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Abstract—Air-writing systems have recently been proposed as
tools for human-machine interaction where instructions can be
represented using letters or digits written in the air. Different
technologies have been used to realize air-writing systems. In
this paper, we propose an air-writing system using acoustic
waves. The proposed system consists of two components: a motion
tracking component, and a text recognition component. For mo-
tion tracking, we utilize direction-of-arrival (DOA) information.
An ultrasonic receiver array tracks the motion of a wearable
ultrasonic transmitter by observing the change in the DOA of
the signals. We propose a novel 2-D DOA estimation algorithm
that can track the change in the direction of the transmitter using
measured phase-differences between the receiver array elements.
The proposed phase-difference projection (PDP) algorithm can
provide accurate tracking with a 3-sensor receiver array. The
motion tracking information is passed next for text recognition.
To this end, and in order to strike the desired balance between
flexibility, processing speed, and accuracy, a training-free order-
restricted matching (ORM) classifier is designed. The proposed
air-writing system, which combines the proposed DOA estimation
and text recognition algorithms, achieves a letter classification ac-
curacy of 96.31%. The utility, processing time, and classification
accuracy are compared with four training-free classifiers and two
machine learning classifiers to demonstrate the efficiency of the
proposed system.

Index Terms—Acoustic localization, tracking, direction-of-
arrival, phase-difference, receiver arrays, air-writing, sequence
classification, human-machine interaction

I. INTRODUCTION

Human gestures are indispensable tools for expressing emo-

tions and conveying information to the environment. As alter-

natives to traditional keyboards, touchpads or other pressing

and touching tools, new technologies based on cameras, ac-

celeration sensors, photosensors, electromagnetic and acoustic

signals are emerging as new mediums of interaction using

gestures [1]. These systems have offered unorthodox ways

for human-machine interaction. In the same vein, the concept

of air-writing has been introduced as a flexible means of

touchless human-machine interaction. This new technology

has huge potentials in education, entertainment, smart home,

and virtual reality applications [2], [3].

In recent years, a few air-writing systems have been devel-

oped. Xin et al. [4] realized a finger-writing-in-the-air with a
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Kinect Sensor using artificial neural network based depth-skin-

background mixture model (DSB-MM). The system was tested

on digits, uppercase English letters, lowercase English letters,

as well as Chinese characters, with a reported classification

accuracy of 92.00%, 94.62%, 86.15%, 78.46%, respectively.

By utilizing inertial sensors, an air-writing system is proposed

with a two-stage classification approach using support vector

machines (SVM) and hidden Markov model (HMM) [5]. For

a user-independent setup, classification accuracy of 89% was

reported using pen-up segmentation combined with a statistical

language model. Chen et al. [2], [6] collected data from an

infra-red camera and inertial measurement unit (IMU) sensors

to complete letter and word classification. By using the HMM

algorithm, accuracy of 99.2% for word recognition and 98.1%

for letter recognition were reported. A two-antenna RFID-

tagged pen fulfilled the needs of air-writing by using the online

handwriting recognition toolkit LipiTk for classification [7].

This pen offered another flexible interaction experience and

reached an accuracy of 93.6%.

Generally speaking, air-writing is carried out in two steps.

Motion is first tracked by measuring absolute or relative

positions. Next, classification methods are applied to recognize

the written text. Usually, normalization and feature extraction

are performed on the data before sending it to the classifiers.

A. Motion Tracking Techniques

In order to track the motion of an object, vision-based

methods [8], [9] separate the target from the background and

then extract its location information from the frames. Even

though current commercial depth sensors [10], [11] improve

against sensitivity to surrounding illumination conditions, the

high computational complexity remains a challenge.

Acoustic positioning systems can estimate the location

based on time-difference-of-arrival (TDOA) [12] or a com-

bination of direction-of-arrival (DOA) and time-of-arrival

(ToA) [13] information. Another solution is based on the

Doppler effect. Relative movement is estimated from the

Doppler frequency shifts suffered by the signal reflecting from

the moving object [14], [15]. Similarly, WiFi-based systems

utilize the phase shift of a radio signal to estimate relative

movement [16], [17], or use TDOA to estimate the 2-D object

location [18]. These systems work well for simple recognition

tasks while taking advantage of off-the-shelf products, such

as mobile phones or laptops. However, a subtle movement is

hard to capture using the above-mentioned systems.

IMU-based systems such as data gloves [19], [20] are able

to detect even fingertip movements. Lighthouse utilizes photo-
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sensors and IMUs to provide a highly accurate six degree-of-

freedom (DoF) tracking solution for virtual reality (VR) [21].

In exchange of high accuracy, these systems are expensive in

price, bulky to wear and require more computational resources,

which excludes a majority of ordinary users.

All these technologies offer various distinct features and

can be compared based on various metrics such as accuracy,

resolution, latency, motion range, user comfort, and cost [22].

In this work, we attempt to realize an accurate motion tracking

and text recognition system with low cost and low latency such

that the system can operate in real-time.

We propose a low cost, privacy-protection, fast yet accurate

air-writing system, which is based on tracking the DOA of

acoustic signals transmitted by a handheld device. Acoustic

waves provide high accuracy in localization and tracking due

to their low propagation velocity [23], [24]. Estimating the

location of a target can be realized by utilizing multiple an-

chor nodes with trilateration, triangulation, or multilateration

algorithms [25]. However, tracking a target with its DOA

information can lower the complexity and the cost of the

system [23], [26].

DOA estimation algorithms can be classified into spectral-

based and parametric approaches [27]. The former category

creates some spectrum-like functions to calculate DOA in

a computationally efficient way with representative methods

such as beamforming [28]–[30], and MUSIC [31]. The latter

methods, however, offer more accurate and robust estimations

in exchange for high computational complexity. This group

includes deterministic maximum likelihood (DML) [32]–[34]

methods, and uniform linear arrays (ULA) based approaches

such as root-MUSIC [35] and ESPRIT [36], [37]. Spectral-

based and ULA-based methods, generally speaking, do not

perform well when applied to arrays of small number of

elements, especially in realistic signal and noise levels. On

the other hand, DML methods are capable of handling such

situations. Particle swarm optimization (PSO) [33] is proposed

as an accurate method for DML DOA estimation; unfortu-

nately, the high accuracy is associated with high processing

cost. Phase-difference and time-delay methods, another group

in the DML category, offer accurate source localization using

small receiver configurations with moderate computational

cost [38]–[41]. A basic system requirement for the air-writing

application dictates that a low-cost DOA estimation algorithm

be devised using a minimal number of sensors

In a previous work [42], a 1-D phase-difference based DOA

estimation method was proposed by the authors. An exhaustive

grid search is applied to find the DOA that best matches

the wrapped phase-difference observations. Even though this

algorithm shows remarkable performance, its accuracy is nat-

urally limited by the search step. To achieve high resolution,

a computationally expensive search is required.

