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12.1 Introduction

The goal of Air Traffic Control (ATC) is to maximize both safety and capac-
ity, so as to accept all flights without compromising the life of the passengers
or creating delays. Because air traffic is expected to double by 2030, new vi-
sualizations and analysis tools have to be developed to maintain and further
improve the safety level. To do so, air traffic practitioners analyze data from
the ATC activity. This multidimensional data includes aircraft trajectories (3D
location plus time), flight routes (ordered sequences of spatio-temporal points
that represent planned routes), meteorological data, etc. In this chapter, we
detail the relevant tasks of ATC practitioners, and demonstrate recent visual-
ization and query methods to fulfill them.

The special properties of ATC data propose new challenges and, at the same
time, new opportunities of data analysis. The semantics of the data is rich be-
cause it includes the third dimension (altitude), which can be used to discover
salient events such as take offs and landings. More semantics can be added
by augmenting background data such as the traffic network and the meteoro-
logical data. ATC data sets are characterized by their large sizes, adding more
challenges to the analysis. Trajectory analysis is difficult due to the data set size
and to the fact that it contains many errors and uncertainties. One day’s traffic
over France contains about 20000 trajectories (> 1 million records). Recording
is done in a periodic manner (in our database: a radar plot, per aircraft, every 4
minutes), but a plot can be missed, or have erroneous data because of physical
problems that occur at the time of recording.

This chapter demonstrates recent works of trajectory analysis. Three tech-
niques are demonstrated: direct manipulation, visual analytics, and moving ob-
ject database queries. Direct manipulation visually represents the raw trajecto-
ries, and allows the user to efficiently explore them and highlight interesting
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subsets using convenient views and simple mouse interaction. Visual analytics
provide a rich tool box of data transformations and visualizations that help a
human analyst exploring complex movement events in the data. Moving ob-
ject database (MOD) defines query operators accessible to the user through
textual query languages. They are able to perform complex computations over
large data sets efficiently. According to the analysis task, the experience of
the human doing the analysis, and the data set size, any of these three anal-
ysis methods (or a combination of them) can be chosen. This is illustrated in
Figure 12.1.
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Figure 12.1 Factors of choosing among the methods of trajectory analysis.

Direct manipulation is good for having a first look at the data. It is intuitive
to use. Visual analytics provides more sophisticated transformations and ag-
gregations, and thus it is able to process larger data sets, and to perform deeper
analysis. Human expertise is, however, a deciding factor for good analysis re-
sults. MOD queries are mandatory for complex computations, such as pattern
matching. The user must however know exactly what he or she is looking for,
and how to precisely describe it in terms of the MOD query language.

Throughout this chapter we will demonstrate each of these analysis meth-
ods, in the context of real tasks, and using a real data set. The motivation for the
analysis, and the description of the data set are presented in Sections 12.2 and
12.3 respectively. Direct manipulation is demonstrated in Section 12.4. Sec-
tion 12.5 demonstrates the use of visual analytics to explore movement events,
such as landings and take-offs, and to derive useful statistics from them. Finally
Section 12.6 explains a MOD query operator that is able to match complex pat-
terns in ATC data, such as missed approaches and step-wise descents.
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12.2 Motivation

Aircraft trajectories are monitored and recorded by ground radar. It is displayed
in real-time on radar screens. This data is essential for air traffic controllers,
in order to maintain a safe distance between aircraft and to optimize traffic flu-
idity (reduce flight time, noise and fuel consumption). Our goal in this chapter
is not to provide tools for real-time usages, but rather to detail off-line tools
that analyze recorded trajectories in more depth. Without this real-time con-
straint, ATC practitioners can investigate, in more detail, recorded trajectories
and therefore extract relevant information and perform three main tasks: im-
prove safety, optimize traffic, and monitor environmental considerations.
Improving safety can be detailed as:

1 analyze and understand past conflicts (when two aircraft fail to meet mini-
mum safety distance) and then improve safety with feedback from past ex-
perience,

2 analyze the accuracy of data provided by ground radar with probe trajectory
comparison (i.e., with GPS tracking and radar test plots), and

3 filter and extract trajectories in order to reuse them for Air Traffic Con-
trollers’ training simulations.

Traffic optimization can be detailed as:

1 devise new air space organization and flight routes to handle traffic increase,

2 study profitability (i.e., number of aircraft on a specific flight route per day,
number of aircraft that actually land at a specific airport, etc),

3 calculate the metrics from the traffic: traffic density, spacing quality (mean
distance between aircraft), number of holding loops, number of rectilinear
trajectories (trajectories that are close to the shortest path departure - arrival),
etc, and

4 measure the activity of each airport: number of take-offs and landings per
hour etc.

