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Recently, unmanned aerial vehicle (UAV) plays an important role in many applications because of its high 	exibility and low cost.
To realize reliable UAV communications, a fundamental work is to investigate the propagation characteristics of the channels. In
this paper, we propose path loss models for the UAV air-to-air (AA) scenario based on machine learning. A ray-tracing so
ware
is employed to generate samples for multiple routes in a typical urban environment, and di�erent altitudes of Tx and Rx UAVs are
taken into consideration. Two machine-learning algorithms, Random Forest and KNN, are exploited to build prediction models
on the basis of the training data. �e prediction performance of trained models is assessed on the test set according to the metrics
including the mean absolute error (MAE) and root mean square error (RMSE). Meanwhile, two empirical models are presented
for comparison. It is shown that the machine-learning-based models are able to provide high prediction accuracy and acceptable
computational e�ciency in the AA scenario. Moreover, Random Forest outperforms other models and has the smallest prediction
errors. Further investigation is made to evaluate the impacts of 
ve di�erent parameters on the path loss. It is demonstrated that
the path visibility is crucial for the path loss.

1. Introduction

In recent years, unmanned aerial vehicles (UAVs), as aircraft
without pilots on board, have shown great promise due
to their high mobility and deployment 	exibility. With the
development of UAV manufacturing, its cost is reduced
while its performance continuously increases. As a result,
there are more and more attractive applications for UAV,
such as tra�c monitoring, emergency rescue, forest 
re
detection, cargo transport, and so on [1, 2]. Stable and
e�cient wireless communication links are indispensable in
most UAV applications. �erefore, the UAV communications
play an important role in the future 

h-generation wireless
networks (5G), providing vast coverage and reliable relaying.

Meanwhile, the propagation environment of UAV-aided
communication systems di�ers from that of traditional ones,
which brings enormous challenges. An accurate under-
standing of the UAV wireless channels is crucial for the
design and deployment of these communication systems.
�e wireless signals from/to UAVs may be obstructed and

may encounter di�erent propagation conditions along the
path. �e attenuation of the electromagnetic wave, which is
usually described by the path loss, is of great signi
cance
for the link budget analysis and network planning for UAV
communications. �erefore, many works have been 
nished
to develop 	exible and precise models for the path loss in the
UAV communication scenarios.

�e high altitude range of 500m to 2000m was con-
sidered in [3], and the air-to-ground (AG) channel based
on the curved-earth two-ray model was investigated in
various scenarios. In [4], a statistical propagation model was
proposed for the UAV channel at low altitude in the urban
environment, and it was shown that the prediction results
were dependent on the elevation angle between the airborne
transmitter (Tx) and the receiver (Rx) on the ground. In
[5], the impact of the UAV altitude on path loss exponent
and shadow fading in the rural scenario was studied. In [6],
statistical path loss models were established bymodifying the
current 3GPP terrestrial channel models for urban macrocell
and rural macrocell scenarios. In [7, 8], measurements were
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carried out in suburban scenarios, and large-scale parameters
and multipath components were extracted and analyzed. In
[9], measurement campaigns were conducted in an urban
scenario and a distance-dependent model was proposed for
the UAV path loss prediction.

Most of these aforementioned works are focused on the
AG communication. An alternative application approach of
UAVs is to use them as both sides of the communication, i.e.,
air-to-air (AA) communication. Until now, only a few papers
have investigated the channel models in the AA scenario.
In [10], Rice model was extended to derive the AA channel
parameters and it was reported that the attenuation caused by
the distance e�ect followed a free-space model. In [11], with
data generated by a ray-tracing so
ware, the close-in free-
space model and excess fading loss model were adopted to
characterize the path loss in the AA channel.

Furthermore, the existing works are mainly based on
empirical models, such as free-space model and log-distance
model, which rely on data collected in speci
c propagation
scenarios. Statistical analysis is performed to build the map-
ping relationship between path loss and parameters such
as propagation distance and 	ight altitude. �e empirical
models are computationally e�cient and easy to implement.
�ey can describe the statistical characteristics of the path
loss at a given distance in the measured scenario. However,
the actual path loss at a speci
c location cannot be obtained.
Besides, the accuracy of these models decreases when they
are applied to more general environments [12].

