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Air Void Detection using Variational Mode

Decomposition with Low Rank
Fok Hing Chi Tivive, Member, IEEE, Abdesselam Bouzerdoum, Senior Member, IEEE, and Shivakumar Karekal

Abstract—This paper presents an air-void detection technique
for air-coupled radar, which emits electromagnetic waves to
interrogate an air-void inside a medium or between two media.
The reflections from the air-medium interfaces are usually cor-
rupted by air-coupling, antenna ringing, and internal reflections,
rendering air-void detection very difficult or, in certain cases,
impossible. The proposed method exploits the low-rank structure
of the background clutter to suppress these nuisance signals. A
variational mode decomposition model is developed to extract the
backscattering at different air-medium interfaces as signal modes.
Real experiments are conducted using a stepped frequency radar.
The experimental results show that the proposed method can

detect air-gap between two sand blocks.

Index Terms—stepped-frequency radar, variational mode de-
composition, air void detection, low-rank, background clutter
removal.

I. INTRODUCTION

Ground penetrating radar (GPR) is a non-invasive, non-

destructive sensing technology that interrogate solid medium

such as ground, rocks or concrete structures to detect the

reflection that occurs at an interface, which is caused by a

change in the dielectric permittivity of the medium or an object

inside the medium. GPR has been used in many applications,

including groundwater exploration [1], fracture detection [2],

pavement condition assessment [3], railway ballast assessment

[4], mine detection [5], just to name a few. In the min-

ing industry, several GPR systems have been developed to

provide technological solutions for reducing extraction cost

and improving mining safety. In [6], an impulse GPR was

used to measure the thickness of coal seam for maintaining

a defined coal mining horizon. The coal seam thickness was

classified using bispectrum features extracted from the radar

signal. Benter et al. determined over-sized fragments, which

can block crusher activities, by estimating the bulk density

of rock piles using a GPR system [7]. They measured the

downshift of the centroid frequency of the radar pulse to

determine the density of the rock pile. Thomas and Roy, on the

other hand, employed a stepped-frequency radar to estimate
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thin coal layers, where a high resolution time delay estimation

technique is applied for interface detection [8]. Triltzsch et

al. used a stepped-frequency radar for detecting separations

and clay seams in potash mines [9]. Recently, there has been

an increasing demand for using stepped-frequency radars in

mining applications to achieve high resolution. Contrary to an

impulse radar, a stepped-frequency radar overcomes the power

and bandwidth limitations and has a better signal-to-noise

ratio. A radar system, be it impulse or stepped-frequency, can

be operated into two modes: ground-coupled and air-coupled

(also known as, air-launched). In ground-coupled mode, the

antennae are placed close the ground surface to achieve better

penetration. With an air-coupled GPR, the antenna array is

positioned at a standoff distance, allowing fast data acquisition

without damaging the antennae and also providing safety

for mining personnel. However, the received radar signal is

corrupted by the direct coupling, the direct reflection from

the surface of the medium, and its internal reflections. These

unwanted signals overwhelms the target echoes, rendering the

radar signal analysis very challenging.

This paper presents a technique for air-coupled stepped-

frequency radar to detect the air-gap between two media while

removing the background clutter, which includes air-coupling

and internal reflections (i.e., medium reverberations). The

background clutter, which has similar characteristics across

the antennae, tends to reside in a low-rank subspace. The

reflections from the air-medium interfaces can be regarded as

echoes with different travel time delays. The proposed method

extracts a low-rank representation of the background clutter,

using a synthesis dictionary, and employs variational mode

decomposition to represent the scattering beneath the medium

as signal modes.

The remainder of the paper is organized as follows. Sec-

tion II presents the proposed radar signal processing method

based on a variational model with low-rank constraint. Sec-

tion III presents experimental results that validate the effective-

ness of the proposed method, followed by concluding remarks

in Section IV.