Finally environmental considerations can be detailed as:

1 Compare trajectories with environmental considerations (fuel consumption,
noise pollution, vertical profile comparison),

2 detect missed approach trajectories (which produce noise), lap training land-
ings (pilots who train to take off, fly around the air field and land. Lap train-
ing landings consume a lot of fuel), and

3 count continuous descending aircraft (since these aircraft maintain a con-
stant descent rate, they reduce their fuel consumption).
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This list is not exhaustive but it gives the main tasks that ATC practitioners
perform. These tasks highlight the need for powerful tools to analyze aircraft
trajectories.

12.3 Data Set Description

In this section, we detail the different steps required to produce data sets of
aircraft trajectories provided by the IMAGE system. In France, ground radars
send aircraft positions through the RENAR (REseau de la Navigation AéRienne)
network. Due to network bandwidth limitations we cannot route all raw radar
information toward a single network access point to record it. Therefore, we
use the French IMAGE system. IMAGE is a system that aims to gather air-
craft positions from all French controlled areas. Its goal is neither to monitor
aircraft activity, nor to optimize traffic flow, but to give a general view of the
traffic (communication purposes). The IMAGE system is connected to the five
French STRs (Systeme de Traitement Radar), one in each en-route control
center (Figure 12.2). STR systems receive aircraft information from different
radar sources and calculate an estimated position for each monitored aircraft
(using tracking and smoothing algorithms). The IMAGE system helps to re-
duce ground radar sources to only 5 data sources, and enables us to retrieve
aircraft positions over France within the RENAR network.

Figure 12.2 IMAGE network with STRs.

Merging the 5 data sources raises lots of issues: unique aircraft identifiers,
overlapping areas, time stamps and sampling rates. Firstly, each STR sends
the aircraft position with an identifier from 1 to 1023. Since more than 1023
aircraft can fly over France at the same time, we extend this identifier to a 16-
bit format and re-reassign a unique identifier to every trajectory. To do so, we
use a spatio-temporal frame filtering to assign a new unique identifier to each
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trajectory: each radar plot that has the same identifier within a 600 second
time frame within an area of 200 km (100 Nm, Nautical Miles) radius (which
corresponds to a 12 minute straight flight at high altitude) belongs to the same
trajectory. At this stage, trajectories with less than three plots are removed and
no trajectory has the same identifier.

Secondly, we merge all the 5 new, re-assigned, radar records into one file.
The main issue is to connect trajectories that were recorded by different STR
sources. To do so, we resample all the data to insure that every record has
the same regular time-stamp. Then we setup the following merging parame-
ters: when two trajectories overlap, they merge if the overlapping points have
the same altitude (less than 600 m/2000 ft, which corresponds to 1 minute
descent), and close position (less than 9 km/5 Nm, which corresponds to the
minimal safety distance).

The properties of the data set we use in this chapter are typical to any IM-
AGE data set. We use a data set with 17,851 flight trajectories over France
during one day (Friday, the 22nd of February, 2008) consisting of 427,651
records. The trajectories, shown in Figure 12.3, include flights of passenger,
cargo, and private airplanes and helicopters. The temporal resolution of the
data mostly varies from 1 to 3 minutes, although larger time gaps (up to 5 min-
utes) also occur. 3,000 trajectories (60,000 records, 16%) fly over France per
day without landing.

12.4 Direct Manipulation of Trajectories

Formulating trajectory queries are difficult for two reasons. Firstly, they are of-
ten only specifiable with visual features (straight lines, or general shapes). Sec-
ondly, users often explore the queries as much as they explore the data: in the
course of exploration, users discover that the set of features they thought rele-
vant has to be adapted, either because they were false, or because they cannot
find how to query them efficiently. Furthermore, trajectories are numerous and
tangled: one-day’s traffic over France for example, represents some 20000 tra-
jectories. When dealing with trajectories, users must perform dynamic requests
(response time < 100 ms) on a large multi-dimensional data set (>1 million
data) which contains many errors and uncertainties. The problem we address
in this section is to find a way to express these queries, simply and accurately,
given the constraints of size and uncertainty of the data sets. As a solution,
the visualization and direct manipulation of trajectories proposes efficient in-
teractions features. Direct manipulation was introduced by Ben Shneiderman
in 1983 (Shneiderman (1983)) within the context of office applications and
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the virtual desktop metaphor. This term has been extended to human-computer
interaction paradigms. The intention is to allow users to directly manipulate
objects presented to them, using actions that correspond to the physical world
(e.g., grasp, move objects, etc).

In the following sections, we first describe direct manipulation requirements
for trajectory exploration, then we detail an implementation instance, and fi-
nally we give one scenario of usage.

12.4.1 Design Requirements for Trajectory Exploration

Based on trajectory data set characteristics, we extracted the following design
requirements to achieve the visual exploration of trajectories:

1 View configuration: the system must permit the customization of views so
as to offer multiple means of understanding and visually querying the data.
It should allow for a change of mapping between data and visual dimen-
sions. The system should also provide smooth transitions between visual
configurations. Hence, the user will be able to visually track patterns be-
tween different view configurations.