Another candidate solution is to utilize deterministic
approaches, such as ray tracing and 
nite-di�erence time-
domain (FDTD), within which the path loss values are
calculated by applying radio wave propagation mechanisms
and numerical analysis techniques to model computational
electromagnetics. With detailed geographic information and
dielectric properties of materials, these methods are very
accurate and reliable for predicting the spatial distribution of
electromagnetic 
elds. Due to the high cost of carrying out
measurement campaigns, the deterministic approaches have
been widely used for wireless network planning. �e only
disadvantage is that the computation procedure consumes
huge time and memory resources and thus it is inappropriate
to use these approaches for real-time applications. Moreover,
the complicated calculation has to be run again once the
propagation environment changes.

Actually, path loss modeling is a supervised regression
problem and can be solved by machine learning [13]. It has
been proved that machine-learning-based models are able
to provide more accurate path loss prediction results than
the empirical ones and are more computationally e�cient
than the deterministic approaches [12]. Di�erent algorithms
have been adopted to train prediction models in traditional
terrestrial communication scenarios. For example, arti
cial
neural networks (ANNs) were used for path loss prediction
in urban [14], suburban [15], rural [16], and railway [17]
scenarios. Support vector regression (SVR) was applied for
the prediction of path loss in suburban environment in [18].
In order to build a connectivity model for an environmental
wireless sensor network, several methods, including Random
Forest, Adaboost, ANNs, and K-Nearest-Neighbors (KNN),

were analyzed and compared in [13]. It was reported that Ran-
dom Forest performed better than others for the considered
complex terrain environments.

In this paper, we build the prediction models for path
loss in the AA scenario based on machine learning. Two
algorithms, Random Forest and KNN, are taken into consid-
eration. To evaluate the feasibility of the proposed models,
the ray-tracing approach is used to generate data for training
and testing purposes. In addition, the prediction accuracies of
machine-learning-based models are compared with those of
the empirical ones, such as the Stanford University Interim
(SUI) model [19] and the COST231-W-I model [20]. It is
shown that the proposed models outperform the empirical
ones. Furthermore, we analyze the commonly used parame-
ters related to the path loss in the AA scenario, including the
propagation distance, TxUAValtitude, RxUAV altitude, path
visibility, and elevation angle. Meanwhile, the importance of
these parameters is discussed.

We summarize the major contributions and novelties of
this paper as follows.(1)�e path loss for the UAV communication in the AA
scenario is modeled based on machine learning methods,
including Random Forest and KNN algorithms.(2) �e prediction results are evaluated with the data
generated by a ray-tracing so
ware. It is proved that the
machine-learning-based models are able to provide better
accuracy than the empirical ones.(3)We analyze the impacts of di�erent parameters on the
AA path loss and sort these parameters by their importance.

�e remainder of this paper is organized as follows.
�e considered AA propagation environment and the ray-
tracing-based data generation are described in Section 2.
Section 3 presents the machine-learning-based methods
for path loss prediction. �e model training procedure is
introduced in Section 4. In Section 5, the performance of
machine-learning-based models is evaluated and the impor-
tance ranking of di�erent parameters is discussed. At last,
conclusions are drawn in Section 6.

2. Propagation Environment Description

In order to investigate the path lossmodel in the AA scenario,
we consider a typical urban environment in which two UAVs
are employed as Tx and Rx. As a new emerging scenario,
measurements for AA communications are still in a very
preliminary stage. Since the machine-learning-based models
require a large amount of data for training purpose, a ray-
tracing so
ware is employed to generate data for model
building and performance evaluation. It has been proved
that the channel data obtained by the ray-tracing so
ware
are in good agreement with the actual measured values [21].
As illustrated in Figure 1, the considered environment is a
region in Helsinki, with dimensions of 1000m by 600m.
Gray areas and green areas indicate buildings and grounds,
respectively. �e maximum height of the buildings is 50m.
All the buildings are assumed to be made of concrete with
the following dielectric half-space properties: permittivity 6,
conductivity 0.02, and thickness 0.3m. �e material of the
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Figure 1: Urban environment for AA communications.

ground surface is assigned as asphalt whose permittivity is 10
and conductivity is 0.01.

