E
5 r

a
LC

E
U

a
(q

s
2 q

a
) , (1)

where Ua is the low-level (typically 10m) wind speed

and q is specific humidity, with subscripts s and a de-

noting sea and air; qs is the saturated specific humidity at

the surface temperature, and qa is measured near the

surface, often at 2m. Also, L is the latent heat of va-

porization, CE is the turbulent exchange coefficient for

moisture, derived from Monin–Obukhov similarity

theory (e.g., Liu et al. 1979; Large and Yeager 2004;

Fairall et al. 1996), and ra is the low-level air density.

For the main data analysis, monthly mean data are

either gathered directly from the data providers or, if not

available, derived from the original daily or 3-hourly

data. The monthly climatology is then computed for

the appropriate length of record for each analysis,

with anomalies defined as the deviation of the monthly

data from the monthly climatology. A linear trend is

removed.

The focus of this paper is on small-scale local in-

teraction, and so the influence of ENSO on equatorial

and remote heat fluxes and SST is reduced by removal of

the linear regression on Niño-3.4 SST, as shown in

Figs. S1 and S2 in the online supplemental material. This

was done for all variables. Amore sophisticated method

based on removing the first three principal components

of tropical Pacific SST was also tried [based on the

appendix of Frankignoul et al. (2011)], but this made

negligible difference to the results in midlatitudes.

For the investigation of interannual variability,

annual-mean data are used, and the anomaly defined as

the annual average minus the long-term mean. ENSO

effects were reduced in this case by removing the Niño-

3.4 regression using two methods: first using annual-

mean data, which might mix phases of ENSO, then by

using monthly mean data for the removal of regres-

sion on Niño-3.4, and then computing annual averages.

Both methods gave similar results, and the former is

shown here.

In section 3, the focus is on the SST–LHF and ›SST/

›t–LHF relationships. Instantaneous linear correlations

(Pearson’s method of dividing covariance by the stan-

dard deviations) are performed at each grid point. In all

examples in this paper of correlations between two

variables, it is understood that the above-defined

anomalies are used. SST tendency is defined using cen-

tered difference of monthly anomalies. The utilized grid

spacing is 0.258 for all observational datasets and model

data except the 18 OAFlux. Global maps are then pro-

duced of these gridscale relationships. Section 4 simi-

larly describes gridscale relationships while section 5

specifically looks at the effect of analysis on different

spatial scales and temporal lags.

d. Latent heat flux decomposition methodology

Following Cayan (1992), Alexander and Scott (1997),

and Tanimoto et al. (2003), the bulk formula for LHF is

written in terms of time-mean quantities and anomalies,

so that anomalies of LHF are given as

Q 0

E 5Q
E
2Q

E
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a
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E
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(iv)

9
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where overbars denote time mean and primes are de-

viations from the mean. (In practice we use climato-

logical monthly means for overbar terms and deviations

from climatological means for deviation terms.) Two

types of decompositions of the LHF variability are

performed in this paper. All regression coefficients are

obtained by standard least squared fits.

1) METHOD 1: PARTIAL REGRESSION METHOD

In the first method the LHF is regressed onto the vari-

ables Ua, qa, and SST. Following standard practice we use

SST instead of qs as qs
0 is an approximately linear function

of SST0 over a small range of SST0. This was confirmed by a

comparison of correlation of SST and LHF, and of qs with

LHF: the two correlation fields were almost identical (not

shown). Initially a standard univariate linear regressionwas

performed sequentially for each variable, but this gave poor

results asUa, qa, and SST are not independent, as shown in

the supplemental text and Figs. S3 and S4. This motivated

us to try the partial regression technique (Cohen and

Cohen 1983; Saji and Yamagata 2003). Here, for example,

if Ua
0 5 gSST0 1 U0, where g is the linear regression co-

efficient of Ua on SST, then U0 is a time-varying residual,

which is the Ua variation not linearly dependent on SST.

The variableU0 is then correlated or regressed on the LHF.

The full technique is given by

Q0

E 5ASST
0

1BU
0

1CQA
0

, (3a)

where partial regression is used:

U
0

5U
0

a 2 gSST
0

, (3b)

QA
0

5 q
0

a 2 �U
0

2pSST
0

. (3c)

Here U is the wind anomaly with dependence on SST

removed, and QA is the humidity anomaly with de-

pendence on wind and on SST removed. Also, A is the

regression coefficient of LHFonSST, g is the regression of

Ua on SST, � is the regression of qa on wind, p is the re-

gression of qa on SST, B is the regression of LHF on re-

sidual windU, and C is the regression of LHF on residual

humidity QA.

2) METHOD 2: FULL DECOMPOSITION

Method 1 ignores some details, such as the role of the

exchange coefficient in (2), and does not explicitly show

the covariances (although the partial regression tech-

nique attempts to account for some of the covariance).

The second method is to explicitly decompose the LHF

using (2), following Cayan (1992) and Alexander and

Scott (1997), who analyzed earlier datasets. This has

been done for the high-resolution coupled simulation

CESM-HR, where daily data of LHF, SST, low-level

wind, and humidity were saved in a 10-yr segment of the

run. From this the exchange coefficient CE is estimated

daily from the standard bulk formula (1) where all variables

exceptCE are known (herewe need to derive qs fromSST).

This method generally worked well in providing robust

estimates of CE except in some storm track regions where

subdaily variability was large, which led to noise in the

derived data. The daily estimates are then used to form

monthly averages of CE and also an approximate monthly

climatology from the 10-yr segment. For the monthly cli-

matology the noise referred to above was treated, by ap-

plying running box averages over a full-width equivalent to

18 of latitude, where the outliers (values of CE , 53 1024

or CE . 23 1023) were not included (typical estimates of

CE are 13 1023 to 1.53 1023; Liu et al. 1979; Fairall et al.

1996; Large and Yeager 2004). This led to smooth fields of

climatologicalCE that are used to compute (2) in section 4b.

Each term in (2) is then known for the 10-yr segment,

while for analysis of a longer record of the model run the

decomposition is performed under the approximation that

CE in (2) is equal to the climatological monthly value. In

the appendix the full LHF anomaly is regressed on each

term on the RHS of (2), including the contribution from

CE variability, for the 10-yr segment. This approach is

similar in concept to that of Doney et al. (2007), who re-

gressed heat budget terms onto total tendency in the ocean

to assess their relative importance. Further, in section 4b,

the smooth climatological CE is used to facilitate the de-

composition for a longer (35 year) segment of the CESM-

HR model run, for comparison with method 1.

3. Variability and covariability of SST and latent

heat flux

a. Monthly data (subseasonal variability and longer

time scales)

Before analyzing the covariability of SST and LHF, we

set the scene by presenting the variability of SST and

LHF separately. Here we mainly use J-OFURO3 for

analysis of LHF, together withOISST for SST variability,

but results from other LHF datasets are discussed below.

The standard deviation of monthly SST variability in

OISST reaches maxima of around 18–28C in the WBCs

and Agulhas Return Current (Fig. 1a). Note that much

of the tropical SST variability was removed by regressing

out the Niño-3.4 dependence (see Figs. S1 and S2). Two

main conclusions can be drawn by comparing the model

results (Fig. 1b,c) with the observational estimates (Fig. 1a).

First, the pattern of SST variability in the high-resolution

simulation is much closer to observations than in the low-

resolution case. Second, however, the high-resolution

model has too much SST variability in the WBCs, and
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the low-resolutionmodel has insufficient variability in those

regions and in the Southern Ocean. It may also be noted

that both models have too little tropical Atlantic

variability.1

In the high-variability regions of the WBCs, the

standard deviation of SST in CESM-HR is 2–3 times

that seen in the OISST product [see also Fig. 18 of Small

et al. (2014)].2 However, caution needs to be taken be-

fore concluding that the model SST variability is too

FIG. 1. Standard deviation of monthly anomalies of SST from (a) Reynolds et al. (2007)

OISST, (b) CESM-HR, and (c) CESM-LR. The monthly climatology has been removed, as

has a regression on Niño-3.4 SST.

1 In addition CESM-LR has high SST variance in some high-

latitude regions such as around 608S, 908E, and the Sea of Okhotsk

and Hudson Bay. This is because the global surface temperature

was analyzed, and for CESM-LR, but not CESM-HR and

J-OFURO3, surface temperature over sea ice was included.

2Another high-resolution climate model, the GFDL CM2.6

(Delworth et al. 2012; Griffies et al. 2015), also gives much higher

SST variability in the WBCs than OISST.
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high, because of the lack of observations in WBCs and

the fact that the OISST product has an inherent smooth-

ing over a 50-km radius in these regions (Reynolds et al.

2007). This is expanded upon in section 6a.

Regarding the nature of the SST variability in the

high-resolution model and OISST, analysis of daily

snapshots and monthly mean data revealed that inWBC

regions it is mainly due to a combination of eddies and

meanders along the SST fronts (Figs. S5 and S6). On

monthly time scales, there is not much smearing of eddy

or meander signatures at the latitudes of these fronts.