2 Views organization and navigation: the system must also permit the display
of multiple views. The user must be able to visually compare different visual
configurations of the data set. This can be done with a matrix scatterplot or
juxtaposed views.

3 View filtering: the system must allow the user to filter out trajectories and
then reduce cluttering.

4 Trajectory selections and Boolean operations: The system must enable the
user to select trajectories and combine them in order to perform complex
queries. Some systems allow multiple selections sometimes called “layers”.
Users can combine layers with Boolean operation by applying an “and” op-
eration when they try to group differently selected trajectories.

12.4.2 Implementation Instance: FromDaDy

We have developed FromDaDy (Hurter et al. (2009)) (which stands for “FROM
DAta to DisplaY”), a visualization tool that tackles the challenge of repre-
senting, and interacting with numerous trajectories (several million trajectories
composed of up to 10 million points). FromDaDy employs a simple paradigm
to explore multidimensional data based on scatterplots, brushing, “pick and
drop”, juxtaposed views and rapid visual configuration. Together with a finely



250 C. Hurter, G. Andrienko, N. Andrienko, R.H. Giiting, M. Sakr

tuned mix between design customization and simple interaction, users can fil-
ter, remove and add trajectories in an incremental manner until they extract a
set of relevant data, thus formulating complex queries.

Figure 12.3 One day’s record of traffic over France. The color gradient from
green to blue represents the ascending altitude of aircraft (green being the
lowest and blue the highest altitude). The French coastline is apparent here in
terms of pleasure flights by light aircraft and the straight blue lines represent
high altitude flight routes. A user interface shows the data set fields and the
defined visual configuration.

12.4.3 Views Organization and Navigation

A FromDaDy session starts with a view displaying all the data in one scatter-
plot. The visualization employs a default visual configuration, e.g., the map-
ping between data dimensions and visual variables. The view is inside a win-
dow, and occupies a cell in a virtual infinite grid that extends from the four
sides of the cell. The user can configure the two axes of each scatterplot and
use other visual variables such as color and line width to display data set di-
mensions. For instance, in Figure 12.3, the user attached the data set field lati-
tude to the Y axis, and the field longitude to the X axis. The user also chose to
use the altitude to color trajectory sections, such as, low altitudes in green and
high altitudes in blue.
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12.4.4 Trajectory Manipulation

We have implemented a simple and efficient direct manipulation technique:
trajectory brush, pick and drop. The user selects a subset of the data set by
means of a brushing technique. Brushing is an interaction that allows the user
to “brush” graphical entities, using a size-configurable or shape-configurable
area controlled by the mouse pointer. Each trajectory touched by this area is
selected, and becomes gray. The selection can be modified by further brush
strokes, or by removing parts of it with brush strokes in the “erase” mode. The
display shows a brush trail, so that the user can see and remember more eas-
ily how the selection was made. The combination of fast switching between
the add/erase mode, trajectory visualization, rapid size-setting, and cursor-
centered zooming allows for fast and incremental selection.

Then the user can pick bushed trajectories by hitting the space bar. The user
extracts previously selected data from the current scatterplot and attaches it to
the mouse pointer so it appears in a “fly-over” view (transparent background).
When the user hits the space bar for the second time, a drop occurs in the view
under the cursor. If the view under the mouse pointer is empty, the software
creates a new scatterplot with the selected data. If the user presses the space bar
while moving over a view containing data, FromDaDy adds the selected data
to this scatterplot. Although it resembles a regular drag and drop operation, we
prefer to use the term “pick and drop”, because the data is removed from the
previous view and is attached to the cursor even if the space bar is released.
The user can also destroy a view if the brush selects all the trajectories and the
user picks them.

12.4.5 Brush Pick and Drop

The fundamentally new aspect of FromDaDy compared to existing visualiza-
tion systems, is to enable users to spread data across views. Within FromDaDy,
there is a single line displayed per trajectory: trajectories are not duplicated,
but are spread across views. The advantage of this technique is multifold. It
enables the user to remove data from a view (and drop it on to the destination
view). The fly-over view enables the user to rapidly decide if the revealed data
(previously hidden by the picked data) is interesting. Secondly, it makes it pos-
sible to build a data subset incrementally. In this case, the user can immediately
assess the quality of the selection, by seeing it in the “fly-over” view. Further-
more, by removing data from the first view, the user makes it less cluttered,
and this makes it easier for them to pick and drop more trajectories.

Another advantage of the brush pick and drop paradigm is that this inter-
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action helps the user to perform complex Boolean operations: “I want the
trajectories that go into this area but not the ones that are too high and only
those that are faster than a given minimum speed.” A seminal previous work
uses containers (also called layers) to cluster trajectories and explicitly applies
Boolean operations to combine them. Even with an astute interface, Boolean
operations are cumbersome to produce, since results are difficult to foresee.
FromDady overcomes this drawback, since all the operations of the interac-
tion paradigm (brush, pick and drop) implicitly perform Boolean operations.
Removing trajectories corresponds to an XOR operation and dropping trajec-
tories corresponds to an ADD operation. The following examples illustrate the
union (AND), intersection (OR) and negation (NOT) Boolean operations. With
these three basic operations the user can perform all kinds of Boolean opera-
tions: AND, OR, NOT, XOR, etc.

