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Abstract: Light Detection and Ranging (LiDAR) remote sensing has demonstrated 

potential in measuring forest biomass. We assessed the ability of LiDAR to accurately 

estimate forest total above ground biomass (TAGB) on an individual stem basis in a 

conifer forest in the US Pacific Northwest region using three different computer software 

programs and compared results to field measurements. Software programs included 

FUSION, TreeVaW, and watershed segmentation. To assess the accuracy of LiDAR 

TAGB estimation, stem counts and heights were analyzed. Differences between actual tree 

locations and LiDAR-derived tree locations using FUSION, TreeVaW, and watershed 

segmentation were 2.05 m (SD 1.67), 2.19 m (SD 1.83), and 2.31 m (SD 1.94), 

respectively, in forested plots. Tree height differences from field measured heights for 

FUSION, TreeVaW, and watershed segmentation were −0.09 m (SD 2.43), 0.28 m  

(SD 1.86), and 0.22 m (2.45) in forested plots; and 0.56 m (SD 1.07 m), 0.28 m (SD 1.69 m), 

and 1.17 m (SD 0.68 m), respectively, in a plot containing young conifers. The TAGB 

comparisons included feature totals per plot, mean biomass per feature by plot, and total 

biomass by plot for each extraction method. Overall, LiDAR TAGB estimations resulted in 

FUSION and TreeVaW underestimating by 25 and 31% respectively, and watershed 

segmentation overestimating by approximately 10%. LiDAR TAGB underestimation 

occurred in 66% and overestimation occurred in 34% of the plot comparisons. 
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1. Introduction 

Forest attribute inventory information and measurements are critical to forest management [1]. 

Historically, forest inventories have focused on timber production [2] but recent inventories have 

concentrated on fuel biomass and carbon stores due to interest in bioenergy and carbon sequestration 

and concerns over global climate change [3-5]. A significant problem in monitoring carbon stores in 

vegetation biomass is the persistent deficiency of accurate biomass estimates [6].  

Biomass is the measurement of plant material mass per unit area. Biomass measurement is 

sometimes limited to living plant material, but based on the slow deterioration of woody vegetation; 

the measurement sometimes includes dead material. Above ground biomass is the “mass of live or 

dead organic matter” [6]. The unit of measure is commonly g/m
2
 or kg/ha. Biomass is measured via 

four primary means: (a) in situ destructive measurement; (b) in situ non-destructive using equations or 

conversion; (c) derived from remote sensing; and (d) modeling [4,6]. Allometric equations are used to 

statistically infer biomass based on in situ field data or remotely sensed data for extrapolation to larger 

land areas. Allometry assumes that a relationship exists by species based on structural measurements, 

usually height and stem or base diameter [6]. 

Light Detection and Ranging (LiDAR) has recently emerged as significant technology for forest 

measurement applications. Forest measurements derived from LiDAR include ground and vegetation 

surfaces, which are used to assess tree height, volume, and biomass measurements [7]. Many forest 

attributes can be measured by LiDAR over large areas including canopy height, subcanopy topography, 

vertical canopy distribution [8], and individual tree heights [9]. Tree height measurement is a critical 

component of forest inventory measurements [9,10]. When measuring tree heights using LiDAR, 

accuracy is impacted by several factors including size and reflectivity of the tree, shape of the tree 

crown, and LiDAR pulse density and footprint (pulse diameter). A primary source of error in LiDAR 

tree height measurement associated with conifer species occurs when laser pulses miss the sharp apex 

of the tree resulting in an underestimation of tree height [11,12]. Discrete returns from LiDAR pulses 

that strike the canopy may be used to estimate tree heights, or canopy elevations may be derived from 

a canopy height model (CHM) [13]. A CHM is raster surface model, similar to a digital elevation 

model (DEM), interpolated from points acquired on the upper surface of the canopy. Based on the tree 

structure, errors in LiDAR tree height measurement are also dependent on the algorithm used to create 

the CHM [2]. LiDAR tree height estimates are calculated by subtracting the terrain surface as 

represented by DEM from the highest point associated with an individual tree [8,14].  

