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Abstract: Airborne LiDAR is one of the most effective and reliable means of terrain 

data collection. Using LiDAR data for DEM generation is becoming a standard 

practice in spatial related areas. However, the effective processing of the raw LiDAR 

data and the generation of an efficient and high-quality DEM remain big challenges. 

This paper reviews the recent advances of airborne LiDAR systems and the use of 

LiDAR data for DEM generation, with special focus on LiDAR data filters, 

interpolation methods, DEM resolution, and LiDAR data reduction. Separating 

LiDAR points into ground and non-ground is the most critical and difficult step for 

DEM generation from LiDAR data. Commonly used and most recently developed 

LiDAR filtering methods are presented. Interpolation methods and choices of suitable 

interpolator and DEM resolution for LiDAR DEM generation are discussed in detail. 

In order to reduce the data redundancy and increase the efficiency in terms of storage 

and manipulation, LiDAR data reduction is required in the process of DEM 

generation. Feature specific elements such as breaklines contribute significantly to 

DEM quality. Therefore, data reduction should be conducted in such a way that 
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critical elements are kept while less important elements are removed. Given the high- 

density characteristic of LiDAR data, breaklines can be directly extracted from 

LiDAR data. Extraction of breaklines and integration of the breaklines into DEM 

generation are presented.   
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I  Introduction 

 

Digital Elevation Models (DEMs) play an important role in terrain-related 

applications. Researches on terrain data collection and DEM generation have received 

great attention. Traditional methods such as field surveying and photogrammetry can 

yield high-accuracy terrain data, but they are time consuming and labour-intensive. 

Moreover, in some situations, for example, in forested areas, it is impossible to use 

these methods for collecting elevation data. Airborne Light Detection and Ranging 

(LiDAR) - also referred to as Airborne Laser Scanning (ALS), provides an alternative 

for high-density and high-accuracy three-dimensional terrain point data acquisition. 

One of the appealing features in the LiDAR output is the direct availability of three 

dimensional coordinates of points in object space (Habib et al., 2005). LiDAR data 

have become a major source of digital terrain information (Raber et al., 2007) and has 

been used in a wide of areas, such as building extraction and 3D urban modeling, 

hydrological modeling, glacier monitoring, landform or soil classification, river bank 

or coastal management, and forest management. However, terrain modeling has been 

the primary focus of most LiDAR collection missions (Hodgson et al., 2005). 

Actually, the use of LiDAR for terrain data collection and DEM generation is the 
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most effective way (Forlani and Nardinocchi, 2007) and is becoming a standard 

practice in the spatial science community (Hodgson and Bresnahan, 2004).  

  

LiDAR has been studied since the 1960s (Flood, 2001). Researches and design on 

Airborne LiDAR for topographic data collection started from the 1980s (Krabill et al., 

1984; Bufton et al., 1991). Commercial Airborne LiDAR systems have been 

operational since the mid-1990s (Pfeifer and Briese, 2007), and it continues to be an 

active area of research and development (Flood, 2001). There has been a significant 

increase in the use of LiDAR data for DEM generation over the last decade as more 

reliable and accurate LiDAR systems are developed (Sithole and Vosselman, 2003). 

Lohr (1998) and Kraus and Pfeifer (1998) are pioneers who demonstrated the 

suitability of using airborne LiDAR for the generation of DEM. Since then DEM 

generation from LiDAR data under various conditions has been documented by many 

authors (Lloyd and Atkinson, 2002; Wack and Wimmer, 2002; Lee, 2004; Gonçalves-

Seco et al., 2006; Lloyd and Atkinson, 2006; Kobler et al., 2007). With LiDAR data, 

high density and high accuracy DEM can be generated. Compared with 

photogrammetry, one of the main competing technologies with airborne LiDAR in 

terms of accuracy, due to LiDAR’s capability of canopy penetration, DEM generation 

from LiDAR data overcomes the limitations of photogrammetry for DEM generation 

in forested areas. Kraus and Pfeifer (1998) demonstrated that the accuracy of LiDAR-

derived DEM in forested areas is equivalent to that of photogrammetry-derived DEM 

in open areas. As an active remote sensing technology, airborne LiDAR data are free 

of shadow. As such, LiDAR has advantage over photogrammetry for DEM generation 

in urban areas as well. However, raw LiDAR data can contain return signals from no 

matter what target the laser beam happens to strike, including human-made objects 
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(e.g., buildings, telephone poles, and power lines), vegetation, or even birds (Barber 

and Shortrudge, 2004; Stoker et al., 2006). The desired target for DEM generation is 

the bare earth points. Therefore, it is crucial to filter or extract bare earth points from 

LiDAR data. Various filter methods have been developed to classify or separate raw 

LiDAR data into ground and non-ground data. However, none of automated filter 

processes is 100% accurate so far (Romano, 2004). Manual editing of the filtering 

results is still needed (Chen, 2007). Efforts are still needed to improve the 

performance of filter algorithms.   

  

Airborne LiDAR technology is still developing rapidly in both sensor and data 

processing. The competition between LiDAR sensor manufactures is mostly focused 

on increasing laser pulse repetition rates to collect more data points. The pulse 

repetition rate has increased from less than 50 kH in 2001 (Flood, 2001) to 250 kH 

now (Lemmens, 2007). High density data make it possible to represent terrain in 

much detail. However, high density data lead to a significant increase in the data 

volume, imposing challenges with respect to data storage, processing and 

manipulation (Sangster, 2002). Although LiDAR data has become more affordable for 

users due to the gradually dropping of the costs of LiDAR data collection, how to 

effectively process the raw LiDAR data and extract useful information remains a big 

challenge (Chen, 2007). Furthermore, because of the specific characteristics of 

LiDAR data, issues such as the choices of modeling methods, interpolation algorithm, 

grid size, and data reduction are challenging study topics for the generation of a high 

quality DEM from LiDAR data. This paper reviews the recent advance of using 

LiDAR data for DEM generation, with special focus on LiDAR data filters, 

interpolation methods, and LiDAR data reduction. The following section gives an 
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introduction of airborne LiDAR system, highlighting some recent developments of 

airborne LiDAR systems. Section 3 reviews the development of algorithms for 

filtering LiDAR data. Issues regarding terrain model and interpolation methods are 

discussed in section 4. Section 5 presents approaches to LiDAR data reduction for 

efficient DEM generation. The final section concludes the discussion. 

