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Abstract

This paper proposes an airborne behaviour monitoring methodology of ground vehicles based on a

statistical learning approach with domain knowledge given by road map information. To monitor and

track the moving ground target using UAVs aboard a moving target indicator, an interactive multiple

model (IMM) filter is firstly applied. The IMM filter consists of an on-road moving mode using a road-

constrained filter and an off-road moving mode using a conventional filter. Mode probability is also

calculated from the IMM filter, and it provides deviation of the vehicle from the road. Then, a novel

hybrid algorithm for anomalous behaviour recognition is developed using a Gaussian process regression

on velocity profile along the one-dimensionalised position of the vehicle, as well as the deviation of

the vehicle. To verify the feasibility and benefits of the proposed approach, a numerical simulation is

performed using realistic car trajectory data in a city traffic.

Index Terms

Behaviour Monitoring, Gaussian processes, interactive multiple model filter, map information, target

tracking, unmanned aerial vehicles.

I. INTRODUCTION

Since airborne monitoring using UAVs (unmanned aerial vehicles) can improve situational

awareness and help human operators to lead appropriate decision making, it will enable many new
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and innovative UAV applications. Specific applications under consideration include, but are not

limited: border patrol, search and rescue, surveillance, and law enforcement. In particular, UAV

surveillance with an onboard GMTI (ground moving target indicator) radar or SAR (synthetic

aperture radar) can provide a certain level of accurate estimation of massive sets of targets and

consequently allow detection of possible threats [1], [2], [3]. However, the operators still need to

analyse the gathered data and construct a picture of events to detect suspicious behaviours. This

requires several highly-skilled human operators which is expensive and unsustainable under

deluge of data and information. Hence, there is a strong need to develop high-level analysis

algorithms to process target information and detect anomalous behaviours so that some of the

human operator’s workload resides with the vehicle.

Activity modelling and automatic anomaly detection tasks are non-trivial since complex activ-

ity patterns in a dynamic environment involve multiple objects interacting with each other over

space and time, whilst anomalies are often rare, ambiguous and can be easily confused with

sensor noise. In particular, anomalous behaviours of a ground vehicle are closely related to driving

behaviours such as aggressive, drowsy, or intoxicated lane crossing manoeuvres [4], [5]. Also,

location where a vehicle is moving, speed, and regional activity patterns (whose characteristics

are often defined by the combination of location and speed) [6] are other important aspects to

identify anomalous behaviours.

Detecting anomalous behaviours can be classified into two routes: First approach codifies the

behaviours using experience and domain knowledge of experts and the behaviours are learned

from data in second approach [7]. Roy [8] proposed a rule-based expert system implementing

automated rule-based reasoning in support of maritime anomaly detection. Jasinevicius and

Petrauskas [9] also used a rule-based expert map but combining with fuzzy logic for a port

security system. Kim et al. [10] proposed the use of the trajectory classification codified with the

string of numbers and string matching to suspicious behaviour references pre-defined from expert

knowledge. For learning approach for anomaly detection, many works have been performed using

parametric models such as Bayesian network [11], [12] and hidden Markov models [13]. In order

to alleviate the complexity of the problem, Gaussian process (GP) models are also applied. The

GPs can be considered as a Gaussian distribution over functions specified by its mean and

covariance function. Predictive distributions are inferred from the regression models to compare

with the actual observations providing anomaly measure. Will et al. [7] used the Kd-tree GPs to
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model shipping behaviour and maritime anomaly detection. Loy et al. [6] also applied the GPs

for activity modelling and real-time anomaly detection of a ground traffic flow using surveillance

video footage.

