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Abstract: Airborne LIDAR is one of the most effective andiable means of terrain
data collection. Using LIDAR data for DEM generatics becoming a standard
practice in spatial related areas. However, thecéffe processing of the raw LIDAR
data and the generation of an efficient and highiguDEM remain big challenges.
This paper reviews the recent advances of airbbi@AR systems and the use of
LIDAR data for DEM generation, with special focusm d.iDAR data filters,
interpolation methods, DEM resolution, and LIDAR talareduction. Separating
LIDAR points into ground and non-ground is the mostical and difficult step for
DEM generation from LIDAR data. Commonly used andstnrecently developed
LIDAR filtering methods are presented. Interpolatimethods and choices of suitable
interpolator and DEM resolution for LIDAR DEM geiagion are discussed in detail.
In order to reduce the data redundancy and incrbasefficiency in terms of storage
and manipulation, LIDAR data reduction is required the process of DEM
generation. Feature specific elements such as Ibreakcontribute significantly to

DEM quality. Therefore, data reduction should bexdiated in such a way that



critical elements are kept while less importantredats are removed. Given the high-
density characteristic of LIDAR data, breaklines dae directly extracted from
LIDAR data. Extraction of breaklines and integratiof the breaklines into DEM

generation are presented.
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| Introduction

Digital Elevation Models (DEMs) play an importanble in terrain-related
applications. Researches on terrain data colleei@hDEM generation have received
great attention. Traditional methods such as fsel/eying and photogrammetry can
yield high-accuracy terrain data, but they are tenasuming and labour-intensive.
Moreover, in some situations, for example, in ftedsareas, it is impossible to use
these methods for collecting elevation data. Ainegotight Detection and Ranging
(LIDAR) - also referred to as Airborne Laser Scangn{ALS), provides an alternative
for high-density and high-accuracy three-dimendideaain point data acquisition.
One of the appealing features in the LIDAR outmuthe direct availability of three
dimensional coordinates of points in object spatab(b et al, 2005). LIDAR data
have become a major source of digital terrain imftion (Rabeet al, 2007) and has
been used in a wide of areas, such as buildingaetidn and 3D urban modeling,
hydrological modeling, glacier monitoring, landfoion soil classification, river bank
or coastal management, and forest management. Howevrain modeling has been
the primary focus of most LIDAR collection missiorfslodgsonet al, 2005).

Actually, the use of LIDAR for terrain data collest and DEM generation is the



most effective way (Forlani and Nardinocchi, 20@f)d is becoming a standard

practice in the spatial science community (Hodgsmh Bresnahan, 2004).

LIDAR has been studied since the 1960s (Flood, ROR&searches and design on
Airborne LiDAR for topographic data collection gt from the 1980s (Krabiét al,
1984; Bufton et al, 1991). Commercial Airborne LIDAR systems have rbee
operational since the mid-1990s (Pfeifer and Bri@€87), and it continues to be an
active area of research and development (Flood])2dhere has been a significant
increase in the use of LIDAR data for DEM generatiwer the last decade as more
reliable and accurate LIDAR systems are develofshgle and Vosselman, 2003).
Lohr (1998) and Kraus and Pfeifer (1998) are piome&ho demonstrated the
suitability of using airborne LIiDAR for the genamat of DEM. Since then DEM
generation from LIiDAR data under various condititwas been documented by many
authors (Lloyd and Atkinson, 2002; Wack and Wimn2802; Lee, 2004; Gongalves-
Secoet al, 2006; Lloyd and Atkinson, 2006; Koblet al, 2007). With LIiDAR data,
high density and high accuracy DEM can be generat€dmpared with
photogrammetry, one of the main competing technetogvith airborne LIDAR in
terms of accuracy, due to LIDAR’s capability of ogy penetration, DEM generation
from LIDAR data overcomes the limitations of phatagmetry for DEM generation
in forested areas. Kraus and Pfeifer (1998) dematest that the accuracy of LIDAR-
derived DEM in forested areas is equivalent to tfgthotogrammetry-derived DEM
in open areas. As an active remote sensing techynodorborne LIDAR data are free
of shadow. As such, LIDAR has advantage over phatagetry for DEM generation
in urban areas as well. However, raw LIDAR data cantain return signals from no

matter what target the laser beam happens to sinkkiding human-made objects



(e.g., buildings, telephone poles, and power linesyetation, or even birds (Barber
and Shortrudge, 2004; Stoket al, 2006). The desired target for DEM generation is
the bare earth points. Therefore, it is crucidiilter or extract bare earth points from
LIDAR data. Various filter methods have been depebtbto classify or separate raw
LIDAR data into ground and non-ground data. Howeveme of automated filter
processes is 100% accurate so far (Romano, 200dnudd editing of the filtering
results is still needed (Chen, 2007). Efforts atdl seeded to improve the

performance of filter algorithms.

Airborne LIDAR technology is still developing rapydin both sensor and data
processing. The competition between LIDAR sensonufectures is mostly focused
on increasing laser pulse repetition rates to cblmore data points. The pulse
repetition rate has increased from less than 50nkB001 (Flood, 2001) to 250 kH
now (Lemmens, 2007). High density data make it ipdsg0 represent terrain in
much detail. However, high density data lead tagaiicant increase in the data
volume, imposing challenges with respect to datarage, processing and
manipulation (Sangster, 2002). Although LIiDAR dats become more affordable for
users due to the gradually dropping of the costkibDAR data collection, how to

effectively process the raw LIDAR data and extmastful information remains a big
challenge (Chen, 2007). Furthermore, because ofspexific characteristics of
LIDAR data, issues such as the choices of modetiathods, interpolation algorithm,
grid size, and data reduction are challenging stogics for the generation of a high
quality DEM from LIiDAR data. This paper reviews thecent advance of using
LIDAR data for DEM generation, with special focusm d.iDAR data filters,

interpolation methods, and LIDAR data reductioneTllowing section gives an



introduction of airborne LIDAR system, highlightirepme recent developments of
airborne LIDAR systems. Section 3 reviews the dgwelent of algorithms for
filtering LIDAR data. Issues regarding terrain mbded interpolation methods are
discussed in section 4. Section 5 presents appesathLiDAR data reduction for

efficient DEM generation. The final section cona@sdhe discussion.