  

 

II  Airborne LiDAR systems 

 

Airborne LiDAR is an active remote sensing technology. It actively transmits pulses 

of light toward an object of interest, and receives the light that is scattered and 

reflected by the objects. An airborne LiDAR system is typically composed of three 

main components: a laser scanner unit, a Global Positioning System (GPS) receiver, 

and an Inertial Measurement Unit (IMU) (Habib et al., 2005; Hollaus et al., 2005; 

Reutebuch et al., 2005; Webster and Dias, 2006; Pfeifer and Briese, 2007). The laser 

scanner unit consists of a pulse generator of Nd:YAN laser with a wavelength in the 

range of 0.8 µm to 1.6 µm (typically, with 1.064 µm or 1.500 µm) and a receiver to 

get the signal of scattered and reflected pulses from targets (Wehr and Lohr, 1999; 

Mukai et al., 2006; Pfeifer and Briese, 2007). The laser pulses are typically 4 to 15 ns 

in duration and have peak energy of several millijoules (Wehr and Lohr, 1999; 

Acharya et al., 2004; Lemmens, 2007). Laser pulses are emitted at a rate of up to 250 

kHz to the Earth surface (Lemmens, 2007). The distance (range) between the LiDAR 

sensor and the object can be calculated by multiplying the speed of light by the time it 

takes for the light to transmit from and return to the sensor (Watkins, 2005; Weitkamp, 

2005). With recently developed LiDAR sensors, range precision can reach 2-3 cm 
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(Lemmens, 2007). The GPS receiver is used to record the aircraft trajectory and the 

IMU unit measures the attitude of the aircraft (roll, pitch, and yaw or heading) 

(Webster and Dias, 2006). The calculated range between the scanner and the target 

and the position and orientation information obtained from the GPS and IMU to 

determine target location with high accuracy in three dimensional spaces (Liu et al., 

2007b). The accuracy of LiDAR points is related to the accuracy of GPS and IMU. 

Airborne GPS is able to yield results in 5 cm horizontally and 10 cm vertically, while 

IMU can generate attitude with accuracy within a couple of centimetres. LiDAR data 

can get an accuracy of 15 cm root mean square error (RMSE) in vertical and 20 cm 

RMSE in horizontal (BC-CARMS, 2006).  

  

The three dimensional LiDAR points are initially represented with latitude, longitude, 

and ellipsoidal height based on the WGS84 reference ellipsoid. They can be 

transformed to a national or regional coordinate system. At the same time, elevations 

are converted from ellipsoidal heights to ortho-metric heights based on a national or 

regional height datum by using a local geoid model (Webster and Dias, 2006; Liu et 

al., 2007b). Currently, LiDAR data are typically delivered as tiles in ASCII files 

containing x, y, z coordinates, and (as clients demand) with LiDAR intensity values 

(Liu et al., 2007b). 

 

Airborne LiDAR systems are also capable of detecting multiple return signals for a 

single transmitted pulse (Wehr and Lohr, 1999; Charaniya et al., 2004; Reutebuch et 

al., 2005). Most LiDAR systems typically record first and last returns, but some are 

able to record up to six returns for a single pulse (Wagner et al., 2004; Lim et al., 

2003). Multiple returns occur when a laser pulse strike a target that does not 
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completely block the path of the pulse and the remaining portion the pulse continues 

on to a lower object. This situation frequently occurs in forested areas where there are 

some gaps between branches and foliage (Reutebuch et al., 2005). Recording multiple 

returns is quite useful for the topographic mapping in forested area or for the 

description of forest stand and structure (Sheng et al., 2003).   

 

In addition to the three dimensional coordinates, most LiDAR systems also have the 

capability of capturing the intensity of the backscattered laser pulse. The 

backscattered laser signal is a function of many variables such as the transmitted laser 

power, laser beamwidth, range, atmospheric transmission, and effective target cross 

section (the effective area for collision of the laser beam and the target). The target 

cross section is strongly dependent on the target reflectance at the laser wavelength, 

the target area, and the target orientation with respect to the incoming laser beam 

(Jelalian, 1992; Wagner et al., 2004; Coren et al., 2005; Parrish et al., 2005). The 

optical signal received by the sensor is converted to an electrical signal by a 

photodetector (typically an avalanche photodiode). The generated photocurrent or 

voltage is then quantized to a digital number (usually expressed in percent value, 

representing the ratio of strength of reflected light to that of emitted light (Song et al., 

2002)) which is referred to as the LiDAR intensity value for the particular return  

(Jelalian, 1992; Barbarella et al., 2004; Coren et al., 2005). The LiDAR intensity data 

then can be interpolated to a geo-referenced intensity image with orthogonal geometry. 

This intensity image assists surface classification and therefore is of potential to 

improve the generation of DEMs (Höfle and Pfeifer, 2007).  
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The aforementioned airborne LiDAR is so called discrete return system. Currently, 

commercial full-waveform airborne LiDAR is available (Pfeifer and Briese, 2007). 

While discrete return systems typically allow for one or multiple (up to six) returns to 

be recorded for each laser pulse (Lim et al., 2003), full-waveform systems digitize 

and record the entire backscattered signal of each emitted pulse (typically with an 

interval of 1 ns)  (Wagner et al., 2006; Chauve et al., 2007; Mandlburger et al., 2007). 