�e simulations were performed at the central frequency
of 2.4GHz, with a bandwidth of 100MHz. �e red square in
Figure 1 represented the position of the Tx UAV, which was
equipped with a directional antenna. Rx UAV was moved at
a spacing of 2m along six di�erent routes. Di�erent 	ight
altitudes were taken into account for both Tx and Rx UAVs.
�e altitudes of the Tx UAV included 60m, 70m, and 80m.
Meanwhile, Rx UAV were assumed to 	y at heights of 10m,
20m, 30m, and 40m, lower than the maximum height of the
buildings. It should be noted that the direct, re	ected, and
di�racted paths were considered, whereas the penetration
paths were neglected because of the high attenuation through
building. Details of the parameter setting can be found in
Table 1.

�rough calculations, we obtain the spatial distribution of
received powers. �en, path loss values at di�erent locations
can be extracted. In practice, the path loss in the AA scenario
is related to many environmental parameters. �e goal of
the machine learning method is to 
nd the optimal function
describing the relationship between these parameters and the
path loss. In the following analysis, 
ve parameters which
have impacts on the path loss are selected as the input features
of the machine-learning-based models and they are listed as
follows.

(1) Propagation distance (�, in meter): the distance
between the Tx and Rx UAVs calculated from their
coordinates.

(2) Tx altitude (ℎ�, in meter): the height of Tx UAV from
the ground, with three values of 50m, 60m, and 70m.

Table 1: Parameter con
guration.

Parameter Value

Environment Helsinki urban scenario

Area 1000 m × 600 m
Max. building height 50 m

Carrier frequency 2.4 GHz

Bandwidth 100 MHz

Transmit power 15 dBm

Tx altitude 60, 70, 80 m

Rx altitude 10, 20, 30, 40 m

Distance between adjacent Rx positions 2 m

Number of Tx locations 1 × 3
Number of Rx locations 405 × 4
Max. number of re	ection 10

Max. number of di�raction 1

Max. penetration Not simulated

(3) Rx altitude (ℎ�, in meter): the height of Rx UAV from
the ground, with four values of 10m, 20m, 30m, and
40m.

(4) Path visibility (�
V
, 0 or 1): parameter indicating

whether there exists line-of-sight (LOS) path between
the Tx and Rx UAVs. �

V
= 1 for the LOS case and�

V
= 0 for the non-line-of-sight (NLOS) case.

(5) Elevation angle (�, −�/2 to �/2): the angle between
the LOS path and the horizontal.

We collected all the samples when the Tx UAV was in
di�erent altitudes and the Rx UAV 	ied along six routes at
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Input:
Training set� = {x1, x2, ⋅ ⋅ ⋅ , x�} with responses 	 = {
�1 , 
�2, ⋅ ⋅ ⋅ , 
��}, where x� = (��, ℎ��, ℎ��, �V�, ��), � = 1, ..., 
.
Number of ensemble members �.

Training Process:
For � = 1 to �:(1) Take a bootstrap sample {��, 	�} of size
 from {�, 	}.(2) Use {��, 	�} as the training data to train the �th ensemble member by using binary recursive partitioning.(3) Repeat the following steps recursively for each unsplit node until the stopping criterion is met:(i) Select� features randomly from the � available features (� = 5 in this study).(ii) Calculate the square error for each possible splitting point of each feature, and 
nd the best binary split

among all binary splits on the� features.(iii) Split the node into two descendant nodes using the best split.
Prediction:

Given a new x = (�, ℎ�, ℎ�, �V, �), the predicted path loss value is obtained by 
�� = (1/�)∑��=1 ℎ̂�(x), where ℎ̂�(x)
is the prediction of the �th ensemble member.