II Airborne LIDAR systems

Airborne LIiDAR is an active remote sensing techggldt actively transmits pulses
of light toward an object of interest, and receitke light that is scattered and
reflected by the objects. An airborne LIDAR systentypically composed of three
main components: a laser scanner unit, a Globati®uag System (GPS) receiver,
and an Inertial Measurement Unit (IMU) (Habab al, 2005; Hollauset al, 2005;
Reutebuclet al, 2005; Webster and Dias, 2006; Pfeifer and Brig66y7). The laser
scanner unit consists of a pulse generator of NéNYa&ser with a wavelength in the
range of 0.8um to 1.6um (typically, with 1.064um or 1.500um) and a receiver to
get the signal of scattered and reflected pulsas frargets (Wehr and Lohr, 1999;
Mukai et al, 2006; Pfeifer and Briese, 2007). The laser pudsegypically 4 to 15 ns
in duration and have peak energy of several millge (Wehr and Lohr, 1999;
Acharyaet al, 2004; Lemmens, 2007). Laser pulses are emittadae of up to 250
kHz to the Earth surface (Lemmens, 2007). The degtgrange) between the LIDAR
sensor and the object can be calculated by mutiglshe speed of light by the time it
takes for the light to transmit from and returrthe sensor (Watkins, 2005; Weitkamp,

2005). With recently developed LIDAR sensors, rapgecision can reach 2-3 cm



(Lemmens, 2007). The GPS receiver is used to ret@raircraft trajectory and the
IMU unit measures the attitude of the aircraft I(rgitch, and yaw or heading)
(Webster and Dias, 2006). The calculated range detvthe scanner and the target
and the position and orientation information obg¢dinfrom the GPS and IMU to
determine target location with high accuracy ireehdimensional spaces (Lt al,
2007b). The accuracy of LIDAR points is relatedthe accuracy of GPS and IMU.
Airborne GPS is able to yield results in 5 cm honitally and 10 cm vertically, while
IMU can generate attitude with accuracy within aple of centimetres. LIDAR data
can get an accuracy of 15 cm root mean square @MBE) in vertical and 20 cm

RMSE in horizontal (BC-CARMS, 2006).

The three dimensional LIDAR points are initiallypresented with latitude, longitude,
and ellipsoidal height based on the WGS84 referealipsoid. They can be
transformed to a national or regional coordinatgteay. At the same time, elevations
are converted from ellipsoidal heights to ortho+metieights based on a national or
regional height datum by using a local geoid mduéébster and Dias, 2006; Leet
al., 2007b). Currently, LIDAR data are typically dered as tiles in ASCII files
containing X, y, z coordinates, and (as clients aleah with LIiDAR intensity values

(Liu et al, 2007Db).

Airborne LIDAR systems are also capable of detgctimultiple return signals for a
single transmitted pulse (Wehr and Lohr, 1999; @hgmaet al, 2004; Reutebucht
al., 2005). Most LIDAR systems typically record fimhd last returns, but some are
able to record up to six returns for a single pyld&agneret al, 2004; Limet al,

2003). Multiple returns occur when a laser pulsekesta target that does not



completely block the path of the pulse and the reim@ portion the pulse continues
on to a lower object. This situation frequently wcin forested areas where there are
some gaps between branches and foliage (Reutetadh2005). Recording multiple
returns is quite useful for the topographic mappingforested area or for the

description of forest stand and structure (Shetraj, 2003).

In addition to the three dimensional coordinatessinLiDAR systems also have the
capability of capturing the intensity of the backitered laser pulse. The
backscattered laser signal is a function of mamiakbes such as the transmitted laser
power, laser beamwidth, range, atmospheric trarssomsand effective target cross
section (the effective area for collision of thedabeam and the target). The target
cross section is strongly dependent on the taejkdctance at the laser wavelength,
the target area, and the target orientation widpeet to the incoming laser beam
(Jelalian, 1992; Wagnest al, 2004; Coreret al, 2005; Parrisket al, 2005). The
optical signal received by the sensor is convetiedan electrical signal by a
photodetector (typically an avalanche photodiodd)e generated photocurrent or
voltage is then quantized to a digital number (lguexpressed in percent value,
representing the ratio of strength of reflectetititp that of emitted light (Sonet al,
2002)) which is referred to as the LIDAR intensitglue for the particular return
(Jelalian, 1992; Barbarelkt al, 2004; Coreret al, 2005). The LIiDAR intensity data
then can be interpolated to a geo-referenced ityeinsage with orthogonal geometry.
This intensity image assists surface classificatonl therefore is of potential to

improve the generation of DEMs (Hofle and Pfeid07).



The aforementioned airborne LIDAR is so called dige return system. Currently,
commercial full-waveform airborne LIiDAR is availab(Pfeifer and Briese, 2007).
While discrete return systems typically allow farecor multiple (up to six) returns to
be recorded for each laser pulse (Lémal, 2003), full-waveform systems digitize
and record the entire backscattered signal of emcitted pulse (typically with an
interval of 1 ns) (Wagneat al, 2006; Chauvet al, 2007; Mandlburgeet al, 2007).