To improve both the accuracy and computational speed,

we propose a novel phase-difference projection (PDP) based

algorithm for DOA estimation. This algorithm offers high

estimation accuracy with low processing time. The proposed

PDP algorithm makes up the motion tracking part of the

proposed air-writing system.

B. Classification Methods

As has been alluded to earlier, the second component of

an air-writing system is text recognition that is achieved by

processing the localization/motion-tracking results. For air-

writing recognition, identifying the letters is the first task for

the system since letters are the very elementary composition

of words and sentences. Classifiers for letters can be divided

into two groups depending on the need for training or not.

By creating templates for all the possible alphabets, training-

free classifiers can recognize letters based on distance or

similarity measures (template matching) between an observed

pattern and a set of templates [8]. Dynamic time warping

(DTW) [43], [44] is a classical algorithm to calculate the

distance between an observed sequence of data and a template.

Cross-correlation [42] also indicates similarity between two

sequences. On the other hand, machine learning tools, such

as artificial neural network (ANN) [45] and hidden Markov

models (HMM) [2], are training-based methods, where labeled

observations are needed to learn the underlying input-output

model and set up the algorithm for the classification of the

future incoming data. An adequate amount of (training) data

needs to be collected to make the model generalizable to

diverse writing styles or patterns.

Each of the above-mentioned methods has its limitations.

Dictionary matching based algorithms provide limited accu-

racy, and their performance degrades with the increase of the

number of classes (e.g., extended alphabet system). Machine

learning-based methods such as ANN and HMM offer high

classification accuracy with low processing time; however, the

models are built on a large amount of training data. These

methods cannot recognize a newly defined or user-customized

patterns. DTW provides a training-free and accurate solution,

but the processing time is too high for real-time operation. In

this paper, we propose a training-free order-restricted matching

(ORM) algorithm, which requires low processing time while

maintaining high classification accuracy. The proposed classi-

fication algorithm will be compared with a set of widely-used

benchmark algorithms.

C. Paper Contributions

In this work we: 1) propose a novel phase-difference pro-

jection (PDP) based 2-D DOA estimation algorithm for multi-

frequency signals; 2) propose a training-free order-restricted

matching (ORM) classifier for the non-binary (multi-class)

case; 3) Consolidate the proposed PDP and ORM methods

to implement an air-writing system.

This is an extended version of our previous work [42], [46].

Part of this work was demonstrated in ICASSP2018 demo

session as DEMO-3-1: “UBAS: An Ultrasound Based Air-

writing System” [47]. This system can recognize English let-

ters written in a predefined style. However, air-writing is only

one possible application of the proposed ultrasonic motion

tracking system. Other applications of the proposed system

include virtual/augmented reality, human activity recognition,

and so on. A video demonstration of the proposed system’s in

real-time applications such as mouse/keyboard functions and

air-writing can be found on YouTube [48].
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D. Paper Organization

This paper is organized as follows. Section II provides a

high-level description of the proposed air-writing system. The

proposed PDP algorithm for DOA estimation is detailed in

Section III. Motion data translation and orientation feature

extraction are discussed in Section IV. The proposed text

recognition ORM algorithm is explained in Section V. Sec-

tion VI presents the simulation and the experimental results

of the proposed air-writing system. Section VII concludes

the whole work and highlights the most prominent future

directions.

II. THE PROPOSED AIR-WRITING SYSTEM

In this section, we present a high-level overview of the

proposed air-writing system. Detailed descriptions of various

system components will be given in subsequent sections. A

block diagram of the proposed ultrasonic air-writing system is

shown in Fig. 1. The system function is made up of two main

phases: motion tracking and text recognition.

DoA Data

Acquisition

• Signal Detection

• Direction of Arrival Estimation

Feature 

Extraction

• Template Modeling

• Orientation Extraction

Classification
• Training-free Classifier

• Machine Learning ClassifierG

 • Location Transformation

• Normalization

X

Y

Motion Tracking

Text Recognition

Motion 

Estimation

Fig. 1. Block diagram of the proposed air-writing system with two main
modules: motion tracking and text recognition.

In the motion tracking phase, a multi-frequency ultrasonic

signal is transmitted from a handheld device. A receiver

array detects and labels the hand status as idle or active

by thresholding the received signal strength. If the status is

marked as active, a proposed PDP DOA estimation algorithm

is applied to acquire the 2-D angle information of the moving

transmitter.

An illustration of a gesture tracking is shown in Fig. 2. The

receiver array center point O is located at [0, 0, 0], which repre-

sents the origin of the local coordinate system of the array. The

local x and y axes form a plane that is approximately parallel

to the plane where the movement occurs, while the z axis (not

plotted in the figure) points towards the target forming a local

3-D coordinate system. All tracking information is measured

relative to this coordinate system.

For any receiver array with more than two non-collinear

receivers, the direction of a signal originating from a target

can be represented using a pair of angles, a horizontal angle

X

Y

Receiver

Array

Handheld

Transmitter

α O

β 

zp

r

[rcos(α),rcos(β), rcos(γ)]

[a,b,zp]

Fig. 2. Gesture motion tracking using DOA information.

α and a vertical angle β, as in Fig. 2. These angles represent

the 3-D location of the target up to an unknown range, which

is deemed irrelevant for the application of interest.

After acquiring the angle information, the position of the

transmitter will be projected on a virtual 2-D plane at a point

[a, b, dp], as in Fig. 2. The virtual 2-D plane is parallel to the

receiver local coordinate system, and lies at a distance rp from

the origin. In other words, air-writing is recorded continuously

in one stroke in a 3-D space and projected on a 2-D plane.

This step is followed by a normalization operation aiming to

unify the writing scale and get the data ready for classification.

Text recognition is performed in two steps: feature extrac-

tion and classification. Instead of utilizing only the motion

pattern, features such as motion direction are also considered

to provide additional information to our classifiers. A detailed

description of the proposed system is discussed in the follow-

ing sections.

III. DOA ESTIMATION

This section presents the proposed method for 2-D DOA

estimation using phase-difference information of signals ob-

served at several pairs of receivers. We start by highlighting

the signal and observation models needed for developing the

1-D DOA estimation algorithm. Subsequently, the concept of

wrapped phase-difference pattern (WPDP) is introduced and

utilized to develop the proposed PDP algorithm for DOA

estimation. Next, how to estimate the 2-D DOA from several

1-D measurements will be explained.

