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This study examines the potential of airborne laser scanning (ALS) to predict diameter distributions in an
even-aged plantation of Eucalyptus urograndis in Brazil. The single-species plantation conditions allow differ-
ent modelling alternatives to be compared without the presence of minor tree species or an understory layer
affecting the results. Three modelling alternatives based on the two-parametric Weibull function form; param-
eter prediction, parameter recovery and distribution matching were tested with a k-nearest neighbour predic-
tion (k-nn) method. We also evaluated a parameter prediction alternative, in which the Weibull distribution
was predicted using field attributes. The results showed that ALS information can predict diameter distribu-
tions with an error margin of slightly more than 10 per cent of the RMSE of the mean of the third power of
diameter, and with error index values between 50 and 60. The degree of accuracy was only slightly improved
when the Weibull distribution was predicted using field attributes. According to the accuracy metrics, the dif-
ferences between modelling alternatives were minor but parameter recovery and k-nn seem to be the most
favourable ALS-based prediction methods. To conclude, the results showed a strong relationship between ALS
information and diameter distributions in a tropical single-species plantation and we discuss how these
results could be applied in other types of forests.

Introduction
Diameter at breast height (d.b.h.) is an important tree attribute
and is commonly measured in forest inventories, because it can
be used to calculate a range of other attributes that cannot be
directly measured, such as tree trunk volume and above-ground
biomass. The distribution of d.b.h. is a stand-level indicator of
forest structure and information on diameter distribution also
aids in the calculation of timber assortments. In mixed forest
stands, the distribution of d.b.h. is usually computed by tree
species. Although d.b.h. can be measured easily and accurately,
a full diameter distribution is not usually measured in stand-
level management inventories due to the high costs involved.
However, field assessed stand attributes can be used as predic-
tors of theoretical distributions, such as the Weibull function
(Bailey and Dell, 1973), or the k-nearest neighbour (k-nn) predic-
tion (also known as non-parametric tree lists, Maltamo and
Kangas, 1998) to estimate the diameter distribution. The two-
parameter form of the Weibull distribution has generally been
preferred for this task (Gobakken and Næsset, 2005; Siipilehto
and Mehtätalo, 2013; Saad et al., 2015). The parameters of the

selected distribution, given the known stand attributes, can be
estimated using the parameter recovery (Hyink and Moser,
1983) and parameter prediction methods (Rennolls et al., 1985).
As parameter recovery is based on the analytical relationships
between the distribution parameters and the stand attributes,
the number of distribution-related stand attributes, therefore,
needs to be equal to the number of parameters in the selected
distribution function (Siipilehto and Mehtätalo, 2013). The attri-
butes used in recovery can be moments (mean and quadratic
mean) or percentiles (e.g. median) of the distribution. When the
equations between the distribution parameters and the stand
attributes are solved analytically, they result in parameter esti-
mates that are mathematically compatible with the attributes
used in the recovery process. In parameter prediction, the esti-
mated parameters are predicted by regression analysis with stand
attributes used as independent variables. In general, parameter
recovery is preferred to parameter prediction because of (a) com-
patible parameter estimates and (b) the analytical relationships
between moments (or percentiles) and parameters are stronger
than those seen in regression models used for parameter predic-
tion (Hyink and Moser, 1983; Siipilehto and Mehtätalo, 2013).
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The emergence of airborne laser scanning (ALS) techniques
has had a major impact on stand-level management inventor-
ies (White et al., 2013; Vauhkonen et al., 2014). In the Nordic
countries, compartment-wise field visits and the visual inter-
pretation of aerial data have been replaced by an area-based
approach (ABA) using wall-to-wall coverage of ALS and aerial
images and detailed measurements from a limited number of
sample plots (Maltamo and Packalen, 2014; Næsset, 2014).
Despite these changes, diameter distribution remains one of the
most important stand characteristics that cannot be directly
produced from ALS measurements and must be predicted inde-
pendently (Maltamo and Gobakken, 2014). Prediction of diam-
eter distributions by ALS usually consists of a prediction or
recovery of the distribution parameters using ALS information
instead of stand-level field attributes. Alternatively, it is also
possible to predict stand attributes from ALS data using the ABA
and to employ them in the prediction of parameter estimates of
diameter distributions by applying existing parameter models
(Holopainen et al., 2010; Maltamo and Gobakken, 2014).

Earlier studies (e.g. Gobakken and Næsset, 2004, 2005;
Maltamo et al., 2006; Thomas et al., 2008; Saad et al., 2015)
predicted the Weibull function with ALS using either parameter
prediction or recovery. Mehtätalo et al. (2007) recovered the
parameters of diameter distributions and height–diameter
curves simultaneously. Moreover, ALS-based diameter distribu-
tions have also been estimated using k-nn prediction and
Random forest (Packalén and Maltamo, 2008; Shang et al.,
2017). In all these papers, tree lists (i.e. tree frequencies by
diameter classes) are predicted using field sample plot data.