In post processing, the waveform is decomposedargom of components or echoes,
so as to characterise the different targets albagath of the laser beam (Chawte
al., 2007). For each returning echo of single lasdsguthe echo width and the
amplitude for all the small individual scattereantributing to one echo is determined.
If the echo width is small, a rather flat surfatengent was illuminated (Doneus and
Briese, 2006a). Doneus and Briese (2006b) investigéhe possibility for DEM
generation using full-waveform LIiDAR data. With thelp of a pre-filter step that
eliminates echoes with a higher echo width, a Sigamt improvement of the DEM

could be achieved (Pfeifer and Briese, 2007).

Currently, most airborne LIDAR systems are onlyeatol record the reflections of one
laser pulse before the next is emitted. In ordent¢cease the data coverage rate by an
increase in the flying height, pulse repetitiorerahd maximum range, the so-called
multi-pulse technology was introduced. This tecbgglallows to detect the returns
of multi laser pulses simultaneously (Mandlburgeral, 2007; Pfeifer and Briese,
2007). Moreover, multiple scanners can be boardedme airborne platform for
increasing side-looking or for forward and backwérdking (Mandlburgeret al,

2007).



Other important developments of airborne LIDAR eys$ include the integration of a
high resolution digital camera or a digital videanera with a LIDAR system
(Ackermann, 1999; Ahlbergt al, 2004). For each collected digital image, the
position and orientation of the camera can be obthiby using the GPS and IMU
data. Exterior orientation parameters for each &ramimagery are directly provided
by these position and orientation data. Therefooestereo overlapping images and/or
ground control points are needed. Orthorectificattan be completely automatic by
using the digital images and a LiDAR-derived DEMh(Berget al, 2004). Currently,
the commercial system integrating a passive RG8e (tolour) and CIR (colour
infrared) line scanner with airborne LIDAR is awdle (BC-CARMS, 2006). It is
expected that the LIDAR system can be combined mitiitispectral or hyperspectral
imaging systems, which will result in highly veigatsystems and extended LiDAR
application potential (Ackermann, 1999). For dstaf some commercial airborne
LIDAR systems, readers are referred to Lemmens7AR®etrie (2006) and Jenkins

(2006).

lIl  Filtering of LIDAR data

One of the critical steps for DEM generation fronDAR data is to separate the
LIDAR points into ground (terrain) and non-grounchoK-terrain) points.
Automatically separating ground and non-ground gofrom LiDAR point clouds
has proven to be surprisingly difficult, especialbr large areas of varied terrain
characteristics. Therefore, developing efficient affective methods for filtering

LIiDAR points is currently an active research tof@dvan-Cardenas and Wang, 2006).



Over the past years, several filter algorithms ha@en developed for automatically
extracting ground points from LIiDAR point cloudsit{®le and Vosselman, 2004;
Silvan-Cardenas and Wang, 2006; Kobké¢ral, 2007), among which interpolation-
based (Kraus and Pfeifer, 1998), slope-based (Ufosse 2000; Roggero, 2001;
Sithole, 2001; Shan and Sampath, 2005), and margloal (Zhanget al, 2003;
ZakSek and Pfeifer, 2006; Chenhal, 2007) are the most popular approaches (Silvan-

Cérdenas and Wang, 2006).

1 Interpolation-based filter

Interpolation-based filter, or called linear preatin, was first proposed by Kraus and
Pfeifer (1998). It iteratively approximates therém surface using weighted linear
least squares interpolation (Chenal, 2007). A rough approximation of the terrain
surface is calculated first with equal weights &irpoints. This estimated surface is
an averaging surface between terrain points aneteroain points. The residuals, i.e.
the oriented distances from the surface to thetpa@re then calculated (Pfeifer al,
2001). Terrain points usually have negative redgjuahile non-terrain points have
positive residuals (Cheet al, 2007). Each point is then assigned a weight aacgr
to its residual (Kraus and Pfeifer, 1998; Pfeiétral, 2001). Points with negative
residuals are assigned high weights (Ceeal, 2007) which are considered to be on
the terrain surface, while points with low weighte assumed to be non-terrain points
(Lee and Younan, 2003). The process is iteratethabthe surface gets closer and

closer to the ground (Crosilit al, 2004).
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This filter method was originally developed fortdéiling LIDAR data and terrain
modelling in forested areas, and later extendeds®in urban areas (Pfeifet al,
2001). However, this filter method is not appliGahbb a terrain with steep slopes and
large variability (Lee and Younan, 2003). To oveneothis problem, Lee and Younan
(2003) developed a combined modified linear préaticend an adaptive processing
method. The modified linear prediction is an exiemso the previous work presented
by Kraus (1997), Kraus and Pfeifer (1998), Pfeieral. (1998), and Pfeifeet al.
(1999). The ground points obtained from the lingediction filtering are compared
with the original points, and only those pointshwihe same x and y coordinates as
the original points are extracted for refinemenpoge. Spurious peaks are eliminated
by using adaptive filtering in which the normalizZiedst square is used to replace the
least square algorithm used in Kraus and Pfeigeethod (Lee and Younan, 2003). It
was shown that better results can be achievedeiratba with steep slopes and large
variability. However, the implementation of this thed requires a priori knowledge
of a number of parameters such as the delay fatirrdaptation parameter, and the
filter order (Lee and Younan, 2003; Cheh al, 2007). The performance of the
adaptive algorithm depends on appropriately selgcthese parameters (Lee and
Younan, 2003). Mandlburgeet al. (2007) used full-waveform information to
determine a-priori weights of the LIDAR points. Bleea-priori weights allow to
combine the additional knowledge of the echo aiteb with the geometric criteria

within surface estimation so that improve the gbsarface approximation.
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2 Slope-based filter