In Figure 12.4, users want to select trajectories that pass through region
A or through region B. They just have to brush the two desired regions and
Pick/Drop the selected tracks into a new view. The resulting view contains
their query, and the previous view contains the negation of the query.

Figure 12.4 Union Boolean operation.

12.4.6 Example of Usage

In this scenario, we use one day recordings of aircraft trajectories over France.
In this data set, a unique and incremental identifier is assigned to each trajec-
tory. The first trajectory of the day has the number 0’, the next one has the
number 1’ etc. Figure 12.5 shows an abstract visualization of this data set. The
X screen axis shows the time of each radar plot and the Y screen axis shows
the aircraft’s identifier. Since these identifiers are incremental over the day,
the resulting visualization shows a noticeable continuous shape, in which each
horizontal line represents the duration of one flight. The slope of the shape in-
dicates the traffic increase during the day (due to the incrementally assigned
identifiers). Hence, the traffic notably increases at 5 am and decreases at 10
pm as reflected in the change of slope. The width of this shape indicates the
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Figure 12.5 Detection of supply planes with an abstract visualization.

average flight duration in the data set: it is about 2.5 hours which represents
the average time taken to cross France. But some aircraft have longer trajec-
tory durations. The user brushes these long trails (the ones that come out of the
curved shape). When visualizing them with a latitude (Y screen) and longitude
(X screen) visual configuration, the user discovers a figure of eight shaped tra-
jectory. This trajectory covers 6 hours and performs 11 loops. After further
investigation, it is found that it corresponds to a military supply plane.

This data exploration has been done with a visualization tool. The user
would have also been able to perform the same extraction with a textual tool,
like SQL queries. The only difference is that, a textual tool would not have led
the user to the idea of exploring long flight duration in order to extract military
aircraft. Only with the incremental trajectory exploration, can the user dis-
cover the valid requests for this data set. In a sense, the user explores the data
set, and at the same time, explores the request to perform. Even if this pro-
cess is efficient, the direct manipulation cannot be automatic. Analysts need
tools to enhance their exploration capabilities. Therefore, extended work will
be presented in the following sections.

12.5 Event Extraction

There is a class of problems where analysts need to determine places in which
movement events (m-events) of a certain type repeatedly occur and then use
these places in further analysis. The relevant places can only be delineated by
processing movement data, that is, there is no predefined set of places (e.g.,
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compartments of a territory division) from which the analyst can select places
of interest. The relevant places may have arbitrary shapes and sizes and irregu-
lar spatial distribution. They may even overlap in space; therefore, approaches
based on dividing the territory into non-overlapping areas, as in Andrienko
and Andrienko (2011), are not appropriate. In this section, we analyze one-day
record of aircraft trajectory with a visual analytics procedure for place-centered
analysis of mobility data (Andrienko et al. (2011c)). The procedure consists of
four steps: (1) visually-supported extraction of relevant m-events, (2) finding
and delineating significant places on the basis of interactive clustering of the m-
events according to different attributes, (3) spatio-temporal aggregation of the
m-events and movement data by the defined places or pairs of places and time
intervals; (4) analysis of the aggregated data for studying the spatio-temporal
patterns of event occurrences and/or connections between the places.

12.5.1 Analyzing Flights Dynamics in France

We shall apply our visual analytics procedure to ATC data with the following
goals: (1) Identify the airports in use. (2) Investigate the temporal dynamics of
the flights to and from the airports (i.e., landings and takeoffs). (3) Investigate
the connections among the airports, the intensity of the flights between them,
and their distribution over a day.

It may not be obvious to the reader why the airport areas need to be de-
termined from the data instead of using the official airport boundaries, which
should be known. The problem is the low temporal resolution of the data. For
many flights, the first recorded positions lie outside the boundaries of the origin
airports and/or the last recorded positions are not within the boundaries of the
destination airports. Therefore, to refer the flights to their origin and destina-
tion airports, it is necessary to build sufficiently large areas around the airports
that would include the available first and last points. It is not known in advance
how large the areas need to be and what geometrical shapes are appropriate.

Our approach to defining the areas is based on the background knowledge
that airplanes typically land and take off in similar directions, which are de-
termined by the orientation of the airport runways. We extract the available
last positions of the aircraft that landed and first positions of those that took
off and cluster them by spatial positions and movement directions using a
density-based clustering method Optics (Ankerst et al. (1999)) with similar-
ity measures designed for spatio-temporal events (Andrienko et al. (2011c)).
As aresult, points lying outside or even quite far from the airports are grouped
together with the points lying within the airport boundaries if they correspond
to landings or takeoffs with similar directions. The airport “catchment” areas
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are built as buffers around these clusters. The areas can be verified using the
known positions of the airports: they must be within the areas.