In post processing, the waveform is decomposed into a sum of components or echoes, 

so as to characterise the different targets along the path of the laser beam (Chauve et 

al., 2007). For each returning echo of single laser pulse, the echo width and the 

amplitude for all the small individual scatterers contributing to one echo is determined. 

If the echo width is small, a rather flat surface element was illuminated (Doneus and 

Briese, 2006a). Doneus and Briese (2006b) investigated the possibility for DEM 

generation using full-waveform LiDAR data. With the help of a pre-filter step that 

eliminates echoes with a higher echo width, a significant improvement of the DEM 

could be achieved (Pfeifer and Briese, 2007).   

 

Currently, most airborne LiDAR systems are only able to record the reflections of one 

laser pulse before the next is emitted. In order to increase the data coverage rate by an 

increase in the flying height, pulse repetition rate and maximum range, the so-called 

multi-pulse technology was introduced. This technology allows to detect the returns 

of multi laser pulses simultaneously (Mandlburger et al., 2007; Pfeifer and Briese, 

2007). Moreover, multiple scanners can be boarded on one airborne platform for 

increasing side-looking or for forward and backward looking (Mandlburger et al., 

2007).  
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Other important developments of airborne LiDAR systems include the integration of a 

high resolution digital camera or a digital video camera with a LiDAR system 

(Ackermann, 1999; Ahlberg et al., 2004). For each collected digital image, the 

position and orientation of the camera can be obtained by using the GPS and IMU 

data. Exterior orientation parameters for each frame of imagery are directly provided 

by these position and orientation data. Therefore, no stereo overlapping images and/or 

ground control points are needed. Orthorectification can be completely automatic by 

using the digital images and a LiDAR-derived DEM (Ahlberg et al., 2004). Currently, 

the commercial system integrating a passive RGB (true colour) and CIR (colour 

infrared) line scanner with airborne LiDAR is available (BC-CARMS, 2006). It is 

expected that the LiDAR system can be combined with multispectral or hyperspectral 

imaging systems, which will result in highly versatile systems and extended LiDAR 

application potential (Ackermann, 1999). For details of some commercial airborne 

LiDAR systems, readers are referred to Lemmens (2007), Petrie (2006) and Jenkins 

(2006).    

 

 

III  Filtering of LiDAR data 

 

One of the critical steps for DEM generation from LiDAR data is to separate the 

LiDAR points into ground (terrain) and non-ground (non-terrain) points. 

Automatically separating ground and non-ground points from LiDAR point clouds 

has proven to be surprisingly difficult, especially for large areas of varied terrain 

characteristics. Therefore, developing efficient and effective methods for filtering 

LiDAR points is currently an active research topic (Silván-Cárdenas and Wang, 2006). 
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Over the past years, several filter algorithms have been developed for automatically 

extracting ground points from LiDAR point clouds (Sithole and Vosselman, 2004; 

Silván-Cárdenas and Wang, 2006; Kobler et al., 2007), among which interpolation-

based (Kraus and Pfeifer, 1998), slope-based (Vosselman, 2000; Roggero, 2001; 

Sithole, 2001; Shan and Sampath, 2005), and morphological (Zhang et al., 2003; 

Zakšek and Pfeifer, 2006; Chen et al., 2007) are the most popular approaches (Silván-

Cárdenas and Wang, 2006).  

 

1  Interpolation-based filter 

 

Interpolation-based filter, or called linear prediction, was first proposed by Kraus and 

Pfeifer (1998). It iteratively approximates the terrain surface using weighted linear 

least squares interpolation (Chen et al., 2007). A rough approximation of the terrain 

surface is calculated first with equal weights for all points. This estimated surface is 

an averaging surface between terrain points and non-terrain points. The residuals, i.e. 

the oriented distances from the surface to the points are then calculated (Pfeifer et al., 

2001). Terrain points usually have negative residuals, while non-terrain points have 

positive residuals (Chen et al., 2007). Each point is then assigned a weight according 

to its residual (Kraus and Pfeifer, 1998; Pfeifer et al., 2001). Points with negative 

residuals are assigned high weights (Chen et al., 2007) which are considered to be on 

the terrain surface, while points with low weights are assumed to be non-terrain points 

(Lee and Younan, 2003). The process is iterated so that the surface gets closer and 

closer to the ground (Crosilla et al., 2004).  
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This filter method was originally developed for filtering LiDAR data and terrain 

modelling in forested areas, and later extended to use in urban areas (Pfeifer et al., 

2001). However, this filter method is not applicable to a terrain with steep slopes and 

large variability (Lee and Younan, 2003). To overcome this problem, Lee and Younan 

(2003) developed a combined modified linear prediction and an adaptive processing 

method. The modified linear prediction is an extension to the previous work presented 

by Kraus (1997), Kraus and Pfeifer (1998), Pfeifer et al. (1998), and Pfeifer et al. 