[Propagation speeds of eddies identified by Chelton

et al. (2011) are;1–2 cm s21 at latitude 408, which would

be equivalent to;26–52 km month21, which is less than

typical eddy radii at those latitudes.] For that reason we

refer to the SST-driven air–sea interactions on monthly

time scales as ‘‘local.’’

Moving on to LHF variability from J-OFURO3

(Fig. 2), it can be seen that in observations the variability

is enhanced inWBC regions and to a lesser extent in the

subtropical gyres (Fig. 2a). Some similar conclusions

regarding model fidelity hold for LHF variability as for

the SST variability. CESM-HR has too much variability

in WBC regions; for example the standard deviation

reaches up to 70Wm22 in CESM-HR in the North At-

lantic but is less than 50Wm22 in J-OFURO3 (Figs. 2a,b).

CESM-LR has high variability off the east coast of

the United States and off Asia, but the maxima in

CESM-LR are more tied to the land–sea boundary than

in the observations and high-resolution model (Fig. 2c).

CESM-LR has too weak variability in the Southern

Ocean, and both models have weak variability in the

tropical Atlantic. The high LHF variability in CESM-

HR in WBCs is to be expected; we show below in

section 4 that in these regions much of the LHF vari-

ability is driven by SST, and it follows that model

LHF variability will be too high if its SST variability is

also high.

The simultaneous correlation between SST and LHF3

in J-OFURO3 shows well-defined maxima in the equa-

torial region andWBC regions, often reaching above 0.7

(Fig. 3). The spatial pattern of correlation in CESM-HR

is much closer to observations than in CESM-LR

(Figs. 3b,c), although CESM-HR has higher values in

the WBCs and Antarctic Circumpolar Current (ACC)

compared to observations. In contrast CESM-LR has

very weak correlations throughout the extratropics ex-

cept in small regions off the U.S. East Coast and

northern Japan (where the boundary current separates

from the continent at low resolution, farther north than

seen in observations and the high-resolution model),

and off the southwest tip of Australia.

A comparison of the J-OFURO3 results with other

observational analyses is given in Fig. S7. First, when

OAFlux was analyzed for the years 1985–2014 [similar

to the period used in Bishop et al. (2017)], it gave a

qualitatively similar picture to J-OFURO3 but with

slightly weaker correlation in WBCs (Fig. S7a). How-

ever, when the later satellite era of 2002–12 only was

analyzed, when satellite data was more plentiful than in

earlier years and which included the AMSR data, it was

found that OAFlux, J-OFURO3, and SeaFlux all gave

similar results (Figs. S7b,c,d). Of the products, SeaFlux

has slightly larger correlations in the interior oceans

(Fig. S7d).

A more complete picture of the relationship between

SST and air–sea heat fluxes is provided by also analyzing

the correlation between SST tendency and heat flux

(Kirtman et al. 2012; Bishop et al. 2017). As heat fluxes

are defined as positive upward, the sign convention is

such that negative values of LHF–SST tendency corre-

lations in Fig. 4 imply that ocean SST responds to surface

heat fluxes (i.e., there is cooling of SST when air–sea

fluxes drive heat loss from the ocean). Consistent with

the above papers we find that the tendency of SST in

midlatitudes and subtropics was mainly driven by sur-

face heat fluxes in the low-resolution model (Fig. 4c): in

contrast in the high-resolution model (Fig. 4b) and ob-

served product (Fig. 4a), the correlation between SST

tendency and heat flux was near zero in WBCs, and

throughout most of the extratropics the high-resolution

model and observational analyses had a much weaker

negative correlation between SST tendency and heat

flux than in the low-resolution model (Fig. 4).

b. Interannual variability

Next, longer time scales (interannual) are examined,

using annually averaged data. (For this analysis, years

2002–12 are first analyzed). Maps of the correlation

between SST and LHF on this time scale (Fig. 5) show

that, in general, for the analyses and both resolutions

of the model, the correlation becomes more positive

over most of the globe compared to monthly data

(Fig. 3). In WBCs the annual correlation often exceeds

0.9 in observations and CESM-HR for interannual var-

iability. However, in some regions the correlation be-

comes more negative (e.g., the subtropical northwest

Atlantic, southeast Pacific, and eastern equatorial Indian

Ocean in the observational analyses). The area covered

by negative correlation is greater in J-OFURO3 than

in CESM-HR, where it is mostly limited to the west-

ern Pacific and western Atlantic warm pools. As with

3 In this and all other occurrences, correlations are performed on

anomalies, either monthly or interannual.

15 APRIL 2019 SMALL ET AL . 2403

Unauthenticated | Downloaded 08/27/22 06:26 PM UTC



the monthly data, CESM-HR typically has somewhat

stronger correlations than observed, while CESM-LR

is much weaker and still near-zero in many regions

of the globe (Fig. 5). Note that unlike the monthly

variability, where air–sea interactions are quite local

(see section 3a), for interannual time scales the SST

anomalies could represent some ‘‘smearing out’’ of

propagating eddies, or they could be coherent shifts

of ocean fronts and true interannual variability. We

do not distinguish between them here but consider the

anomalies as intrinsic ocean variability if they drive

surface heat fluxes. (This will be expanded upon in cur-

rent and future work where the Ekman heat transport

anomaly is also considered.)

It may be questioned whether analysis of the limited

years 2002–12 is sufficient for interannual variability.

We have compared the annual correlations derived from

the OAFlux record for 1985–2014 with that from 2002–

12 (Fig. S8). Although the result from the shorter record

is somewhat noisier, as might be expected, it is qualita-

tively the same as the long record, but with some quan-

titative difference. Some differences are to be expected

FIG. 2. Standard deviation of monthly anomalies of latent heat flux from (a) J-OFURO3,

(b) CESM-HR, and (c) CESM-LR.
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because of the higher availability of data in the 2002–12

period which could lead to the higher correlations seen

in the later period (see Fig. S8), as well as natural climate

variability.

4. Driving factors of latent heat flux variability

Wenow turn our attention to the relative roles of SST,

wind, and low-level atmosphere thermodynamic state

(humidity) in driving the LHF variability using the two

methods described in section 2d. Monthly anomalies are

analyzed. The focus is on the observed product J-OFURO3

and the high-resolution model CESM-HR: CESM-LR

is not considered in this section as we already know its

LHF variability is too much affected by atmosphere

processes, especially in, but not limited to, the WBC

regions (section 3).

a. Method 1: Partial regression technique

The partial regression and correlation method (sec-

tion 2d) is employed to deal with interactions between

forcing variables, such as those evidenced in Fig. S4.

FIG. 3. Correlation between monthly anomalies of latent heat flux and SST from

(a) J-OFURO3, (b) CESM-HR, and (c) CESM-LR.
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The partial correlation between wind and LHF is al-

ways positive, meaning enhanced wind variability is as-

sociated with higher heat loss from the ocean and

evaporation (Figs. 6a,b). Some of the highest correla-

tions are in subtropical trade wind regions and the ex-

tratropical storm tracks, which coincide with the

strongest time-mean wind stress regions (not shown).

High correlations are also seen in the west Pacific warm

pool and equatorial Indian Oceans, which are low time-

mean wind speed regions, but there the wind variability

can be reasonably high (especially in the equatorial

Indian Ocean; Figs. 7a,b) while SST (Fig. 1) and hu-

midity (Figs. 7c,d) variability are weak there.

Atmospheric humidity and LHF exhibit mostly neg-

ative partial correlations (Figs. 6c,d); that is, a drier

atmosphere is associated with larger LHF (and evap-

oration) as the difference Dq 5 (qs 2 qa) in (1) gets

larger.

The standard deviation of the reconstructed LHF ar-

ray using partial regression [(3a)] is compared with the

standard deviation of actual LHF in Figs. 8a and 8b.

Generally, the differences are small (magnitude, 5Wm22

FIG. 4. Correlation between monthly anomalies of latent heat flux and SST tendency from

(a) J-OFURO3, (b) CESM-HR, and (c) CESM-LR.
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in most regions). There still exist some slightly

higher differences in WBC regions (up to 10Wm22

in CESM-HR), indicating that the partial regres-

sion method does not completely remove the in-

terdependence of the state variables, possibly due to

nonlinearity.

Another useful metric of the contribution of the state

variables is the square of the correlation with LHF,

commonly referred to as the r2 statistic, and listed here

as r2(Ua, LHF), r2(SST, LHF), and r2(qa, LHF), and

again we are using SST as a proxy for qs. As well as

describing the fraction of variance of LHF explained by

the state variable, the r2 statistic can be compared

against the results of method 2 as described in section 4c.