Not always do starts and ends of trajectories correspond to takeoffs and land-
ings. The radar observation data also contain parts of transit trajectories that
just pass over France as well as flights going outside France and those coming
to France from abroad. Real takeoffs and landings must be distilled from the
available starts and ends of the recorded tracks. To extract the landings, we use
the following query condition: the altitude is less than 1 km in the last 5 min-
utes of the trajectory. From each trajectory that has such points, we extract the
last point as an m-event representing the landing (Figure 12.6a). In the second
step of the analysis, we cluster the landing events by the spatial positions and
directions (SD) using the thresholds of 1 km and 30 degrees, respectively. The
resulting SD-clusters are presented in the space-time cube in Figure 12.6b; the
noise (events not having sufficient counts of SD-neighbors) is excluded. The
colors represent different clusters. The vertical alignments of points correspond
to the airports where multiple landings took place during the day.

An interesting pattern can be observed in the area of Nice on the South-
east of France. There are two SD-clusters of landings, yellow and green; their
points make a column on the right in the cube. The green cluster appears as an
intrusion inside the yellow one. This means that the landing direction changed
in this area twice during the day due to a change of wind direction (aircraft take
off and land facing the wind). The map fragment in Figure 12.6¢ shows that
the yellow cluster contains landings from the Southwest and the green clus-
ter landings from the Northeast. The blue lines in Figure 12.6 show the last
ten minutes fragments of the respective trajectories and reflect the mandatory
landing directions.

The observation of the direction changes gives us an idea that the temporal
patterns of landings should be investigated not by airports only but by airports
and landing directions. Therefore, we build 500-meter spatial buffers around
the SD-clusters, as shown in Figure 12.6¢. For an analysis by airports, irrespec-
tive of the directions, we would do a second stage of clustering (after exclud-
ing the noise) by only the spatial positions of the events and then build buffers
around the resulting spatial clusters.

In the third step of the analysis procedure, we aggregate the landing m-
events in space by the buffers and in time by one-hour intervals. In the fourth
step, we visualize the resulting time series by temporal diagrams positioned on
the map display; two of them can be seen in the map fragment in Figure 12.6c.
They show that the aircraft landed in the airport of Nice from the Southwest
almost all time except for an interval in the middle of the day, when the landing
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Figure 12.6 Event extraction results. (a): The positions of the landing events
extracted from the flight data are drawn with 50% opacity. (b): The space-time
cube shows the landing events clustered by spatial positions and directions.
(c): The yellow and green dots represent two SD-clusters of landings in the
airport of Nice. The time diagrams show the dynamics of the landings from
two directions. (d): The time diagrams show the dynamics of landings in the
airports of Paris. (e): The flights distribution between the airports by hourly
intervals. Highlighted are rows for the connections Marseille-Paris (yellow)
and Paris-Marseille (orange).
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direction changed to the opposite. The exact times and values are displayed
when the mouse cursor points on an area.

Figure 12.6d presents the map with the temporal diagrams for the Paris re-
gion. We can see that the Orly airport and the Northern runway of the Charles
de Gaulle airport have clear peaks in the morning and in the evening. It is
a typical pattern for airline hubs: short period of time, during which many
flights arrive and take off, maximize the number of possible connections. The
Southern runway of the Charles de Gaulle airport is used with almost constant
intensity during the day. The remaining airports are used much less intensively
and mostly in the afternoon.

So far we have considered only the landings. To investigate the takeoffs, we
repeat the procedure. To extract the takeoff events in the first step, we use the
query condition that the altitude must be less than 1 km at the beginning of the
trajectory. The remainder of the procedure is similar to that for the landings.

To investigate the connections among the airports, we need to define the
airport areas so that they include both the takeoff and the landing events. We
join the sets of the takeoff and landing events, which have been previously fil-
tered by removing the noise after the SD-clustering. Then we apply clustering
by spatial positions, to unite the clusters of takeoffs and landings in different
directions occurring at the same airports. We build spatial buffers around the
spatial clusters to obtain the airport areas. In the third step (spatio-temporal ag-
gregation), we aggregate the trajectories by pairs of places (airport areas) and
time intervals (1 hour length). We use only those trajectories that have both
takeoff and landing events. As a result, we obtain aggregate flows (vectors)
with respective hourly time series and totals of flight counts.

To investigate the aggregates (Step 4: analysis of the aggregated data), we
visualize the total counts on a flow map. The aggregate flows are shown by
directed arrows with the widths proportional to the flight counts. By inter-
active filtering, we hide minor flows (less than 5 flights) and focus on the
short-distance flows (below 100 km distance). We see that there are quite many
flights connecting close airports, particularly, in Paris. As explained by a do-
main expert, a part of them are flights without passengers used for relocat-
ing aircraft between big airports, such as Charles de Gaulle and Orly. Short-
distance flows between small airports correspond to training and leisure flights
of private pilots. Focusing on the long-distance flows (100 km and more) re-
veals a mostly radial connectivity scheme with a center in Paris.