Several key measurements are required to accurately estimate stand height, stem and forest volume, 

basal area, stem density, biomass [15], carbon sequestration, growth and site productivity [9].  

Husch et al. [10] describe the most common forest measurements of stem diameter, crown diameter 

and height. The standard US diameter measurement is diameter at breast height (DBH), which is 

measured at 1.3 m above the ground on the uphill side and 1.4 m when trees are located on level 

ground. Crown diameter may be used as a predictor variable for determining DBH and therefore used 

to estimate tree volume. Tree height may also be used to estimate DBH based on allometric equations [4]. 

The crown is defined as “the part of the tree or woody plant bearing live branches and foliage”. Crown 

cover (synonym canopy cover) is defined as “the ground area covered by the crowns of trees or woody 

vegetation as delimited by the vertical projection of crown perimeters and commonly expressed as a 
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percent of total ground area” [16]. One of the critical measurements in forest mensuration for 

determining volume or mass is tree height [9]. Stem volume estimation has traditionally been based 

exclusively on DBH, but estimates combining height and DBH have proven more accurate if the 

heights are measured with little or no bias [13,17]. Husch [10] defines three different tree heights that 

are important to consider in forest measurements including total height, bole height, and merchantable 

height. These are especially important in considering tree heights measured by LiDAR. Total height is 

“the distance along the axis of the tree stem between the ground and the tip of the tree”; bole height is 

“the distance along the axis of the tree stem between the ground and the crown point (crown point is 

the position of the first crown-forming branch)”; merchantable height is the “distance along the axis of 

the tree stem between the ground and the terminal position of the last usable portion of the tree stem”. 

These measurements are often summarized and presented as stand level averages.  

Much of the focus on LiDAR research has been on trees occupying a dominant and co-dominant 

portion of the canopy. Some may consider the necessity of a young-tree inventory as not important or 

less important than established stands, especially considering a priori knowledge resulting from near 

term management operations. However, monitoring the status of young stands with trees of under 10 m 

in height is important for growth projections. In addition, stem density is important in planning 

thinning or planting treatments [18]. Understory vegetation including shrubs and young trees can 

amount to large amounts of biomass, which is important for estimating carbon stores and monitoring 

fuels for fire risk mitigation. Thus, this research not only focuses on LiDAR forest mensuration 

capabilities in dominant and co-dominant canopies, but also in the suppressed sub-canopy. In other 

words, what vegetation can discrete return LiDAR detect, and what does it miss? Previous research 

suggests that LiDAR pulses do not strike as much of the suppressed sub-canopy vegetation compared 

to the dominant and co-dominant canopy and that these suppressed points are not used in generating 

the CHM [2-4,19-21]. We are not only interested in the accuracy of LiDAR in measuring detected 

trees, but we also seek to quantify the woody vegetation that is missed by LiDAR on an individual tree 

and area volume basis. Our study has four primary objectives related to measuring forest tree and 

shrub features. 

Our first objective was to determine the characteristics of individual trees and shrubs that LiDAR 

detects and misses within a range of forest settings. We believe this is not only a function of tree and 

shrub size, but is also influenced by the horizontal and vertical density of vegetation and tree species 

(deciduous or coniferous). The second objective was to determine the accuracy of LiDAR tree and 

shrub height measurements of detected features compared to ground measured heights. The third 

objective was to determine the horizontal x and y location accuracy of LiDAR measured trees and 

shrubs. The fourth objective was to compare hectare volume estimates derived from LiDAR data to 

ground measured estimates. We evaluated our study objectives with three different techniques 

for delineating individual tree and shrub measurements: inverse watershed segmentation, TreeVaW, 

and FUSION. 