The contribution of SST to the LHF variance, r2(SST,

LHF), written as a percentage, is over 50% in much

of the WBC regions and eastern equatorial Pacific

and Atlantic Oceans in J-OFURO3 and CESM-HR

(Figs. 9a,b), with CESM-HR taking larger values as

expected from Fig. 3. Outside of these regions, however,

the contribution is less than 20%. The low-level wind

contribution r2(U, LHF) is over 60% in the subtropical

FIG. 5. Correlation between annual anomalies of latent heat flux and SST from (a) J-OFURO3,

(b) CESM-HR, and (c) CESM-LR.
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trade-wind regions discussed above and over 50% in the

tropical warm pools, with again CESM-HR having

larger values in these regions (Figs. 9c,d). Atmospheric

humidity variability dominates [r2(QA, LHF). 50%] in

some other regions (Figs. 9e,f), such as poleward of the

South Atlantic and southeast Pacific subtropical jets,

and in the Gulf of Mexico, at latitudes 508–608, and

southeast of Hawaii (the latter most notably in

J-OFURO3).

b. Method 2: Exact decomposition of LHF variability

As described in section 2d, this method explicitly

computes the terms of the LHF decomposition [RHS of

(2)], so that they can be directly compared with the full

FIG. 6. Partial correlation betweenmonthly anomalies of (a),(b) 10-mwind speed and LHF and (c),(d) 2-m air humidity and LHF for (left)

J-OFURO3 and (right) CESM-HR.

FIG. 7. Standard deviation of monthly anomalies of (a),(b) 10-m wind speed and (c),(d) 2-m air humidity for (left) J-OFURO3 and (right)

CESM-HR.
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LHF. It does not rely on linear regression/correlation

methods to construct the terms: however, for our fi-

nal assessment of each term we will use a linear re-

gression to compare the variability of each term

with that of LHF. It is an alternative method to deal

with the problem of dependent variables on the RHS

of (2)—a variable may have a high correlation with

LHF variability, but if the term in (2) that includes

that variable is small, then it is not contributing

significantly.

In this subsection we approximate the exchange

coefficient CE with the climatological monthly mean

value of CE in (2). The effect of including CE vari-

ability is discussed in the appendix.

From (2), the wind variability term is multiplied by

r
a
LC

E
Dq ,

while the sea surface and atmospheric humidity vari-

ability (qs and qa, respectively) are multiplied by

6r
a
LC

E
U

a
,

respectively. Thus the weighting factors both depend on

the climatological exchange coefficient, multiplied by

the climatological humidity difference and wind speed,

respectively. As both themeanwind speed and themean

moisture exchange coefficient are strong in the storm

track and monsoon regions (Figs. S9a–d), it follows that

the humidity weighting is large there also (Figs. 10b,d).

The wind weighting is large in the west Pacific warm

pool and Indian Ocean (Figs. 10a,c) and at the Northern

Hemisphere western boundaries in boreal winter (Fig. 10a),

where air–sea temperature and humidity differences are

large (Figs. S9e,f).

The terms of (2) were next regressed on full LHF

variability to isolate the parts that are indeed important

to LHF (Fig. 11). Here, resulting positive values denote

that the term contributes positively to the variability,

and a value near 1 denotes dominance of the term;

negative values are counteracting. Values greater than 1

are also possible and indicate that another term is

compensating. SST (via qs) has a dominant influence in

ocean frontal zones and the eastern equatorial Atlantic

and Pacific, as expected from section 3 (Fig. 11a), but the

FIG. 8. Differences between the standard deviation of the reconstructed LHF field and the

standard deviation of actual LHF using partial linear regression for (a) J-OFURO3 and

(b) CESM-HR.
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values are weak elsewhere in the tropics and subtropics

away from ocean frontal zones. The wind term dominates

in the tropical warm pools and subtropical trade-wind

regions (Fig. 11b) but is quite weak in higher latitudes

(where the weighting for wind rapidly reduces; Figs. 10a,

c), while atmospheric humidity contributes mainly in the

higher latitudes (Fig. 11c) where the humidity weighting

is large (Figs. 10b,d) and areas such as theGulf ofMexico

where air humidity variability is large (Fig. 7). Note that

the wind and air humidity show very weak contribution in

the WBC and ACC regions. Note also that in the eastern

equatorial Pacific SST reinforces LHF variability but is

countered by humidity. When the three terms are com-

bined and then regressed onto LHF variability (Fig. 11d),

values between 0.9 and 1.1 are obtained over most of the

tropics and subtropics, but drop to between 0.7 and 0.9

farther poleward, and exceed 1.1 in the west Pacific/In-

dian Ocean warm pool (Fig. 11d). Part of this is due to

the exchange coefficient variability discussed in the

appendix.

These results confirm that SST variability dominates

LHF variability in the eastern equatorial basins and in

ocean frontal zones whereas the wind forces the LHF

variability in the subtropics and some regions of the

deep tropics, and humidity plays an important role at

higher latitudes. Although these results were only ob-

tained for CESM-HR, the similarity of CESM-HR and

J-OFURO3 in method 1 would suggest that conclu-

sions derived from the CESM-HR results also apply to

J-OFURO3 in method 2 but with a larger contribution

of SST variability in WBC in CESM-HR (section 3a).

c. Interpretation of differences between methods 1

and 2

Close comparison of Figs. 9b, 9d, and 9f (r2 statistic for

partial regression method 1) and Fig. 11 (regression of

terms on LHF for method 2) reveals that they are quite

similar. This is to be expected: it can be shown that if

method 1 is used to formulate a LHF reconstruction [(3a)],

which is then regressed on the actual LHF variability, then

the contribution of each term (i.e.,Ua, SST, qa) is given by

the correlation squared, that is, r2(Ua, LHF), r2(SST,

LHF), and r2(qa, LHF), respectively. In other words, re-

gressing the reconstructed array of method 1 against the

FIG. 9. Square of the correlation (r2) between LHF and driving quantities based on monthly anomalies from (left) J-OFURO3 and

(right) CESM-HR: (a),(b) r2(SST, LHF), (c),(d) partial r2(U, LHF), and (e),(f) partial r2(QA, LHF). All panels share the same color bar

shown at bottom.
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LHF, and thus trying to mimic method 2 but with esti-

mated weighting, gives a final result of the r2 statistic, and

hence Fig. 11 is comparable to Fig. 9. However, there are

some important differences in detail. In Fig. 9, the r2 values

lie between 0 and 1, whereas the results of Fig. 11 cover a

larger range (hence the color bar in Fig. 11 is expanded on

that of Fig. 9).

In general, the spatial patterns given by methods 1

and 2 are very similar and there are modest differences

in magnitude. The quantitative (but not qualitative)

differences are partly due to the fact that the exchange

coefficient, and thus the weighting factors, are known

exactly in method 2, whereas in method 1 they are es-

timated, and some variance attributed to state vari-

ables in method 1 may in fact be due to variability

of the exchange coefficient. Finally, the regression co-

efficients used in method 1 are constant in time,

whereas the weighting functions for method 2 are de-

fined for each month of the calendar year (i.e., monthly

climatologies.).

FIG. 11. Linear regression of individual terms of LHF decomposition onto full LHF variability, based on CESM-HR, from method 2:

(a) qs (SST) contribution, (b) wind contribution, (c) air humidity contribution, and (d) contribution of all three terms. The displayed

quantity is unitless.

FIG. 10. Weighting factors for LHF variability terms from CESM-HR.Weighting for (left) wind and (right) humidity (atmospheric, when

multiplied by 21, or surface humidity qs). (top) January climatology and (bottom) July.
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5. Scale dependence in space and time

Here we investigate whether the relationship between

SST and the turbulent heat fluxes described in section 3

varies as a function of space and time scale. The aim is to

see whether there are particular scales of transition be-

tween atmosphere-driven and ocean-driven cases. The

observational analyses and high-resolution CESM are

considered: CESM-LR is not analyzed as section 3

showed that CESM-LR is erroneously overdominated

by the atmosphere forcing at the spatial grid scale and

monthly time scale over most of the globe.

a. Spatial scale dependence

The results so far in this paper are based on local, grid-

scale (0.258) relationships. As many previous papers sug-

gest that the ocean mesoscale has an impact on air–sea

interaction, it would be useful to see here if the ocean

driving of surface turbulent heat fluxes is confined to par-

ticular spatial scales. This has been done previously by

Bishop et al. (2017), using the OAFlux observed data re-

cord, andwe here update it to include the higher-resolution

J-OFURO3 dataset, as well as the CESM-HR model.

First, the changes in behavior as LHF and SST are

coarse-grained from their native grid to retain larger

scales are considered, using a boxcar smoother. Global

maps of SST–LHF correlation from J-OFURO3 are

shown in Fig. S10. For cases where the regression on

Niño-3.4 SST is removed, there is a monotonic decrease

of SST–LHF correlation with increasing spatial scale

(Fig. S10, left column). The most rapid changes are seen

between 18 and 58 smoothing. When the regression on

Niño-3.4 SST is not removed, the situation is similar ex-

cept in the tropical Pacific where the pattern of positive

correlation at the equator flanked by negative correlation

stays robust with spatial scale (Fig. S10, right column).

This is indicative of the large-scale nature of El Niño.

The dependence on spatial scale is summarized in

Fig. 12 by showing the lagged correlation between SST

and turbulent heat flux (THF 5 LHF 1 sensible heat

flux; results using LHF alone would be similar) as a

function of spatial scale at the sameWBC locations used

in Bishop et al. (2017), for J-OFURO3 (right column)

and CESM-HR (left column).