The slope-based filter developed by Vosselman R@8sumes that the gradient of
the natural slope of the terrain is distinctly diffnt from the slope of non-terrain
objects such as buildings and trees (Sithole, 2@lbpes between a LIDAR data and
its neighbours are compared. If the slope betwbenliDAR point and any other
point within a given circle exceeds a predefinedeshold, the LIDAR point is
assumed to be a non-terrain point. The successiog this method is dependent on
threshold definition and terrain type. It is aicat step to determine an optimum
threshold in slope based filtering methods (Zhanhgl, 2003). Obviously, the lower
the threshold, the more points will be classifiedbare earth. The definition of a
reasonable threshold should incorporate the knayeledbout terrain in the study area
(Vosselman, 2000; Zhangt al, 2003). Good thresholds may be obtained from
training datasets. However, it is impractical foe ttraining datasets to include all
types of ground measurements in a study area (Zétaalg 2003). Slope-based filters
work well in fairly flat terrain, but become moréfatult as the slope of the terrain
increases (Sithole and Vosselman, 2004), espedmabysteep forested landscape. To
overcome this limitation, Sithole (2001) proposethadified approach in which the
threshold varies with the slope of the terrainwhs demonstrated that modified

method improved filtering results, especially iaegi terrain area.

3 Morphological filter

Morphological filter for LIDAR data processing isi$ed on the idea of mathematical

morphology (Kilianet al, 1996; Lohmannret al, 2000), which has been used to
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identify objects in a greyscale image by using rhotpgical operations such as
opening and closing (Harlick and Shapiro, 1992)e Télevations of non-terrain
objects such as trees and buildings are usuallizehighan those of surrounding
ground points. If LIDAR points are converted to eeygcale image in terms of
elevation, the non-terrain objects can be idemtifiy the difference of grey tone
(Zhanget al, 2003). A point with the lowest elevation withirgaven window size is
first detected by performing an opening operatiartlee LIDAR data. The points in
this window that fall within a band above the lotvetevation are then selected as
ground points. The determination of band width epehdent on the accuracy of the
LIDAR data, which is normally 20 to 30 cm. All LiCRRA points are filtered by moving
the filtering window over the entire LIDAR coveredea (Zhanget al, 2003). It is
critical to select an optimal window size for usittigs morphological filter (Kilianet
al., 1996). If a small window size is used, only srmalh-ground objects such as trees
and cars can be effectively removed, but the paatsesponding to the tops of large
building complexes in urban areas can not be retho®a the other hand, the filter
will treat some ground points as non-ground poihtasing a large window size
(Zhang et al, 2003). To solve this problem, Kiliaet al, (1996) applied the
operations several times with different window site the LIDAR data starting with
the smallest size. Each point was then assigneeightwelated to the window size if
it is classified as a ground point. The larger whedow size of an operation is, the
higher the weight of a point. Points which are Ijken ground have high weights
while non-ground points have low weights. Finathg terrain surface is estimated by

using all the LIDAR points with assigned weightsligh et al, 1996).
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Zhang et al, (2003) described a progressive morphologicaérfilo remove non-
ground points while preserving ground points bydgedly increasing the window size
and using elevation difference thresholds. An ahifiltered surface is derived by
applying an opening operation with a window sizethe raw LIDAR data. An
opening operation is then performed on the ingiafface to derive a second surface.
The elevation difference of a cell between surfasesompared to a threshold to
determine if the point in this cell is non-groundirg. In the next iteration, the
window size is increased, and another opening tiparéas applied to the filtered
surface. These steps are repeated until the siteediltering window is larger than
the pre-defined largest size of non-ground objéeldte. threshold is determined by the
elevation difference and terrain slope (Zhang ardtinan, 2005). ZakSek and Pfeifer
(2006) proposed an improved morphological filter ingorporating trend surfaces
extracted from raw LIDAR data to the morphologicgeration to improve the
filtering results in steep forested area. Chel, (2007) presented a method that is
similar to (Zhanget al, 2003)’'s method, but does not require the assampif a
constant slope. The method is based on the assaamip&t non-ground objects such
as buildings usually have abrupt elevation chamd@msg boundaries while the change

of natural terrain elevation is gradual and coruim

4 Other filters and future development

All the above described filters are based on suesures as height difference and

slope. As local properties are scale-dependentjs itnecessary to integrated

measurements at different scale. Silvan-Cardends\tang (2006) proposed a multi-

scale Hermite transform method, employing the sspéce theory to represent the
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grided elevation values in the filtering LIDAR datd scale component was also
added to the method presented by Evans and Hud#k’Y2called to as multiscale
curvature algorithm. This method is base on cureafiter (Haugerud and Harding,
2001), but iteratively classifies LIDAR data as wnd and non-ground points at

multiple scales.

For segmentation-based filters, raw LIDAR data farst interpolated to grid image,
and then segmentation is performed by aggregatignmxels in connected sets by
region growing algorithm. Segmentation approachey with the measurements of
the similarity between regions (Rabbarea al, 2006). Height difference is the
commonly used measurement. Segmented regions @aeatsd by a step edge from
the adjacent ones. Finally, the classification emducted based on the geometric
characteristic of each region and their topologieddtionships (Nardinocclet al,
2003). Other research work on segmentation-basted éan be found in (Jacobsen
and Lohmann, 2003; Sithole, 2005; Sithole and Vosae, 2005; Tovari and Pfeifer,

2005).