Algorithm 1: Random Forest algorithm for path loss prediction in the AA scenario.

di�erent heights. Each sample was with an output (path loss
value) and 
ve input features. Removing the locations where
the received signals are too weak to detect, we obtained 5508
samples in total. �en, these samples were separated into two
set, training set and test set. �e former were utilized to train
the models while the latter were employed to evaluate the
performance of the trained models.

3. Machine-Learning-Based Models for AA
Path Loss Prediction

Machine learning is a method to improve performance on
a speci
c task based on extensive data and a 	exible model
architecture. In recent years, it has been widely used in many

elds like computer vision, speech recognition, autonomous
driving, and so on. Machine learning tasks can be broadly
classi
ed into supervised learning and unsupervised learn-
ing, depending on whether data samples have labels or not.
For supervised learning, tasks can be further divided into
classi
cation problems and regression problems based on
whether the predicted values are discrete or continuous. �e
AApath loss prediction is a typical regression task, which can
be solved bymany algorithms, such as Random Forest, ANN,
and SVR. We aim to build the path loss prediction model in
the AA scenario based on machine learning. With given path
loss values and corresponding input features, the model can
be trained and then the path loss values in new conditions can
be predicted with the various inputs.

In this study, two typical supervised learning algorithms,
Random Forest and KNN, are chosen to build prediction
models for the AA path loss. �eir performance evaluation
results will be compared in Section 5 and Random Forest
will be proved to have a better agreement with the test data
compared with KNN. �e major principles of these two
algorithms are introduced as follows.

3.1. Random Forest. Ensemble learning, which uses multiple
individual learners to solve classi
cation and regression prob-
lems, can achieve a signi
cantly superior generalization per-
formance [22]. Random Forest is a commonly used ensemble

learning algorithm and employs decision tree as ensemble
member. It applies bootstrap aggregating to select training
samples for each ensemble member. Ensemble members are
trained based on these samples and then the 
nal result
is obtained by averaging the results of all the ensemble
members.

Besides, RandomForest further introduces random selec-
tion of features in the decision tree training process. Usually,
the traditional decision tree selects an optimal feature from
the feature set of current node for split. For Random Forest, a
subset is randomly chosen from the feature set of each node,
and then the optimal feature is selected from this subset.

In ensemble learning, the greater the diversity of ensem-
ble members, the better the prediction performance. By
introducing sample perturbations and feature perturbations,
the diversity of ensemble members in Random Forest is
increased. It can improve the generalization performance of
the model. It is worth noting that the decision trees grow
without pruning, due to the randomness of samples and
features. Algorithm 1 shows the method we used for path loss
prediction in the AA scenario. �e detailed descriptions of
Random Forest can be found in [23].

Random Forest is easy to implement and can realize
parallel computing. It is also insensitive to input data and can
handle thousands of input features. In addition, an important
advantage of Random Forest is that it can sort the importance
of features. In the following, we will use this property to
analyze the signi
cance of di�erent input features for the AA
path loss.

3.2. KNN. KNN is a classical machine learning algorithm
that is o
en used to solve classi
cation problems. It has no
explicit training process and its implementation is simple.�e
mechanism of KNN is to 
nd the � training samples closest
to the sample to be predicted based on a distance metric
and then to perform prediction based on the information of
these � neighbors. It is also suitable for regression tasks by
averaging the values of � neighbors to get the 
nal prediction
result.
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�e distance metric plays a very important role in KNN.
�e distance re	ects the di�erence between two samples.
Commonly used distance metrics include Manhattan dis-
tance, Euclidean distance, and so on. In this study, Euclidean
distance is chosen for analysis. In general, features have
di�erent ranges of values and their in	uences on the distance
calculation are not the same. As a result, KNN algorithm
is more sensitive to the input data compared with Random
Forest. For the sake of fairness, the samples need to be
normalized before model training. In this study, �-score
normalization method is adopted and it can be expressed
as

�� = �� − �� (1)

where�� is the input value of the feature, �� is the normalized
value, � is the mean, and � is the standard deviation.