A. Signal and Observation Models

1) Time-domain Model: A handheld ultrasound transducer

is used as a transmitter sending a series of signal blocks

separated by silence periods. Each block consists of sinusoidal

pulses with frequencies of f1, f2, ..., fF , where F is the total

number of frequency components. These hops have the same

duration Th and are transmitted sequentially inside each block.

The transmitted signal has a duty of (FTh + Tp), where

Tp is the silence period duration at the end of each block.

The purpose of the silence period is to minimize inter-block

interference and its duration Tp should be chosen based on

the acoustic reverberation time of the ambient environment. A

transmitted signal block can be expressed in the continuous-

time domain as
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x(t) =
F
∑

i=1

ai(t) cos(2πfit+ ρi), (1)

where ai(t) = Ai for t ∈ {(i−1)Th, iTh} and zero otherwise;

Ai and ρi are the amplitude and phase parameters of a

transmitted pulse i.
At the receiver array side, receiver j ∈ {1, 2} acquires

a signal yj [n] which is discretized according to a sampling

frequency Fs. The receiver continuously evaluates the received

signal strength to detect the arrival of signal blocks (as

opposed to pure background noise). If the detected signal

strength exceeds a preset threshold, the receiver calculates the

unsigned cross-correlation zj [n] between the reference signal

x[n], which is a discrete-time version of the transmitted signal

in (1), and the received signal y[n] as [24]

zj [n] =

∣

∣

∣

∣

∣

∣

M=FNp
∑

m=1

x[m] yj [m+ n]

∣

∣

∣

∣

∣

∣

, (2)

where M is the number of signal samples per block, and Np =
round(ThFs).

The received signal yj [n], is the convolution of the transmit-

ted signal x[n] with the acoustic channel impulse response of

the environment. We assume that, by design, the pulse duration

is sufficiently small such that the multipath arrivals pertaining

to each pulse interfere minimally with that same pulse. Based

on this assumption, the presence of multiple signal arrivals due

to acoustic reverberation results in multiple successive peaks

of zj [n] in (2) that are separated by at least one pulse duration.

The location of the earliest significant peak of zj [n] is used

to indicate the start of the signal block. This decision can be

made by combining the results from all the available receivers.

2) Frequency-domain Model: After the signal has been

identified, the signal can be transformed to the frequency

domain. For simplicity, let us assume that we have M = FNp

samples of yj [n] that represents a received signal block. To

guard against the effect of reverberation (that arrives later than

the pulse), we compute the Discrete Fourier transform (DFT)

for each pulse separately. That is

Yji(fi) = DFT([yj((i− 1)Np + 1, ..., iNp)]), (3)

where the subscripts i and j indicates the pulse index (or

frequency) in the received signal block, and the receiver

number, respectively.

xD

d

Rx1 Rx2

Transmitter

Receivers

θ

Fig. 3. The far-field model.

3) Phase-difference Observations and DOA: Denoting the

distance to the target by r, and assuming that r >> D,

where D is the inter-sensor spacing as in Fig. 3, the situation

simplifies to the far-field scenario [49]. Based on Fig. 3, for a

certain DOA θ and F frequency components, the elements of

the noise-free phase-difference vector φ = [φ1, φ2, ..., φF ]
T

satisfy the following relationship

φi(θ) =
2πd(θ)

λi
=

2πfi cos (θ)D

c
, 0 ≤ θ ≤ π, (4)

where φi is the phase difference observed between the two

receivers at frequency fi which coincides with wavelength

λi, d is the difference in distance between the transmitter

and each of the two receivers, and c is the speed of signal

propagation. The angle θ can be calculated if we know the

value of the phase-difference φi(θ). However, the true phase-

difference cannot always be observed unless D < λi/2. In

the general case, the observed phase-difference vector, call it

ψ, is actually a wrapped version of the actual phase-difference

vector φ. The elements of the wrapped phase-difference vector

are given by

ψi(θ) = wrap(φi(θ))

= mod(φi(θ) + π, 2π)− π

= φi(θ)− 2πZ(θ),

(5)

where mod(·, ·) returns the remainder of the division of the

first argument by the second argument, Z(θ) is an integer so

that ψi(θ) ∈ [−π, π). In practice, we always have a noisy

version of (5) since the observed (wrapped) phase difference

is obtained through an estimation process.

Phase-difference can be estimated from the received signals

using different techniques [38], [39], [50]. A simple technique

is the frequency-domain approach where the phase-difference

at frequency fi is estimated using [39], [42], [51]

ψ̂i = ang(Y1i(fi) · Y
∗

2i(fi)). (6)

Here Y1i and Y2i are defined based on (3), (·)∗ is the complex

conjugate operation and ang(·) is the operation that returns the

angle of a complex number. Since (3) is discrete in frequency,

ψ̂i can be estimated from the closest available frequency to

fi.
4) The Grid-Search Method: With the observed phase-

difference vector ψ̂, DOA estimation can be obtained using

a grid search method [38], [42]. This method starts with a

hypothesized value of the DOA, say θ = ω. For that value, we

calculate the corresponding wrapped phase-difference vector

ψ(ω) from (4) and (5) by setting θ = ω. By comparing ψ(ω)
with the observed phase-difference vector ψ̂ = [ψ̂1, ..., ψ̂F ]

T

obtained from (6), the mismatch between the observed DOA

and the hypothesized DOA can be conceived. The same

procedure is repeated for different choices of ω that cover

the entire field of view of the receiver array. A DOA estimate

can be obtained by picking ω with the lowest mismatch as.

i.e.,

θ̂ = argmin
ω

F
∑

i=1

|ψ̂i − ψi(ω)|. (7)
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B. The Wrapped Phase-Difference Pattern (WPDP)

The DOA estimation (7) suffers from two main drawbacks:

a) Searching the entire angle space can be time consuming;

and b) the accuracy is limited by the search resolution. Before

discussing the proposed PDP algorithm, which overcomes

these issues, we introduce the concept of wrapped phase-

difference pattern, a key concept to the development of the

proposed DOA estimation method.