A wavelet-based filter was proposed by Vu and Tealgan(2001). In this method, K-
mean clustering method was applied to grided LiDdd®a to label pixels to ground
and non-ground. Multi-resolution clustering wastlier used with the wavelet-based
method to improve the filtering results. For otlstundies regarding wavelet-based
filter for LIDAR data, readers are referred to Arag003), and Bartels and Wei

(2006).
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New filtering methods continue to be proposed amaliphed in some journals at time
of writing of this paper. For example, Koblet al. (2007) proposed a repetitive
interpolation method, attempting to filter LIDAR tdafor terrain modelling in steep
forested area. Zhengt al (2007) described a facet-based filtering methodchvliis
based on the zero, second, and third orders obgotial polynomials, using the
simple, quadratic, and cubic faced models to apprate ground surface. Forlani and
Nardinocchi (2007) presented a three stage LIDAR: d@#assification algorithm. It
includes the steps of interpolation of LIDAR dabaat gird image, segmentation from
region growing based on geometric characteristicktapological relationships, and
approximation of the terrain surface and pointefihg by examining the distance

from the surface.

To assess the performance of various filters dgeelp the ISPRS (International
Society of Photogrammetry and Remote Sensing) WgrkGroup I1I/3 “3D
Reconstruction from Airborne Laser Scanner and R32ata” initiated a study in
2002 for experimental comparison of the strengtll exeaknesses of the different
filtering approaches. The primary aim of the studgs to: (1) determine the
comparative performance of existing filters; (2}edmine the sensitivity of filtering
algorithms under varying point densities; and (@niify future research issues in the
filtering of point clouds (Sithole and Vosselmai®02). It has been found that most
filters performed well in landscape of low complgxiHowever, complex landscapes,
especially in the urban areas still pose big chghs for future researches for

effective LIDAR data filter development (Sitholeda¥osselman, 2003).
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Most of filtering algorithms developed so far reguthe raw LIDAR data to be
interpolated into grid images first. Filtering ondyimage runs faster. Existing raster
image classification and feature extraction methzaisbe used for filtering operation.
However, interpolation of the raw LIDAR data toiamage causes a significant loss of
information and introduces errors to the resultsheWw elevation values are
interpolated between ground points and non-growidtg, the elevation differences
in the interpolated data will be reduced. This wdlise difficulty to correctly identify
and remove non-ground points (Vosselman, 2000)refbee, the filtering algorithm
should work on raw LIDAR point data instead of npigated grid image (Sithole and

Vosselman, 2005; Zhang and Cui, 2007).

Currently, all the filtering algorithms are depentlenly on geometric characteristics
of LIDAR point data. There is increasing awareneksising additional information
such as intensity and derivatives from full-waveidn order to increase the accuracy
and reliability in the filtering process (Lohmarmat al, 2000; Mandlburgeeet al,
2007). Vosselman (2002) suggested using the inteakihe laser beam response in
order to estimate and improve the position of tthgeein between areas with different
reflectance properties. Doneus and Briese (2006&9 full-waveform information to
eliminate echoes with a significantly higher echalttv which are correspondent to
non-ground points. Mandlburget al. (2007) used echo width to determine weights

for LIDAR points in the interpolation-based filteg process.

17



IV Model, interpolation and resolution for DEM generaton

1 Model selection

Different digital elevation models have been depebbto represent the terrain surface.
The regular grid (usually square grid) digital eleBon model (DEM), the triangular
irregular network (TIN), and the contour line modek the most commonly used
digital elevation models (Ramirez, 2006). The dPiEIM uses a matrix structure that
implicitly record topological relations between @gtoints (El-Sheimyet al, 2005).
Each grid cell has a constant elevation valuetierwhole cell (Ramirez, 2006). This
constant elevation value is usually obtained bgrpalation between adjacent sample
points. Of the three digital elevation models, gr&l DEM is the simplest and the
most efficient approach in terms of storage andipudation since this data structure
is similar to the array storage structure in corap(El-Sheimyet al, 2005; Ramirez,
2006; Ziadat, 2007). However, this approach isldéiab introduce errors because of
its discontinuous representation of the terraifiegar. It is evident that the bigger the
grid size, the more general the approximation @f térrain surface representation
(Ramirez, 2006). LIDAR data have high density, amtl overcome this kind of
limitation of grid DEM. Furthermore, large volumé biDAR data needs such a
model for efficient storage and manipulation. Theme, almost all the LIDAR-
derived DEMs have been generated using grids (Lb®88; Wack and Wimmer,
2002; Lloyd and Atkinson, 2006; Liet al, 2007b). Kraus and Otepka (2005) showed
the benefits of using a hybrid model for digitafré& modelling. This approach
employed TIN model for complex geomorphologic araad grid model for simple

areas.
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2 DEM interpolation method

Interpolation is an approximation procedure in reatatics and an estimation issue in
statistics (Liet al, 2005). It is the process of predicting the valoka certain variable
of interest of unsampled locations based on medstateies at points within the area
of interest (Burrough and McDonnell, 1998). Intdgtion in digital terrain modelling
is used to determine the terrain height value pbiat by using the known heights of
neighbouring points. Two implicit assumptions hexes: the terrain surface is
continuous and smooth; and there is a high coroaldtetween the neighbouring data
points. Interpolation is one of the core techniquedigital terrain modelling (Let al,

2005).