Several studies have further refined the method, for example,
by incorporating multimodal distribution predictions (Bollandsås
and Næsset, 2007; Packalén and Maltamo, 2008; Thomas et al.,
2008; Magnussen et al., 2013; Magnussen and Renaud, 2016).
However, the success of the method development has been var-
ied and problems related to tree species still hamper the predic-
tion of diameter distributions based on ALS. Since the ABA
cannot fundamentally separate species, estimations of stand-
level d.b.h. distributions are usually carried out for all species
together, rather than predicting separate distributions of each
species. Yet, species-specific information is needed and such
predictions cannot be accurately provided for less abundant
tree species, even when optical sensors are involved in the esti-
mation process (Packalén and Maltamo, 2008). In addition,
ordinary theoretical probability density functions, such as the
Weibull function, can only describe unimodal distributions that
occur in managed, even-aged, single-species stands, and a
small proportion of minor tree species can cause irregularities or
peaks in the resulting distribution. In such cases, the mathem-
atical properties of the Weibull distribution are not met without
considering the species separately. Although many of the previ-
ous studies have considered the total diameter distributions of
multiple species, the potential of ALS data to predict unimodal
single-species diameter distributions still requires further
research. We hypothesize that the modelling and comparison of
ALS-based distribution alternatives in single-species stands
could provide valuable information in regard to the different
alternatives, which are also applied in more heterogeneous
stand structures.

In recent times, fast growing tropical single-species planta-
tions have rapidly attained a prominent role in the forest

industry. In both sawnwood and pulpwood plantations, diam-
eter distribution is one of the most important stand attributes
(Saramäki, 1992; Nanang, 1998; Mabvurira et al., 2002). Unlike
sampling-based field inventories, the application of ALS data
provides an opportunity to produce maps of plantation
resources. However, to the best of our knowledge, there have
been no ALS-based diameter distribution prediction studies in
tropical plantations, although other stand attributes, such as
volume (Rombouts et al., 2010), dominant height (Packalén
et al., 2011b), stand density (Tesfamichael et al., 2009) and site
quality (Rombouts et al., 2010) have been considered. The pre-
diction of diameter distributions is more challenging compared
to single attributes, such as volume or height, and given their
practical importance, there is a need to evaluate their accuracy
when they are used with ALS for tropical plantations.

This study examines the potential of ALS to predict diameter
distributions in an even-aged Eucalyptus urograndis plantation,
where the relationship between diameter distribution and ALS
information can be analysed without the influence of minor tree
species or an understory layer. As modelling alternatives, we
compare parameter prediction, parameter recovery and distri-
bution matching, which were based on the Weibull function
form. In addition, a non-parametric k-nn prediction and a par-
ameter prediction alternative, in which the Weibull distribution
is predicted using field attributes available from the plantation
stand register database, are also included in the comparison.
We evaluate the implementation of different alternatives for
ALS-based diameter distribution modelling in tropical planta-
tions and attempt to derive useful conclusions that are valid for
modelling diameter distributions in semi-natural forest
conditions.

Materials
Study area and field data
The study was performed using data for a E. urograndis planta-
tion located in Bahia state, Brazil (16°05′S 39°24′W). Eucalyptus
urograndis is a hybrid between E. grandis W. Hill ex Maiden and
E. urophylla S. T. Blake. In total, 195 circular sample plots (radius
13m) were established and measured in August and
September 2008. Three or four sample plots (depending on the
stand size) were placed in 55 randomly chosen forest stands.
There were 28 different clones in the 55 stands from which the
field data was collected. All of the trees in a stand belonged to
the same clone.

Satellite positioning (global positioning systems device:
Trimble GPS Pathfinder Pro XRS) was used to determine the pos-
ition of each plot centre using a real-time differential correction
signal obtained from the OmniSTAR satellite (http://www.
omnistar.com). The spatial accuracy was not explicitly assessed,
but it was assumed to lie in the range of ~1–2m reported as a
standard for the Trimble GPS Pathfinder Pro XRS device. Tree
density was fixed to 833 stems per hectare, although damage
may have reduced the actual stem density. The d.b.h. of all trees
in the plots were recorded and this information was used to cal-
culate the actual number of trees per hectare (N, ha−1), basal
area per hectare (G, m2 ha−1), and mean d.b.h. (D, cm).

The seventh tree in each plot was measured for height (h, m).
Näslund’s (1937) h–d.b.h. curve was fitted as a nonlinear mixed-
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effects model and used to predict heights for the trees without a
height measurement. Finally, the dominant height (HD, m) was
calculated as the mean height of the 100 thickest trees per hec-
tare, in terms of their d.b.h. Stand age (T, years) was obtained
from the plantation register database, in which it was recorded
with an interval of 1 month. The site index (SI) was predicted
using the following form of the Chapman–Richards
equation (Clutter et al., 1983):

= −
−

( )
β

β

β−

−SI HD 1 e
1 e

, 1
t

t
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2⎛
⎝⎜

⎞
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where treference is the reference age of 7 years, HD is the current
dominant height, tcurrent is the current age, and β1 (0.3341) and
β2 (1.1442) are known model parameters in the plantation. The
main stand characteristics are presented in Table 1.

Airborne laser scanning data

The ALS data were collected on 16 August 2008, using an
Optech ALTM 3100 laser scanning system. The test site was
measured from an altitude of ~1200m above ground level
using a field of view of 30 degrees. Pulse repetition frequency
was set at 50 000 pulses per second, which resulted in a nom-
inal sampling density of ~1.5 measurements per square metre.
The footprint was ~35 cm at ground level.