To facilitate visualization, and without loss of generality,

we start with the case where F = 2, i.e., only two frequency

components are available. In the next section, we extend

the algorithm to any number of frequencies. Let us take an

example of a signal with acoustic frequencies f = [f1, f2]
T =

[20, 23]T kHz received from a certain direction angle by a pair

of receivers separated by a distance D. We assume a true DOA

θ ∈ [0o, 180o].
In the noise-free case, for a signal impinging from an

arbitrary direction ω, the elements of the phase-difference

vector φ(ω) = [φ1(ω), φ2(ω)]
T satisfy (4), while the cor-

responding wrapped phase-difference vector elements ψ(ω)
are given by (5). By using a combination of (4) and (5), we

can calculate the wrapped phased difference vector ψ(ω) for

any ω ∈ [0o, 180o]. By descretizing the interval [0o, 180o],
e.g., by considering ωk = 0o, 1o, ..., 180o, we can obtain the

corresponding sequence of vectors ψk = ψ(ωk). We refer to

the scatter plot of the sequence ψk as the wrapped phase-

difference pattern (WPDP). Examples of such display are

shown in Fig. 5 (a) and (b) for different cases.

For D ≤ min(λ1, λ2)/2 (e.g., D = 0.74 cm), phase-

wrapping does not occur for all DOA angles resulting in

ψ(ω) = φ(ω), ∀ω ∈ [0o, 180o]. A WPDP for such case is

shown in Fig. 4 and is represented by the blue dotted line

(WPD line). On this WPD line, a few points corresponding

to selected values of ω are highlighted with red circles. From

Fig. 4, we observe that phase-difference pairs form a straight

line that passes through the origin at ω = 90o, which conforms

with (5). The whole WPDP, in this case, is represented by this

single line. The boundaries of the display are set to be ±π, as

indicated by the green dashed box.

Now, let us consider the case where D > min(λ1, λ2)/2
(e.g., D = 2.5 cm). In this case, |φ(ω)| exceeds π and ψ(ω)
is wrapped into [−π, π) as per (5). This leads to breaking of

the straight line representing the WPDP at the edges of the

boundary box (±π), resulting in several WPD lines parallel to

the line that passes through the origin. The WPDP for D =
2.5 cm is shown in Fig. 5 (a).

C. The Proposed PDP DOA Estimation Algorithm

For a signal with F frequencies, the WPD lines share the

same unit direction vector f/||f ||, where || · || is the ℓ2 norm.

We can form a projection hyperplane (this will be a line for

F = 2 as shown in Fig. 5 (b)) crossing the origin point that

is perpendicular to all the WPD lines. It is easy to obtain the

expression of this hyperplane as

fTψ = ψ1f1 + ψ2f2 + ...+ ψF fF = 0. (8)

The unit vector f/||f || is normal to the projection

hyperplane. The distance between a point ψ(ω) =

-2 0 2
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Fig. 4. Illustration of the WPDP for D = 0.74 cm.
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Fig. 5. Illustration of the WPDP for D = 2.5 cm.

[ψ1(ω), ψ2(ω), ..., ψF (ω)]
T and the projection hyperplane can

be calculated as

dis[ψ(ω), fTψ = 0] =
fTψ(ω)

||f ||
. (9)

The projection point p(ω) of ψ(ω) on the projection hyper-

plane is given by

p(ω) = ψ(ω)−
fTψ(ω)

||f ||
·

f

||f ||
. (10)

In the noise free case, all ψ(ω), ∀ω ∈ [0o, 180o] project on

a limited number of points. As an example in Fig. 5 (b),

the projection points are marked using red squares. All the

wrapped phase-difference corresponding to values of ω from

111o to 153o are projected on p3 (compare Fig. 5 (b) to

Fig. 5 (a)). The total number of projection points pk (k
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= 1, 2, ...,K) is fixed for a certain system setup and DOA

estimation range. For simplicity, we assume that the DOA

range for the target of interest is restricted to the interval

[ωm, π−ωm]. In this case, the number of projection points is

given by

K = 2

N
∑

i=1

ceil

(

ψi(π − ωm)− π

2π

)

+ 1, (11)

where ceil(·) rounds the input to the nearest integer greater

than or equal to that input.

To perform phase-difference unwrapping, we notice that for

all points ψ(ωk) with the same projection point pk (i.e., points

on the same line), the following relationship holds:

φ(ωk)−ψ(ωk) = uk, (12)

where uk is the unwrapping vector for a projection point

pk, which is fixed for all points with the same projection

point. We can use this vector to compensate an observed

(wrapped) phase-difference ψ(ωk) to obtain the unwrapped

phase-difference φ(ωk), as can be seen from (12). In the

following discussion, we explain how the projection points pk

and the corresponding unwrapping vector uk are computed.

The idea of obtaining projection points pk and the cor-

responding unwrapping vector uk is to find the border of

different projection lines. Then the projection point and the

unwrapping vector can be obtained from these border points

using (10) and (12), respectively. The pseudocode for ini-

tializing u and p is shown in Algorithm 1. This algorithm

searches the border point ψb,k of the k-th PD line based

on the variable ind (except for b = 0 which is the origin).

By accumulating the change of the border transition and

calculating their projection points of ψb,k, uk and pk can be

obtained.

Algorithm 1 Initialize uk, pk

1: j ← 1
2: ψc,φc, change← zeros(1, N)
3: φmax ← 2πdf · sin(π − ωb)/v
4: while φc(i) < φmax(i) for all i = [1, 2, ..., N ] do

5: ψb,j ← ψc

6: uj ← change
7: j ← j + 1
8: ind← arg min

i
[(π −ψc(i))/fi]

9: ψc ← f · (π − ψv(ind))/fi +ψc

10: ψc(ind)← ψc(ind)− 2π
11: change(ind)← change(ind) + 2π
12: φc = ψc + change

13: pk ← project(ψb,k), k ∈ {1, 2, ..., j − 1}
14: pk ← −pk−j+1, k ∈ {j, j + 1, ..., 2j − 3}
15: uk ← −pk−j+1, k ∈ {j, j + 1, ..., 2j − 3}
16: return uk,pk

Consider the pattern in Fig. 5 (d) where K = 7, we have

u1 = [0, 0]T ,u2 = [0, 2π]T , u3 = [2π, 2π]T , u4 = [2π, 4π]T ,

u5 = [0,−2π]T , u6 = [−2π,−2π]T and u7 = [−2π,−4π]T .

In the noise-free case, for a given wrapped phase-difference

pair ψ = [ψ1, ψ2]
T , we can find its projected point pk

using (10) and then obtain the unwrapped phase-difference

vector φ as

φ = ψ + uk. (13)

For an observed noisy wrapped phase-difference vector ψ̂,

(10) returns only a perturbed projection point p̂. In this case,

we choose the nearest projection point pk to p̂ to compute

the unwrapped phase-difference vector φ̂ as

φ̂ = ψ̃ + uk = pk +
fT ψ̂

||f ||
·

f

||f ||
+ uk, (14)

where ψ̃ is the nearest point on the WPD line with the

projection point pk.