Interpolation methods available for constructinQEM from sample elevation points
can be classified into: deterministic methods sagmverse distance weighted (IDW)
(assumes that each input point has a local infle¢inat diminishes with distance) and
spline-based methods that fit a minimum-curvaturéase through the sample points;
and geostatistical methods such as Kriging thaggakto account both the distance
and the degree of autocorrelation (the statistelationship among the sample points).
Deterministic methods create surfaces from samgil@pbut do not take into account
a model of the spatial processes within the datadéhson et al, 2005a).
Geostatistical methods utilize the spatial corretatproperties to the sample data

(Andersonet al, 2005a).

IDW assumes the closer a sample point is to theligiren location, the more

influence it has on the predicted value. It estemah point value using a linear-
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weighted combination set of sample points. The hisigssigned depend only on the
distances between the data locations and the plartitocation to be estimated, but
the relative locations between sampling data ateoasidered (Myers, 1994). Points
closer to the predicted location exert bigger wkgkhan those farther away
(Andersonet al, 2005a). The IDW works well for dense and evattributed
sample points (Childs, 2004). However, if the sammlints are sparse or uneven, the
results may not sufficiently represent the desgsedace. Moreover, because the IDW
is a weighted average method, it can not make attgrthat are outside the range of
minimum and maximum sample point values. As a tessbme important
topographical features such as ridges and vallapgsnot be generated unless they

have been adequately sampled (Lee, 2004).

Spline interpolation method estimates values usingiathematical function that
minimizes overall surface curvature. This resuitsai smooth surface that passes
exactly through the sample points (Podobnikar, 2005s like bending a sheet of
ruber so that it passes through all the sampletgoirhile minimizing the total
curvature of the surface (Childs, 2004). Unlike tb&/ method, the spline method
can estimate values that are below the minimunbova the maximum values in the
sample data. This makes the spine method good réatiqling ridges and valleys

where they are not included in the sample datald€h2004).

Kriging were originally developed to estimate thmatsal concentrations of minerals
for the mining industry, and now has been widelgdug1 geography and spatial data
analysis (Lee, 2004; Tang, 2005). Kriging assunieg the distance or direction

between sample points reflects a spatial correlatitat can be used to explain
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variation in the surface (Childs, 2004). Krigingkea into account both the distance
and the degree of variation between sampling date extent to which this
assumption is true can be examined in computedgam (Chaplotet al, 2006).
Kriging is essentially a weighted average technidug its weights depend not only
on the distances between sample points and estiméications but also on the
mutual distances among sample points (Cressie,; I93net, 1997; Andersaet al,

2005a).

The variety of available interpolation methods hes to questions about which is
most appropriate in different contexts and hasidated several comparative studies
of relative accuracy (Zimmermaet al, 1999). To evaluate the performance of some
commonly-used interpolation methods, a variety ofpeical work has been
conducted to assess the effects of different meatlbdterpolation on DEM accuracy
(Zimmermanet al, 1999; Ali, 2004; Blaschket al, 2004; Mardikiset al, 2005;
Chaplotet al, 2006; Kyriakidis and Goodchild, 2006; Lloyd andkiéson, 2006).
There seems to be no single interpolation methatl ifithe most accurate for the
interpolation of terrain data (Fisher and Tate, &00None of the interpolation
methods is universal for all kinds of data sourdestain patterns, or purposes.
Zimmermanet al (1999) showed that kriging yielded better estioret of elevation
than IDW did, especially when sampling points bee@parse (LIloyd and Atkinson,
2006). The result is probably due to the abilitykofying to take into account the
spatial structure of data (Chaplet al, 2006). However, If the sampling density is
high, there is no significant differences betweekViand kriging methods (Chaplet
al., 2006). Furthermore, Ali (2004), Blaschke (2004 &odobnikar (2005) pointed

out that the IDW method performs well if samplingta density is high, even for
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complex terrain. LIDAR data have high sampling disnsnd so the IDW approach is
a suitable interpolator for DEM generation from AR data (Liuet al, 2007Db).
Spline-based methods are easy to use and produsslssurface (Podobnikar, 2005;
Smith et al, 2005) but with less recognisable characterigtatures like peaks, ridges
and valleys (Podobnikar, 2005). New or modifie@rpblation methods are still being
developed, attempting to improve the interpolatdrerrain surface (Almanset al,

2002; Shi and Tian, 2006).

3 DEM resolution

Resolution initially refers to the level of detak smallest object that can be
recognized on an aerial photograph (Way, 1978).argnid DEM, it refers to the grid
size of the DEM, expressed as ground distance.shtedler the grid size the higher
the resolution, representing terrain surface inemetail. Determination of a DEM
grid size is the central problem for DEM generatama spatial analysis. The general
idea is get an adequate description of terraimasarfvith a minimum amount of DEM
data or with grid size as big as possible whili sieeting a defined accuracy to serve
the specific purpose (Gao, 1997). A very high nesoh DEM may result in
representation of a terrain surface that is muchendetailed than is relevant for the
process being modelled (Ziadat, 2007), imposingeaagssary computation burden.
The optimal grid size for a DEM is therefore a coampise between the accuracy of
terrain representation and cost effectiveness (Hengl, 2003). An appropriate grid
size is dependent on source data density (McCulld§i88; Hu, 2003), terrain
complexity (Gao, 1997; Choat al, 1999; Henglet al, 2003; Hengl, 2006), and

applications (Barber and Shortrudge, 2004; Kierz2084,; Ziadat, 2007).
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It is inappropriate to generate a high resolutiddMDwith very sparse terrain data:
any surface so generated is more likely to reptesem shape of the specific
interpolator used than that of the target terragcabise interpolation artefacts will
abound (Florinsky, 2002; Albamit al, 2004). The source data density constrains the
resolution of DEM (Florinsky, 1998). On the otheankl, generating of a low
resolution DEM from high density terrain data wadévalue the accuracy of the

original data.