II. AIR-GAP DETECTION TECHNIQUE

This section describes the proposed air-gap detection

method. First, the signal model for an air-coupled stepped

frequency radar is presented in Section II-A. Then, the varia-

tional mode decomposition model with low-rank constraint is

introduced in Section II-B.
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A. Stepped-Frequency Radar Signal Model

Consider an air-coupled stepped-frequency radar for sens-

ing. The array aperture consists of N transceivers. Each

transceiver emits a wideband stepped frequency signal com-

prising M frequencies, equally spaced over the sensing band-

width. Suppose the radar is placed at a standoff distance Zoff

from two media, which are placed one behind the other with

an air-gap of size ∆Z , creating four air-medium interfaces

(i.e., G = 4). The target signal, which comprises the reflec-

tions from these interfaces, for the mth frequency at the nth

transceiver location yt
n(m) can be written as

yt
n(m) =

G∑

i=1

σi exp(−j2πfmτn,i), (1)

where σi is the complex reflectivity of the ith interface, τn,i
is the two-way propagation delay between the nth transceiver

and the ith interface, and G is the number of air-medium

interfaces. Apart from the target returns, the received sig-

nal also contains the reflections from the surface of the

interrogated medium, internal reflections, and noise from the

background. Let yc
n(m) and en(m) denote, respectively, the

clutter and noise signals for the mth frequency received at the

nth antenna. The radar signal can be modeled as

yn(m) = yc
n(m) + yt

n(m) + en(m), (2)

for n = 1, . . . , N and m = 0, . . . ,M − 1. Since the

signals received across the antenna array, {yc
n}

N
n=1, are highly

correlated, they tend to reside in a low-rank subspace. Differ-

ent subspace decomposition methods such as singular value

decomposition (SVD) [10]–[14], principal component analysis

(PCA) [15]–[17], and independent component analysis (ICA)

[18]–[21] have been proposed to remove the background

clutter. The principle of a subspace-based approach is to

decompose the radar signal into three different components:

clutter, target, and noise. In [12], Riaz et al. applied SVD and

assumed that the ground bounces reside in a one-dimensional

subspace spanned by the first dominant singular vector. This

assumption is valid if the ground surface is smooth and the

ground is completely homogeneous. Estimating the number

of eigen-components spanning the clutter subspace is difficult

since the ground and target singular vectors may interleave.

This issue is recently overcome by casting the estimation of

the clutter low-rank subspace as a rank minimization problem

[5], [22].

B. Variational Mode Decomposition Model with Low-Rank

The variational mode decomposition (VMD) algorithm,

which was proposed by Dragomiretskiy et al. [23], is used to

detect the reflection from an interface. For a complex-valued

signal, the VMD algorithm estimates the mode bandwidth by

performing a heterodyne demodulation to shift the frequency

of the mode to baseband and estimating the bandwidth of

the mode through the H 1-norm (Dirichlet energy) of the

demodulated signal, i.e., the square L2-norm of the gradient

[24]. Let ytn(m) be the complex-valued target signal received

at the nth transceiver, un,l be the lth mode extracted from the

target signal, ωn,l be its center frequency, and L denote the

number of modes. For signal decomposition, the constrained

variational problem can be written as

min
{un,l(m)},{ωn,l}

L∑

l=1

∥∥∥∂m

[
un,l(m)e−jωn,lm

]∥∥∥
2

2

s.t.
L∑

l=1

un,l(m) = yt
n(m), ∀ n

(3)

where the square L2-norm is understood as ‖ · ‖22 =
∫
| · |2dt,

∂m is the derivative with respect to m, and ∗ denotes the

convolution operator.