CESM-HR compares more favorably with the

J-OFURO3 product than with the OAFlux results de-

scribed in Bishop et al. (2017, their Fig. 10).4 The high-

resolution model and J-OFURO3 have a positive and

symmetric lagged correlation (ocean-driven SST vari-

ability) at small spatial scales (Fig. 12) that transitions

to a more asymmetric lagged correlation (atmosphere-

driven SST variability) at the longest spatial scales

(positive correlation when SST leads and negative cor-

relation when heat flux leads).

To quantify at what spatial scale the system changes

from atmosphere-driven to ocean-driven J-OFURO3, a

transition length scale was defined following Bishop et al.

(2017). Here, for all smoothing scales L smaller than

the transition scale Lc, the absolute value of the instan-

taneous correlation between SST and THF is greater

than the absolute value of the instantaneous correlation

between SST tendency and THF [(5) in Bishop et al.

2017]. In practice this is determined for a given geo-

graphical location by fitting a polynomial curve to the

correlation values as a function of smoothing scale L, as

seen in Fig. 13. Then the transition scale is where the

curves for SST–THF correlation (solid lines in Fig. 13)

and those for ›SST/›t–THF correlation (dashed lines in

Fig. 13) intersect.

The transition from ocean-driven to atmosphere-

driven SST variability in the WBC regions is between

48 and 78 for CESM-HR and J-OFURO3 (Fig. 13)

compared to the 18–38 range found for OAFlux in

Bishop et al. (2017). Resolution improvement and up-

dates to data input in J-OFURO3 compared to OAFlux

may be one of the reasons for the differences in transi-

tion length scales between products, but a detailed

analysis comparing the two products is not done here.

Next, we analyze the correlations between SST and

LHF found at small spatial scales. This is done by

removing a simple boxcar average of full-width 58 of the

original 0.258 data. The resultant high-pass data show

very strong instantaneous correlations between SST

and LHF in the J-OFURO3 and CESM-HR datasets

(Figs. 14a,b), reaching values of 0.8 or more over much

of the globe, especially away from the tropics. As with

the unfiltered data, CESM-HR exhibits higher correla-

tions, but clearly the high-resolution model and anal-

ysis product show fundamentally the same behavior.

The weaker correlation in the tropics in the high-

pass data compared to unfiltered data may be due to

less small-scale ocean activity compared to the extra-

tropics, combined with forcing of heat fluxes by small-

scale convective systems such as that embedded in the

Madden–Julian oscillation (MJO; Madden and Julian

1994). The fact that the SST–LHF correlation away

from WBCs is much weaker when the data are unfil-

tered (Figs. 3a,b) than for high-pass filtered (Figs. 14a,b)

reveals that in those regions ocean eddies are present and

force modification of the heat fluxes, but this is over-

whelmed by larger-scale atmosphere forcing. In contrast,

4 Following the results shown in section 3a and Fig. S7, part of

this may be due to the longer time period analyzed in Bishop et al.

(2017), 1985–2013, the earlier part of which tended to weight the

SST–LHF correlation toward smaller values.
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within the WBCs, the small-scale ocean features are

strong enough to dominate the heat flux variability.

b. Temporal scale dependence

In addition to the role of spatial extent in air–sea in-

teraction, there is an expected dependence on time scale,

with, for example, atmosphere weather systems likely to

have a large influence on heat fluxes at synoptic time scales.

Bishop et al. (2017) explored time dependence in the

OAFlux dataset but did not go to frequencies higher than

monthly. Here we expand this analysis and address time

scales from daily to interannual using OAFlux. Daily

FIG. 13. Transition length scale based on theBishop et al. (2017)methodology for (a) J-OFURO3 and (b) CESM-

HR. Solid lines are the instantaneous correlation between SST and THF at a particular location as a function of

spatial scale from Fig. 12: dashed lines are similar but for instantaneous correlation between SST tendency and

THF. Different colors denote different locations (see legend). The transition scale is defined as the scale at which

the solid and dashed lines of a particular color intersect, as circled.

FIG. 12. Scale dependence. Sensitivity of the lag covariance function between SST and THF to spatial scale of

smoothing (ordinate) for (left) CESM-HR and (right) J-OFURO3 in (a),(b) the Gulf Stream (GS), (c),(d) the

Kuroshio Extension (KExt), and (e),(f) the Agulhas Return Current (ARC). Negative (positive) lags denote SST

(LHF) leads. Exact locations are shown in Bishop et al. (2017).
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anomalies are defined as relative to a monthly clima-

tology (an alternative method of defining a daily cli-

matology gave similar results). Results from the full

daily data are then compared with those from the daily

data smoothed with a fourth-order Butterworth low-

pass filter with cutoffs of 5, 10, 30, 180, and 365 days,

referred to as nday here.

The temporal dependence is illustrated for the

northwest Pacific in Fig. 15 (results for the northwest

Atlantic are shown in Fig. S11). For the unfiltered daily

data and nday 5 5, the correlation between SST and

THF is weak and lies between 0 and 0.3 (Figs. 15a,b),

with the largest values along the Kuroshio Extension,

indicative of a mainly atmosphere-driven regime under

synoptic storms with a small influence of the ocean

variability. The positive correlation mostly increases

monotonically with smoothing scale; for nday 5 30 it

reaches up to 0.5 (Fig. 15c) and for nday 5 180 and 365

there is a broad expanse of strong correlation values

ranging from 0.4 to 0.8 (Figs. 15c,d). (Results for the

northwest Atlantic are somewhat similar but with

generally lower correlation, including some negative

correlation outside of the WBCs; see Fig. S11.)

Regarding the time dependence of SST–LHF rela-

tionships in the high-resolution climate model, inspection

of an animation of LHF over SST from hourly data of

CESM-HR5 reveals the dominance of weather systems

in driving LHF at the submonthly time scales in mid-

latitudes, most notably cold-air outbreaks off the east

coast of the Northern Hemisphere continents and syn-

optic storms in the Southern Ocean that bring cold and

dry air from high latitudes toward the equator. However

it also reveals the collocation of some of the strongest

LHF in these events with warm meanders of the WBCs

and ACC, indicative of the role of the ocean that be-

comes more dominant at longer time scales (section 3).

6. Discussion

a. SST variability

In section 3a it was shown that CESM-HR had much

larger SST variance than a 0.258 analysis of SST

FIG. 14. Correlation between monthly anomalies of SST and LHF, where the data from

(a) J-OFURO3 and (b) CESM-HR are high-pass filtered to retain scales of;500 km or less (by

removing the boxcar average over 500-km full-width).

5 See the video at https://www.youtube.com/playlist?list5

PL5BdpEleiG4Boo-JCGr_34WmnNf9tt4wn.
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(OISST), especially in WBCs. It has previously been

shown that OISST exhibits less SST variability on sub-

monthly time scales than U.S. National Data Buoy

Center East Coast buoys (Reynolds and Chelton 2010),

and when compared to Climate Variability and Pre-

dictability (CLIVAR) Mode Water Dynamics Experi-

ment (CLIMODE;Marshall et al. 2009) data (Jin andYu

2013), but the comparisons for monthly and longer vari-

ability are less clear due to shortness of buoy records.

Note that SST products withmuch higher resolution than

OISST and with less smoothing do exist (Donlon et al.

2007; Martin et al. 2012) but, as described by Reynolds

et al. (2013), these products have severely limited data

sources in the low cloud regime of the Gulf Stream and

Kuroshio, especially in winter, when AVHRR coverage

is scarce. (They showed that for a typical month of Jan-

uary, there were less than 3 days when there were at least

50%of cloud-free pixels in theGulf Stream andKuroshio

region, and only 15 days in July, while in the Southern

Ocean the coverage was poor year-round).

In an evaluation of one high-resolution (1 km) SST

dataset, which uses an analysis of SST tailored to the

resolution of the available satellite data [known as the

NASA Jet Propulsion Laboratory Multiscale Ultrahigh

Resolution (JPL-MUR) product], Chin et al. (2017)

showed that, globally, older products such as the OISST

had severely limited spectral power density of SST in the

below;200-km wavelength range, compared to infrared

satellite data. Specifically, the wavenumber k power

spectra of high-resolution satellite SST (such as from the

MODIS Terra instrument) showed an approximate k22

slope (i.e., SST2
; k22), whereas the OISST and many

similar products dropped off rapidly from this slope in the

below ;200-km wavelength range. The JPL-MUR

product had much higher spectral power density glob-

ally in this range of spatial scales; however, formost of the

regions of focus of this paper it is still severely limited by

the extent of cloud cover, and hencewe do not use it here.

Laurindo et al. (2018) have also suggested high SST

variance in a high-resolution climate model with the

same resolution oceanmodel as in CESM-HR, but using

0.58CAM4 (Kirtman et al. 2012). This was inferred from

the fact that the anomalies of wind speed driven by SST

had too high variance (compared to satellite data).

However, power spectral density of SST from this high-

resolution simulation had spectral slopes of around k22

(L. Laurindo 2018, personal communication), similar to

that found by Chin et al. (2017) for high-resolution

FIG. 15. The correlation of SST and turbulent heat flux in the northwest Pacific for different time scales. Data are

from theOAFlux (Yu andWeller 2007) product. The data are low-pass filtered for the number of days labeled at the

top of each plot (see text for details). The climatological annual cycle is removed, as is regression on Niño-3.4 SST.