A digital terrain model (DTM) was generated from the ALS
data. First, laser points were classified as ground and non-
ground points using the method reported by Axelsson (2000).
Then, a raster DTM with a 1m pixel size was interpolated using
ground points and an inverse distance weighting algorithm
(Lloyd and Atkinson, 2002). Finally, the raster DTM was sub-
tracted from the ellipsoidal heights of the laser points to nor-
malize the ALS data to the above-ground level (AGL).

Methods
Explanatory variables
The laser scanner captured a maximum of four echoes per emitted
pulse, categorized as ‘first of many’, ‘last of many’, ‘only’ and ‘intermedi-
ate’ echoes. After preliminary tests, we decided to use only the ‘first of
many’ and ‘only’ echoes, because the exclusion of ‘last of many’ and
‘intermediate’ echoes did not significantly decrease the accuracy of
the estimates (Packalén et al., 2011b). This set contains all of the first

(i.e. surface) echoes, since an ‘only’ echo may also be considered as a
first echo.

In total, 15 height and density metrics were calculated from the
combined set of ‘first of many’ and ‘only’ echoes using the ABA method
(Næsset, 2002). The first step was to calculate height distributions for
each sample plot using the normalized ALS data. Height quantiles for 5,
10, 20, …, 80, 90, 95 per cent (h5, …, h95) of height sums were com-
puted using all echoes, including those from the ground. The corre-
sponding densities (p5, …, p95) were calculated for the respective
quantiles, i.e. p50 is the number of laser hits below h50 divided by all of
the echoes in the plot. In addition, the mean (hmean) and standard
deviation (hstd) of heights were calculated. These metrics formed the
set of candidate predictors used for modelling the diameter
distributions.

Methods based on the Weibull distribution
The two-parameter form of the Weibull function was applied to model
the diameter distributions from the field reference data. The main
advantages of the two-parameter form are the low number of para-
meters that need to be estimated and the flexibility of the form to
describe different shapes of unimodal distributions (Bailey and Dell,
1973; Maltamo and Gobakken, 2014). The probability density function of
the two-parameter Weibull distribution for a random variable x (i.e. d.b.h.
in our case) is (Dubey, 1967)
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where b is a scale parameter and c is a shape parameter. The Weibull
parameters of equation (2) were estimated for each field plot by fitting
the two-parameter Weibull distribution to the discrete ground reference
diameter distributions with 1 cm precision by the maximum likelihood
(ML) method (Harter and Moore, 1965). As an alternative, the Weibull
parameters were also recovered using the measured stand attributes.

Three approaches were tested to relate the ALS data based predic-
tions with the field reference distributions; parameter prediction (3.2.1),
parameter recovery (3.2.2) and histogram matching (3.2.3). In the case
of parameter prediction, a field information based alternative was also
tested. The distributions were formed according to the original param-
eter values (ML estimate of equation (2) or the parameter recovery esti-
mate based on actual stand attributes) or predicted parameter values,
and transformed to histograms with 1 cm diameter classes for accuracy
assessment. Original parameter values were also included to show the
best possible diameter distribution fit that can be obtained using the
Weibull distribution smoothing.

Parameter prediction

The ML-estimates of the Weibull parameters were separately
modelled using the observed field attributes (number of trees
per hectare, N; site index, SI; stand age, T), and the ALS metrics.
SI and N were calculated from the field data, whereas T and
clone (used in mixed-effects, see below) were available from
the plantation register database. The set of candidate predictor
variables included the original values of variables, and the fol-
lowing transformations: the square root, natural logarithm,
inverse, and second and third powers. Linear regression models
were first constructed using the lm function in R (R Core Team,
2015) to select the independent variables. The function used
the Akaike information criterion (AIC) statistic for stepwise
selection between the models, allowing for both inclusion and
exclusion of the independent variables in the candidate models.

Table 1 Mean, standard deviation (SD) and range of plot characteristics.

Characteristic1 Mean SD Minimum Maximum

G, m2ha−1 25.1 6.1 12.1 38.2
N, ha−1 812.9 51.7 602.7 979.4
D, cm 19.4 5.6 14.0 23.9
SI, m 34.3 1.8 29.2 39.2
T, years 7.3 2.6 2.5 11.9

1G denotes basal area per hectare, N denotes number of trees per hec-
tare, D denotes mean d.b.h., SI denotes site index and T denotes stand
age.
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The independent variables had to be statistically significant (P <
0.05) to be selected for the model. The number of ALS variables
was restricted to two using the AIC. The constructed models
were re-fitted using the lme function of the R statistical com-
puting environment (R Core Team, 2015) as mixed-effects mod-
els including a random clone-level intercept.