Here, the background clutter, which is assumed to have low-

rank property, is estimated by solving a rank minimization

problem. Let Y denote the matrix containing the antenna

signals as its columns. Likewise, the background clutter,

the target signal, and the noise components are denoted by

Yc = [ycn(m)]MN , Yt = [ytn(m)]MN , and E = [en(m)]MN ,

respectively. Equation (2) can be written in matrix form as

Y = Y
c +Y

t +E. (4)

Suppose the low-rank representation Z = [zn(i)]QN for n =
1, . . . , N, i = 1, . . . , Q is obtained from an overcomplete

synthesis dictionary D of size M ×Q, consisting of Q atoms,

where Q >> M . The rank minimization problem can be

written as

min
Z

‖Z‖∗ s.t. Y
c = DZ. (5)

Combining the low-rank prior (5) with (3), we obtain the

following variational model

min
Z,{un,l(m)},{ωn,l}

‖Z‖∗ +
N∑

n=1

L∑

l=1

∥∥∥∂m

[
un,l(m)e−jωn,lm

]∥∥∥
2

2

s.t.

L∑

l=1

un,l(m) = yn(m)−

Q∑

i=1

D(m, i)zn(i) ∀ n.

(6)

Similar to the VMD technique, a quadratic penalty term

and Lagrange multipliers are added to convert (6) into the

augmented Lagrangian form:

L(Z, un,l(m), ωn,l, bn(m)) = β ‖Z‖∗ +

α
N∑

n=1

L∑

l=1

∥∥∥∂m

[
un,l(m)e−jωn,lm

]∥∥∥
2

2
+

〈
bn(m), yn(m)−

Q∑

i=1

D(m, i)zn(i) −

L∑

l=1

un,l(m)
〉
+

N∑

n=1

∥∥∥yn(m)−

Q∑

i=1

D(m, i)zn(i)−

L∑

l=1

un,l(m)
∥∥∥
2

2
,

(7)

where β is a penalty parameter controlling the amount of

clutter to be removed and bn(m) is the Lagrange multiplier

associated with the nth antenna. Using the alternating direction

method of multipliers (ADMM) technique, we decompose the

objective function (7) into the following Subproblems:

min
Z

β ‖Z‖∗ +

N∑

n=1

∥∥∥yn(m)−

Q∑

i=1

D(m, i)zn(i)−
L∑

l=1

un,l(m) +
bn(m)

2

∥∥∥
2

2
,

(8)
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min
un,l(m)

α
∥∥∥∂m

[
un,l(m)e−jωn,lm

]∥∥∥
2

2
+

∥∥∥yn(m)−

Q∑

i=1

D(m, i)zn(i)−

L∑

l=1

un,l(m) +
bn(m)

2

∥∥∥
2

2
,

(9)

and

min
ωn,l

∥∥∥∂m

[
un,l(m)e−jωn,lm

]∥∥∥
2

2
∀ n, l. (10)

Subproblem (8) is a least squares problem regularized by a

nuclear norm penalty, which can be concisely written as

min
Z

β ‖Z‖∗ +

∥∥∥G−DZ

∥∥∥
2

F

, (11)

where G = [yn(m) −
∑L

l=1
un,l(m) + 0.5bn(m)]MN . This

rank minimization problem can be solved using the lineariza-

tion and proximal technique proposed by Lin et al. [25].

Firstly, the quadratic term in (11) can be linearized as

∥∥G−DZ
∥∥2

F
≈

∥∥G−DZ
k
∥∥2

F
+

〈
∇Z

k,Z− Z
k
〉

+
1

ρ

∥∥Z− Z
k
∥∥2

F
,

(12)

where 0 < ρ < 1/S(DTD) is a proximal parameter, S(DTD)
denotes the spectral radius of DTD, and ∇Zk denotes the

gradient of
∥∥G − DZk

∥∥2
F

at Zk. By substituting (12) into

(11) and with simple mathematical manipulations, we obtain

the following approximation to (11):

min
Z

β ‖Z‖∗ +
1

ρ

∥∥∥Z− (Zk − ρ∇Z
k)

∥∥∥
2

F

. (13)

Next, Subproblem (13) can be efficiently solved using singular

value thresholding (SVT), which performs two operations:

SVD and soft-thresholding [26]. Let the element-wise soft-

thresholding operator be defined by

T (a, b) = sgn(a)max(|a| − b, 0), (14)

where sgn(·) denotes the signum function. The minimization

of Subproblem (13) can be performed by applying SVT as

follows:

SVD(Zk − ρ∇Z
k) = UΣV

H , (15)

Z
k+1 = UT (Σ, βρ)VH , (16)

where H denotes the Hermitian transpose, U and V are

unitary matrices, and Σ is a diagonal matrix of singular values.