15 APRIL 2019 SMALL ET AL . 2415

Unauthenticated | Downloaded 08/27/22 06:26 PM UTC



satellite data, and again with much higher variance at

small wavenumbers than OISST.

To confirm whether the high SST variance in CESM-

HR is due to small-scale motions we repeat the calcu-

lations used for Figs. 1a and 1b but using spatially

smoothed data. When the data are smoothed with a

boxcar running average of full-width 18, the standard

deviation of OISST is hardly affected (cf. Fig. 1a and

Fig. 16a) but for CESM-HR it is significantly reduced

(Fig. 1b and 16b). Next, smoothing with a 28 boxcar

average does lead to some reduction of the standard

deviation of OISST in WBCs (Figs. 1a and 16c) while

CESM-HR is brought quite close to the original OISST

standard deviation (cf. Figs. 1a and 16d). Therefore the

results confirm that much of the excess SST variance in

CESM-HR is at scales of 28 or less (which are not well

captured by OISST and similar datasets), and addi-

tionally that OISST does not capture much variability at

scales of 18 or less, as expected due to the inherent

smoothing in the OISST analysis procedure.

b. Transition scale

The transition scale (between atmosphere-driving and

ocean-driving) defined in this paper identifies the in-

tersection of the SST–LHF and ›SST/›t–LHF curves

as a function of smoothing scale. The scale of SST

anomalies was identified as between 48 and 78 in both

J-OFURO3 and CESM-HR, and we assign approximate

wavelengths of SST anomalies as being twice these

values, thus 88–148. The results are somewhat consistent

with recent findings of Laurindo et al. (2018) that the

phase difference between SST and low-level wind speed

transitioned at zonal wavelengths close to the atmo-

spheric first baroclinic Rossby radius of deformation,

which ranges from about 1000km at 408 latitude to

2500km at the equator. (When considering SST–wind

speed relationships, the ocean-driven case has a phase

difference of close to 08, while the atmosphere-driven

case is close to 1808).

These transition scales are much larger than the first

internal Rossby radius of deformation of the ocean,

which isO(10) km in the extratropics and a maximum of

around 250 km at the equator (Chelton and deSzoeke

1998). However Laurindo et al. (2018) also noticed that

the squared coherency (a quantity related to correlation

but defined in spectral space) between SST and wind

speed peaked at a zonal wavelength around 4 times the

observed radius of eddies ro [determined from satellite

data by Chelton et al. (2011)]. The latter scale of 4ro can

be considered as approximately equivalent to a wave-

length ofmeanders on a front. The implication is that the

atmosphere-driving case mainly occurs at spatial scales

larger than the atmosphere Rossby radius: below that

scale the situation is ocean-driven with peak forcing at

the ocean eddy scale.

c. Effect of small-scale heat fluxes on large scale

It may be asked whether the small-scale intrinsic

variability described in this paper has a significant effect

on the time-mean heat fluxes and/or on larger-scale

variability. These are not easily addressed in the mod-

eling framework of this paper: the CESM-HR and

CESM-LR have very different mean surface heat fluxes

in regions such as the Gulf Stream and North Atlantic

FIG. 16. Standard deviation of monthly anomalies of SST, with spatial smoothing: boxcar smoothing full width 18 for (a) OISST and

(b) CESM-HR, and boxcar smoothing full width 28 for (c) OISST and (d) CESM-HR.
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Current [as found in another coupled model by Roberts

et al. (2016)], but much of this is due to the different

paths of themean current and the direct effect of eddies on

the mean heat flux is not clear. The regional atmosphere

model experiments presented in Ma et al. (2017) were

more appropriate for this question: twin experiments were

run, one with realistic SST and one with spatial smoothing

applied to the SST. In the latter the SST used to compute

fluxes was smoothed sufficiently to remove the eddy

structures but left the mean ocean circulation and SST

fronts mostly unchanged. In their case, they argued that

the mesoscale SST affected the atmosphere via enhanced

diabatic heating in storms, attributing this to the nonlinear

dependence of saturation vapor pressure on tempera-

ture (Clausius–Clapeyron relationship) with warm eddies

having a larger effect. This led to changes in the storm

track and a downstream influence on large-scale atmo-

spheric circulation. Smirnov et al. (2015) had previously

noted that a stationarywarmSSTanomaly in theKuroshio

Extension region could lead to changes in local transient

eddy fluxes in the atmosphere, balancing the diabatic

heating induced by the SST anomaly, leading to deep as-

cent, and a downstream response.

The role of coherent changes in ocean eddy activity in

the Kuroshio Extension on atmosphere heat transport

has been explored by Bishop et al. (2015) and references

therein. They noted that between years of active eddy

activity (unstable state) and weak eddy activity (stable

state) a partial compensation between changes in me-

ridional heat transport in the ocean and in the atmo-

sphere was achieved.

The feedback of the small-scale air–sea fluxes to the

ocean was investigated byMa et al. (2016) using coupled

high-resolution experiments. They showed that the

small-scale air–sea interaction had an impact on the

eddying and mean flow associated with the Kuroshio

Extension. When the mesoscale air–sea feedback was

removed, ocean eddies became more energetic and the

flow more meandering with a weak mean ocean jet. In

contrast, with realistic feedback and damping of ocean

eddies, it was proposed that a strong ocean jet is re-

quired to convert mean available potential energy (PE)

to eddy PE to balance the strong dissipation of eddy PE

by air–sea flux. Further work is required, however, to see

if this process acts generally in other regions of the globe

and on what time scales.

7. Conclusions

d Observational analyses and high-resolution climate

models show that LHF variability is driven by SST

variability in regions of intrinsic ocean variability on

monthly time scales.

d Correlations between SST and LHF generally in-

crease for interannual time scales in those same

regions, compared to monthly.
d Standard-resolution climate models miss most of the

ocean effect on LHF in the extratropics, and instead

LHF variability is driven by atmosphere there.
d Two methods of decomposing LHF variability were

explored. First partial regressions were used to deal

with interdependency of forcing variables. Second, an

exact decomposition of LHF, including exchange co-

efficient, confirmed that while SST variability drives

LHF variability in the eastern equatorial basins and

ocean frontal zones, wind variability drives most of the

LHF variability elsewhere in the tropics and subtropics,

and humidity played a large role at higher latitudes.
d High-resolution CESM has too strong SST variability

in WBC regions, compared to Reynolds et al. (2007)

OISST, and consequently LHF variability is also too

strong. However, much of the extra SST variability in

CESM-HR is at scales of ;200km or less and other

studies have indicated that OISST and similar prod-

ucts underestimate variability at those scales.
d In regions of strong ocean intrinsic variability, it is

found that spatially smoothing the J-OFURO3 and

CESM-HR data to scales of 48–78 is enough to tran-

sition from the ocean-driving to the atmosphere-

driving case. These transition scales are longer than

the scales of around 38 derived from OAFlux in

Bishop et al. (2017).
d When the data are filtered to retain only the ocean

small scales, of 58 or less, a dominance of ocean forcing

of heat flux is seen in most of the extratropics in

J-OFURO3 and CESM-HR. In the tropics, particu-

larly the west Pacific/Indian Ocean warm pool, the

atmosphere can still dominate at small scales.
d For the metric of correlation between SST and LHF

on monthly time scales, all three observational ana-

lyses considered here, J-OFURO3, OAFlux, and

SeaFlux gave similar results for the recent period

of 2002–12.
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APPENDIX

Effect of Variability of Exchange Coefficient for

Moisture on LHF

This appendix studies the effect of variability of the

exchange coefficientCE on the LHF variability (method

2). If CE is divided into climatological mean and per-

turbation parts as with the other variables, the de-

composition (2) is modified to

Q0

E 5 r
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L

0

B
B
B
@
C

E
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|fflffl{zfflffl}
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1C0
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|ffl{zffl}
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0

|fflffl{zfflffl}

(iv)

1

C
C
C
A
,

(A1)

whereA is the sum of terms in the curly bracket of (2)—

that is, terms including wind, qs, and qa variability and

covariability. This decomposition was applied to the 10-yr

FIG. A1. Linear regression of individual terms of LHF decomposition onto full LHF variability. (a) All terms from RHS of (A1),

(b) term i on RHS of (A1), (c) last three terms on RHS of (A1), (d) wind contribution, term iii of (2), (e) term i of (2), (f) term ii of (2),

(g) term iv of (2), and (h) sum of (c)–(g), which, by design should be equal to (a). In (d)–(g), it is assumed the exchange coefficient is

climatological in (2). Noisy values in the Southern Ocean and high northern latitudes are due to poor estimates of CE from daily data in

atmosphere storm tracks. The displayed quantity is unitless, and the color bar is shown at bottom.
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record where daily CE could be estimated, and note the

effects of ENSO were not removed for this analysis. As

mentioned in section 2d, estimates ofCEwere very noisy

in some storm track regions because the estimate was

based on daily-mean data and subdaily variability is

strong in storm track regions. Thus, the terms involving

the CE variability [last three terms of (A1)] are quite

noisy in the same regions. This is illustrated in Fig. A1c,

where these three terms were regressed onto LHF vari-

ability. As a consequence, regressing all four terms in (A1)

onto LHF gave noisy values in the same regions

(Fig. A1a). When the CE variability terms are removed

and only the first term of (A1) is used, the fit to the full

LHF variability is reduced somewhat from close to 1 in the

tropics to 0.7–0.9 in the storm track regions (Fig. A1b).