Parameter recovery

The distribution parameters were recovered by applying the
stand attributes G, N and D. The recovery was implemented sep-
arately using the observed and predicted values. In the case of
predicted stand attributes, the predictions of the model
described in the previous section were used. To illustrate the
recovery, consider a forest stand where the density of diameter
distribution is f(x|b,c) and the stand density is N. The basal area
for such a stand is:

κ= ( ) ( )G NE x 32

where κ = π
40000

and the mean of squared diameter (also known
as the quadratic mean diameter) is ∫( ) = ( )

∞
E x x f x dx2

0
2 . Solving

this integral for x in the case of the Weibull distribution gives
Γ( ) = ( + )E x b c2/ 12 2 , where Γ is the Gamma function. Applying

this result to equation (3) gives the first recovery equation.
The second recovery equation matches the observed D with

the Weibull mean:

∫ Γ= ( ) = ( ) = ( + ) ( )
∞

D E x xf x dx b c1/ 1 . 4
0

The recovery finds values of b and c that simultaneously fulfil
the nonlinear equations (3) and (4). If a solution is found, it is
unique. However, no solution is found if κ< ( )N G D/ 2 , i.e., if N is
too small compared to G and D. The stand density for a given D
and G is minimized when all trees of the stand have diameter D,
i.e., the diameter distribution is extremely narrow. In a small
number of plots, where no solution was found, we replaced the
estimated N with the value κ* = ( ) −N G D/ 102 . This replacement
leads to a distribution of approximately equal diameters.

The solution to the system of equations is based on a profil-
ing approach, where equation (4) is first solved for b to get

Γ( ) = ( + )b c D D c, / 1/ 1 .
Applying this solution to equation (3) and rearranging the

terms gives:

κ
Γ

Γ
[ ( + )]

( + ) − = ( )D
c

c G
N1/ 1

2/ 1 0. 5
2

2

Equation (5) was solved for the unknown parameter c using
the Gauss–Newton algorithm. Applying the obtained c to ( )b c D,
gives the corresponding estimate of b. The parameter recovery
was implemented in the recweib function of the R-package
lmfor (Mehtätalo, 2015).

Distribution matching

In the third alternative, the aim was to extract the tree height
distributions from the ALS data and to develop a matching func-
tion relating them to the d.b.h. distributions. This approach is a

combination of two published methods, namely tree row detec-
tion (Vauhkonen et al., 2011) and distribution matching
(Vauhkonen and Mehtätalo, 2015). The tree height distributions
are extracted in two steps, which rely on the availability of tree
planting distance from the stand management records, in add-
ition to the ALS data. An algorithm determines the orientation
of the rows in which the trees were planted and samples the
detected rows for height using a series of windows with sizes
that correspond to the planting distance along the row. The full
algorithm is described in detail by Vauhkonen et al. (2011). To
derive the d.b.h. distributions, a quadratic function is fitted to
model the percentile-wise transformation between the tree
height and d.b.h. for distribution matching (Vauhkonen and
Mehtätalo, 2015). Besides using the percentiles of the distribu-
tions, we noticed that the fit of the transformation function
could be improved with stand-level parameters that localize the
function to the actual stand. For this reason the transformation
was modelled as

β β β= + + ( )β βd h h90 , 6pi p pi1 2 4
3 5

where dpi and hpi are the ith percentiles (i = 1, 2, …, 99) of the
Weibull distributions of heights and d.b.h., respectively, h90 is
the 90th height quantile of plot p, and β1, β2, β3, β4 and β5 are
the model parameters. The β parameters were estimated separ-
ately for each plot p by fitting equation (6) to observations of di,
hi, and h90 of all other plots in the same age class by using the
nls function of R (R Core Team, 2015). The division of age classes
to <4.4, 4.4–6.4, 6.4–8.4, 8.4–10.4, and >10.4 years is the same
as that operationally used in the plantation (Vauhkonen et al.
2011).

k-nearest neighbour prediction

Tree lists were estimated using the nearest neighbour prediction
(k-nn) and canonical correlation analysis to produce a weighting
matrix to select the reference observations similar to the object
of prediction in terms of the independent variables. The k-nn
method follows the description by Moeur and Stage (1995),
except that the estimates were calculated as weighted
averages of the k nearest observations employing weights (W)
from the inverse of the canonical correlation analysis based dis-
tance. This approach was chosen according to earlier experi-
ences of multivariate prediction (see Packalén and Maltamo,
2008; Breidenbach et al., 2010). In this study, the dependent
variables were the 5th, 20th, 40th, 50th, 60th, 80th and 95th
percentiles of the diameter distribution. The value of k was set
to 5 based on iterations varying k from 1 to 10 to minimize the
RMSE of the diameter percentiles. The number of ALS metrics
used in the iterative variable selection (Gill et al., 1981) was 15.
The k-nn was implemented using the yaImpute package in R
(Crookston and Finley, 2008).

The predicted diameter distributions consist of trees
observed in the field reference plots. When constructing a diam-
eter distribution for the target plot, the stem frequency repre-
sented by each tree of the reference plots is required. The plot
level weight Wuj of the reference plot u and the target plot j is
used for this purpose. The plot level weights of k neighbours
sum to one.
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Let Tuj denote a set of trees t that are predicted from the ref-
erence plot u for the target plot j, and let n denote the number
of trees in u:

= { … } ( )T t t t, , , . 7uj uj uj n uj1 2 u

Then the eventual set of trees predicted from the k nearest
reference observations for the target plot is

= { … } ( ́ )
( )

T W T W T W T, , , Packalen and Maltamo, 2008 .