4. Model Training and Accuracy Metrics

�e procedure of machine-learning-based path loss predic-
tors for AA channel is introduced as follows. Firstly, we
collect enough data samples for analysis, each with path
loss record and corresponding input features. As mentioned
above, for KNN the features need to be scaled by the
normalization process, while for Random Forest it is not
necessary. Secondly, these samples can be divided into two
categories, training set and test set, which are used for model
training and evaluation purposes, respectively. �irdly, based
on the training data and selected algorithms, we train the
model and tune its parameters. Finally, some metrics are
employed to assess the prediction accuracy of the trained
model, and then in view of the evaluated results we can
further improve the machine-learning-based predictor for
the path loss in the AA scenario.

In this section, we will introduce the division of training
set and test set. �en, the model training process is explained
in detail. In addition, accuracy metrics for model validation
are presented.

4.1. Data Division. �e performance of the machine-
learning-based models strongly depends on the amount and
quality of training data. In general, more training samples
lead to more accurate re	ections of the inherent laws. �us,
we must try to obtain enough samples in order to get
accurate models for path loss prediction. In addition, the
rules extracted from the model training are hidden in the
samples, so the training samples must be representative.
Di�erent from the training data, the test set is used to assess
and further improve the trained models.

As aforementioned, 5508 samples were collected in the
considered AA scenario, including samples from six routes at
all di�erent Tx/Rx altitudes. In this study, the samples from
the third route with the Rx altitudes of 20m and 30m were
used for test purpose, and they did not participate in the
training process.�e remaining samples were included in the
training set. �en, the proportions of the training samples
and test ones were 84% and 16%.

4.2. Model Training. Model training aims at acquiring
parameters for the model to optimize the performance and
e�ectiveness of the path loss prediction. Some machine
learning algorithms, such as ANN and SVR, have many
parameters whose values need to be set before the learning
process begins. In contrast, Random Forest and KNN have
only a few parameters that need to be tuned and thus they are
both e�cient for implementation.

For Random Forest, the model accuracy is a�ected by the
parameters including maximum tree depth and the number
of ensemble members. �e former controls the maximum
split number of the decision tree and the latter determines the
size of the ensemble. Generally, a small ensemble with deep
decision trees has a greater tendency to over
t than a shallow
ensemble of many decision trees [13].

For KNN, the number of neighbors, �, is determinis-
tic for the prediction performance. If � is too small, the
model becomes complicated and may overlearn when the
neighboring points are noises. Meanwhile, large �makes the
model structure simple but neighboring samples with large
di�erences will a�ect the prediction result.

�ese aforementioned parameters cannot be learned
directly from the data. �e optimization methods for tuning
parameters mainly include grid search, random search, and
Bayesian optimization. In this study, grid search is used to

nd the optimal combination of parameters by searching all
possible points in the given range. For Random Forest, we
evaluate the following parameters: the number of ensemble
members between 10 and 200 (at 10-unit intervals) and the
maximum tree depths between 5 and 50 (at 5-unit intervals).
For KNN, the value of � is set between 2 to 10 with the interval
of 1. �e obtained parameters are as follows. For Random
Forest, the depth of trees and the number of ensemble
members are 
nally set as 30 and 140, respectively. �e
number of neighbors is equal to 5 in KNN.

4.3. Metrics for Evaluating Prediction Accuracy. To evaluate
the performance of di�erent models, two statistical proper-
ties, mean absolute error (MAE) and root mean square error
(RMSE) [24], are chosen as metrics. �ey can be calculated
by comparing the predicted path loss with the data in the test
set as

MAE = 1�
�∑
�=1

�����
� � − 
� ������� , (2)

RMSE = √ 1�
�∑
�=1
(
� � − 
� ��)2 (3)

where � is the total number of test samples, 
� � is the path
loss value of the �th sample in the test set, and 
� �� is the
predicted value.