Subproblems (9) and (10) are solved in the Fourier domain as

ûn,l(ω)
k+1 =

ĝn(ω)
k+1 −

∑
i�=l

ûn,i(ω) + 0.5b̂n(ω)

1 + α(ω − ωn,l)2
(17)

and

ωk+1
n,l =

∫∞

−∞
ω|ûn,l(ω)

k+1|2dω
∫∞

−∞
|ûn,l(ω)k+1|2dω

∀ n, l, (18)

where ĝn(ω)
k+1 is the Fourier transform of gn(m)k+1 =

yn(m) −
∑Q

i=1
D(m, i)zn(i)

k+1. Lastly, the Lagrange mul-

tiplier is updated as

b̂n(ω)
k+1 = b̂n(ω)

k + µ
(
ĝn(ω)

k+1 −
L∑

l=1

ûn,l(ω)
k+1

)
, (19)

where µ > 0 is a fixed step size. Subproblems (8) to (10) are

solved alternately until a stopping criterion is met. Then, the

target signal ỹtn(m) is estimated as

ỹt
n(m) =

L∑

l=1

ũn,l(m), (20)

where ũn,l(m) is the inverse Fourier transform of ûn,l(ω).

III. EXPERIMENTAL METHODS AND RESULTS

The proposed air-void detection method is evaluated on real

radar signals, which are obtained from a stepped frequency

radar at the radar imaging laboratory of the Centre for Signal

and Information Processing (CSIP), University of Wollongong,

Australia. The radar system comprises a network analyzer

to generate a stepped-frequency signal covering 1 to 4 GHz

frequency band with a step size of 7.5 MHz and a scanner to

synthesize a 25-element linear array of length 0.3 m, as shown

in Fig. 1(a). Two sand bricks are placed at a standoff distance

Zoff in front of the horn antenna; they are positioned to have

an air-gap ∆Z between them, as shown in Fig. 1(b). Each

sand brick has a length of 0.4 m, width of 0.12 m and height

of 0.3 m. Several sets of radar measurements were collected to

investigate the effectiveness of the proposed air-void detection

method at different standoff distances and for different air-

gap sizes. The standoff distance is varied from 0.6 m to 1.6 m

with a step size of 0.5 m and the air-gap ∆Z is increased from

0.1 m to 0.2 m with a step size of 0.05 m. For each standoff

distance and air-gap size, a set of 25 stepped-frequency radar

signals are acquired.

(a)

Zoff

Antenna array

Brick-112cm

Brick-212cm

Z

30 cm

40 cm

A/S-4

A/S-3

A/S-2

A/S-1

Air

Air

Air

(b)

Fig. 1. The experimental setup of the stepped-frequency radar for air-void
detection: (a) image of the stepped-frequency radar system and (b) a schematic
layout depicting the positioning of the two sand bricks with air-gap.

The target signals estimated by the proposed variational

mode decomposition method are used to form an image, where

each horizontal line represents the air-sand (A/S) interface.

Here, delay-and-sum (DS) beamforming is used for image

formation. Assume the scene is divided into a rectangular

grid consisting of P pixels. The magnitude of the pth pixel is

computed as

I(p) =
∣∣∣ 1

NM

N∑

n=1

M−1∑

m=0

ỹt
n(m) exp

(
j2πfmτn,p

)∣∣∣,

for p = 1, . . . , P,

(21)
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where |·| denotes the modulus operator and τn,p is the focusing

delay between the nth antenna and the pth pixel.