8
j j j j j kj kj1 1 2 2

Accuracy assessment

Accuracy assessment was carried out by Leave-One-Out Cross-
Validation (LOOCV), in which all plots within a stand were
excluded from the training data when predicting for a plot of
this particular stand. In the LOOCV model, parameters were
repeatedly estimated by ignoring the observations for which the
prediction was done. In the case of mixed-effects models, the
accuracy of the model prediction calibrated by the clone effect
was assessed (Packalén et al., 2011a).

The accuracy assessment was based on relative frequencies
between 0 and 1 for the 1 cm wide diameter classes of the
formed Weibull distributions or tree lists. The accuracy of esti-
mates was first evaluated in terms of relative root mean
squared error (RMSE per cent) and bias% at the plot level, apply-
ing the mean of the third power of diameter defined as follows:

∑( ) = ( )
=

E d f d 9
i

m

i i
3

1

3

where m is the number of diameter classes, d is the midpoint of
a diameter class and fi are the observed relative frequencies of
those classes. This estimate is based on a transformation to
third powers of diameters, and it has previously been applied as
an approximation of stand volume (Kilkki and Päivinen, 1986).
We applied it here since it is based only on the diameter distri-
bution, i.e. it entails no height or volume model error and is
measured on the same scale as the actual volume (Vauhkonen
et al. 2010).

The equations of root mean square error and bias are as
follows:

( )
=

∑ ( ) − ( )
( )

= E d E d

n
RMSE 10

i
n
1

3 3
2

( )
=

∑ ( ) − ( )
( )

= E d E d

n
BIAS 11

i
n
1

3 3

where n is the number of plots, E(d3) is the observed value for
plot i, and ( )E d3 is the predicted value for plot i. Predicted rela-
tive frequencies f̂i of the diameter classes were used to calcu-
late ( )E d3 in similar way to E(d3). Finally, the relative RMSE and
biases were calculated by dividing the absolute values (equa-
tions (10 and 11)) by the true mean of the variable in question.
The level of this relative value is comparable to the corresponding

stand volume estimate. The prediction accuracies were studied
by analysing the plot-level error of each modelling alternative
using repeated measures analysis of variance (ANOVA) (Penner
et al., 2013). Predictions from the five modelling alternatives
were considered to be the ’repeated measures’. The statistical
significance of the differences between biases of different meth-
ods was tested using a t-test (Maltamo, 1997). Secondly, a valid-
ation was performed for unweighted distribution in the 1 cm
classes by applying the error index (Reynolds et al., 1988), which
has also been applied by Gobakken and Næsset (2004) in an ALS
context and is determined as follows:

∑=
− ˆ

( )
=

f f
F

errorindex 100 12
m

i 1

i i

To avoid the effect of other attributes on the evaluation of
the diameter distributions, the frequencies were not scaled, i.e.
the value of F was 1. The range of error index values was
between 0 and 200, with values of 0 and 200 depicting com-
pletely identical and completely disjoint distributions, respect-
ively (Reynolds et al. 1988).

Results
Since a LOOCV procedure was applied in all of the constructed
models, we do not present exact parameter values. Therefore,
only the model forms are presented in Table 2, which includes
parameter models for Weibull in the case of both ALS informa-
tion and field attributes, models for stand attributes in the case
of Weibull parameter recovery, and the independent variables of
the k-nn prediction. For the regression models, there were two
(ALS information) or three (field attributes) independent vari-
ables (Table 2). For the k-nn prediction, there were five iteratively
selected independent variables (Table 2). There were both height
and density metrics in the ALS information based models, but

Table 2 Dependent and independent variables of diameter distribution
modelling alternatives.

Estimation method and dependent
variables

Independent variables1

ALS-based parameter prediction
b ln_h50, sqrt_p50
ln_c sqrt_h50, sqrt_h90

Field information based parameter prediction
ln_b N, inv_Age, ln_SI
ln_c ln_Age, SI

ALS-based parameter recovery
Basal area sqrt_h30, inv_p70
Mean diameter ln_h50, ln_p95
Number of stems inv_h50, inv_h95

k-nn
Diameter percentiles hmean, h90, p30, h70,

p10

1sqrt denotes square root, inv denotes inverse, and ln denotes natural
logarithm.
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height metrics were applied more often. Among the height per-
centiles, mean value and upper heights were used more often
than lower heights. Stand age was not a statistically significant
predictor variable in the ALS information based diameter distri-
bution modelling alternatives. In general, Weibull parameter b
and mean diameter are closely related, and a height percentile
of 50 per cent was used as a predictor variable in our models to
model both parameters. In the case of field information, stand
age and site index were used in the models for Weibull para-
meters b and c, but the number of stems was only used for par-
ameter b. The relationship between dependent variables and the
ALS predictor variables was weakest in the case of models for
Weibull parameter c and number of stems. In those models, only
height metrics were statistically significant predictor variables
and a second height metric was added to increase the variation
to model predictions. The modelling of parameter c has also pro-
ven difficult in field information based studies (Maltamo, 1997).
The field values of number of stems were close to each other in
all plots due to the constant planting density, thus, making their
prediction by ALS information a major challenge.