5. Model Validation and Results

In this section, we will evaluate the performance of these
machine-learning-based models in the AA scenario. Two
empirical models are also considered for comparison. In
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Table 2: Statistics analysis for di�erent predictors.

Evaluation indicators Random Forest KNN SUI COST231-W-I

MAE (dB) 2.27 4.56 7.54 26.67

RMSE (dB) 3.06 8.90 13.40 28.53
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Figure 2: Prediction performance of di�erentmodelswhenRxUAV
moves in the third route (ℎ� = 60m and ℎ� = 30m).

addition, the impacts of di�erent features on the path loss are
analyzed.

5.1. Comparisons between Empirical Models and Machine-
Learning-Based Models. As an example, we consider the
samples in the test set gathered when the Tx and Rx altitudes
are 60m and 30m, respectively. �e predicted path loss
results from di�erent models are shown in Figure 2. Sample
indexes are corresponding to di�erent positions of Rx UAV
in the third route from up to down in Figure 1. As mentioned
in Section 2, the distance between two adjacent Rx positions
is 2m. As shown in Figure 1, LOS path exists when the Rx
UAVmoves in themiddle, corresponding to the sample index
from 72 to 79. It can be found that the path loss values are
quite small in this area. In Figure 2, it is illustrated that the
machine-learning-based models can accurately approximate
the realistic path loss values generated by the ray-tracing
so
ware. Two empirical models, SUI model and COST231-
W-I model, are chosen for comparison. �e description of
whether the LOS path exists is not included in the SUI
model. �us, there are large gaps from the path loss results
predicted by the SUI model to the true values under the
LOS condition. �e COST231-W-I model can describe the
path loss variations in both LOS and NLOS conditions.
Apart from the path visibility, this model also involves the
distance, Tx altitude, Rx altitude, and elevation angle into
the model parameters. However, its predicted results are
much larger than the true values. �e major reason may be
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Figure 3: Prediction error distributions for the machine-learning-
based models.

the fact that the application scenarios of the COST231-W-
I model di�er from what we used during the analysis. It
re	ects the poor generalization performance of the empirical
model; i.e., its accuracy decreases when it is applied to a
di�erent environment. Furthermore, as shown in Figure 2,
these empirical models neglect some details of the path loss
	uctuations and it is di�cult to use them for characterizing
the path loss value at a speci
c location.

Considering all samples in the test set, we can get the
statistical assessment of these di�erent models. �e MAEs
and RMSEs of prediction results are illustrated in Table 2. It
is shown that both Random Forest and KNN outperform the
empirical models.�esemachine-learning-based models can
also depict the 	uctuations of path loss in detail.

5.2. Comparisons between RandomForest and KNN. As listed
in Table 2, Random Forest provides the best 
t to the test
data, with 2.27 dB MAE and 3.06 dB RMSE. KNN also o�ers
acceptable results whereas its predicted values are almost
unchanged under the LOS condition. �e reason is that,
within theKNNmodel, the path loss is predicted by averaging
the values of the nearest � neighbors. Due to the limited
number of collected LOS samples, a similar path loss value
is probably estimated.

Figure 3 shows the distributions of prediction errors for
the two machine-learning-based models. It is shown that
most errors concentrate in the range of −5 dB to 5 dB and
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Figure 4: Path loss values with di�erent Tx altitudes (ℎ� = 10m).

Random Forest shows a higher prediction accuracy than
KNN.

5.3. Computational E	ciency. Another aspect to be evaluated
is the computational e�ciency. �e path loss values should
be generated in a short time so that the spatial distribution
of electromagnetic 
elds can be quickly updated when the
propagation environment changes. �e generation durations
of our machine-learning-based models are recorded. �e
computer we used to run the programs has an AMD A8-
4500M processor and 4GB of memory. �e required times
of Random Forest and KNN predictors are 8.71 s and 5.95
s, respectively. In contrast, running the ray-tracing so
ware
would take more than 10 minutes to generate all the samples
in the test set.�is comparison result is preliminary but it still
re	ects that the machine-learning-based model can provide
higher computational e�ciency to the network planning than
the deterministic approaches.