In addition, the target signal is converted into a high

resolution range profile (HRRP), where the peaks depict the

locations of the A/S interfaces. Let ∆r = c/(2B) denote the

radar resolution, where c is the speed of light in free space

and B is the bandwidth of the stepped frequency signal. The

HRRP xn(k) and the target signal ỹt
n(m) are related by the

discrete Fourier transform:

xn(k) =
1

M

M−1∑

m=0

ỹt
n(m) exp(j2π(2k∆r)/c), (22)

for k = 0, . . . ,M − 1 and n = 1, . . . , N .

Figure 2 shows the beamformed image and the HRRP plot

obtained from the raw radar signals at a standoff distance

of Zoff = 1.1 m and an air-gap size of ∆Z = 0.1 m. The

image in Fig. 2(a) contains strong clutter, which is caused

by direct-coupling and antenna ringing. The first two highest

peaks of the HRRP in Fig. 2(b) belong to the direct-coupling

and antenna ringing. The third peak gives the location of the

first A/S interface (A/S-1). The last two peaks are associated

with the second (A/S-2) and fourth A/S interfaces (A/S-4).

Without background clutter mitigation, it is very difficult to

localize the air-gap between Brick-1 and Brick-2, using the

image of Fig. 2(a) or the HRRP plot of Fig. 2(b).

-0.15 -0.1 -0.05 0 0.05 0.1

Cross-range (m)

0

0.5

1

1.5

D
o

w
n

-r
a

n
g

e
 (

m
)

-30

-25

-20

-15

-10

-5

0

(a)

0 0.5 1 1.5 2

range (m)

0

2

4

6

8

10

M
a
g
n
it
u
d
e

X: 0.15

Y: 8.734

X: 0.4

Y: 9.708

X: 1.1

Y: 2.775
X: 1.35

Y: 1.54
X: 1.75

Y: 1.107

(b)

Fig. 2. Image and HRRP plot obtained directly from the raw radar data: (a)
DS-beamformed image, and (b) HRRP of the middle antenna.

Spatial filtering, SVD, PCA, and ICA-based methods are

common techniques to remove the background clutter. In

spatial filtering, each radar signal is subtracted from a mean

vector, which is obtained by averaging all the radar signals. In

SVD-based method, the radar data is decomposed into a set of

singular vectors and their corresponding singular values. Then,

the first few singular vectors associated with the dominant

singular values are removed, whereas the remaining singular

vectors are used to reconstruct the radar data. Similarly,

in PCA-based method, the first few dominant eigen-vectors,

which contain the background clutter, are discarded. In the

ICA-based method [18], SVD was used to pre-whiten the

radar data matrix. Then, the complex-valued joint approximate

diagonalization of eigen-matrices (JADE) [27] algorithm was

applied to determine the mixing matrix and the independent

components. The normalized kurtosis was employed to iden-

tify the independent components associated with the target.

Figure 3 depicts the HRRP plots after applying all four ex-

isting background clutter removal methods. All the techniques

successfully remove the air-coupling and antenna ringing.

With spatial filtering, the first two peaks in Fig. 3(a) give,

respectively, the locations of the A/S-1 and A/S-2 interfaces.

The third peak is related to the A/S-4 interface. Figures 3(b)

and (c) depict, respectively, the HRRP plots obtained from

SVD and PCA after the removal of the first two dominant

components. It is clear that SVD and PCA reveal more

peaks, and some of the peaks are closer to the A/S interface

locations. Among the four existing clutter removal methods,

ICA produce the best HRRP, where the main peaks reveal the

location of the A/S-1 interface and the air-gap.
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Range (m)

0
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0.1

0.15

0.2
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0.3

0.35

0.4

M
a
g
n
it
u
d
e

X: 1.1
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Y: 0.2612
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(a)

0 1 2 3

Range (m)

0

0.01

0.02

0.03

0.04

0.05

0.06

M
a
g
n
it
u
d
e

X: 1.05

Y: 0.05832

X: 1.3

Y: 0.02448 X: 1.45

Y: 0.01904
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0 1 2 3

Range (m)