The accuracies of the estimated and predicted distributions
are shown in Table 3. In the case of the RMSE% of E(d3), both
the fitted ML-estimates of the Weibull parameters and recov-
ered estimates based on observed stand attributes were below
1 per cent, and showed a very close agreement between actual
and smoothed distributions. In contrast, the RMSE% of the esti-
mates based on predictions by ALS or field information was
between 10 and 18 per cent. The most accurate prediction was
the one based on field information and stand register data fol-
lowed by parameter recovery of ALS-based estimates. In the
latter, 35 of the 195 plots did not converge. In those plots, N
estimates were then slightly modified to find a converged solu-
tion. The most inaccurate alternatives were ALS-based param-
eter prediction and distribution matching. The results of the
repeated measures ANOVA showed statistical differences in
accuracy (Wilk’s Lambda P = 0.025). We also conducted follow-up
comparisons on modelling alternatives to determine significant
differences. The results showed that the predictions of distribu-
tion matching differed significantly from all other alternatives
(P = 0.020 vs ALS-based parameter prediction, P < 0.0001 vs
k-nn, P = 0.0003 vs field information based parameter predic-
tion and P < 0.0001 vs ALS-based parameter recovery). In add-
ition, ALS-based parameter recovery and ALS-based parameter
prediction differed from each other (P = 0.039). Finally, ALS-based

parameter prediction and distribution matching were the only
alternatives that showed a tendency to underestimate the E
(d3). These underestimates were also statistically significant
(Table 3).

In the case of error indices, only minor differences between
the original fitted and the predicted distribution estimates were
seen. The error index values were already over 40 with the ori-
ginal fitted distributions, and between 50 and 60 with the ALS
or field information based predicted diameter distribution esti-
mates. In this case, parameter prediction was the most accur-
ate ALS-based alternative, but the differences between the
alternatives were small (Table 3).

The examples of diameter distribution predictions in plots
with low (~25), medium (~50) and high (~100) values of error
index are shown in Figures 1–3. On average, ~4 per cent of pre-
dictions resulted in either low or high value categories of error
index. The plots were chosen according to error index values of
ALS-based parameter prediction alternatives. Thus, the error
index values of other alternatives may be considerably different.

In the case of close agreement between estimated or pre-
dicted distributions and empirical distributions (Figure 1), i.e. a
low error index, the different modelling alternatives showed a
high degree of overlap. However, in the case of distribution
matching the estimate was peaked. For k-nn, the frequencies of
larger trees were greater than in the actual distribution. This
was also seen in the error index values.

In the average error index example (Figure 2), the figures of
the distribution estimates varied according to distribution kurto-
sis. Nevertheless, the error indices of the most accurate alterna-
tives were close to one another. In contrast, the most
inaccurate alternatives were the ALS-based parameter predic-
tion and k-nn. The k-nn estimate included larger trees than
those observed in the actual field distribution (see also
Figure 1). Note that although estimates of ALS-based parameter
prediction and recovery seemed very similar, the fit of param-
eter prediction was poor.

In the last example (Figure 3), the distribution estimates of
rather high values of error indices were compared. However,
high error index values only consider parameter recovery and
parameter prediction alternatives whereas distribution esti-
mates seem to be affected by a couple of small trees of 7–8 cm
diameter. The error index values were considerably smaller for
field information based parameter prediction and distribution
matching.

Table 3 Accuracy metrics of the compared methods.

Estimation method RMSE% bias% Error index

Maximum likelihood 0.50 0.20 43.75 (12.4–78.5)
Parameter recovery 0.90 0.50 46.30 (11.0–82.7)
ALS-based parameter prediction 14.56 2.55 ** 55.04 (12.3–132.5)
Field information based parameter prediction 10.14 0.74 50.05 (15.4–131.7)
ALS-based parameter recovery 11.59 −0.05 60.21 (22.2–125.0)
Distribution matching 18.14 5.77 *** 56.22 (16.1–138.0)
k-nn 13.47 0.06 58.71 (17.5–129.0)

In the case of error index, range is also given. The most accurate ALS-based prediction method is shown in bold.
Statistical significance of T-test.: *** = prob(T < t) < 0.001, ** = 0.001 < prob(T < t) < 0.01, * = 0.01 < prob(T < t) < 0.05.
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Figure 1 An example plot with low error index values for the estimated diameter distributions: ML-estimation (20.5), parameter recovery (20.2),
ALS-based parameter prediction (26.3), ALS-based parameter recovery (22.3), distribution matching (47.4), field information based parameter pre-
diction (24.0) and k-nn (34.8).
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Figure 2 An example plot with average error index values for the estimated diameter distributions: ML-estimation (37.2), parameter recovery (39.2),
ALS-based parameter prediction (55.1), ALS-based parameter recovery (36.7), distribution matching (39.1), field information based parameter pre-
diction (43.3) and k-nn (52.7).
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Discussion
This study examined the estimation of diameter distributions
with ALS information in the tropical single-species plantation of
E. urograndis using different modelling alternatives. The results
of the study showed that ALS information can predict diameter
distributions with a degree of error slightly more than 10 per
cent of the RMSE% of E(d3), and with error index values between
50 and 60.