This study proposes an airborne behaviour monitoring methodology of ground vehicles using

both of a learning approach based on GPs and domain knowledge provided from road map

information. Compared to commonly used parametric models such as hidden Markov models,

since GPs are not a parametric model, users do not need to be concerned about if it is possible for

the model to fit the data [6]. The use of a flexible, non-parametric model alleviates the difficulty

of selecting appropriate model complexity encountered in parametric models. GP models need

fewer parameters; they are thus less likely to overfit given sparse data of moving vehicles. The

velocity profile of the vehicle with respect to its position is one of principal factors which provide

measures of the suspicious and abnormal behaviours. Therefore, the proposed Gaussian process

regression is implemented on the velocity profile along the one-dimensional representation of the

vehicle position. Since some vehicles could move on off-road terrain to avoid a police checkpoint

or to closely monitor a particular place, temporal probability of on/off-road modes is another

important source for abnormal behaviours detection. In order to obtain this mode probability

whilst enabling monitoring of the moving ground target, an interactive multiple model (IMM)

filter [14] is applied. The proposed IMM filter comprises an on-road moving mode using a road-

constrained filter and an off-road moving mode using a conventional filter so that both on and

off mode probabilities (which are complementary to each other) can be obtained. In this study,

in order to combine these two approaches, a novel hybrid algorithm is also developed based on

the joint probability theory.

The key innovation of the proposed approach lies in the hybrid algorithm which integrates

the two different philosophies and inherently brings several advantages. The proposed algorithm

does not require to define a specific behaviour for suspicious behaviour recognition. Exploiting

the velocity profile on a specific road from statistical traffic data allows consideration of the

road conditions such as slope, roughness or curve. Moreover, anomaly measure on the vehicle

behaviours can be obtained by evaluating the quality of predictions from the deviation of the

actual target data from the predictive distribution. Since these anomaly scores are augmented

with the on/off-road mode probability, the proposed algorithm can also complement the weakness

of relying on the learning data which is difficult to incorporate a certain anomalous behaviour
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aspect.

The overall structure of this paper is given as: Section II explains a road-constrained IMM

filter design including the definition of ground target and sensor model considered in this study.

Section III introduces the 1-D representation of the position on the road of interest, and proposes a

novel anomalous behaviour detection scheme combining predictive log-likelihood from Gaussian

process regression and the off-road mode probability. Section IV presents numerical simulation

results of behaviour monitoring scenario using realistic ground vehicle trajectory data. Lastly,

conclusions and future works are given in Section V. The overall procedure of the behaviour

monitoring of ground vehicles using UAVs is shown in Fig. 1.

Fig. 1. Overall flow chart of behaviour monitoring

II. ROAD-CONSTRAINED IMM FILTER

This section presents models of the sensor and the ground target required for the target tracking.

In addition, the road-constrained filter design is introduced using a road approximation technique

and the IMM filter.

February 25, 2013 DRAFT



5

A. Ground target and sensor model

This study considers acceleration dynamics to apply it to tracking of the moving ground

vehicle. The model regards the target acceleration as a process correlated and exponentially

decreasing in time, which means if there is a certain acceleration rate at a time t, then it is likely

to be the same jerk also at a time instant t+ τ as [15], [16]:

xt
k = Fkx

t
k−1 + ηk (1)

where xt
k = (xt

k, ẋ
t
k, ẍ

t
k, y

t
k, ẏ

t
k, ÿ

t
k)

T , ηk is a process noise which represents the acceleration

characteristics of the target, and the state transition matrix Fk can be represented as:

Fk =



























1 Ts Φ 0 0 0

0 1 (1−e−αTs )
α

0 0 0

0 0 e−αTs 0 0 0

0 0 0 1 Ts Φ

0 0 0 0 1 (1−e−αTs )
α

0 0 0 0 0 e−αTs



























(2)

where Φ = (e−αTs+αTs−1)/α2, and α is a correlation parameter which allows for the modelling

of the different classes of targets: small α for targets with relatively slow manoeuvres and high

α for targets with fast and evasive ones. The details of the covariance matrix Qk of the process

noise ηk can be found in [15].

It is assumed that the UAV is equipped with a GMTI radar to localise the position of target.