(1999). The ground points obtained from the linear prediction filtering are compared 

with the original points, and only those points with the same x and y coordinates as 

the original points are extracted for refinement purpose. Spurious peaks are eliminated 

by using adaptive filtering in which the normalized least square is used to replace the 

least square algorithm used in Kraus and Pfeiger’s method (Lee and Younan, 2003). It 

was shown that better results can be achieved in the area with steep slopes and large 

variability. However, the implementation of this method requires a priori knowledge 

of a number of parameters such as the delay factor, the adaptation parameter, and the 

filter order (Lee and Younan, 2003; Chen et al., 2007). The performance of the 

adaptive algorithm depends on appropriately selecting these parameters (Lee and 

Younan, 2003). Mandlburger et al. (2007) used full-waveform information to 

determine a-priori weights of the LiDAR points. These a-priori weights allow to 

combine the additional knowledge of the echo attributes with the geometric criteria 

within surface estimation so that improve the ground surface approximation.   
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2  Slope-based filter 

 

The slope-based filter developed by Vosselman  (2000) assumes that the gradient of 

the natural slope of the terrain is distinctly different from the slope of non-terrain 

objects such as buildings and trees (Sithole, 2001). Slopes between a LiDAR data and 

its neighbours are compared. If the slope between this LiDAR point and any other 

point within a given circle exceeds a predefined threshold, the LiDAR point is 

assumed to be a non-terrain point. The success of using this method is dependent on 

threshold definition and terrain type. It is a critical step to determine an optimum 

threshold in slope based filtering methods (Zhang et al., 2003). Obviously, the lower 

the threshold, the more points will be classified to bare earth. The definition of a 

reasonable threshold should incorporate the knowledge about terrain in the study area 

(Vosselman, 2000; Zhang et al., 2003). Good thresholds may be obtained from 

training datasets. However, it is impractical for the training datasets to include all 

types of ground measurements in a study area (Zhang et al., 2003). Slope-based filters 

work well in fairly flat terrain, but become more difficult as the slope of the terrain 

increases (Sithole and Vosselman, 2004), especially in a steep forested landscape. To 

overcome this limitation, Sithole (2001) proposed a modified approach in which the 

threshold varies with the slope of the terrain. It was demonstrated that modified 

method improved filtering results, especially in steep terrain area.  

 

3  Morphological filter 

 

Morphological filter for LiDAR data processing is based on the idea of mathematical 

morphology (Kilian et al., 1996; Lohmann et al., 2000), which has been used to 
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identify objects in a greyscale image by using morphological operations such as 

opening and closing (Harlick and Shapiro, 1992). The elevations of non-terrain 

objects such as trees and buildings are usually higher than those of surrounding 

ground points. If LiDAR points are converted to a greyscale image in terms of 

elevation, the non-terrain objects can be identified by the difference of grey tone 

(Zhang et al., 2003). A point with the lowest elevation within a given window size is 

first detected by performing an opening operation on the LiDAR data. The points in 

this window that fall within a band above the lowest elevation are then selected as 

ground points. The determination of band width is dependent on the accuracy of the 

LiDAR data, which is normally 20 to 30 cm. All LiDAR points are filtered by moving 

the filtering window over the entire LiDAR covered area (Zhang et al., 2003). It is 

critical to select an optimal window size for using this morphological filter (Kilian et 

al., 1996). If a small window size is used, only small non-ground objects such as trees 

and cars can be effectively removed, but the points corresponding to the tops of large 

building complexes in urban areas can not be removed. On the other hand, the filter 

will treat some ground points as non-ground points if using a large window size 

(Zhang et al., 2003). To solve this problem, Kilian et al., (1996) applied the 

operations several times with different window sizes to the LiDAR data starting with 

the smallest size. Each point was then assigned a weight related to the window size if 

it is classified as a ground point. The larger the window size of an operation is, the 

higher the weight of a point. Points which are likely on ground have high weights 

while non-ground points have low weights. Finally, the terrain surface is estimated by 

using all the LiDAR points with assigned weights (Kilian et al., 1996). 
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Zhang et al., (2003) described a progressive morphological filter to remove non-

ground points while preserving ground points by gradually increasing the window size 

and using elevation difference thresholds. An initial filtered surface is derived by 

applying an opening operation with a window size to the raw LiDAR data. An 

opening operation is then performed on the initial surface to derive a second surface. 

The elevation difference of a cell between surfaces is compared to a threshold to 

determine if the point in this cell is non-ground point. In the next iteration, the 

window size is increased, and another opening operation is applied to the filtered 

surface. These steps are repeated until the size of the filtering window is larger than 

the pre-defined largest size of non-ground objects. The threshold is determined by the 

elevation difference and terrain slope (Zhang and Whitman, 2005). Zakšek and Pfeifer 

(2006) proposed an improved morphological filter by incorporating trend surfaces 

extracted from raw LiDAR data to the morphological operation to improve the 

filtering results in steep forested area.  Chen et al., (2007) presented a method that is 

similar to (Zhang et al., 2003)’s method, but does not require the assumption of a 

constant slope. The method is based on the assumption that non-ground objects such 

as buildings usually have abrupt elevation changes along boundaries while the change 

of natural terrain elevation is gradual and continuous.  

 

4  Other filters and future development 

 

All the above described filters are based on such measures as height difference and 

slope. As local properties are scale-dependent, it is necessary to integrated 

measurements at different scale. Silván-Cárdenas and Wang (2006) proposed a multi-

scale Hermite transform method, employing the scale-space theory to represent the 
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grided elevation values in the filtering LiDAR data. A scale component was also 

added to the method presented by Evans and Hudak (2007), called to as multiscale 

curvature algorithm. This method is base on curvature filter (Haugerud and Harding, 

2001), but iteratively classifies LiDAR data as ground and non-ground points at 

multiple scales.  

 

For segmentation-based filters, raw LiDAR data are first interpolated to grid image, 

and then segmentation is performed by aggregation of pixels in connected sets by 

region growing algorithm. Segmentation approaches vary with the measurements of 

the similarity between regions (Rabbania et al., 2006). Height difference is the 

commonly used measurement. Segmented regions are separated by a step edge from 

the adjacent ones. Finally, the classification is conducted based on the geometric 

characteristic of each region and their topological relationships (Nardinocchi et al., 

2003). Other research work on segmentation-based filter can be found in (Jacobsen 

and Lohmann, 2003; Sithole, 2005; Sithole and Vosselman, 2005; Tóvári and Pfeifer, 

2005).  