To investigate the temporal dynamics of the flows, we use the table display
as shown in Figure 12.6e. The columns of the table correspond to the hourly
time intervals and the rows to the flows. The lengths of the colored bar seg-
ments in the cells are proportional to the flight counts for the respective flows
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and intervals. The colors correspond to the eight compass directions. The table
view is linked to the flow map. Thus, clicking on the vectors connecting Paris
Orly and Marseille on the map, we get two rows highlighted. The yellow one
corresponds to the Northwestern direction, i.e., from Marseille to Paris, and the
orange one to the opposite direction from Paris to Marseille. There are one or
two flights from Marseille to Paris every hour in the intervals 07-14h and 15-
18h and three flights per hour from 22h to midnight. The traffic in the opposite
direction has a different profile: 3 flights per hour from midnight till 02h and
several flights in the morning, at noon, and in the evening. The complementary
link from the table view to the map can be used to locate flows with particular
dynamics.

12.5.2 Validation of the Findings

First, to assess the validity of the extracted areas of takeoffs and landings, we
compared them with the known positions of the airports and found that the
areas include the airports. Furthermore, the areas have elongated shapes (Fig-
ure 12.6d) whose spatial orientations coincide with the orientations of the run-
ways of the respective airports. Next, the results of data aggregation by the
areas (i.e., counts of takeoffs, landings, and flights between airports) corre-
spond very well to the common knowledge about the sizes and connectivity of
the French cities and airports. The discovered patterns have been also checked
and interpreted by a domain expert who confirmed their plausibility.

12.6 Complex Pattern Extraction Using a Moving Object
Database System

Moving object database systems are another good candidate for air traffic anal-
ysis. This section demonstrates a concrete example of using the SEconno MOD
system in order to extract complex spatio-temporal patterns from the flight
trajectories. The task is to extract the missed approach and the step-wise de-
scent events that occurred in the ATC data set described in Section 12.3. The
spatio-temporal pattern (STP) algebra in SEconDo brings a generic set of query
operations accessible through the SEconpo query languages to let the user ex-
press arbitrarily complex patterns and efficiently match them on large moving
objects databases. This algebra defines the STP predicate, which is the main
tool we are going to illustrate in the section. To get the most out of this section,
please first read the chapter about moving object database systems (Chapter 3),
especially the part explaining the SEcoNDO query languages.
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12.6.1 The Spatio-Temporal Pattern Predicate

A traditional select-from-where query is formulated based on a single predicate
given in the where-clause. Such a query scheme is not sufficient when dealing
with moving objects. A moving object has a life-time and it fulfills several
predicates during it. In many applications it is required to find the objects that
fulfill a set of predicates in a certain temporal order. In ATC, for instance, it
is required to detect landing procedures such as go-around, missed approach,
touch-and-go, etc. Each of these procedures consists of a set of well defined
steps that have to be implemented by the pilot in a certain temporal order.
Extracting these situations from the aircraft trajectories requires a query tool
that accepts such descriptions, and matches them against the trajectories. Here
comes the spatio-temporal pattern predicate to extend the traditional select-
from-where scheme, and let the user formulate such queries.

Essentially the STP predicate is a pair (P, C), where P is a set of predicates
and C is a set of temporal order constraints on their fulfillment. Given a tuple u,
e.g., representing one flight trajectory, the STP predicate yields true iff u fulfills
all the predicates in P in the temporal order asserted by all the constraints in
C. Consider for example the missed approach procedure. It can be described
by three predicates: aircraft comes close to destination, aircraft descends till a
height of less than 1000 m, and aircraft climbs. Temporally, the third predicate
must be fulfilled after the second predicate, and both of them must be fulfilled
during the fulfillment time of the first predicate. Let’s have a quick illustration
of how this missed approach query is expressed using the SEconpo executable
language:

. stpattern[

Close: distance(.Position, .Destination) < 5000.0,

Down: ((.AltitudeDerivative < 0.0) and (.Altitude < 1000.0)),

Up: .AltitudeDerivative > 0.0;

stconstraint("Close", "Down", vec("abba","a.bba","baba")),

stconstraint("Close", "Up", vec("abba","aba.b","abab")),
stconstraint("Down", "Up", vec("aabb","aa.bb"))]

where stpattern is the SEconpo operator denoting the STP predicate. For
simplicity, we omit the query parts before and after the stpattern operator
and denote them by three dots. The stpattern predicate is placed in the query
as a filter condition within the Seconpo filter operator. Here it receives a
tuple with the schema:

tuple[1d: int, Position: mpoint, Altitude: mreal, Destination: point,
AltitudeDerivative: mreal],

where Position represents the (Lon, Lat) of the aircraft and the Altitude
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is separately represented. This is because SEconpo does not contain types for
3D moving points. The Destination is precomputed as the final (Lon, Lat)
of the trajectory, and AltitudeDerivative is precomputed as the deriva-
tive of Altitude. The three predicates constituting P have the aliases Close,
Down, and Up. The Close predicate asserts that the aircraft is close (within
5 km) to its destination airport. Note that this is a time-dependent predicate,
also called lifted predicate. That is, the result of such a predicate is a time-
dependent boolean mbool. 1t is false whenever the aircraft is far from its des-
tination, and true whenever the aircraft is close to destination. Similarly, Down
and Up are time-dependent predicates. Actually this is how the stpattern
operator is able to check the temporal constraints on the predicate fulfillment,
since an mbool contains information about when the predicate was fulfilled.
The STP predicate expects that P be a set of time-dependent predicates, each
of which is a mapping tuple — mbool. The aliases of the time-dependent pred-
icates make it possible to refer to them in the temporal constraints.

The set of temporal constraints C in this example consists of the three tempo-
ral constraints denoted as stconstraint. Each of them asserts a temporal re-
lation between two predicates forming a pair in P. The temporal relation is ex-
pressed by the vec operator. Each of the terms inside the vec operator specifies
a relation between two time intervals. The start and the end points of the first
interval are denoted aa, and those of the second interval are denoted bb. The
order of the symbols describes the temporal order of the four end points. The
dot symbol denotes the equality. For example, the relation aa.bb between the
intervals iy, ir denotes the order: ((i;.t; < i1.1x) A (i1.tp = ir.t1) A (ir.1y < ip.1)).
The temporal relation expressed by the vec operator is the disjunction of its
components. A temporal constraint between two predicates p;, p; is fulfilled iff
there exists an interval on which p; is fulfilled, and another interval on which
p; is fulfilled, and the two intervals fulfill any of the interval relations in the
constraint. For the STP predicate to be fulfilled, all the temporal constraints in
C must be fulfilled.

Formally, given P = {py,..., pm} a set of time-dependent predicates, C =
{c1, ..., cy} a set of constraints, and a tuple u, let p;(i) denote the evaluation of
pi for the tuple u (i.e., p;(u) is of type mbool). Let [ p;(u)]; denote the j™ time in-
terval on which p;(u) is true. The evaluation of the STP predicate (P, C) for the
tuple u is true iff: ;.. j,, such that the set of time intervals [p; ()]}, ..[pn (W]},
fulfills all the temporal constraints ¢ € C, and we call [pi(w)];,..[p.(w)];, a
supported assignment. The STP predicate yields true iff at least one supported
assignment is found. This completes our description of the STP predicate.

The STP Algebra in Seconpo defines other variants of the STP predicate
(e.g., stpatternexextendstream). This operator is a triple (P, C, f) where
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P, C are the same as before, and f is an additional condition on the time in-
tervals of the supported assignments. One can express, for instance, that the
Down predicate in this query must be fulfilled for at least 2 minutes. The
stpatternexextendstream is also a stream operator, not a predicate. It ex-
tends every input tuple with attributes containing the time intervals on which
the pattern occurs. Since one trajectory might contain several matches of the
pattern, the stpatternextendstream copies the tuple, and extends every
copy with one match. The following example expresses the step-wise descent
scenario:
...Stpatternexextendstream[

Divel: .SecondAltitudeDerivative < 0.0,

Lift: .SecondAltitudeDerivative >= 0.0,

Dive2: .SecondAltitudeDerivative < 0.0 ;

stconstraint("Divel", "Lift", vec("aa.bb")),

stconstraint("Lift", "Dive2", vec("aa.bb"));

(end("Lift") - start("Lift")) > OneMinute ]

filter[isdefined(.Divel) and
(AverageDiveAngle(.Alt atperiods .Lift) < 30.0)]...

O Oo0ONO VT WN =

In this scenario, the aircraft alternates between dive and cruise during its final
approach. It is expressed as a sequence of increasing, decreasing, then again
increasing rate of descent. Line 7 asserts that the Lift event stays more than
a minute. Line 9 invokes the SEconpo function object AverageDiveAngle to
assert that the aircraft is flying almost horizontally during the Lift event, hav-
ing a slope of less than 30° with the horizontal. The two queries in this section
finish in approximately one minute on the given data set with 17,851 trajec-
tories (427,651 records). The SEconpo relation storing these flight trajectories
occupies approximately 172 MB of disk-space on a Linux 32 bit machine.