We compared different statistical methods to predict Weibull
distributions with ALS information. Earlier studies based on field
data have suggested that parameter recovery yields more
accurate and robust estimates than parameter prediction
(Hyink and Moser, 1983; Siipilehto and Mehtätalo, 2013). Of
course, this is also dependent on the availability of stand attri-
butes for the prediction and recovery and their estimation
errors. We confirmed that parameter recovery was an accurate
alternative, although the stand attribute predictions were not
always compatible with the assumed Weibull function. This
incompatibility may have effects on the estimates of stand
attributes whenever the parameter recovery is used to predict
the diameter distributions of the entire plantation. Otherwise,
the effect only impacts on the accuracy of the estimate for N,
and no effect can be observed on the accuracy metrics. We also
found that differences between the parameter recovery and
parameter prediction alternatives, with respect to their RMSE%
of E(d3), were statistically significant based on the repeated
measures ANOVA. Moreover, the differences between biases
were statistically significant in the case of parameter prediction.

Although the performance of the distribution matching
approach did not compare favourably with the other Weibull-based

methods in terms of all of the accuracy measures, it may be pos-
sible to obtain similar levels of accuracy using a lesser number of
field plots for training, by employing a priori information in the form
of tree height distributions (Vauhkonen and Mehtätalo, 2015).
Unlike the parameter prediction and recovery approaches, which
are based on the use of ALS predictors or stand attributes, distribu-
tion matching requires another distribution that is calibrated to
match the reference distribution as closely as possible. Even though
it may be possible to describe the transformation in detail and use
discrete classes, modelling of such a transformation is difficult. To
produce a smooth transformation, both the reference and target
distribution were based on the Weibull function, but other types of
functions may also be considered.

The k-nn method produced better estimates than the param-
eter prediction alternative in terms of the RMSE% of E(d3). The
k-nn estimates had higher RMSE% of E(d3) than the parameter
recovery estimates, but the differences were not statistically sig-
nificant. Unlike other methods based on the continuous Weibull
function, the k-nn prediction method allows the compilation of
distributions with discrete diameter classes. Therefore, the pre-
diction is more complicated, because there are no distribution
parameters to predict directly. We wanted to avoid the use of
traditional stand attributes, such as the volume or basal area as
dependent variables, because they do not describe the shape of
the distribution. Instead, we tried to find indicators of the distri-
bution shape and computed the distance metric based on the
diameter percentiles. Therefore, it is possible that the k-nn esti-
mates could be further improved by employing better optimized
variables in the canonical correlation analysis. It should also be
noted that only five independent variables were applied in our
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Figure 3 An example plot with high error index values for the estimated diameter distributions: ML-estimation (48.5), parameter recovery (70.7),
ALS-based parameter prediction (97.9), ALS-based parameter recovery (110.5), distribution matching (38.5), field information based parameter pre-
diction (37.4) and k-nn (52.2).
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k-nn prediction, which is considerably less than in previous stud-
ies (e.g. Maltamo et al., 2009). Aside from the distance metric
and the number of neighbours, the amount of available refer-
ence data will also have a strong effect on the accuracy of the
k-nn prediction. Our 195 reference plots is much lower than the
number typically used for a corresponding species-specific
inventory (Maltamo and Packalen, 2014), but is close to the level
used for reference data in total diameter distribution predictions
(Maltamo et al., 2009).

The results of the comparison of different ALS-based diam-
eter distribution predictions showed rather small differences in
error indices. It was also notable that while RMSE percentage
figures were based on the transformation to the third powers of
diameter (thus giving more weight to large trees), the error indi-
ces were calculated from unweighted distributions. Thus, the
highest error index values for parameter recovery may be due
to the fact that it produced highly peaked and narrow distribu-
tion of estimates (Siipilehto and Mehtätalo, 2013). In our data,
the true distributions were usually very narrow, which can lead
to a high error index value due to a small estimation error in the
mean diameter. On the other hand, parameter prediction meth-
ods usually provide more averaged and flat distribution predic-
tions (Maltamo, 1997).

It was also notable that the mean error index values of the
fitted distributions (without prediction phase) were already over
40, indicating a rather small difference between the original
smoothed and predicted diameter distribution estimates. In
studies where the growth of predicted diameter distributions
has been simulated, the results have shown that small differ-
ences in the original distributions do not lead to larger differ-
ences in simulations (Maltamo and Kangas, 1998; Mäkinen
et al., 2008). Thus, the slightly larger error index values of par-
ameter recovery may not be a problem if diameter distribution
estimate is used for growth prediction.

We also tested field information based diameter distribution
prediction. The distribution parameters were predicted by apply-
ing true stand attribute values, whereas only assessments of
these variables can be used in practical inventories. In the nor-
thern boreal zone, the use of true attributes has led to RMSE%
values of predicted volume below 10 per cent (Kangas and
Maltamo, 2000), whereas when visually assessed stand attri-
butes were compared to the values of a systematic network of
circular sample plots within each stand, the corresponding RMSE
% values were at least 25 per cent (Haara and Korhonen, 2004).
The advantage of remote sensing based approaches over field
based approaches is that they provide that same information
in a spatially continuous way (Packalén and Maltamo, 2008).
In this study, we obtained an RMSE% of E(d3) of slightly more
than 10 per cent for field information based diameter distribu-
tion prediction. Our most accurate ALS-based diameter distribu-
tion predictions were almost as accurate as the field based
predictions and the differences were not statistically significant.
The fact that stand age was not chosen in the ALS information
based models despite being available as a predictor variable
reinforces the premise that ALS data can replace the need for
field information. Plantations differ from natural or semi-natural
forests in that the stand age is always known in the former. In
addition, initial constant planting density, clone type, and some
a priori information on the site index is known. In this study, we
applied the stem density and site index values calculated from

the field data. Thus, as this information is only available in plan-
tations, the accuracy values of field information based diameter
distribution prediction would be lower when applied to natural
forests.