 

A wavelet-based filter was proposed by Vu and Tokunaga (2001). In this method, K-

mean clustering method was applied to grided LiDAR data to label pixels to ground 

and non-ground. Multi-resolution clustering was further used with the wavelet-based 

method to improve the filtering results. For other studies regarding wavelet-based 

filter for LiDAR data, readers are referred to Amgaa (2003), and Bartels and Wei 

(2006). 
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New filtering methods continue to be proposed and published in some journals at time 

of writing of this paper. For example, Kobler et al. (2007) proposed a repetitive 

interpolation method, attempting to filter LiDAR data for terrain modelling in steep 

forested area. Zheng et al (2007) described a facet-based filtering method which is 

based on the zero, second, and third orders of orthogonal polynomials, using the 

simple, quadratic, and cubic faced models to approximate ground surface. Forlani and 

Nardinocchi (2007) presented a three stage LiDAR data classification algorithm. It 

includes the steps of interpolation of LiDAR data to a gird image, segmentation from 

region growing based on geometric characteristics and topological relationships, and 

approximation of the terrain surface and point filtering by examining the distance 

from the surface.   

 

To assess the performance of various filters developed, the ISPRS (International 

Society of Photogrammetry and Remote Sensing) Working Group III/3 “3D 

Reconstruction from Airborne Laser Scanner and InSAR Data” initiated a study in 

2002 for experimental comparison of the strength and weaknesses of the different 

filtering approaches. The primary aim of the study was to: (1) determine the 

comparative performance of existing filters; (2) determine the sensitivity of filtering 

algorithms under varying point densities; and (3) identify future research issues in the 

filtering of point clouds (Sithole and Vosselman, 2004). It has been found that most 

filters performed well in landscape of low complexity. However, complex landscapes, 

especially in the urban areas still pose big challenges for future researches for 

effective LiDAR data filter development (Sithole and Vosselman, 2003).  
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Most of filtering algorithms developed so far require the raw LiDAR data to be 

interpolated into grid images first. Filtering on grid image runs faster. Existing raster 

image classification and feature extraction methods can be used for filtering operation. 

However, interpolation of the raw LiDAR data to an image causes a significant loss of 

information and introduces errors to the results. When elevation values are 

interpolated between ground points and non-ground points, the elevation differences 

in the interpolated data will be reduced. This will cause difficulty to correctly identify 

and remove non-ground points (Vosselman, 2000). Therefore, the filtering algorithm 

should work on raw LiDAR point data instead of interpolated grid image (Sithole and 

Vosselman, 2005; Zhang and Cui, 2007). 

 

Currently, all the filtering algorithms are dependent only on geometric characteristics 

of LiDAR point data. There is increasing awareness of using additional information 

such as intensity and derivatives from full-waveform in order to increase the accuracy 

and reliability in the filtering process (Lohmann et al., 2000; Mandlburger et al., 

2007). Vosselman (2002) suggested using the intensity of the laser beam response in 

order to estimate and improve the position of the edge in between areas with different 

reflectance properties. Doneus and Briese (2006b) used full-waveform information to 

eliminate echoes with a significantly higher echo width which are correspondent to 

non-ground points. Mandlburger et al. (2007) used echo width to determine weights 

for LiDAR points in the interpolation-based filtering process.    
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IV  Model, interpolation and resolution for DEM generation 

 

1  Model selection 

 

Different digital elevation models have been developed to represent the terrain surface. 

The regular grid (usually square grid) digital elevation model (DEM), the triangular 

irregular network (TIN), and the contour line model are the most commonly used 

digital elevation models (Ramirez, 2006). The grid DEM uses a matrix structure that 

implicitly record topological relations between data points (El-Sheimy et al., 2005).  

Each grid cell has a constant elevation value for the whole cell (Ramirez, 2006). This 

constant elevation value is usually obtained by interpolation between adjacent sample 

points. Of the three digital elevation models, the grid DEM is the simplest and the 

most efficient approach in terms of storage and manipulation since this data structure 

is similar to the array storage structure in computer (El-Sheimy et al., 2005; Ramirez, 

2006; Ziadat, 2007). However, this approach is liable to introduce errors because of 

its discontinuous representation of the terrain surface. It is evident that the bigger the 

grid size, the more general the approximation of the terrain surface representation 

(Ramirez, 2006). LiDAR data have high density, and will overcome this kind of 

limitation of grid DEM. Furthermore, large volume of LiDAR data needs such a 

model for efficient storage and manipulation. Therefore, almost all the LiDAR-

derived DEMs have been generated using grids (Lohr, 1998; Wack and Wimmer, 

2002; Lloyd and Atkinson, 2006; Liu et al., 2007b). Kraus and Otepka (2005) showed 

the benefits of using a hybrid model for digital terrain modelling. This approach 

employed TIN model for complex geomorphologic areas and grid model for simple 

areas. 
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2  DEM interpolation method 

       

Interpolation is an approximation procedure in mathematics and an estimation issue in 

statistics (Li et al., 2005). It is the process of predicting the values of a certain variable 

of interest of unsampled locations based on measured values at points within the area 

of interest (Burrough and McDonnell, 1998). Interpolation in digital terrain modelling 

is used to determine the terrain height value of a point by using the known heights of 

neighbouring points. Two implicit assumptions here are: the terrain surface is 

continuous and smooth; and there is a high correlation between the neighbouring data 

points. Interpolation is one of the core techniques in digital terrain modelling (Li et al., 

2005).  

 

Interpolation methods available for constructing a DEM from sample elevation points 

can be classified into: deterministic methods such as inverse distance weighted (IDW) 

(assumes that each input point has a local influence that diminishes with distance) and 

spline-based methods that fit a minimum-curvature surface through the sample points; 

and geostatistical methods such as Kriging that takes into account both the distance 

and the degree of autocorrelation (the statistical relationship among the sample points). 