12.6.2 Exploring Patterns by Integrating MOD with Visual
Analytics

So far, we have shown that the STP predicates and its variants are very flexible
and can be used to express arbitrarily complex patterns. In practice, tuning the
parameters of these operators is tricky. The integration with visual analytics
allows for fine tuning these parameters through user interaction. SEconbo and
V-Analytics realize such an integration scheme. They are integrated, so that it
be possible to interchange query results in both directions. Typically the user
starts by loading the whole data set in the databases of the two systems. The
exploration starts in V-Analytics by removing incomplete data and artifacts,
and sending the identifiers of the candidate trajectories to SEconpo. In SEcoNDO
the user issues an STP query, and moves the result back to V-Analytics for
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validation. The visualization in V-Analytics helps the human analyst refining
the query parameters. It can take as many cycles as needed between SEcoNDO
and V-Analytics till the results are satisfactory.

The STP query can be written in SEconpo so that the result contains the time
intervals in which the pattern occurred. These can be interpreted as movement
events (m-events) in V-Analytics, so that the analysis procedures in the previ-
ous section are applicable. For example, one is able to explore the percentage
of step-wise descents during one day, the percentage of missed approaches for
each airport, the temporal distribution of missed approaches for a given airport,
etc.

12.7 Conclusions

In this chapter, we gave an overview of up-to-date research techniques to ex-
plore and analyze trajectories. We detailed our motivations, gave the process
we used to build trajectory data set, and explained three trajectory exploration
techniques (direct manipulation, m-event, and MOD queries).

First, we introduced FromDaDy, a multidimensional visualization tool mak-
ing it possible to explore large sets of aircraft trajectories with direct manipula-
tion techniques. It uses a minimalist interface: a desktop with a matrix of cells,
and a dimension-to-visual variables connection tool. Its interactions are also
minimalist: brushing, picking, and dropping. Nevertheless the combination of
these interactions permits numerous functions: the creation and destruction of
working views, the initiation and refinement of selections, the filtering of data
sets, the application of Boolean operations. The cornerstone of FromDaDy is
the trajectory spreading across views with a simple brush/pick/drop paradigm.
With the incremental trajectory exploration and direct manipulation, can the
user discover the worthwhile requests for data sets. In a sense, the user ex-
plores the data set, and at the same time, explores the request to perform.

Second, we detailed a generic procedure for analyzing mobility data that is
oriented to a class of problems where relevant places need to be determined
from the mobility data in order to study place-related patterns of events and
movements. The procedure includes: (1) extraction of relevant events from
trajectories by queries involving diverse instant, interval, and cumulative char-
acteristics of the movement and relations between the moving objects and ele-
ments of the spatio-temporal context, (2) density based clustering of the events
by spatial positions, temporal positions, movement directions and, possibly,
other attributes, which may be done in two stages for an effective removal of
noise and getting clear clusters, (3) spatio-temporal aggregation of events and
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trajectories by the extracted places; and (4) analysis of the aggregated data.
Visual analytics and m-events provide a rich tool box of data transformations
and visualizations which help a human analyst exploring the data.

Third, MOD queries deal efficiently with vary large data sets with theoret-
ically no limitation, and are able to express complex queries (neighborhood,
patterns, aggregations, etc). While direct manipulation is easy to use (users are
accustomed to manipulate tangible objects), it does not support automatic ex-
ploration. Furthermore, direct manipulation techniques need to be interactive
which works again the data size. For instance FromDaDy can display up to 10
million points with an acceptable frame rate. If more data need to be displayed
or manipulate, new computation technique need to be developed.

Since our visual analytics process uses m-events (geographic and temporal
event), this tool is not suitable for complex computations like pattern extrac-
tion. MOD can easily extract patterns, but the user needs to know in advance
what he is looking for. MOD systems are not good for data exploration. As a
future work, we plan to break the direct manipulation data set limitation with
new interaction paradigms (more complex Boolean operations). We also plan
to combine MOD, Visual Analytics, and direct manipulation to explore large
data sets. Visualize a small sample, roughly figure out your query parameters,
issue the query in MOD, validate the results by visual analytics, refine the
MOD query, and so on and so forth.

12.8 Bibliographic Notes

For further reading, we recommend the book by Card et al. (1999) which de-
tails the information visualization research area. We also recommend the book
by Tufte (1990) which contains many remarkable visualization instances. Two
conference proceedings contain many examples of visualizations and inter-
action techniques. InfoVis: The IEEE Information Visualization Conference
(IEEE Transactions on Visualization and Computer Graphics) contains novel
research ideas and innovative applications in all areas of information visual-
ization. Also, VAST, the IEEE Conference on Visual Analytics Science and
Technology is the first international conference dedicated to advances in Vi-
sual Analytics Science and Technology. The scope of the conference includes
both fundamental research contributions within visual analytics as well as ap-
plications of visual analytics, including applications in science, engineering,
medicine, health, media, business, social interaction, and security and inves-
tigative analysis.

The spatio-temporal pattern predicate was first proposed in Sakr and Giiting
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(2011). It is demonstrated in Sakr et al. (2011). We used this demonstration as
the basis of Section 12.6.
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