Clearly, the choice of the adequate resolution DEM is constrained by terrain input
data density. McCullagh (1988) suggested that thebler of grids should be roughly
equivalent to the number of terrain data pointsonered area. The grid size of a

DEM can be estimated by:

=l

wheren is the number of terrain points aidis the covered area (Hu, 2003). This
means that the DEM resolution should match the 8agplensity of the original

terrain points.

The optimized grid size for a DEM is the one thedtects the variability of the terrain
surface and is able to represent the majority mwéire features (Kienzle, 2004; Hengl,
2006). If terrain is treated as a signal, its frgey can be determined by the density
of inflection points. Hengl (2006) gave an ideadetermining the grid size based on
the terrain complexity that the grid size shouldabdeast half the average spacing

between the inflection points:
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whereL is the length of a transect amd, is the number of inflection points observed.

For example, if there are 20 inflection points awtrage spacing between them is

0.8m, a grid resolution of at least 0.4m is recomadeel.

Selection of a suitable resolution for a DEM isoatgghly dependent on different
applications. High resolution DEMs may significgniinprove the predictive ability
of terrain attributes (Lassueet al, 2006). However, the choice of input DEM data
resolution for terrain based environmental modglilepends on the output of interest
(Chaubeyet al, 2005). The general idea is to select a resolutian produces best
predictive properties. Many researches have inyasd the effects of different
resolutions on the accuracy of specific applicatiodels (Hengl, 2006). Instead of
analysing elevation differences data directly, a@rrattributes and hydrological or
other environmental parameters derived from differesolution DEMs are compared
for selecting a suitable resolution for the DEMttbarresponds to the content of the
source data (Kienzle, 2004). The relevant researche be seen in (Garbrech and
Martz, 1994; Zhang and Montgomery, 1994; Florinakg Kuryakova, 2000; Kienzle,

2004).

The grid DEM is commonly over-sampled in low releaas and under-sampled in
high relief areas (Hengdt al, 2003). Furthermore, the size of regular grids rainbe
adapted to the complexity of the relief. FeaturecHr points such as peaks and pits

may be missed (EI-Sheinsgt al, 2005), and linear features such as breaklineaatre
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well represented. One way to increase the detitbeoterrain representation is to
increase the sample point density and decreas@ritiesize. This will lead to the

redundancy of sample point and the increase ofsiata

V LiDAR data reduction

1 Why LIiDAR data reduction

The primary objective of data reduction is to aghi@an optimum balance between
density of sampling and volume of data, hence dpiimg cost of data collection
(Robinson, 1994). Under optimal interpolation, velstailed high resolution DEMs
with high accuracy can be generated from high dgnsiDAR data. However,
because there is no scope to match data acquisi@insity by terrain type during a
LIDAR data collection mission, some oversamplingissially inevitable. As a result,
the data storage requirement and processing timksev higher than otherwise.
Strategies for handling the large volumes of terdata without sacrificing accuracy
are required (Kidner and Smith, 2003) if efficiensyto be considered (Bjgrke and
Nilsen, 2002; Pradhaat al, 2005). Via data reduction (i.e. ratio of the mf@tion
content to the volume of the dataset) (Cledual, 1999), a more manageably and
operationally sized terrain dataset for DEM genenats possible (Andersoat al,

2005a).

Some studies on terrain data reduction have beeducted based on the analysis of

the effects of data reduction on the accuracy oMBE&Nd derived terrain attributes.
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For example, Andersoet al. (2005b) evaluated the effects of LIDAR data dgnsit
DEM production at a range of resolutions. They pomtl a series of DEMs at
different horizontal resolutions along a LIDAR pbidensity gradient, and then
compared each DEM produced with different LIDAR aladensity at a given
horizontal resolution, to a reference DEM produéean the original LIDAR data
(the highest available density). Their results shbat higher resolution DEMs are
more sensitive to data density than lower resaiubB&EMs. It was demonstrated that
LIDAR datasets could withstand substantial dataucédns yet maintain adequate
accuracy for elevation predictions (Anderseh al, 2005a). Liuet al. (2007a)

examined the relationship between data densitg, filatsize, and processing time.

It has been demonstrated that the effects of dataity and DEM resolution on the
accuracy of DEM and derived terrain attributes eelated to terrain complexity
(Chou et al, 1999; Kyriakidis and Goodchild, 2006). Differeabmplex terrains
require different data density and resolution todpice DEMs to represent terrain
surfaces at a certain accuracy level. Furthermdifeerent data elements contribute
differently to the accuracy of produced DEM. Theclusion of critical terrain
elements such as breaklines into the constructi@gm@EM will decrease the number
of data points while still maintaining high levdlaccuracy (Hsia and Newton, 1999).
Therefore, Data reduction should be conducted ¢h suway that critical elements are

kept while less important elements are removed (@Gt@l, 1999).
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2 Breakline extraction

Breaklines (or called as structure lines or skeldines), such as ridge lines and
valley lines, are important terrain features ay ttiescribe changes in terrain surface
(Lichtenstein and Doytsher, 2004). Breaklines naiyoprovide the elevation
information, but also implicitly represent terraimiormation about their surroundings.
They describe terrain surface with more significafbrmation than other points (Li
et al, 2005). Their preservation and integration in theneration of DEM
significantly contribute to obtaining a reliable, omphological correct, and
hydrologically enhanced DEM (Brugelmann, 2000; ligctstein and Doytsher, 2004).
Moreover, breaklines play an important role in grecess of data reduction of the
DEM (Briese, 2004a). With breaklines involved i ttreation of DEMs, the number

of points needed to represent the terrain canleaeduced (Little and Shi, 2001).