Because of the noise in the CE variability term, we use

the smoothed climatological mean CE in section 4b, but

note that this slightly reduces the fit of the decomposition

to the full LHF variability.

REFERENCES

Alexander, M. A., and J. D. Scott, 1997: Surface flux variability over

the North Pacific and North Atlantic Oceans. J. Climate, 10,

2963–2978, https://doi.org/10.1175/1520-0442(1997)010,2963:

SFVOTN.2.0.CO;2.

Andreas, E. L, R. E. Jordan, L. Mahrt, and D. Vickers, 2013: Esti-

mating the Bowen ratio over the open and ice-covered ocean.

J. Geophys. Res. Oceans, 118, 4334–4345, https://doi.org/10.1002/

jgrc.20295.

Barsugli, J. J., and D. S. Battisti, 1998: The basic effects of

atmosphere–ocean thermal coupling on midlatitude vari-

ability. J. Atmos. Sci., 55, 477–493, https://doi.org/10.1175/

1520-0469(1998)055,0477:TBEOAO.2.0.CO;2.

Bishop, S. P., F. O. Bryan, and R. J. Small, 2015: Bjerknes-like

compensation in the wintertime North Pacific. J. Phys. Ocean-

ogr., 45, 1339–1354, https://doi.org/10.1175/JPO-D-14-0157.1.

——, R. J. Small, F. O. Bryan, and R. A. Tomas, 2017: Scale de-

pendence of mid-latitude air–sea interaction. J. Climate, 30,

8207–8221, https://doi.org/10.1175/JCLI-D-17-0159.1.

Cane, M. A., A. C. Clement, L. Murphy, and K. Bellomo, 2017: Low-

pass filtering, heat flux, and Atlantic multidecadal variability.

J. Climate, 30, 7529–7553, https://doi.org/10.1175/JCLI-D-16-0810.1.

Cayan, D. R., 1992: Variability of latent and sensible heat fluxes

estimated using bulk formulae. Atmos.–Ocean, 30, 1–42,

https://doi.org/10.1080/07055900.1992.9649429.

Chelton, D. B., R. A. deSzoeke, M. G. Schlax, K. E. Naggar, and

N. Siwertz, 1998: Geographical variability of the first baro-

clinic Rossby radius of deformation. J. Phys. Oceanogr., 28,

433–460, https://doi.org/10.1175/1520-0485(1998)028,0433:

GVOTFB.2.0.CO;2.

——, and Coauthors, 2001: Observations of coupling between

surface wind stress and sea surface temperature in the eastern

tropical Pacific. J. Climate, 14, 1479–1498, https://doi.org/

10.1175/1520-0442(2001)014,1479:OOCBSW.2.0.CO;2.

——,M.G. Schlax, and R.M. Samelson, 2011: Global observations

of nonlinear mesoscale eddies. Prog. Oceanogr., 91, 167–216,

https://doi.org/10.1016/j.pocean.2011.01.002.

Chin, T. M., J. Vazquez-Cuervo, and E. M. Armstrong, 2017: A

multi-scale high-resolution analysis of global sea surface tem-

perature. Remote Sens. Environ., 200, 154–169, https://doi.org/

10.1016/j.rse.2017.07.029.

Clayson, C. A., and A. S. Bogdanoff, 2013: The effect of diurnal sea

surface temperature warming on climatological air–sea fluxes.

J. Climate, 26, 2546–2556, https://doi.org/10.1175/JCLI-D-12-00062.1.

Clement, A., K. Bellomo, L. N.Murphy,M. A. Cane, T.Mauritsen,

G. Rädel, and B. Stevens, 2015: The Atlantic multidecadal

oscillation without a role for ocean circulation. Science, 350,

320–324, https://doi.org/10.1126/science.aab3980.

Cohen, J., and P. Cohen, 1983: Applied Multiple Regression/Cor-

relation Analysis for the Behavioral Sciences. Lawrence Erlbam

Associates, 545 pp.

Delworth, T. L., and Coauthors, 2012: Simulated climate change

in the GFDL CM2.5 high-resolution coupled climate

model. J. Climate, 25, 2755–2781, https://doi.org/10.1175/

JCLI-D-11-00316.1.

——, F. Zeng, L. Zhang, R. Zhang, G. A. Vecchi, and X. Yang,

2017: The central role of ocean dynamics in connecting the

North Atlantic Oscillation to the extratropical component of

the Atlantic multidecadal oscillation. J. Climate, 30, 3789–

3805, https://doi.org/10.1175/JCLI-D-16-0358.1.

Doney, S. C., S. Yeager, G. Danabasoglu, W. G. Large, and J. C.

McWilliams, 2007: Mechanisms governing interannual vari-

ability of upper-ocean temperature in a global ocean hindcast

simulation. J. Phys. Oceanogr., 37, 1918–1938, https://doi.org/

10.1175/JPO3089.1.

Donlon, C., and Coauthors, 2007: The global ocean data assimila-

tion experiment high-resolution sea surface temperature pilot

project. Bull. Amer. Meteor. Soc., 88, 1197–1213, https://

doi.org/10.1175/BAMS-88-8-1197.

Fairall, C. W., E. F. Bradley, D. P. Rogers, J. B. Edson, and G. S.

Young, 1996: Bulk parameterization of air–sea fluxes for

TropicalOcean–GlobalAtmosphereCoupledOcean–Atmosphere

Response Experiment. J. Geophys. Res., 101, 3747–3764,

https://doi.org/10.1029/95JC03205.

——, ——, J. E. Hare, A. A. Grachev, and J. B. Edson, 2003: Bulk

parameterization of air–sea fluxes: Updates and verification for

the COARE algorithm. J. Climate, 16, 571–591, https://doi.org/

10.1175/1520-0442(2003)016,0571:BPOASF.2.0.CO;2.

Frankignoul, C., and K. Hasselmann, 1977: Stochastic climate

models. II: Application of sea surface temperature anomalies

and thermocline variability. Tellus, 29, 289–305, https://

doi.org/10.3402/tellusa.v29i4.11362.

——, and E. Kestenare, 2002: The surface heat flux feedback. Part

1: Estimate from observations in the Atlantic and the North

Pacific. Climate Dyn., 19, 633–647, https://doi.org/10.1007/

s00382-002-0252-x.

——, N. Sennechael, Y.-O. Kwon, and M. A. Alexander, 2011: In-

fluence of themeridional shifts of theKuroshio and theOyashio

Extensions on the atmospheric circulation. J. Climate, 24, 762–

777, https://doi.org/10.1175/2010JCLI3731.1.

Gent, P. R. and J. C. McWilliams, 1990: Isopycnal mixing in ocean

circulationmodels. J. Phys.Oceanogr., 20, 150–155, https://doi.org/

10.1175/1520-0485(1990)020,0150:IMIOCM.2.0.CO;2.

Griffies, S., and Coauthors, 2015: Impacts on ocean heat from tran-

sient mesoscale eddies in a hierarchy of climate models. J. Cli-

mate, 28, 952–977, https://doi.org/10.1175/JCLI-D-14-00353.1.

Gulev, S. K., M. Latif, N. Keenlyside, W. Park, and K.-P.

Koltermann, 2013: North Atlantic Ocean control on surface

heat flux on multidecadal timescales. Nature, 499, 464–467,

https://doi.org/10.1038/nature12268.

15 APRIL 2019 SMALL ET AL . 2419

Unauthenticated | Downloaded 08/27/22 06:26 PM UTC

https://doi.org/10.1175/1520-0442(1997)010<2963:SFVOTN>2.0.CO;2
https://doi.org/10.1175/1520-0442(1997)010<2963:SFVOTN>2.0.CO;2
https://doi.org/10.1002/jgrc.20295
https://doi.org/10.1002/jgrc.20295
https://doi.org/10.1175/1520-0469(1998)055<0477:TBEOAO>2.0.CO;2
https://doi.org/10.1175/1520-0469(1998)055<0477:TBEOAO>2.0.CO;2
https://doi.org/10.1175/JPO-D-14-0157.1
https://doi.org/10.1175/JCLI-D-17-0159.1
https://doi.org/10.1175/JCLI-D-16-0810.1
https://doi.org/10.1080/07055900.1992.9649429
https://doi.org/10.1175/1520-0485(1998)028<0433:GVOTFB>2.0.CO;2
https://doi.org/10.1175/1520-0485(1998)028<0433:GVOTFB>2.0.CO;2
https://doi.org/10.1175/1520-0442(2001)014<1479:OOCBSW>2.0.CO;2
https://doi.org/10.1175/1520-0442(2001)014<1479:OOCBSW>2.0.CO;2
https://doi.org/10.1016/j.pocean.2011.01.002
https://doi.org/10.1016/j.rse.2017.07.029
https://doi.org/10.1016/j.rse.2017.07.029
https://doi.org/10.1175/JCLI-D-12-00062.1
https://doi.org/10.1126/science.aab3980
https://doi.org/10.1175/JCLI-D-11-00316.1
https://doi.org/10.1175/JCLI-D-11-00316.1
https://doi.org/10.1175/JCLI-D-16-0358.1
https://doi.org/10.1175/JPO3089.1
https://doi.org/10.1175/JPO3089.1
https://doi.org/10.1175/BAMS-88-8-1197
https://doi.org/10.1175/BAMS-88-8-1197
https://doi.org/10.1029/95JC03205
https://doi.org/10.1175/1520-0442(2003)016<0571:BPOASF>2.0.CO;2
https://doi.org/10.1175/1520-0442(2003)016<0571:BPOASF>2.0.CO;2
https://doi.org/10.3402/tellusa.v29i4.11362
https://doi.org/10.3402/tellusa.v29i4.11362
https://doi.org/10.1007/s00382-002-0252-x
https://doi.org/10.1007/s00382-002-0252-x
https://doi.org/10.1175/2010JCLI3731.1
https://doi.org/10.1175/1520-0485(1990)020<0150:IMIOCM>2.0.CO;2
https://doi.org/10.1175/1520-0485(1990)020<0150:IMIOCM>2.0.CO;2
https://doi.org/10.1175/JCLI-D-14-00353.1
https://doi.org/10.1038/nature12268