Take the WPDP in Fig. 5 (d) for example. Assume ψ̂e1(90)
is a noisy observed phase vector (the error is shown as red

dashed line) of a target at ω = 90o. Grid search method

estimates the DOA as 91o because of the minimum distance

(the length of the solid green lines from the candidate to the

noisy observation). The grid search method of equation (7)

is actually calculating the Manhattan distance between the

observed phase-difference vector with all the candidate PD

points. Instead, the proposed PDP algorithm will find the

nearest point ψ̃e1(90) on the blue (phase-difference) line and

estimate the DOA as 90.6◦. However, if the noisy observation

is ψ̂e2(90), both algorithm will fail and have an erroneous

estimation. We will use an indicator Lmin to evaluate the

performance of the system which will be explained in the next

section.

With estimated unwrapped phase difference φ̂, the DOA can

be estimated using any frequency component based on (4) as

θ̂ = cos−1

(

cφ̂i

2πDfi

)

. (15)

D. 2-D DOA Estimation

The PDP algorithm described in the previous subsection is

an effective way of estimating the 1-D DOA. However, this

algorithm can also be used for 2-D DOA estimation by using

at least three non-linearly placed sensors. In the following, we

show how to obtain the 2-D DOA estimation of α and β in

Fig. 2. To this end, consider a 3-D space with a 3× 1 target

direction unit vector t defined as

t = [cos (α), cos (β), cos (γ)]T , (16)

and a sensor vector matrix Q = [q1, ...,qR] describing all

sensor pair baseline directions in unit vectors. Here, R is the

number of pairwise combinations of all the sensors, and qi

is the 3 × 1 unit direction vector of the i-th sensor pair. The

relationship between t and qi can be stated as

cos (θi) =
qT
i t

|qi| · |t|
= qT

i t, i = 1, ..., R, (17)

where θi is the angle between the target direction vector t and

the i-th baseline vector qi obtained using the PDP algorithm.

For a set of 1-D DOA estimation θ = [θ1, ..., θM ]T , we have

cos (θ) = QT t = QT [cos (α), cos (β), cos (γ)]T , (18)
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For a receiver array normal to the xy plane, the third

component in qi will be zero. In order to have a unique

solution for the unit vector t, at least two pairs of sensors

that are not collinear (at least three sensors) are required. By

taking the first two rows of Q and forming Q̃, the first two

elements of the unit direction vector t of the target can be

obtained simply using least square as

[cos (α) cos (β)]T = (Q̃Q̃T )−1Q̃ cos(θ), (19)

and the third element of t can be obtained as

cos (γ) =
√

1− cos2 (α)− cos2 (β). (20)

E. Summary of the Proposed DOA Estimation Algorithm

The proposed DOA estimation algorithm can be performed

through the following steps:

1) Calculate the K projection points p1, ...,pK and the

corresponding unwrapping vectors u1, ...,uK using Al-

gorithm 1;

2) Calculate the observed phase-difference ψ̂ using (6);

3) Calculate the projection point p̂ for the observed

(wrapped) phase difference ψ̂ using (10);

4) Find the closest projection point pk to p̂;

5) Calculate the unwrapped phase vector φ̂ using (14);

6) Calculate the DOA θ̂i using (15) for each sensor pair.

7) Calculate 2-D DOA α̂ and β̂ using (19)

IV. MOTION ESTIMATION AND FEATURE EXTRACTION

In this section, we introduce two motion data processing

procedures, namely, location transformation and normaliza-

tion. In addition, orientation feature extraction from the trans-

lated motion data will also be described. The location vectors

and corresponding orientation feature vector can be obtained

from these pre-processing procedures. These vectors will be

used for text classifications.

A. Location Transformation

The location of the transmitter is given by rt = [a, b, z]
where t = [cosα, cosβ, cos γ] is the direction vector defined

in (16) and r is the range (distance) between the transmitter

and the receiver array. To obtain the values of the DOA

parameters r and t, three non-collinearly placed sensors are

sufficient to accomplish this task.

However, estimating the range r needs synchronization

between the transmitting and receiving systems to measure the

time of flight of the signal. Our proposed system circumvents

the need for range estimation, and the associated hassle of

synchronization. Specifically, we assume1 that the user stands

at a fixed location zp, which we set to 1 m. We can then write
{

a = r cos(α) = zp
cos(α)
cos(γ)

b = r cos(β) = zp
cos(β)
cos(γ) .

(21)

1Our experiments show that even when this assumption is violated to some
degree, the system is able to recognize the letters successfully. This is because
the transformed 2D location from DOA estimation α and β is sufficient to
represent the target movement for further classification.

Since γ is related to α and β through (20), a and b can

be completely determined from α and β. We collect all the

transformed locations in two vectors a = [a1, a2, ..., aL] and

b = [b1, b2, ..., bL], where L is the length of samples for the

written letter.

B. Location Normalization

For different letters, the center position and writing duration

may vary from one user to another. In order to make the

collected information consistent, normalization is a neces-

sary procedure. The location vectors a and b with length

L (which might vary from one user to another) is linearly

interpolated into two vectors of fixed length N . This step is

necessary for the classifiers using location information so that

the dimensionality of the data is cconsistent. Following this

step, the DC component of each vector needs to be removed

to make sure that all the vectors are centered around zero

so that
∑

a =
∑

b = 0. After location transformation

and normalization, we use the processed location vectors

a = [a1, a2, ..., aN ]T and b = [b1, b2, ..., bN ]T to make

inferences about the collected data and to identify the writing

pattern present therein. These two vectors are then used to

extract motion orientation feature and to recognize letters as

we describe next.

C. Orientation Feature Extraction

In our proposed method, the normalized location vectors

a and b are not enough for text recognition. The motion

orientation change is also of great utility. Specifically, we

segment the process of writing a letter into several transitions

and use the orientation feature of each transition to aid

in classification. We define the orientation h between two

locations (ai, bi) and (aj , bj) as

hk = atan2(bj − bi, aj − ai), (22)

where atan2(·) is the four-quadrant inverse tangent function

which returns the orientation in (−π, π]. Note that orientation

h will only be registered if the distance between (ai, bi) and

(aj , bj) is greater than a threshold Tdis. Thus, to calculate

h1, we first set i = 1, j = 2 and check if the distance

between (ai, bi) and (aj , bj) is greater than Tdis. If not, then

j is incremented until this condition is satisfied. When the

condition is satisfied, h1 is calculated using (22) and i, j
are updated to calculate the value of h2. The procedure is

continued until j = N . This procedure, whose pseudo-code is

shown in Algorithm 2, produces the vector h which presents

the orientation feature of the written letter.