Inverse watershed segmentation, henceforth referred to as watershed segmentation, is the most 

common method applied to determining locations of individual tree crowns using a CHM by segmenting 

the inverted raster canopy surface into the equivalent of individual hydrologic drainage basins [22,23]. 

Following inversion, a watershed segmentation algorithm separates the CHM into distinct tree polygons 

with raster crown diameter and height values [24].  
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TreeVaW operates on a CHM using a variable window filter (VWF) that varies its search window 

size [1,25], otherwise known as a convolution kernel [26], by passing a local maxima (LM) filter over 

the CHM and determines a tree location based on elevation data contained in individual pixels [1]. 

Surrounding pixels are assumed to represent laser hits of the same tree crown, and the highest 

elevation value is taken to indicate the tree apex [27]. When the filter determines a LM value, a tree x 

and y coordinate location is identified and then the crown diameter is determined based on the 

allometric relationship to height [25,27]. 

The Silviculture and Forest Models Team of the United States Department of Agriculture (USDA) 

Forest Service, Pacific Northwest Research Station in conjunction with the University of Washington 

Precision Forestry Cooperative has developed a data management and visualization software tool 

named “FUSION” that is designed specifically for analyzing forest vegetation characteristics using 

LiDAR data. The program is capable of generating both DEM and CHM surface models, intensity 

images from the raw LiDAR point files, and analyzing XYZ point data clouds on a plot basis. After 

identifying a tree, the user manually measures its dimensions using a three-dimensional cylinder 

measurement marker. The cylindrical measurement marker is capable of measuring a feature’s horizontal 

coordinate location, height, crown width, and crown height [28]. 

2. Materials and Methods 

2.1. Study Site 

The study was conducted in Oregon State University’s (OSU) 5,475 ha McDonald-Dunn research 

forest ranging in elevation from approximately 75–660 m above sea level in the eastern foothills of the 

Oregon Coast Range in the USA (Figure 1). Conifers dominate the forest with Douglas-fir (Pseudotsuga 

menziesii) and grand fir (Abies grandis) being the apex species. The primary deciduous tree species is 

bigleaf maple (Acer macrophyllum) and shrub species California hazel (Corylus cornuta var. california).  

Figure 1. McDonald-Dunn Forest and surrounding communities within Oregon, USA. 
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Eleven total plots, one ha (10,000 m
2
) in size, were sampled with plot strata consisting of either old 

growth/mature (referred to as old growth in this study) (two plots), even-aged (two plots), uneven-aged 

(three plots), or clearcut (four plots) treatments. Plots were selected by stratified random sampling 

(Table 1). Plot naming corresponds to the silviculture treatment (C = clearcut; E = even-age; O = old 

growth; and U = uneven-age) and GIS grid number used for random selection. 

Table 1. Plot statistics for tree and shrub measurement comparison. Total station 

measurements collected on five plots and GPS measurements collected on all plots. 

Plot C20 C27 C61 C110 E200 E412 O16 O69 U8 U13 U56 

Slope Aspect NW NW NE NE E NE NE N E SE NE 

Slope Degree 24 18 13 9 7 14 17 28 17 14 8 

Slope Percent 45 32 22 16 13 25 31 55 32 25 14 

GPS 

Tree Count 

 

691 

 

565 

 

534 

 

575 

 

946 

 

929 

 

363 

 

238 

 

192 

 

498 

 

1255 

Shrub Count 8 15 0 118 56 57 140 - - 47 72 

Total Station 

Tree Count 

  

910 

  

355 

 

257 

 

367 

 

385 

 

N/A N/A N/A 
Shrub Count 78 173 45 153 48 

LiDAR 

Feature Count 
825 647 632 619 1067 957 210 222 191 311 824 

Percent 

Crown Cover 
11 9 10 9 65 27 47 46 43 38 70 

* Stand Age yrs. 6 6 6 6 21 13 156 138 85 94 57 

* Stand age in years based on oldest trees in the stand at time of LiDAR acquisition. Shrubs were not 

counted by GPS survey crews on plots O69 and U8. The N/A refers to plots not measured using the 

total station survey instrument. 