Hausmann, U., A. Czaja, and J. Marshall, 2017: Mechanisms con-

trolling the SST air–sea heat flux feedback and its dependence

on spatial scale. Climate Dyn., 48, 1297–1307, https://doi.org/

10.1007/s00382-016-3142-3.

Hunke, E. C., and W. H. Lipscomb, 2008: CICE: The Los Alamos

sea ice model user’s manual, version 4. Los Alamos National

Laboratory Tech. Rep. LA-CC-06-012, 76 pp.

Hurrell, J. W., and Coauthors, 2013: The Community Earth Sys-

tem Model: A framework for collaborative research. Bull.

Amer. Meteor. Soc., 94, 1339–1360, https://doi.org/10.1175/

BAMS-D-12-00121.1.

Jin, X., and L. Yu, 2013: Assessing high-resolution analysis of

surface heat fluxes in the Gulf Stream region. J. Geophys. Res.

Oceans, 118, 5353–5375, https://doi.org/10.1002/jgrc.20386.

Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Re-

analysis Project. Bull. Amer. Meteor. Soc., 77, 437–471, https://

doi.org/10.1175/1520-0477(1996)077,0437:TNYRP.2.0.CO;2.

Kanamitsu, M., W. Ebisuzaki, J. Woollen, S.-K. Yang, J. J. Hnilo,

M. Fiorino, and G. L. Potter, 2002: NCEP–DOE AMIP II

Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 1631–1643,

https://doi.org/10.1175/BAMS-83-11-1631.

Kirtman, B. P., and Coauthors, 2012: Impact of ocean model res-

olution on CCSM climate simulations.ClimateDyn., 39, 1303–

1328, https://doi.org/10.1007/s00382-012-1500-3.

Kubota, M., N. Iwasaka, S. Kizu, M. Kondo, and K. Kutsuwada,

2002: Japanese ocean flux datasets with use of remote sensing

observations (J-OFURO). J. Oceanogr., 58, 213–225, https://

doi.org/10.1023/A:1015845321836.

Kuo, Y.-H., R. J. Reed, and S. Low-Nam, 1991: Effects of surface

energy fluxes during the early development and rapid in-

tensification stages of seven explosive cyclones in the western

Atlantic. Mon. Wea. Rev., 119, 457–475, https://doi.org/

10.1175/1520-0493(1991)119,0457:EOSEFD.2.0.CO;2.

Large, W. G., and S. G. Yeager, 2004: Diurnal to decadal

global forcing for ocean and sea-icemodels: Thedata sets andflux

climatologies. NCAR Tech. Note NCAR/TN-4601STR, 105

pp., http://opensky.ucar.edu/islandora/object/technotes:434.

——, and ——, 2009: The global climatology of an interannually

varying air–sea flux data set.ClimateDyn., 33, 341–364, https://

doi.org/10.1007/s00382-008-0441-3.

Laurindo, L. C., L. Siqueira, A. J.Mariano, and B. P. Kirtman, 2018:

Cross-spectral analysis of the SST/10m wind speed coupling

resolved by satellite products and climate model simulations.

Climate Dyn., https://doi.org/10.1007/s00382-018-4434-6.

Lawrence, D. M., and Coauthors, 2011: Parameterization im-

provements and functional and structural advances in Version

4 of theCommunity LandModel. J. Adv.Model. Earth Syst., 3,

M03001, https://doi.org/10.1029/2011MS00045.

Liu, W. T., K. B. Katsaros, and J. A. Businger, 1979: Bulk param-

eterization of air–sea exchanges of heat and water vapor in-

cluding the molecular constraints at the interface. J. Atmos.

Sci., 36, 1722–1735, https://doi.org/10.1175/1520-0469(1979)

036,1722:BPOASE.2.0.CO;2.

Ma, X., and Coauthors, 2016:Western boundary currents regulated

by interaction between ocean eddies and the atmosphere.

Nature, 535, 533–537, https://doi.org/10.1038/nature18640.

——, P. Chang, R. Saravanan, R. Montuoro, H. Nakamura,

D. Wu, X. Lin, and L. Wu, 2017: Importance of resolving

Kuroshio front and eddy influence in simulating the North

Pacific storm track. J. Climate, 30, 1861–1880, https://doi.org/

10.1175/JCLI-D-16-0154.1.

Madden, R. A., and P. R. Julian, 1994: Observations of the 40–

50-day tropical oscillation—A review.Mon. Wea. Rev., 122,

814–837, https://doi.org/10.1175/1520-0493(1994)122,0814:

OOTDTO.2.0.CO;2.

Marshall, J., and Coauthors, 2009: The CLIMODE field campaign:

Observing the cycle of convection and restratification over the

Gulf Stream. Bull. Amer. Meteor. Soc., 90, 1337–1350, https://

doi.org/10.1175/2009BAMS2706.1.

Martin, M., and Coauthors, 2012: Group for High Resolution

Sea Surface Temperature (GHRSST) analysis fields inter-

comparisons. Part 1: A GHRSST multi-product ensemble

(GMPE). Deep-Sea Res. II, 77-80, 21–30, https://doi.org/

10.1016/j.dsr2.2012.04.013.

O’Reilly, C. H., and L. Zanna, 2018: The signature of oceanic pro-

cesses in decadal extratropical SST anomalies. Geophys. Res.

Lett., 45, 7719–7730. https://doi.org/10.1029/2018GL079077.

Park, S., C. Deser, and M. A. Alexander, 2005: Estimation of the

surface heat flux response to sea surface temperature anom-

alies over the global oceans. J. Climate, 18, 4582–4599, https://

doi.org/10.1175/JCLI3521.1.

——, C. S. Bretherton, and P. J. Rasch, 2014: Integrating cloud pro-

cesses in theCommunityAtmosphereModel, version 5. J. Climate,

27, 6821–6856, https://doi.org/10.1175/JCLI-D-14-00087.1.

Putrasahan, D. A., I. Kamenkovich, M. LeHénaff, and B. P.

Kirtman, 2017: Importance of ocean mesoscale variability for

air–sea interactions in theGulf ofMexico.Geophys. Res. Lett.,

44, 6352–6362, https://doi.org/10.1002/2017GL072884.

Reynolds, R. W., and D. B. Chelton, 2010: Comparisons of daily

sea surface temperature analyses for 2007–08. J. Climate, 23,

3545–3562, https://doi.org/10.1175/2010JCLI3294.1.

——, T. M. Smith, C. Liu, D. B. Chelton, K. S. Casey, and M. G.

Schlax, 2007: Daily high-resolution-blended analyses for sea

surface temperature. J. Climate, 20, 5473–5496, https://doi.org/

10.1175/2007JCLI1824.1.

——,D. B. Chelton, J. Roberts-Jones,M. J.Martin, D.Menemenlis,

and C. J. Merchant, 2013: Objective determination of feature

resolution in two sea surface temperature analyses. J. Climate,

26, 2514–2533, https://doi.org/10.1175/JCLI-D-12-00787.1.

Roberts, J. B., C. A. Clayson, F. R. Robertson, and D. L. Jackson,

2010: Predicting near-surface atmospheric variables from

Special Sensor Microwave/Imager using neural networks

with a first-guess approach. J. Geophys. Res., 115, D19113,

https://doi.org/10.1029/2009JD013099.

Roberts, M. J., H. T. Hewitt, P. Hyder, D. Ferreira, S. A. Josey,

M. Mizielinski, and A. Shelly, 2016: Impact of ocean resolution

on coupled air–sea fluxes and large-scale climate.Geophys. Res.

Lett., 43, 10 430–10 438, https://doi.org/10.1002/2016GL070559.

Saji, N. H., and T. Yamagata, 2003: Structure of SST and surface

wind variability during Indian Ocean dipole mode events:

COADS observations. J. Climate, 16, 2735–2751, https://doi.org/

10.1175/1520-0442(2003)016,2735:SOSASW.2.0.CO;2.