V. TEXT RECOGNITION

From previous sections, the estimated 2-D DOA data will

be transformed into location data vectors a, b and a feature

vector h. In this section, we first introduce the letter template.

Then, the proposed ORM classifier will be detailed.
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Algorithm 2 Orientation Feature Extraction

1: i, k ← 1
2: for j = 2 to N do

3: dist←
√

(bj − bi)2 + (aj − ai)2

4: if dist > Tdis then

5: hk ← atan2(bj − bi, aj − ai)
6: i← j
7: k ← k + 1

8: return h

A. Letter Templates

In this paper, we consider only (M = 26) English uppercase

letters. Example templates of the letters are shown in Fig. 6,

where each letter is written with one stroke starting at the blue

circle and ending at the red triangle. The figure shows exam-

ples of letter writing templates and the temporal progression

of the writing, which is indicated by the gradual color change

(from blue to red).

Fig. 6. Some letter templates. The writing starts with a circle and ends with
a triangle.

By knowing this general temporal structure of each letter,

one can produce the corresponding location vectors ām, b̄m

and the feature vector h̄m for the m-th letter template, m =
1, 2, ...,M . Note that ām and b̄m have the same length N for

different letter templates (due to the normalization procedure

described above), but the length of h̄m may vary for different

values of m. Fig. 7 shows examples of the motion patterns and

orientation features of letters ‘D’ and ‘W’. These templates

serve two purposes: they unify the writing styles for users and

provide a reference for training-free classifiers.

B. The Order-Restricted Matching Classifier

In this subsection, we propose a light, accurate and flexible

classifier that allows the users to add customized letters with-

out training the classifier again. The classifier is called order-

restricted matching (ORM) classifier inspired by the finite state

machine (FSM) method, which defines a set of states and a set

of transitions for the patterns [52]. Here, instead of defining
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Fig. 7. Examples of the motion pattern for the letters ‘D’ and ‘W’. Note that
the length of ām and b̄m is fixed (N = 200) but the length of h̄m is varied.

fixed states, we use letter-specific states which are defined by

the orientation features.

The general idea of this classifier is to compare the observed

sequence vector h with all the template feature sequences

h̄m (m = 1, ...,M ) in an order-restricted way. The sequence

with the minimum accumulated distance measurement Dis
is chosen as the classification result. Part of the difficulty in

comparing h with the templates h̄m is that these vectors might

not have the same length due to different writing speeds or

styles. Our proposed ORM algorithm is able to solve this issue.

To describe the algorithm, let L be the length of h and Lm

be the length of h̄m. As mentioned above, in general L 6= Lm.

The distance between the observed orientation feature hi and

the template orientation feature h̄m,j is calculated as

dist(hi, h̄m,j) = |wrap(hi − h̄m,j)|. (23)

where wrap(·) is defined in (5) and it is used because the

elements of h and h̄m are in radians (or degrees). Now, two

features hi and h̄m,j are matched if the distance between the

two features is smaller than a threshold Tang .

We define the comparison status as Start, Ongoing and

Stop. The status of each comparison is initialized as Start,
and it turns to Ongoing if the first template feature h̄m,1 is
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matched. The status will be set as Stop when the last template

feature h̄m,Lm
is matched.

To obtain the accumulated distance measurement Dis with

a given template feature vector h̄m, we set i, j = 1 and

Dis = 0. The index of the observed sequence vector i
increases from 1 to L to compare with the template feature

h̄m,j . For each comparison between the two features hi and

h̄m,j , Dis changes depending on current status:

1) Start: If features hi and h̄m,j are matched in Start
status, then current status moves to Ongoing and j is in-

cremented. Otherwise, we remain at Start status and Dis is

incremented by 1.

2) Ongoing: If hi and h̄m,j are matched in Ongoing
status, j is incremented unless it equals to Lm (if j reaches

Lm, the status is then changed to Stop). If on the other hand

hi does not match both h̄m,j and h̄m,j−1, Dis is incremented

by 1.

3) Stop: In Stop status, Dis is only incremented if hi
and h̄m,Lm

are not matched. We keep incrementing i and

comparing with h̄m,Lm
until i reaches its maximum value L.

The pseudo-code of the ORM distance measurement is

given in Algorithm 3. The ORM classifier calculates the

distances between the observed sequence and all M templates.

Among the candidates with Stop status, the one with the

smallest distance will be the classification result.

Algorithm 3 ORM Distance Measurement

1: j ← 1
2: Dis← 0
3: status← start
4: for i = 1 to L do

5: matched← dist(hi, h̄m,j) < Tang
6: if status = Start then

7: if matched then

8: status← Ongoing
9: j ← j + 1

10: else

11: Dis← Dis+ 1

12: else if status = Ongoing then

13: if matched then

14: if j = Lm then

15: status← Stop
16: else

17: j ← j + 1

18: else if dist(hi, h̄m,j−1) > Tang then

19: Dis← Dis+ 1

20: else if matched = false then

21: Dis← Dis+ 1

22: return Dis

An example of ORM distance measurement with a threshold

Tang = 45o is shown in Fig. 8 (the orientation feature is

represented in degree for simplicity). In this figure, the dashed

red arrow indicates failed attempts matching the template

sequence, while the solid green arrow means a successful

matching. The status is first set as Start. The first feature of

the observed sequence is a ‘Start error’ because 120◦ does not

match current template feature 10◦ (j = 1). The orientation

feature −70◦ is an ‘Ongoing error’ because it does not match

current template feature 120◦ (j = 4) and the previous feature

90◦. The feature 30◦ is a ‘Stop error’ because the status is

marked as Stop and it does not match the last template feature

120◦. The detailed information of all the comparisons is shown

in Table I. This algorithm provides a training-free classification

solution with high accuracy and low computational time.

120 -10 25 70 80 -70 110 30 110

10 90 90 120
Template

Sequence

Observed

Sequence

Start StopOngoing

Start Error
Ongoing 

Error Stop Error

1 3 8    7      10  
2     4 5         6 9                11

Fig. 8. An illustration of the ORM algorithm.

TABLE I
DETAILS OF THE ORM ALGORITHM EXAMPLE IN FIG. 8

Comparison i j matched status Dis

1 1 1 False Start 1

2 2 1 True Ongoing 1

3 3 2 False Ongoing 1

4 3 1 True Ongoing 1

5 4 2 True Ongoing 1

6 5 3 True Ongoing 1

7 6 4 False Ongoing 1

8 6 3 False Ongoing 2

9 7 4 True Stop 2

10 8 4 False Stop 3

11 9 4 True Stop 3

VI. SIMULATION AND EXPERIMENTAL RESULTS

In this section, we start by evaluating the performance of

the proposed PDP algorithm for DOA estimation. Following

that, we will present our results for the proposed air-writing

system that uses the PDP algorithm for localization.