5.4. Analysis of Feature Importance. As mentioned, there are
many parameters related to the path loss in the AA scenario
and they serve as the input features in our machine-learning-
based models. For example, the ray-tracing-based path loss
values in the third route at di�erent Tx altitudes are shown
in Figure 4. �e altitude of the Rx UAV is 10m and three
di�erent Tx altitudes are taken into account, including 60m,
70m, and 80m. It is shown that in the selected low-altitude
UAVAAscenario, the path loss values at di�erent Tx altitudes
are very close. Besides, when the altitude of the Tx UAV is

xed at 70m. �e path loss values at di�erent Rx altitudes
are illustrated in Figure 5. According to Figures 4 and 5, the
path visibility is vital for the path loss in the considered AA
scenario.�e propagation distances corresponding to sample
indexes are also shown in these two 
gures.
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Figure 5: Path loss values with di�erent Rx altitudes (ℎ� = 70m).

Table 3: Normalized importance of di�erent features.

Feature Importance

Path visibility 0.7438

Propagation distance 0.1137

Elevation angle 0.1045

Tx altitude 0.0317

Rx altitude 0.0064

�e following task is to investigate the signi
cance of
di�erent input parameters. Fortunately, Random Forest can
give a natural ranking of the features in the model. In this
study, the mean decrease impurity method [23] is employed
to analyze the importance of features. As introduced above,
Random Forest is composed of multiple decision trees. Each
node in the decision tree is a condition about a feature, in
order to divide the data into two sets according to di�erent
response variables. For regression problems, variance or
least-squares 
tting is o
en used as impurity. During the
training process, it can be calculated how much impurity of
the tree is reduced by a feature. For Random Forest, it is
possible to calculate the average reduced impurity of each
feature and to use it as the importance of the feature.

Table 3 shows the normalized contribution of each
parameter used in the model based on Random Forest.
�e path visibility has the greatest impact, followed by the
propagation distance, elevation angle, Tx altitude, and Rx
altitude. Similar to results shown in Figures 4 and 5, the 	ight
altitudes of UAVs have small in	uences on the path loss. A
possible reason is that the selected scenario is a low-altitude
UAVAA scenario and the heights of buildings are close to the
	ight altitudes of UAVs.
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6. Conclusions

In this paper, we have proposed a modeling mechanism
for AA path loss based on machine learning. A ray-tracing
so
ware has been utilized to generate the data for an urban
AA scenario, which was subsequently divided into a training
set and a test set to be used by the models. �e models have
been learned by two machine learning algorithms, Random
Forest and KNN. �e test data have been used to evaluate
the accuracy performance of these machine-learning-based
models and two empirical models, SUI model and COST231-
W-I model. It has been demonstrated that machine learning
provides a 	exible modeling approach based on the training
data for such complex environment and Random Forest
has the best prediction performance. In addition, we have
analyzed the importance of 
ve input features for the path
loss in the AA scenario. Results have con
rmed that the path
visibility is the dominant factor. Propagation distance and
elevation angle have also shown great in	uences.

Since the UAV AA communication is a newly emerging
scenario, the channel modeling and path loss prediction in
such a scenario are still in a very preliminary stage. Future
work should incorporate introduction of more machine-
learning-based models like ANN and SVR. Di�erent sce-
narios should also be taken into account to verify the
generalization property of these models. Last but not least,
measurement campaigns should be carried out in the AA sce-
nario. More measured data are expected to further improve
the performance and feasibility of the machine-learning-
based path loss predictors.
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�e data that support the 
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wen He (hezunwen@bit.edu.cn). �e data are not publicly
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parameters by commercial so
ware.
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