Schneider, N., and B. Qiu, 2015: The atmospheric response to weak

sea surface temperature fronts. J. Atmos. Sci., 72, 3356–3377,

https://doi.org/10.1175/JAS-D-14-0212.1.

Sérazin, G., T. Penduff, S. Grégorio, B. Barnier, J.-M.Molines, and

L. Terray, 2015: Intrinsic variability of sea level from global 1/

12 simulations: Spatiotemporal scales. J. Climate, 28, 4279–

4292, https://doi.org/10.1175/JCLI-D-14-00554.1.

Small, R. J., and Coauthors, 2008: Air–sea interaction over ocean

fronts and eddies. Dyn. Atmos. Oceans, 45, 274–319, https://

doi.org/10.1016/j.dynatmoce.2008.01.001.

——, and Coauthors, 2014: A new synoptic scale resolving global

climate simulation using the Community Earth System Model.

J. Adv.Model. Earth Syst., 6, 1065–1094, https://doi.org/10.1002/

2014MS000363.

2420 JOURNAL OF CL IMATE VOLUME 32

Unauthenticated | Downloaded 08/27/22 06:26 PM UTC

https://doi.org/10.1007/s00382-016-3142-3
https://doi.org/10.1007/s00382-016-3142-3
https://doi.org/10.1175/BAMS-D-12-00121.1
https://doi.org/10.1175/BAMS-D-12-00121.1
https://doi.org/10.1002/jgrc.20386
https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
https://doi.org/10.1175/BAMS-83-11-1631
https://doi.org/10.1007/s00382-012-1500-3
https://doi.org/10.1023/A:1015845321836
https://doi.org/10.1023/A:1015845321836
https://doi.org/10.1175/1520-0493(1991)119<0457:EOSEFD>2.0.CO;2
https://doi.org/10.1175/1520-0493(1991)119<0457:EOSEFD>2.0.CO;2
http://opensky.ucar.edu/islandora/object/technotes:434
https://doi.org/10.1007/s00382-008-0441-3
https://doi.org/10.1007/s00382-008-0441-3
https://doi.org/10.1007/s00382-018-4434-6
https://doi.org/10.1029/2011MS00045
https://doi.org/10.1175/1520-0469(1979)036<1722:BPOASE>2.0.CO;2
https://doi.org/10.1175/1520-0469(1979)036<1722:BPOASE>2.0.CO;2
https://doi.org/10.1038/nature18640
https://doi.org/10.1175/JCLI-D-16-0154.1
https://doi.org/10.1175/JCLI-D-16-0154.1
https://doi.org/10.1175/1520-0493(1994)122<0814:OOTDTO>2.0.CO;2
https://doi.org/10.1175/1520-0493(1994)122<0814:OOTDTO>2.0.CO;2
https://doi.org/10.1175/2009BAMS2706.1
https://doi.org/10.1175/2009BAMS2706.1
https://doi.org/10.1016/j.dsr2.2012.04.013
https://doi.org/10.1016/j.dsr2.2012.04.013
https://doi.org/10.1029/2018GL079077
https://doi.org/10.1175/JCLI3521.1
https://doi.org/10.1175/JCLI3521.1
https://doi.org/10.1175/JCLI-D-14-00087.1
https://doi.org/10.1002/2017GL072884
https://doi.org/10.1175/2010JCLI3294.1
https://doi.org/10.1175/2007JCLI1824.1
https://doi.org/10.1175/2007JCLI1824.1
https://doi.org/10.1175/JCLI-D-12-00787.1
https://doi.org/10.1029/2009JD013099
https://doi.org/10.1002/2016GL070559
https://doi.org/10.1175/1520-0442(2003)016<2735:SOSASW>2.0.CO;2
https://doi.org/10.1175/1520-0442(2003)016<2735:SOSASW>2.0.CO;2
https://doi.org/10.1175/JAS-D-14-0212.1
https://doi.org/10.1175/JCLI-D-14-00554.1
https://doi.org/10.1016/j.dynatmoce.2008.01.001
https://doi.org/10.1016/j.dynatmoce.2008.01.001
https://doi.org/10.1002/2014MS000363
https://doi.org/10.1002/2014MS000363


Smirnov, D., M. Newman, and M. A. Alexander, 2014: In-

vestigating the role of ocean–atmosphere coupling in the

North Pacific Ocean. J. Climate, 27, 592–606, https://doi.org/

10.1175/JCLI-D-13-00123.1.

——,——,——, Y. Kwon, and C. Frankignoul, 2015: Investigating

the local atmospheric response to a realistic shift in the Oya-

shio sea surface temperature front. J. Climate, 28, 1126–1147,

https://doi.org/10.1175/JCLI-D-14-00285.1.

Smith, R. D., and Coauthors, 2010: The Parallel Ocean Program

(POP) reference manual. Los Alamos National Laboratory

Tech. Rep. LAUR-10-01853, 140 pp.

Tanimoto, Y., H. Nakamura, T. Kagimoto, and S. Yamane, 2003: An

active role of extratropical sea surface temperature anomalies

in determining anomalous turbulent heat flux. J. Geophys.

Res., 108, 3304, https://doi.org/10.1029/2002JC001750.

Tomita, H., M. Kubota, M. F. Cronin, S. Iwasaki, M. Konda, and

H. Ichikawa, 2010: An assessment of surface heat fluxes from

J-OFURO2 at the KEO and JKEO sites. J. Geophys. Res.,

115, C03018, https://doi.org/10.1029/2009JC005545.

——, T. Hihara, S. Kato, M. Kubota, and K. Kutsuwada, 2019: An

introduction to J-OFURO3, a third-generation Japanese ocean

flux data set using remote-sensing observations. J. Oceanogr., 75,

171–194, https://doi.org/10.1007/s10872-018-0493-x.

Uppala, S. M., and Coauthors, 2005: The ERA-40 Re-Analysis.

Quart. J. Roy. Meteor. Soc., 131, 2961–3012, https://doi.org/

10.1256/qj.04.176.

von Storch, J.-S., 2000: Signatures of air–sea interactions in a coupled

atmosphere–oceanGCM. J.Climate,13, 3361–3379, https://doi.org/

10.1175/1520-0442(2000)013,3361:SOASII.2.0.CO;2.

Wu, R., B. P. Kirtman, and K. Pegion, 2006: Local air–sea re-

lationship in observations and model simulations. J. Climate,

19, 4914–4932, https://doi.org/10.1175/JCLI3904.1.

Xie, S.-P., 2004: Satellite observations of cool ocean–atmosphere

interaction. Bull. Amer. Meteor. Soc., 85, 195–208, https://

doi.org/10.1175/BAMS-85-2-195.

——, M. Ishiwatari, H. Hashizume, and K. Takeuchi, 1998:

Coupled ocean–atmospheric waves on the equatorial front.

Geophys. Res. Lett., 25, 3863–3866, https://doi.org/10.1029/

1998GL900014.

Yu, L., and R. A. Weller, 2007: Objectively analyzed air–sea

heat fluxes for the global ice-free oceans (1981–2005). Bull.

Amer. Meteor. Soc., 88, 527–539, https://doi.org/10.1175/

BAMS-88-4-527.

Zhang, R., R. Sutton, G. Danabasoglu, T. L. Delworth, W. M.

Kim, J. Robson, and S. G. Yeager, 2016: Comment on ‘‘The

Atlantic multidecadal oscillation without a role for ocean

circulation.’’ Science, 352, 1527, https://doi.org/10.1126/

science.aaf1660.

——, X. Wang, and C. Wang, 2018: On the simulations of global

oceanic latent heat flux in the CMIP5 multimodel en-

semble. J. Climate, 31, 7111–7128, https://doi.org/10.1175/

JCLI-D-17-0713.1.

15 APRIL 2019 SMALL ET AL . 2421

Unauthenticated | Downloaded 08/27/22 06:26 PM UTC

https://doi.org/10.1175/JCLI-D-13-00123.1
https://doi.org/10.1175/JCLI-D-13-00123.1
https://doi.org/10.1175/JCLI-D-14-00285.1
https://doi.org/10.1029/2002JC001750
https://doi.org/10.1029/2009JC005545
https://doi.org/10.1007/s10872-018-0493-x
https://doi.org/10.1256/qj.04.176
https://doi.org/10.1256/qj.04.176
https://doi.org/10.1175/1520-0442(2000)013<3361:SOASII>2.0.CO;2
https://doi.org/10.1175/1520-0442(2000)013<3361:SOASII>2.0.CO;2
https://doi.org/10.1175/JCLI3904.1
https://doi.org/10.1175/BAMS-85-2-195
https://doi.org/10.1175/BAMS-85-2-195
https://doi.org/10.1029/1998GL900014
https://doi.org/10.1029/1998GL900014
https://doi.org/10.1175/BAMS-88-4-527
https://doi.org/10.1175/BAMS-88-4-527
https://doi.org/10.1126/science.aaf1660
https://doi.org/10.1126/science.aaf1660
https://doi.org/10.1175/JCLI-D-17-0713.1
https://doi.org/10.1175/JCLI-D-17-0713.1