A. Benchmark Algorithms

1) Benchmark DOA Algorithms: The PDP algorithm is

compared with four benchmark algorithms, namely, Dual

Freq [38], MUSIC [31], PSO [33] and Grid Search [42]. Both

MUSIC and Grid Search use a searching resolution of 0.5◦.

The swarm size of the PSO algorithm is chosen as 50.

2) Benchmark Classifiers: The proposed ORM algorithm is

compared with four training-free methods, namely, redundant

dictionary (RD) [42], dynamic time warping (DTW) [43],

[44] and thier modified version, redundant dictionary with

a decision tree (RD-DT), and direction-based dynamic time

warping (D-DTW). Two other learning-based classification

methods, namely, ANN [53] and HMM [54], are also used as

benchmarks. The implementation of these methods is detailed

in the Appendix.
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B. DOA Estimation Results

1) DOA Estimation Simulation Results: In simulation, the

sampling frequency is chosen as Fs = 96 kHz. The signal pa-

rameters are chosen as, signal frequency vector f = [20, 23]T

kHz, signal hop duration Th = 1 ms, silent duration Tp = 8
ms. The inter-sensor distances are chosen as D = 2.5 cm.

The simulation is repeated 1000 times for each DOA. The

root mean square error (RMSE) of different DOAs at different

SNRs is shown in Fig. 9. The average processing time for

different algorithms (processed in Matlab R2017b running on

a DELL T7500 workstation) is shown in Table II.
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Fig. 9. RMSE for different DOA algorithms at different SNRs.

TABLE II
AVERAGE PROCESSING TIME OF DIFFERENT ALGORITHMS

Algorithm Dual Freq MUSIC PSO Grid Search PDP

Time [ms] 0.02 12.21 48.96 1.04 0.06

Based on the simulation results, MUSIC and PSO do not

work well for solving the 1-D DOA problem using a pair

of sensors. The Dual Freq method requires the minimum

processing time, but its performance is not as good as that

of PDP. The PDP algorithm, offers a good trade-off between

processing time and performance. In the next section, we will

apply PDP to estimate the 2-D DOA of a moving target in an

experimental setup.

2) Moving Target DOA Estimation Experimental Results:

Experiments with a moving target were carried out in an

office room with a temperature of around 24◦C. We use

PioneerTS − T110 tweeter [55] as the transmitter and

SPH0611LR5H microphones [56] as the receivers. A re-

ceiver array of two orthogonal pairs of sensors was used

and the signal parameters are the same as those used in the

simulations.

The DOA estimation accuracy of the system is evaluated

by tracking the motion of the handheld transmitter using

both ultrasound and an ART -TRACK5 camera tracking

system [57]. The camera tracking system estimates the ground

truth locations of the tracking markers attached to the trans-

mitter with a resolution of 0.1 mm. 50-thousand points were

collected while the user was standing in front of the receiver

array and moving the transmitter within a square writing area.

The setup is shown in Fig. 10.
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Fig. 10. Infrared camera-based system for ground truth measurement.

In this test, each sample was recorded with ground truth, in-

cluding DOA and speed information. Part of the results (2000

estimations) is shown in Fig. 11. We can see from the figure

that the estimations fit the ground truth well. There exist some

obvious outliers which could be removed by using simple

thresholding. The overall RMSE of the horizontal DOAs and

vertical DOAs estimations are 2.75◦ and 3.85◦, respectively.

Several reasons may affect performance: calibration of the

tracking markers, time synchronization between the camera

and the ultrasonic estimation, multipath, and Doppler effect.

In the following subsection, we show that the achieved level

of localization accuracy is sufficient to complete the letter

recognition task with high success rate, which confirms the

effectiveness of the proposed system.
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Fig. 11. DOA Estimation RMSE for Different Target DOAs.

C. Letter Recognition Results

Volunteers were recruited and familiarized with the letter

writing templates presented in Fig. 6. They were first-time

users of the system with no previous experience or training

on a similar system. The volunteers were asked to follow the

templates to complete the tests. Each letter was repeated 10

times, and 3120 letter data was collected from 12 different

users.



11

The average writing time for each letter is shown in Fig. 12.

We can see that for each letter, the number of stable features

and its average writing time is positively correlated. Consider-

ing that all the volunteers were first-time users of the system,

the average writing time is reasonable for interactive input.
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Fig. 12. Average writing time for different letters.

All the collected data was used to evaluate the performance

of the training-free classifiers RD, DTW, and ORM. For ANN

and HMM, performance was evaluated using k-fold cross-

validation with 10 subsets. For the ORM algorithm, Tdis is

chosen as 0.008 for the feature extraction of the observed

sequences, and 0.032 for the template sequence. Adopting a

larger Tdis for the template sequences helps to obtain stable

features which improves classification performance. Tang is

chosen as 45◦ in this case.

The classification results and the processing time for the

six classifiers are shown in Table III. From this table, it

can be seen that D-DTW has the best classification accuracy

of 97.12%. However, RD-DT, ANN, HMM, and ORM have

reasonable accuracy (96.31%) and much reduced recognition

time Tavg . Considering the fact that the design of a decision

tree and the training of the machine learning classifiers make

the system non-extendable, ORM is more practical for real-

time applications.

TABLE III
CLASSIFIER EVALUATION

Method Data Type Trained Tavg (ms) Accuracy (%)

ORM h No 1.8 96.31

RD a,b No 0.1 90.83

RD-DT a,b Yes 1.2 95.83

HMM h Yes 6.9 97.05

ANN a,b Yes 15.4 96.12

D-DTW h No 81.5 97.12

DTW a,b No 154.3 94.42

The letters with the lowest classification accuracy and their

most likely confused targets using the ORM classifier are

shown in Table IV. The letter ‘Y’ has the lowerest classifica-

tion accuracy of 75.83%, and it is most likely to be detected

as the letter ‘X’.

D. Utility Test

The utility test is conducted to verify the practicability of

the DOA estimation algorithm and the ORM classifier. A real-

time air-writing system is realized by using an ultrasound

TABLE IV
CLASSIFICATION CONFUSING CASES

Letter Accuracy(%) Confused Targets (%)

Y 75.83 X (21.67)

K 81.67 F (18.33)

C 90.00 L ( 5.83)

J 90.00 I ( 5.83)

F 95.00 K ( 3.33)

O 95.00 X ( 5.00)

G 95.83 O ( 4.17)

X 96.67 Y ( 2.50)

transducer driven by an LM386 audio amplifier controlled by

an ESP32-WROOM micro-controller, as shown in Fig. 13. The

processing task is completed on a computer using a python

code. This air-writing system is capable of completing mouse

and keyboard tasks such as moving cursor, clicking, dragging,

typing, and air-writing. The demonstration video can be found

on YouTube [48].