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

M
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n
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e

X: 1.05

Y: 0.03204

X: 1.15

Y: 0.02495

X: 1.3

Y: 0.01784

(c)

0 1 2 3

Range (m)

0

0.1

0.2

0.3

0.4
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n
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d
e

X: 1.1

Y: 0.4926 X: 1.35

Y: 0.3306

X: 1.45

Y: 0.166

(d)

Fig. 3. HRRP plot after applying (a) spatial filtering, (b) SVD, (c) PCA, and
(d) ICA.

Next, the proposed method is applied to detect the air-gap

between Brick-1 and Brick-2. The number of modes L and

their initial center frequencies {ω0
n,l}

L
l=1 affect the detection

of the A/S interfaces. Setting L to a small value can miss

some of the A/S interfaces, whereas setting L to a large

value can generate a lot of false alarms. Therefore, a two-step

regularization parameter estimation procedure is employed to

find the parameters L and {ω0
1 , . . . , ω

0
L}. The same initial

center frequencies are used for all radar signals. In the first

step, the parameter L is set to 100 and the center frequency of

each mode is initialized randomly in the range [0.075, 0.125],

which corresponds to the range interval of [Zoff , Zoff + 1].

Here, the distance Zoff is determined as the range of the

first peak in the HRRP plot after applying spatial filtering to

remove the antenna ringing. Moreover, the range-of-interest is

set to 1 m. After applying a cross-validation procedure, the

other parameters are set to: β = 0.5‖D†Y‖∞, α = 108 and
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µ = 10−5. The dictionary D comprises wavelet packet basis

functions obtained from Daubechies wavelets with two level

of decompositions. Each atom in the dictionary is normalized

to have unit norm. To alleviate the boundary issue in the

variational model, a simple mirror extension is performed on

the radar signal by adding half of its length on each side. Two

stopping criteria are defined: (i) the number of iterations is

equal 30 and (ii) the average relative difference between two

consecutive extracted modes is below a predefined threshold

δ, i.e., ∑N

n=1

∑L

l=1 ‖u
k+1
n,l − u

k
n,l‖

2
2

∑N

n=1

∑L

l=1 ‖u
k
n,l‖

2
2

≤ δ, (23)

where δ = 10−5 and uk
n,l = [uk

n,l(0), . . . , u
k
n,l(M − 1)]T .

The proposed method is applied to estimate the target signals

{ỹtn(m)}Nn=1. Then, an average HRRP is computed as

x̃(k) =
1

MN

N∑

n=1

∣∣∣∣∣

M−1∑

m=0

ỹt
n(m) exp(j2π(2k∆r)/c)

∣∣∣∣∣ . (24)

The average HRRP is re-scaled to the range [0, 1] by dividing

by the maximum value. A peak detection method is applied

to locate peaks with magnitude greater than a pre-defined

threshold η (here, η = 0.2). Let gi denote the range of the ith
peak. Suppose there are J detected peaks. Each radar signal is

decomposed into J modes, where the initial center frequency

of the ith mode ω0
i is determined as

ω0
i = 2π∆f

2gi
c

for i = 1, . . . , J, (25)

where ∆f is the step size.

Based on the J modes and their estimated center fre-

quencies, the proposed variational method is applied again

to accurately estimate the modes, which are subsequently

combined to produce the target signal. Figures 4 to 6 depict

the DS images and HRRP plots of the target signals obtained

from the proposed method for different standoff distances and

air-gap sizes. The HRRP plots clearly show that the proposed

method can accurately detect the air-gap between Brick-1

and Brick-2. At a standoff distance of 0.6 m, the proposed

method detects all four A/S interfaces, as shown in Fig. 4(b).