The most represented conifer species within the study plots was Douglas-fir (Pseudotsuga 

menziesii) (Table 2) with a large contingent of grand fir (Abies grandis) in the uneven-aged and old 

growth plots (Figure 2). Ponderosa pine (Pinus ponderosa) and Pacific yew (Taxus brevifolia) were 

found in limited circumstances in addition to several other isolated individuals such as silver fir (Abies 

alba) and western hemlock (Tsuga heterophylla). Although the forest is dominated by conifers, the 

primary deciduous tree species occupying the subcanopy is bigleaf maple (Acer macrophyllum). Many 

other broadleaf tree species were inventoried including cascara buckthorn (Rhamnus purshiana), cherry 

(Prunus sp.), and ocean spray (Holodiscus discolor) (33 in plot O69) and many others typical of the 

region in far fewer numbers. California hazel (Corylus cornuta) is prolific in this region and dominated 

the understory species of all plots except clearcut where it had obviously been managed. Besides 

bigleaf maple, many other isolated shrubs typical of the region were inventoried, and ocean spray was 

conspicuous in two plots. The densest ground cover was found on C110, which had portions covered 

in Oregon grape (Berberis nervosa) and poison oak (Rhus diversiloba) (not inventoried). The discrepancy 

between GPS and total station in tree counts for Plots U8 and U13 (Table 1) may be explained by two 

reasons. In Plot U8, the GPS measurements were made for a separate project where only trees 3 m tall 

and larger were measured. In Plot U13, several small trees on the cusp of the measurement criteria 

appear to have been overlooked by the total station survey crew. 
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Figure 2. Plot locations in McDonald-Dunn Forest. 

 

2.2. Tree and Shrub Measurements 

The field data collected for trees were species, height, crown width, DBH for stem diameters 13 cm 

and larger, diameter at ground level (DBA) for stem diameters under 13 cm for all trees one meter and 

taller (0.61 m and taller in clearcut plots) (Table 2). Heights for tall trees were measured using an 

Impulse 200LR laser range finder. Height poles were used to measure trees shorter than three meters 

and all shrubs. A diameter tape was used for DBH and a caliper for DBA. Crown radii for large trees 

were measured using a range finder and measuring the distance between the projection of the crown 

vertically to the ground and the tree stem. Small trees and shrub crown measurements were made using 

a tape measure. In all cases two crown measurements were made per feature. The first length was 
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measured at the longest stem in the crown, and the second was taken at 90° around the stem in a 

clockwise direction. The crown diameter was then estimated by averaging the two crown measurements, 

multiplying by two, and adding the DBH. Canopy base height was measured using the FUSION 

software program as it was not measured by field crews. 

Table 2. Study total tree and shrub counts by species common name. 

All Trees Count Conifers Only Count All Shrubs Count 

SPECIES SPECIES SPECIES 

bigleaf maple 371 Douglas-fir 5,245 Bigleaf maple 110 

California hazel 8 grand fir 876 California hazel 381 

cascara buckthorn 76 pacific yew 20 Cascara buckthorn 2 

cherry 247 Pacific silver fir 8 cherry 17 

cottonwood 1 ponderosa pine 49 Douglas-fir 1 

Douglas-fir 5,245 Total 6,198 holly 9 

grand fir 876 madrone 1 

hawthorne 6 
Conifers Minus 

Snags  

mountain 

mahogany 
1 

holly 6 SPECIES oceanspray 73 

madrone 10 Douglas-fir 5,156 Oregon white oak 5 

oceanspray 3 grand fir 866 Oregongrape 64 

Oregon white oak 9 Pacific yew 20 Pacific dogwood 6 

Oregongrape 9 Pacific silver fir 8 red elderberry 12 

Pacific yew 20 Ponderosa pine 48 Scoular’s willow 2 

Pacific dogwood 2 snowberry 1 

Pacific silver fir 8 Total 6,098 vine maple 12 

ponderosa pine 49 other 14 

red elderberry 6 

vine maple 10 Total 711 

other 18 

Total 6,980 

2.3. Total Station Survey 

A Nikon DTM 310 total station with a rated angular accuracy of five-seconds was used to collect 