(a) Ultrasound transmitter (b) Video screenshot

Fig. 13. Air-writing prototype and video screenshot.

VII. CONCLUSION

This work proposed an ultrasonic air-writing system based

on acoustic source motion tracking. Motion information is

extracted from multi-frequency ultrasonic signals using a

proposed phase-difference projection (PDP) based DOA es-

timation algorithm. A training-free order-restricted matching

(ORM) classifier, intended to meet the requirement of low

processing time and high accuracy, achieves a 96.31% letter

recognition accuracy and a 1.8 ms average processing time.

Several aspects of the proposed system can be improved as

part of future extensions. To this end, extending the proposed

DOA estimation algorithm to the multi-source case will be

considered to enable multi-user tracking. On the other hand,

improving text recognition represents another possible futur-

istic improvement. In this regard, integrating natural language

processing (NLP) tools is a promising direction.

APPENDIX

IMPLEMENTATION OF BENCHMARK CLASSIFIERS

A. Redundant Dictionary (RD)

The variability of writing dictates that there are many

candidate vectors a and b that represent a certain letter,

even when the user writes following the same writing ap-

proach. A redundant dictionary extends the template matrices

Ā = [a1, ...,aM ], B̄ = [b1, ...,bM ] to ĀR, B̄R using

several transform methods [42]. In this way, letters with

different writing styles and writing speed can be recognized.
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Classification can be done by a simple matrix multiplication

as

v = ĀT
Ra+ B̄T

Rb. (24)

The maximum value in the vector v indicates the RD column

with the highest similarity to the observed angle vector. In the

experiments, the size of matrices ĀR and B̄R was 546× 200
(546 redundant templates with a length of 200 for horizontal

and vertical locations).

B. Redundant Dictionary with Decision Tree (RD-DT)

The RD provides a simple way of performing training-

free classification. However, the performance of this method

may suffer in some cases. For example, if the user does not

emphasize the last orientation (going down) in the letters ‘M’,

this letter might be confused with the letter ‘N’. This issue

can be solved by utilizing the orientation sequence from (22).

If the detected letter is ‘M’ or ‘N’, ‘M’ will be chosen if

the last element of the direction vector is pointing down

and vise versa. Seven similarity branches (B,F,K), (I, J, T ),
(V,W,U), (H,B), (M,N), (P,R), and (T, Y ) are included

to form a decision tree after acquiring the classification results

from the RD.

C. Dynamic Time Warping (DTW)

DTW is an algorithm designed to measure the similarity

between two sequences [43], [44]. This algorithm works well

for sequences with variable lengths. The observed location

sequence is compared with the 26 letter templates in Ā.

The distance between the observed sequence and the template

sequence is calculated, and the letter with the minimum DTW

distance is chosen. The element distance s and cost matrix

Cm are defined as

smi,j =
√

(ai − ām,j)2 + (bi − b̄m,j)2, (25)

cmi,j =











∑j
w=1 s

m
i,w i = 1,

∑i
w=1 s

m
w,j j = 1,

umi,j + smi,j otherwise.

(26)

Here, smi,j is the distance between the i-th sample of the

observed sequence and the j-th sample of the m-th template

sequence, umi,j = min{cmi−1,j−1, c
m
i−1,j , c

m
i,j−1}. The value of

cmN,N is the distance between the observed data and the m-th

letter template and the letter with minimum distance is chosen

as the classified result.

D. Direction-based Dynamic Time Warping (D-DTW)

In real applications, there is a variety of writing styles, and

thus, the angle data may not match well. Also, a large number

of locations affect the processing time. In this case, orientation

features are used to measure the distance between the observed

vector and the template vectors. As a consequence, elements

in the distance matrix Sm from (25) can be calculated as

smi,j = |wrap(hi − h̄m,j)|, which is the angle distance as (23).

This method provides a more robust way of classification

and dramatically reduces the computational complexity for

calculating the cost matrix Cm.

E. Artificial Neural Network (ANN)

In our ANN model, the raw angle data is directly

used to train the neural network model. We have built a

network with two autoencoders connected with a softmax

layer. The parameters for the two autoencoders are chosen

as ‘Hidden Size’=(100, 50), ‘Max Epochs’=(400, 100),
‘L2 Weight Regularization’=(0.004, 0.002), ‘Sparsity

Regularization’=(4, 4) and ‘Sparsity Proportion’=(0.15, 0.1).
The input of the model is the concatenation of the normalized

target horizontal and vertical locations of size 400 × 1, and

the output are the probabilities of all the M = 26 classes.

This model is trained with collected transformed location

vectors and realized in MATLAB 2017b using Matlab Neural

Network Toolbox [53].

F. Hidden Markov Model (HMM)

As opposed to the previously discussed classifiers, an HMM

models the writing process as a sequence of interconnected

states. We partition the angular space of the extracted features

into eight sections, each section represents one state, for

example, the angle interval (−π, 3π/4] represents state 1,

(−3π/4,−π/2] represents state 2, and continue till state 8,

(3π/4, π]. One example of the state feature extraction proce-

dure is shown in Fig. 14, where the letter ‘G’ is discretized

as a sequence [7, 8, 8, 1, 2, 3, 3, 4, 5, 5, 7, 5, 3, 2, 3]T .

A left-right model [54] with a max jump step equal to 2 is

used in this work to form an HMM classifier. The initial guess

of the model states is based on the complexity of each letter.

We use the following initialization for different letters: ‘A-G’

(8 9 4 6 7 7 8), ‘H-N’ (7 6 5 7 3 7 6), ‘O-T’ (7 7 9 8 7 4),

and ‘U-Z’ (5 4 7 4 6 4). The classifier initializes the transition

probability distribution and the observed symbol probability

distribution randomly. Then the training data of each letter is

used to train the corresponding HMM model. In total,M = 26
models are trained for all the letters. To recognize an observed

sequence, we pass it to each of the M trained models. Each

model produces a probability indicating the level of fitness,

and the observed sequence is assigned to the model that gives

the maximum probability.

(a) Original letter ‘G’

7

8
8

1

2

3

3

4

5

7

5

5

 3

 2 

3

(b) States of letter ‘G’

Fig. 14. State representation of the letter ‘G’.
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