Various studies have applied error indices (Reynolds et al.,
1988), statistical tests (Kolmogorov–Smirnoff: Siipilehto, 2000)
and accuracy of derived end products, such as stand volume
(Siipilehto, 1999) or approximate volume by means of third
power of diameter class frequencies (Kilkki and Päivinen, 1986)
to validate diameter distribution estimates. We employed the
mean of the third power of diameter in order to avoid the
effects of other attributes, such as height, and thus it was cho-
sen over the predicted stand volume as an accuracy criterion. In
the case of the error index, we tested proportional frequencies
between 0 and 1 without scaling them to any stand attribute,
which would affect the accuracy of the estimates. This was
done in order to focus solely on the relationship between ALS
metrics and diameter distributions. Either accuracy metric
describes a different aspect of each method; RMSE provides
information in regard to the capacity for final volume prediction
while the error index indicates the general fit to the diameter
distribution. As such, they may result in contradictions, as was
the case in this study. However, in regard to statistical signifi-
cance, our results showed that the most accurate methods
were the parameter prediction and k-nn and these methods
also have the desired property of compatibility between the pre-
dicted diameter distributions and measured stand characteris-
tics. In other words, the basal area, mean diameter and number
of stems based on the diameter distributions are equal to the
values used in the prediction.

Although comparing between different studies is difficult due
to inherent variations (e.g. different plot sizes, etc.), it is worth
noting that our average error index values were between 50
and 60, whereas Maltamo et al. (2009) obtained corresponding
values of over 80 in boreal forests in Norway, where the stands
typically had more than one species, and were pre-classified
according to development stage and dominant tree species.
This further emphasizes the strength of the relationship
between ALS metrics and diameter distributions, and how ALS
information can be used successfully in diameter distribution
prediction in plantations. Earlier studies that had predicted
stand attributes in the same plantation that we analysed in this
study (Packalén et al., 2011a; 2011b; Vauhkonen et al., 2011)
reported RMSE% values of volume estimates that varied
between 7 and 12 per cent depending on the level of applied
calibration (stand, clone). Although this study did not focus spe-
cifically on volume estimations, the results obtained for the third
power of diameters were, in general, very similar.

The results of this study demonstrated the potential of ALS
information to predict diameter distributions in single-species
plantations. They revealed only slight differences between the
modelling alternatives. Nonetheless, these results can also be
discussed in the context of more heterogeneous stand structures.
For example, in previous studies carried out in mixed species for-
ests, the k-nn method was more accurate than Weibull-based
alternatives (Packalén and Maltamo, 2008); while the k-nn meth-
od can predict multimodal diameter distributions, the Weibull
function is less flexible, which hampers its performance in forests
with very heterogeneous structures. One way to overcome that
weakness is to use a finite mixtures approach (Thomas et al., 2008),
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although that substantially increases the number of para-
meters to be estimated. The problem related to parameter
recovery is that the system of equations might not converge in
all cases. Although this shortcoming was not a major problem
in our plantation data, in mixed forests and heterogeneous
stands the lack of solutions may be a more severe problem.
Thus, in the case of unimodal diameter distributions, both ALS
information based parameter recovery and k-nn seem to be
feasible alternatives for modelling. Previous studies and the
findings of this study (e.g. convergence, close RMSE metrics of
parameter recovery and k-nn) suggest that k-nn approaches
should be used in more heterogeneous stand structures, espe-
cially in the presence of representative reference data and
without a need to separate species. The improvement of spe-
cies specific diameter distribution estimates could be achieved
by further refining the separation of species using ALS data-
sets, for example by integrating leaf off data or applying multi-
spectral ALS data.

Conclusions
We found a strong relationship between ALS information and
diameter distributions in single-species plantations. We found the
parameter recovery, in which stand attributes are first predicted by
ALS information and distribution parameters are later recovered
from those predicted attributes, and the k-nn method, which pro-
duces non-parametric tree lists, to be the most appropriate alter-
natives for ALS-based diameter distribution prediction in single-
species plantations. This conclusion was reached on the basis of
statistically significant differences among methods, the compatibil-
ity between predicted diameter distributions and general stand
attributes, and the accuracy of the stand volume approximation in
terms of E(d3). The ranking between different modelling alterna-
tives, however, varied depending on which accuracy metrics were
considered, and therefore the best choice of method depends on
the applied criteria. In more heterogeneous stand structures with
several tree species and multimodal diameter distributions, k-nn
may be the most suitable alternative since Weibull-based methods
may be challenged.
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