Since the measurement of GMTI sensor is composed of range and azimuth of the target with

respect to the radar location, the actual measurements are the relative range, r, and azimuth, φ,

with respect to the position of the UAV airborne. The radar measurement (r, φ)T can be defined

as the following nonlinear relation using the target position (xt
k, y

t
k)

T and the UAV position

(xk, yk)
T as:

zk =





rk

φk



 = h(xt
k) + νk =





√

(xt
k − xk)2 + (ytk − yk)2

tan−1 yt
k
−yk

xt

k
−xk



+ νk (3)

where νk is a measurement noise vector, and its noise covariance matrix is defined as:

V [νk] = Rk =





σ2
r 0

0 σ2
φ



 . (4)
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B. Road-constrained estimation

To make use of road-map information for the estimation of a target travelling on a road, it

is required to express the road-map as a certain type of mathematical equations approximating

the real road from a given geographical database. To do so, this study uses constant curvature

segments. In this approach, assuming that some of vertices on the road can be obtained, those

vertices are connected by line segments of constant curvature with C2 contact at the vertices. The

curved line between the vertices is to represent the curved nature of the real road. To ensure the

C2 constraints at both positions, an intermediate vertex is introduced such that the line segment is

replaced by two arc segments of different curvature. The mathematical details of the construction

of the line curvature between vertices are described in [17]. The entire road-map can then be

modelled by a set of road segments ri, i ∈ {1, . . . , nr}, and for each road segment, the centre

position of the road curve and its curvature are given by the approximation algorithm.

Figure 2 shows sample road-network of Devizes, Wiltshire, United Kingdom with GIS satellite

data. Given information for road of interest as blue line in this case, Fig. 3 shows the approxi-

mated road segments. As shown in Fig. 3(b), the more vertices are used, the better approximated

road is obtained. However, since too many road segments might cause performance degradation in

the constrained estimation, the appropriate number of vertices on the road needs to be determined

considering the road-network structure.

Fig. 2. Sample road network with GIS satellite data overlaid (Google Map)

Now, assuming that the ground vehicle moves along given road-map consisting of n road

segments, the 2-D position of the vehicle should lie on the one of roads. This can be expressed
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(a) Loosely represented roads (b) Densely represented roads

Fig. 3. Road approximation using constant curvature segments

as the following constraint:

ri(x
t
k, y

t
k) = 0 (5)

where ri(·) denotes the i-th road segment which can be modeled as straight line, arc, or

polynomials. In this study since the road is approximated using constant curvature segments

as explained earlier, the road constraint can be obtained as:

ri(x
t
k, y

t
k) = (xt

k − xi,ct)
2 + (ytk − yi,ct)

2 −

(

1

κi

)2

= 0 (6)

where (xi,ct, yi,ct) and κi are the centre position and the curvature of the ith road segment,

respectively. Typically, there are two ways to deal with the road constraint in Kalman filtering

framework. One is to use the road as equality constraints [18], and the other is to use the

concept of directional process noise [19], which represents uncertainty components along and

orthogonal to the road. This study uses a pseudo-measurement method, one of the constrained

Kalman filtering algorithms, which treats the equality constraints as additional fictitious or

pseudo-measurement [20]. Unlike the other approaches such as maximum probability method

and projection method [21], this has the advantage which allows us to consider the degree of

constraint adherence by the magnitude of the additional pseudo-measurement noise variance.

Pseudo-measurement model using road constraints can be written as:

zrik = hri(x
t
k) + νri

k (7)

February 25, 2013 DRAFT



8

where zrik = 0, hri(x
t
k) = ri(x

t
k), and νri

k is assumed to be zero mean white Gaussian noise with

its covariance Rri
k = (σroad

r )2 which accounts for the uncertainty of road constraints. Then, the

previous real measurement model Eq. (3) is augmented by adding the pseudo-measurement as:

zak = ha(x
t
k) + νa

k (8)

where zak = [zk zrik ]
T , ha(x

t
k) = [h(xt

k) hri(x
t
k)]

T , and νa
k = [νk νri

k ]
T . The measurement noise

covariance is also augmented as Ra
k = diag(Rk, R

ri
k ). Considering ha(x

t
k) in the measurement

equation is nonlinear, the localisation of a target can be designed by using the extended Kalman

filter (EKF) [22] as:

Time update

xt
k|k−1 = Fkx

t
k−1|k−1 (9)

Pk|k−1 = FkPk−1|k−1F
T
k +Qk (10)

Measurement update

υk = zak − ha(x
t
k|k−1) (11)

Sk = HkPk|k−1H
T
k +Ra

k (12)

xt
k|k = xt

k|k−1 + Pk|k−1H
T
k S

−1
k υk (13)

Pk|k = (I − Pk|k−1H
T
k S

−1
k Hk)Pk|k−1. (14)

The output matrix Hk is a Jacobian of ha with respect to the time-update state xt
k|k−1. As a

target is moving from one road segment to the other, an appropriate road on which the target is

travelling is selected based on estimated or a priori target position, its error covariance and the

road network information as:




xri
e − xt

k|k−1

yrie − ytk|k−1





T
[

P pos

k|k−1

]−1





xri
e − xt

k|k−1

yrie − ytk|k−1



 < ε (15)

where (xri
e , y

ri
e ) is the end position of i-th road segment, ε is the gate threshold parameter, and

P pos

k|k−1 is the position submatrix of the prediction covariance Pk|k−1. In this study, a current road

segment is changed to the next one once above condition is satisfied for the simplicity.
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C. IMM filter

Although a normal vehicle tends to move along the road only, some of vehicles could move

on off-road terrain for some reasons, e.g. to avoid a police checkpoint or to closely monitor a

particular place. Therefore, an estimation algorithm should be able to recognise both off-road

and on-road movement depending on the situation, rather than constraining the estimates onto

the road at all times. To address this, the IMM filter [14] is applied combining an off-road mode

using the conventional filter and on-road mode using a road-constrained filter as explained above.

Let Mk = {0, 1, · · · , Nk − 1} be the mode set of the IMM estimator in the interval (k− 1, k]

and µj,k be the probability that mode is in effect during the above time interval as:

µj,k = p{mk = j ∈ Mk|Zk} (16)

where p{·} denotes the probability, and Zk is the measurement sequence through time k. Physi-

cally, mk represents the type of motion (off-road mk = 0 or on-road mk = m ∈ {1, 2, · · · , Nk−

1}), and this is modelled as a Markov process with a first-order homogeneous Markovian

transition of modes:

πij,k = p{mk = j|mk−1 = i} ∀ i, j ∈ Mk (17)

where πij is the Markov transition probability from mode i to mode j. The IMM filter uses

a recursive algorithm composed of the following four processes: interaction/mixing, filtering,

model probability update, and estimate combination. The input to a filter matching to a certain

mode is obtained by mixing the state estimates under the assumption that this particular mode

is in effect at the present step. Then, a conventional filtering is performed in parallel. The model

probabilities are updated based on model-conditional likelihood functions. Finally, overall states

are estimated from the probabilistically weighted sum of outputs from each filter. The estimated

states from the combination process along with the model probability will be used not only for

tracking of ground vehicles but also behaviour recognition in the following section.

III. BEHAVIOUR MONITORING

This section firstly introduces a one-dimensional (1-D) representation of the position of the

vehicle on the road to simplify the vehicle position on a specific road. Then, a novel anomalous

behaviour detection scheme is proposed using a predictive log-likelihood from a Gaussian process

regression, as well as the off-road mode probability.
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A. 1-D representation of the position

To represent the behaviour of the ground vehicle travelling on the road, a 1-D representation

of the vehicle’s position is introduced using the similar approach as in [23]. The ground target

trajectory when in traverse of a road-network can be modelled as curved segments connected

with arcs of different curvature, and a moving target can be located uniquely using the time, street

name (a road segment), and street number (distance relative to a starting point on the street).