As the standoff distance increases, more peaks are detected,

see Figs. 5(b) and 6(b). These false alarms could be due

to the internal reflections or the secondary reflections of the

A/S interfaces. For comparison, the ICA-based method is also

evaluated on the same dataset. Figure 7 shows the HRRP plots

obtained from the ICA-based method for different standoff

distances and air-gap sizes. Each row of Fig. 7 presents the

HRRP plots for different air-gap sizes at a particular standoff

distance. The HRRP plots in Figs. 7(a) to (c) show that the

ICA-based method has difficulty to detect the air-gap when the

antenna is placed close to Brick-1. This is because the direct-

coupling residuals overwhelm the reflections from the A/S

interfaces. Increasing the standoff distance to 1 m improves the

detection of the A/S interfaces. By comparing the HRRP plots

in Fig. 7 with those in Figs. 4 to 6, we show that the proposed

air-gap detection method achieves better performance than the

ICA-based method.
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Fig. 4. Image and HRRP plot obtained from the proposed method at Zoff =

0.5 m with an air-gap size of (a)-(b) ∆Z = 0.10 m, (c)-(d) ∆Z = 0.15 m,
and (e)-(f) ∆Z = 0.20 m.

IV. CONCLUSION

There is an increase demand of using radar technology in

mining industry for estimating coal seam thickness, detecting

air-void, and determining over-sized rock fragment. An air-

coupled stepped-frequency radar has the advantage of provid-

ing high resolution and a stand-off distance when interrogating

a region-of-interest or a target. However, the air-coupling,

antenna ringing, and the medium reverberations obscure the

desired radar returns, rendering the analysis of radar signal

very difficult. In this paper, an air-gap detection method

was proposed. The proposed method employs a low-rank

regularizer to capture the background clutter as a low-rank
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Fig. 5. Image and HRRP plot obtained from the proposed method at Zoff =

1.0 m with an air-gap size of (a)-(b) ∆Z = 0.10 m, (c)-(d) ∆Z = 0.15 m,
and (e)-(f) ∆Z = 0.20 m.

representation and a variational mode decomposition model to

detect the air-medium interfaces as signal modes. Experiments

using real stepped frequency signals from 1 to 4 GHz were

performed to evaluate the proposed method. Results showed

that the air-gap detection method can effectively localize the

air-gap of different sizes between two sand bricks at different

standoff distances.

ACKNOWLEDGMENT

This work was supported by a grant from the Australian

Research Council (ARC).

-0.1 0 0.1

Cross-range (m)

0

0.5

1

1.5

2

2.5

D
o

w
n

-r
a

n
g

e
 (

m
)

-30

-25

-20

-15

-10

-5

0

(a)

0 1 2 3

Range (m)

0

0.005

0.01

0.015

0.02

0.025

0.03

M
a
g
n
it
u
d
e

X: 1.6

Y: 0.02983

X: 1.85

Y: 0.01457

X: 1.95

Y: 0.006824

(b)

-0.1 0 0.1

Cross-range (m)

0

0.5

1

1.5

2

2.5

D
o

w
n

-r
a

n
g

e
 (

m
)

-30

-25

-20

-15

-10

-5

0

(c)

0 1 2 3

Range (m)

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

M
a

g
n

it
u

d
e

X: 1.6

Y: 0.03033

X: 1.85

Y: 0.01509

X: 2

Y: 0.01853

(d)

-0.1 0 0.1

Cross-range (m)

0

0.5

1

1.5

2

2.5

D
o

w
n

-r
a

n
g

e
 (

m
)

-30

-25

-20

-15

-10

-5

0

(e)

0 1 2 3

Range (m)

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

M
a
g
n
it
u
d
e

X: 2.05

Y: 0.01311

X: 1.85

Y: 0.01739

X: 1.6

Y: 0.03003

(f)

Fig. 6. Image and HRRP plot obtained from the proposed method at Zoff =

1.5 m with an air-gap size of (a)-(b) ∆Z = 0.10 m, (c)-(d) ∆Z = 0.15 m,
and (e)-(f) ∆Z = 0.20 m.
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