Deterministic methods create surfaces from sample points but do not take into account 

a model of the spatial processes within the data (Anderson et al., 2005a).  

Geostatistical methods utilize the spatial correlation properties to the sample data 

(Anderson et al., 2005a).  

 

IDW assumes the closer a sample point is to the prediction location, the more 

influence it has on the predicted value. It estimates a point value using a linear-
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weighted combination set of sample points. The weights assigned depend only on the 

distances between the data locations and the particular location to be estimated, but 

the relative locations between sampling data are not considered (Myers, 1994). Points 

closer to the predicted location exert bigger weights than those farther away 

(Anderson et al., 2005a).  The IDW works well for dense and evenly-distributed 

sample points (Childs, 2004). However, if the sample points are sparse or uneven, the 

results may not sufficiently represent the desired surface. Moreover, because the IDW 

is a weighted average method, it can not make estimates that are outside the range of 

minimum and maximum sample point values. As a result, some important 

topographical features such as ridges and valleys can not be generated unless they 

have been adequately sampled (Lee, 2004).         

 

Spline interpolation method estimates values using a mathematical function that 

minimizes overall surface curvature. This results in a smooth surface that passes 

exactly through the sample points (Podobnikar, 2005). It is like bending a sheet of 

ruber so that it passes through all the sample points while minimizing the total 

curvature of the surface (Childs, 2004). Unlike the IDW method, the spline method 

can estimate values that are below the minimum or above the maximum values in the 

sample data. This makes the spine method good for predicting ridges and valleys 

where they are not included in the sample data (Childs, 2004).  

 

Kriging were originally developed to estimate the spatial concentrations of minerals 

for the mining industry, and now has been widely used in geography and spatial data 

analysis (Lee, 2004; Tang, 2005). Kriging assumes that the distance or direction 

between sample points reflects a spatial correlation that can be used to explain 



 21 

variation in the surface (Childs, 2004). Kriging takes into account both the distance 

and the degree of variation between sampling data. The extent to which this 

assumption is true can be examined in computed variogram (Chaplot et al., 2006). 

Kriging is essentially a weighted average technique, but its weights depend not only 

on the distances between sample points and estimation locations but also on the 

mutual distances among sample points (Cressie, 1993; Desmet, 1997; Anderson et al., 

2005a).  

 

The variety of available interpolation methods has led to questions about which is 

most appropriate in different contexts and has stimulated several comparative studies 

of relative accuracy (Zimmerman et al., 1999). To evaluate the performance of some 

commonly-used interpolation methods, a variety of empirical work has been 

conducted to assess the effects of different methods of interpolation on DEM accuracy 

(Zimmerman et al., 1999; Ali, 2004; Blaschke et al., 2004; Mardikis et al., 2005; 

Chaplot et al., 2006; Kyriakidis and Goodchild, 2006; Lloyd and Atkinson, 2006). 

There seems to be no single interpolation method that is the most accurate for the 

interpolation of terrain data (Fisher and Tate, 2006). None of the interpolation 

methods is universal for all kinds of data sources, terrain patterns, or purposes. 

Zimmerman et al. (1999) showed that kriging yielded better estimations of elevation 

than IDW did, especially when sampling points become sparse (Lloyd and Atkinson, 

2006). The result is probably due to the ability of kriging to take into account the 

spatial structure of data (Chaplot et al., 2006). However, If the sampling density is 

high, there is no significant differences between IDW and kriging methods (Chaplot et 

al., 2006). Furthermore, Ali (2004), Blaschke (2004) and Podobnikar (2005) pointed 

out that the IDW method performs well if sampling data density is high, even for 
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complex terrain. LiDAR data have high sampling density, and so the IDW approach is 

a suitable interpolator for DEM generation from LiDAR data (Liu et al., 2007b). 

Spline-based methods are easy to use and produce smooth surface (Podobnikar, 2005; 

Smith et al., 2005) but with less recognisable characteristic features like peaks, ridges 

and valleys (Podobnikar, 2005). New or modified interpolation methods are still being 

developed, attempting to improve the interpolation of terrain surface (Almansa et al., 

2002; Shi and Tian, 2006). 

 

3  DEM resolution 

 

Resolution initially refers to the level of detail or smallest object that can be 

recognized on an aerial photograph (Way, 1978). For a grid DEM, it refers to the grid 

size of the DEM, expressed as ground distance. The smaller the grid size the higher 

the resolution, representing terrain surface in more detail. Determination of a DEM 

grid size is the central problem for DEM generation and spatial analysis. The general 

idea is get an adequate description of terrain surface with a minimum amount of DEM 

data or with grid size as big as possible while still meeting a defined accuracy to serve 

the specific purpose (Gao, 1997). A very high resolution DEM may result in 

representation of a terrain surface that is much more detailed than is relevant for the 

process being modelled (Ziadat, 2007), imposing unnecessary computation burden. 

The optimal grid size for a DEM is therefore a compromise between the accuracy of 

terrain representation and cost effectiveness (Hengl et al., 2003). An appropriate grid 

size is dependent on source data density (McCullagh, 1988; Hu, 2003), terrain 

complexity (Gao, 1997; Chou et al., 1999; Hengl et al., 2003; Hengl, 2006), and 

applications (Barber and Shortrudge, 2004; Kienzle, 2004; Ziadat, 2007).  
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It is inappropriate to generate a high resolution DEM with very sparse terrain data: 

any surface so generated is more likely to represent the shape of the specific 

interpolator used than that of the target terrain because interpolation artefacts will 

abound (Florinsky, 2002; Albani et al., 2004). The source data density constrains the 

resolution of DEM (Florinsky, 1998). On the other hand, generating of a low 

resolution DEM from high density terrain data will devalue the accuracy of the 

original data.  