This study assumes a width-less road since the road width is negligible considering resolution

and error of the sensor onboard the UAV monitoring the ground vehicle from the air. Let us

Fig. 4. 1-D representation of road segments

consider a circular arc characterised by starting point (x1,i, y1,i), the ending point (x2,i, y2,i), the

centre of the arc (xi,ct, yi,ct), and arc curvature κi for ith road (which can be obtained from the

road approximation algorithm) as shown in Fig. 4. The location of the vehicle is determined

by its distance from a starting point which will be referred as a mileage count [23]. Assuming

multiple nr roads are connected in serial in the region of interest, a 2-D point (x, y) on the
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curved road can be expressed using the mileage count si as:

x(si) = xi,ct +Ri cos(θ0,i +
si
Ri

) (18)

y(si) = yi,ct +Ri sin(θ0,i +
si
Ri

)) (19)

where 0 ≤ si ≤ Sr
i , Ri = 1/κi, and θ0,i and Sr

i are given by:

θ0,i = tan−1

(

y1,i − yi,ct
x1,i − xi,ct

)

(20)

Sr
i = Ri cos

−1

[

1−
(x2,i − x1,i)

2 + (y2,i − y1,i)
2

2R2
i

]

. (21)

The mileage si of the ground vehicle at the position (xt
k, y

t
k) can be obtained using Eq. (18)

inversely:

si(x
t
k, y

t
k) = Ri

[

cos−1

(

xt
k − xi,ct

Ri

)

− θ0,i

]

= Ri

[

sin−1

(

ytk − yi,ct
Ri

)

− θ0,i

]

. (22)

A normalised mileage count s̄ of the vehicle position (xt
k, y

t
k) on ith road among nr roads of

interest can be obtained as:

s̄(xt
k, y

t
k) =

(

∑i−1
j=1 S

r
j

)

+ si(x
t
k, y

t
k)

∑nr

j=1 S
r
j

. (23)

Note that the road on which the vehicle is can be determined by the road-constrained IMM filter.

Even in case that the position of the vehicle is not exactly on the road, it can be constrained

onto the road using the road-constrained filter as explained in the previous section. Using this

1-D representation, the behaviour of the vehicle on the road can simply be expressed as velocity,

acceleration or any other quantities at specific position s̄ ∈ [0, 1] on the roads of interest.

B. Gaussian process behaviour modelling

This study uses a Gaussian process (GP) to model the behaviour of the vehicle. The GP can

be viewed as a stochastic process or a Gaussian distribution over functions. The GPs are used

to infer or predict function values at a finite set of test points using the observed data. Since

GP is not a parametric model, users do not need to be concerned about whether it is possible

for the model to fit the data or not. The GP for a regression problem [24] is briefly explained

in the following.
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First of all, a standard regression model is defined as yGP = f(x) + ǫ, where x is an input

vector (covariates) of dimension D, and yGP is a scalar output (dependent variable). The noise ǫ is

assumed as an independent and identically distributed Gaussian distribution with zero mean and

variance σ2. Then, Gaussian process f(x) is specified by its mean function m(x) = E[f(x)] and

the covariance function k(x,x′) = E[(f(x)−m(x))(f(x′)−m(x′))]. Since this study assumes

zero-mean GP, the process can be expressed as f(x) ∼ GP (0, k(x,x′)). A training set with No

observation is expressed as D = {(xn, yGP,n)|n = 1, · · · , No} = {X,yGP}, and the following

squared exponential covariance function is used:

k(x,x′) = σ2
f exp

(

−
1

2
(x− x′)⊤

∑

(x− x′)

)

(24)

where σf determines the magnitude, and
∑

= l−2I is an isotropic covariance function.

Given a GP model with the covariance function above, the fitness of this model to the training

set can be evaluated using the marginal likelihood conditioned on the hyper-parameters θ (which

define the covariance function and the Gaussian noise) as:

log p(yGP |X, θ) = −
1

2
y⊤
GPK

−1yGP −
1

2
log |K| −

No

2
(25)

where K denotes the matrix of the covariances of all pairs of training points with Kij = k(xi, xj).

The hyper-parameters are optimised to provide good predictions using the partial derivatives of

Eq. (25) with respect to the hyper-parameter using a conjugate gradient optimiser.