Traditionally, breaklines were derived either bynmally digitizing existing maps
(Briese, 2004a) or by photogrammetric processingidgBlmann, 2000). Both
approaches are time consuming. Given the high tyecisaracteristic of LIDAR data,
much attention has been paid to the direct deawmadi breaklines from LIiDAR data.
Developed methods work either on irregular LIDARIm® or on LiDAR-derived
range image - raster representation of the surf@dese, 2004a). As breaklines are
discontinuities in the terrain surface, Weidner 940 proposed an algorithm for
parameter free information-preserving surface rastm. The signal and noise
properties of data are extracted simultaneouslyapplying variance component
estimation and are used to filter data. This wagcahtinuities in the data are

preserved. A similar method was used by Watdal. (1996) for the automatic DEM
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generation and breakline detection. The method qaeg by Gomes Pereira and
Wicherson (1999) calculated first derivatives fratigital surface. Cells are then
labeled as slope cells where the slope changepthbrBreaklines are connections of
border cells between slope and flat areas (Brigaina2000). Gomes Pereira and
Janssen (1999) applied the Laplacian operator BBARi range image for breakline
detection. Forstner (1998) used the principle afeedetection in intensity images to
extract breaklines by means of hypothesis testBased on Foérstner's method,
Briigelmann (2000) presented a procedure by usicmnsederivatives and hypothesis

test after performing a smoothing operation on eantage.

All the above approaches work on grid image derifrech LIDAR elevation data
rather than on LIiDAR point clouds. This implies ectease of accuracy due to the
necessary interpolation process (Brzatkal, 2005). An approach to 3D breakline
extraction directly from LIDAR points was presentedKraus and Pfeifer (2001) and
Briese (Briese, 2004a). This method estimates Eh@dsition of a breakline through
the intersection line of continuously overlappingrface patch pairs along the
breakline (Briese, 2004b). The construction of atef requires the appropriate
position of searched breakline (Brzaekal, 2005). 3D breakline growing (Briese,
2004a) and edge detection (Brzastkal, 2005) approaches were proposed to obtain

this approximation.

Valley lines connecting the deepest points of yalland ridge lines connecting the
highest points of ridges are the typical breaklirsesl are of essential importance for
the description of terrain surfaces (Aumaetral, 1991; Gulgen and Gokgodz, 2004).

Since a stream occurs along the bottom of a vdlleyderwood and Crystal, 2002),
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the determination of streams in a DEM provides adgway to detect valley lines
(Dorningeret al, 2004). Most approaches to extracting drainageors from DEM

employed the well-known water flow accumulation rebdrhis method, designated
D8 algorithm (eight flow directions), was introdaickey O'Callaghan and Mark (1984)
and has been widely used. Ridge lines can alscetextegd this way by inverting a

DEM (Dorningeret al, 2004).

3 Integration of breaklines to the generation of DEM

A number of algorithms have been developed forgratng breaklines to the
generation of a DEM. They can be classified to gmaups. The first is based on TIN
model, in which breaklines are integrated intongalated network and are physically
preserved (Lichtenstein and Doytsher, 2004). Tlerseis applied to grid DEMs and
based on the ideal of constructing hydrologicallyrect DEMs. Examples include
stream burning and surface reconditioning (Agreeor ANUDEM). Stream burning
was developed to improve the replication of strepositions by modifying the
elevation value of stream cells within a DEM tonttk known hydrological patterns
into a DEM at a user specified depth (Call@w al, 2007). The Agree method,
developed by Hellweger (1997), is a DEM reconditign process, modifying
elevation values within DEMs by imposing breaklisegh as ridge or stream lines to
DEMs. The modifications work on both breakline sedind the surrounding cells
within a user defined horizontal buffer distancal(@v et al, 2007). TheANUDEM
method can alter the entire DEM via an iterativairtige enforcement algorithm to
eliminate abrupt jumps between the stream and tream cell (Hutchinson, 1996;

Callow et al, 2007). The drainage enforcement algorithm is ohehe principal
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innovations of ANUDEM. It ensures good shape andindige structure in the
calculated DEMs by imposing a drainage enforcenoemidition on the fitted grid

values directly from input streamline data (Hutcin, 2006).

VI Conclusion

Advances in airborne LIDAR systems make it possiblacquire high quality terrain
data in terms of accuracy and density. Using LiDA&a for DEM generation is
becoming a standard practice in spatial relatedsar8eparating LIDAR points into
ground and non-ground is the most critical andalift step for DEM generation from
LIDAR data. Although different filtering algorithmbave been developed, further
efforts are needed to improve the filtering resuAdmost all the algorithms are
dependent only on geometric characteristics of LBRDpoint data. Using additional
information such as intensity and derivatives friuthwaveform has a potential for
increasing the accuracy and reliability in theefibhg process. Although DEM
generation from LIiDAR data has been documentedewveral papers, due to the
specific characteristics of LIDAR data, extensittemtion should be paid to issues
such as choices of modelling methods, interpolagigorithms, and DEM resolution.
For high density LIDAR data, IDW is a suitable imgelator. The optimized DEM
resolution must match the density of LIDAR datad &e able to reflect the variability
of the terrain surface and represent the majofitienain features. Furthermore, in
order to reduce the data redundancy and increaseftitiency in terms of storage
and manipulation, LIDAR data reduction is required the process of DEM

generation. Different data elements have differeffiécts to the DEM accuracy.
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Therefore, data reduction should be conducted¢h suwvay that critical elements are
kept while less important elements are removedraéibn and inclusion of critical
terrain elements such as breaklines into the gaaeraf a DEM will decrease the

number of data points while still maintaining higlel of accuracy.
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