 

Clearly, the choice of the adequate resolution of a DEM is constrained by terrain input 

data density. McCullagh (1988) suggested that the number of grids should be roughly 

equivalent to the number of terrain data points in covered area. The grid size of a 

DEM can be estimated by: 

 

n

A
S =  

 

where n is the number of terrain points and A is the covered area (Hu, 2003). This 

means that the DEM resolution should match the sampling density of the original 

terrain points.  

 

The optimized grid size for a DEM is the one that reflects the variability of the terrain 

surface and is able to represent the majority of terrain features (Kienzle, 2004; Hengl, 

2006). If terrain is treated as a signal, its frequency can be determined by the density 

of inflection points. Hengl (2006) gave an idea of determining the grid size based on 

the terrain complexity that the grid size should be at least half the average spacing 

between the inflection points: 
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where L is the length of a transect and pN is the number of inflection points observed. 

For example, if there are 20 inflection points and average spacing between them is 

0.8m, a grid resolution of at least 0.4m is recommended. 

 

Selection of a suitable resolution for a DEM is also highly dependent on different 

applications. High resolution DEMs may significantly improve the predictive ability 

of terrain attributes (Lassueur et al., 2006). However, the choice of input DEM data 

resolution for terrain based environmental modelling depends on the output of interest 

(Chaubey et al., 2005). The general idea is to select a resolution that produces best 

predictive properties. Many researches have investigated the effects of different 

resolutions on the accuracy of specific application models (Hengl, 2006). Instead of 

analysing elevation differences data directly, terrain attributes and hydrological or 

other environmental parameters derived from different resolution DEMs are compared 

for selecting a suitable resolution for the DEM that corresponds to the content of the 

source data (Kienzle, 2004). The relevant researches can be seen in (Garbrech and 

Martz, 1994; Zhang and Montgomery, 1994; Florinsky and Kuryakova, 2000; Kienzle, 

2004).  

 

The grid DEM is commonly over-sampled in low relief areas and under-sampled in 

high relief areas (Hengl et al., 2003). Furthermore, the size of regular grids can not be 

adapted to the complexity of the relief. Feature specific points such as peaks and pits 

may be missed (El-Sheimy et al., 2005), and linear features such as breaklines are not 
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well represented. One way to increase the details of the terrain representation is to 

increase the sample point density and decrease the grid size. This will lead to the 

redundancy of sample point and the increase of data size.  

 

 

V LiDAR data reduction 

 

1  Why LiDAR data reduction  

 

The primary objective of data reduction is to achieve an optimum balance between 

density of sampling and volume of data, hence optimizing cost of data collection 

(Robinson, 1994). Under optimal interpolation, very detailed high resolution DEMs 

with high accuracy can be generated from high density LiDAR data. However, 

because there is no scope to match data acquisition density by terrain type during a 

LiDAR data collection mission, some oversampling is usually inevitable. As a result, 

the data storage requirement and processing times will be higher than otherwise. 

Strategies for handling the large volumes of terrain data without sacrificing accuracy 

are required (Kidner and Smith, 2003) if efficiency is to be considered (Bjørke and 

Nilsen, 2002; Pradhan et al., 2005). Via data reduction (i.e. ratio of the information 

content to the volume of the dataset) (Chou et al., 1999), a more manageably and 

operationally sized terrain dataset for DEM generation is possible (Anderson et al., 

2005a).  

 

Some studies on terrain data reduction have been conducted based on the analysis of 

the effects of data reduction on the accuracy of DEMs and derived terrain attributes. 
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For example, Anderson et al. (2005b) evaluated the effects of LiDAR data density on 

DEM production at a range of resolutions. They produced a series of DEMs at 

different horizontal resolutions along a LiDAR point density gradient, and then 

compared each DEM produced with different LiDAR data density at a given 

horizontal resolution, to a reference DEM produced from the original LiDAR data 

(the highest available density). Their results show that higher resolution DEMs are 

more sensitive to data density than lower resolution DEMs. It was demonstrated that 

LiDAR datasets could withstand substantial data reductions yet maintain adequate 

accuracy for elevation predictions (Anderson et al., 2005a). Liu et al. (2007a) 

examined the relationship between data density, data file size, and processing time.    

 

It has been demonstrated that the effects of data density and DEM resolution on the 

accuracy of DEM and derived terrain attributes are related to terrain complexity 

(Chou et al., 1999; Kyriakidis and Goodchild, 2006). Different complex terrains 

require different data density and resolution to produce DEMs to represent terrain 

surfaces at a certain accuracy level. Furthermore, different data elements contribute 

differently to the accuracy of produced DEM. The inclusion of critical terrain 

elements such as breaklines into the construction of a DEM will decrease the number 

of data points while still maintaining high level of accuracy (Hsia and Newton, 1999). 

Therefore, Data reduction should be conducted in such a way that critical elements are 

kept while less important elements are removed (Chou et al., 1999). 
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2  Breakline extraction 

 

Breaklines (or called as structure lines or skeleton lines), such as ridge lines and 

valley lines, are important terrain features as they describe changes in terrain surface 

(Lichtenstein and Doytsher, 2004). Breaklines not only provide the elevation 

information, but also implicitly represent terrain information about their surroundings. 

They describe terrain surface with more significant information than other points (Li 

et al., 2005). Their preservation and integration in the generation of DEM 

significantly contribute to obtaining a reliable, morphological correct, and 

hydrologically enhanced DEM (Brügelmann, 2000; Lichtenstein and Doytsher, 2004). 

Moreover, breaklines play an important role in the process of data reduction of the 

DEM (Briese, 2004a). With breaklines involved in the creation of DEMs, the number 

of points needed to represent the terrain can then be reduced (Little and Shi, 2001).  