Given a training set D and a test input vector x∗, the predictive distribution for Gaussian

process regression is computed conditioning the joint Gaussian prior distribution of the observed

output values yGP and function values f∗ at the test locations on X and x∗ as:

f∗|X,yGP ,x∗ ∼ N
(

f̄∗,V[f∗]
)

(26)

where the mean and variance are defined as:

f̄∗ = k⊤
∗ (K+ σ2

nI)
−1yGP (27)

V[f∗] = k(x∗,x∗)− k⊤
∗ (K+ σ2

nI)
−1k∗ (28)

where k∗ denotes the vector of covariance between the test and the training points.

In this study, the output yGP of GP model is a speed of the vehicle (vt =
√

(ẋt)2 + (ẏt)2)

observed at position on the roads of interest s̄(xt, yt) ∈ [0, 1]. It is assumed that the training

data set is available using S-Paramics traffic simulation software [25] in advance, and test input
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and output come from the road-constrained IMM filter with sensor measurements of the UAV

monitoring several ground vehicles in real time. Note that, although 1-D position s̄ is used as an

input variable currently, it can be extended to a vector including other relevant parameters such

as time zone (day/night or weekday/weekend) or environmental factors (congestion or accidents)

to more closely capture real world characteristics. One of limitations for using this approach is

that training data should be given for the road (or region) of interest. However, if some of the

road is important and under surveillance, traffic data could be readily available in advance or

can be collected in real-time.

C. Hybrid anomalous behaviour detection

Given the prediction method, one can evaluate the quality of predictions measuring the

deviation of the actual test data from the predictive distribution. This quality can be directly

related to the anomalous behaviour detection since it provides how normally or abnormally

the test vehicle behaves compared to the general vehicles. The simplest and intuitive way of

measuring the quality is to compute the squared residual SRk = (vtk − f̄(s̄(xt
k, y

t
k)))

2 between

the mean prediction and the test output at each test point. To consider the predictive uncertainty

additionally, a more conservative anomaly score in the form of negative log probability of the

test output vtk can be used as [24]:

− log p(vtk|D, s̄) =
1

2
log(2πσ2

∗) +
(vtk − f̄(s̄))2

2σ2
∗

(29)

where the predictive variance for GP regression is computed as σ2
∗ = V[f∗] + σ2

n. The noise

variance σ2
n is included since we are predicting the noisy output. Note that the more accurate

the prediction of GP model is and the larger the predictive variance is, the less score Eq. (29)

shows. This occurs when either prediction is correct (i.e. vtk− f̄(s̄) ≃ 0, or equivalently, test data

fits with the normal behaviour from training data) or the model is uncertain about prediction

with limited training data.

The log predictive probability in Eq. (29) can provide only a partial knowledge of the behaviour

based on the velocity profile. In order to make a reliable a final decision on abnormal behaviour,

other critical sources to recognise the abnormal behaviour need to be considered. Since the mode

probability µj,k of the vehicle moving off-road terrain (j = 0) or on the roads of interest (j =

1, 2, · · · , Nk − 1) is one of most important parameters for the abnormal behaviour recognition,
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this study proposes a novel hybrid behaviour recognition algorithm using not only Gaussian

process but also the mode probability.

Assuming that probability from GP regression and mode probability are independent to each

other (that is, the occurrence of one does not change the probability of the other occurring), an

augmented abnormal score can be proposed using the negative log of the joint probability which

is the product of the probabilities of each occurring as:

scorek = − log

[

p(vtk|D, s̄)×

(

Nk−1
∑

j=1

µj,k

)γ]

= − log
[

p(vtk|D, s̄)× (1− µ0,k)
γ
]

= − log p(vtk|D, s̄)− γ log(1− µ0,k) (30)

where γ is a weighting factor controlling the relative importance between GP predictive and

on-road mode probability. From Eq. (30), it is clear that large values of the score represent

that abnormal behaviour is likely to be occurring. If one of aforementioned probabilities (GP

regression and on-road mode) is small, an augment abnormal score has a large value according

to Eq. (30). As the both probabilities become small, since the product of them makes the joint

probability smaller, an augment abnormal score gets bigger implying that the vehicle behaviour

is likely suspicious or abnormal.

Note that an abnormal velocity does not necessarily incur off-road moving, whereas the

deviation of the vehicle from the road can lead to an abnormal velocity caused by change

of surface condition or traffic flow. Therefore, there is a need to investigate the conditional

probability or dependence of those two events, rather than an independence assumption used

in Eq. (30). Besides, to detect abnormal behaviour, a certain detection threshold needs to be

determined considering the success and false alarm rate according the sensor characteristics and

environments. These aspects remain for future works.

IV. NUMERICAL SIMULATIONS

This section carries out a numerical simulation using the proposed anomalous behaviour

detection algorithm for a moving ground target using the UAV loitering the region of interest.

The ground target trajectory is obtained from S-Paramics [25] traffic model of Devizes map at

2 Hz. It is used to generate the GMTI measurements composed of relative range and azimuth
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angle having the white noise of (σr, σφ) = (7m, 2deg). Training data for GP regression is also

obtained from the S-paramics model for 15 vehicles passing through the region of interest as

shown in Fig. 5(a). Besides, it is assumed that there is only one road (but composed of multiple

segments) around region of interest. In other words, we used a fixed mode set Mk = {0, 1}

consisting of two measurement models with the common acceleration dynamics of the ground

vehicle for the IMM filter: one is a conventional model for a vehicle moving on the off-road

terrain as described in Eq. (3), and the other is a pseudo-measurement augmented model moving

on the road of interest as in Eq. (8). The initial mode probability is set to (µ0, µ1) = (0.2, 0.8),

and the Markov transition probability is given as:




π11 π12

π21 π22



 =





0.99 0.01

0.01 0.99



 (31)

Note that the number of models can be changed to consider multiple roads at the intersection

using a variable-structure IMM concept [26], [19].

Figure 5(b) shows the real roads of interest, their approximation, and the target trajectory from

S-Paramics with a slight change of the route (on-road → de-tour to avoid police check point or

monitor a certain facility more closely → on-road). Figures 6(a)∼6(b) show Gaussian process

regression result with training set and test data from the road-constrained IMM filter of the

vehicle having normal speed, and the on/off-road mode probability. Depending on the similarity

of velocity profile between the test ground vehicle and training mean value from GP, predictive

log-likelihood varies accordingly as a blue line shown in Fig. 6(c). Besides, since the off-road

mode probability is high when it is detouring the road, modified anomaly score from Eq. (30)

has a high value. Figure 7 shows the simulations results for the same situation as the previous

one but with the vehicle having abnormal speed during detour. In this case, since the speed of the

test vehicle is quite different from the training data as well as off-road mode probability is high

around s̄ = 0.6, the anomaly score shows much larger value than the previous case representing

that the anomalous or suspicious behaviour is highly likely to occur at that position.

V. CONCLUSIONS AND FUTURE WORK

This paper proposed an airborne behaviour monitoring methodology of ground vehicles using a

statistical approach based on Gaussian processes along with road map information. An interactive

multiple model (IMM) filter is firstly applied combining an off-road mode using the conventional
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(a) Google map with region of interest (b) Road approximation and target trajectory

Fig. 5. Road approximation and target trajectory in the region of interest

extended Kalman filter and on-road mode using a road-constrained filter. Then, a novel hybrid

anomalous behaviour recognition algorithm was proposed using a Gaussian process regression

on velocity profile with a one-dimensional representation of the position of the vehicle, as well as

deviation of the vehicle location. A numerical simulation on monitoring of a suspicious ground

target with a realistic map and trajectory data showed the feasibility of the proposed approach.

Extension of the road-constrained IMM filter to the variable structure IMM filter concept will

be followed as future work allowing the consideration of multiple roads at the intersection and

different vehicle models. In addition, qualitative analysis will be performed generating a receiving

operating characteristic (ROC) curve with a different detection threshold and parameters such

as covariance function for GP model.
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