 

Traditionally, breaklines were derived either by manually digitizing existing maps 

(Briese, 2004a) or by photogrammetric processing (Brügelmann, 2000). Both 

approaches are time consuming. Given the high density characteristic of LiDAR data, 

much attention has been paid to the direct derivation of breaklines from LiDAR data. 

Developed methods work either on irregular LiDAR points or on LiDAR-derived 

range image - raster representation of the surface (Briese, 2004a). As breaklines are 

discontinuities in the terrain surface, Weidner (1994) proposed an algorithm for 

parameter free information-preserving surface restoration. The signal and noise 

properties of data are extracted simultaneously by applying variance component 

estimation and are used to filter data. This way, discontinuities in the data are 

preserved. A similar method was used by Wild et al. (1996) for the automatic DEM 
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generation and breakline detection. The method proposed by Gomes Pereira and 

Wicherson (1999) calculated first derivatives from digital surface. Cells are then 

labeled as slope cells where the slope changes abruptly. Breaklines are connections of 

border cells between slope and flat areas (Brügelmann, 2000). Gomes Pereira and 

Janssen (1999) applied the Laplacian operator to LiDAR range image for breakline 

detection. Förstner (1998) used the principle of edge detection in intensity images to 

extract breaklines by means of hypothesis testing. Based on Förstner’s method, 

Brügelmann (2000) presented a procedure by using second derivatives and hypothesis 

test after performing a smoothing operation on range image.  

 

All the above approaches work on grid image derived from LiDAR elevation data 

rather than on LiDAR point clouds. This implies a decrease of accuracy due to the 

necessary interpolation process (Brzank et al., 2005). An approach to 3D breakline 

extraction directly from LiDAR points was presented by Kraus and Pfeifer (2001) and 

Briese (Briese, 2004a). This method estimates the 3D position of a breakline through 

the intersection line of continuously overlapping surface patch pairs along the 

breakline (Briese, 2004b). The construction of surfaces requires the appropriate 

position of searched breakline (Brzank et al., 2005). 3D breakline growing (Briese, 

2004a) and edge detection (Brzank et al., 2005) approaches were proposed to obtain 

this approximation.   

 

Valley lines connecting the deepest points of valleys and ridge lines connecting the 

highest points of ridges are the typical breaklines, and are of essential importance for 

the description of terrain surfaces (Aumann et al., 1991; Gülgen and Gökgöz, 2004). 

Since a stream occurs along the bottom of a valley (Underwood and Crystal, 2002), 
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the determination of streams in a DEM provides a good way to detect valley lines 

(Dorninger et al., 2004). Most approaches to extracting drainage networks from DEM 

employed the well-known water flow accumulation model. This method, designated 

D8 algorithm (eight flow directions), was introduced by O'Callaghan and Mark (1984) 

and has been widely used. Ridge lines can also be detected this way by inverting a 

DEM (Dorninger et al., 2004). 

 

3  Integration of breaklines to the generation of DEM 

 

A number of algorithms have been developed for integrating breaklines to the 

generation of a DEM. They can be classified to two groups. The first is based on TIN 

model, in which breaklines are integrated into triangulated network and are physically 

preserved (Lichtenstein and Doytsher, 2004). The second is applied to grid DEMs and 

based on the ideal of constructing hydrologically correct DEMs. Examples include 

stream burning and surface reconditioning (e.g. Agree or ANUDEM). Stream burning 

was developed to improve the replication of stream positions by modifying the 

elevation value of stream cells within a DEM to trench known hydrological patterns 

into a DEM at a user specified depth (Callow et al., 2007). The Agree method, 

developed by Hellweger (1997), is a DEM reconditioning process, modifying 

elevation values within DEMs by imposing breaklines such as ridge or stream lines to 

DEMs. The modifications work on both breakline cells and the surrounding cells 

within a user defined horizontal buffer distance (Callow et al., 2007). The ANUDEM 

method can alter the entire DEM via an iterative drainage enforcement algorithm to 

eliminate abrupt jumps between the stream and non stream cell (Hutchinson, 1996; 

Callow et al., 2007). The drainage enforcement algorithm is one of the principal 
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innovations of ANUDEM. It ensures good shape and drainage structure in the 

calculated DEMs by imposing a drainage enforcement condition on the fitted grid 

values directly from input streamline data (Hutchinson, 2006).  

 

 

VI  Conclusion 

 

Advances in airborne LiDAR systems make it possible to acquire high quality terrain 

data in terms of accuracy and density. Using LiDAR data for DEM generation is 

becoming a standard practice in spatial related areas. Separating LiDAR points into 

ground and non-ground is the most critical and difficult step for DEM generation from 

LiDAR data. Although different filtering algorithms have been developed, further 

efforts are needed to improve the filtering results. Almost all the algorithms are 

dependent only on geometric characteristics of LiDAR point data. Using additional 

information such as intensity and derivatives from full-waveform has a potential for 

increasing the accuracy and reliability in the filtering process. Although DEM 

generation from LiDAR data has been documented in several papers, due to the 

specific characteristics of LiDAR data, extensive attention should be paid to issues 

such as choices of modelling methods, interpolation algorithms, and DEM resolution. 

For high density LiDAR data, IDW is a suitable interpolator. The optimized DEM 

resolution must match the density of LiDAR data, and be able to reflect the variability 

of the terrain surface and represent the majority of terrain features. Furthermore, in 

order to reduce the data redundancy and increase the efficiency in terms of storage 

and manipulation, LiDAR data reduction is required in the process of DEM 

generation. Different data elements have different effects to the DEM accuracy. 
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Therefore, data reduction should be conducted in such a way that critical elements are 

kept while less important elements are removed. Extraction and inclusion of critical 

terrain elements such as breaklines into the generation of a DEM will decrease the 

number of data points while still maintaining high level of accuracy.  
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