the coordinate locations for trees and shrubs in five of the eleven plots. All trees at 1 m and greater in 

height and all shrubs with a crown diameter of 1 m and greater were measured. Tree sweep was 

measured for conifer trees that had a noticeable lean angle, thus indicating a different tree apex 

location compared to its base. Tree coordinate data collected using the total station involved sighting 

on a rod-person who was positioned directly at the tree stem for small trees or using a two meter  

rod-measured offset for large trees. The offset distance error was periodically verified using a metric 

tape and resulted in a mean error of 0.07 m (SD = 0.07). Coordinates, species, health, dbh, and height 

of all trees and shrubs were determined and recorded. 

Survey control was established to transform the local total station coordinates into a Universal 

Transverse Mercator (UTM), zone 10 North NAD 1983 horizontal map coordinate system. A North 

American Vertical Datum 1988 (NAVD88) using Geoid Model 2003 (GEOID03) was applied for 
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elevations. Two TOPCON Hiper Lite Plus survey grade GPS receivers were used to establish static 

control for each plot. The National Geodetic Survey (NGS) Online Position User Service was used for 

postprocessing control station coordinates.  

2.4. GPS Survey 

Three different Trimble mapping grade GPS receivers were used for GPS data collection in all 

eleven plots. These included the GeoXT, GeoXH, and ProXH receivers which all have similar 

accuracy specifications. We collected GPS data in all plots so that comparisons could be made to total 

station measurements, the subject of additional research. Based on funding and procurement time lag 

of the higher accuracy rated ProXH and GeoXH receivers, we chose to begin the project using the 

GeoXT receiver for data collection in the clearcut and younger even-aged (E412) plots. All but one of 

the remaining plots was measured using the ProXH, and the final plot data (U8) was collected using 

the GeoXH based on project time constraints. The GeoXT was configured using the Trimble Hurricane 

model external antenna while the GeoXH and ProXH were both configured with the Trimble Zephyr 

external antenna. We used a 15 degree horizon mask, a standard PDOP mask of 6 [29]), and a default 

signal-to-noise ratio (SNR) value of 39 dB Hz [30]. 

Similar to the total station survey, each tree, shrub, and tree sweep (where applicable) was 

measured using a GPS. The GPS receiver and antenna were attached to a pole with the antenna 

mounted 2.2 m above ground. Large tree locations were measured using a two meter offset and hand 

compass to maintain a consistent azimuth. All others were measured at the feature location. A 

minimum of thirty and usually not more than sixty points were collected per position. GPS receiver 

files were downloaded and differentially corrected using Trimble Pathfinder Office version 4.10. Each 

file collected using the GeoXT was differentially corrected using course acquisition (C/A) code 

processing using multiple base station providers selected through proximity to the plot and an integrity 

index. The original intent was to collect data using dual frequency carrier phase ranging. However, 

when differentially correcting the data, no carrier phase data corrections were possible. The closest 

available base providers were chosen, unless the integrity index was below eighty. We selected 80 

because a priori knowledge indicated that integrity index values above 80 were consistently 

achievable. Each file collected using the ProXH or GeoXH receiver was differentially corrected with 

automatic carrier and C/A code processing using multiple base station providers. When using the 

multiple base provider option, Pathfinder Office averages the coordinate data from each base station 

provider in the group, weighting the closer base provider higher to determine a single position solution.  

2.5. LiDAR Collection 

LiDAR data were collected on 2 April 2008 under clear, sunny weather conditions by Watershed 

Sciences based in Corvallis, Oregon. A Leica ALS50 Phase II laser system was used with a ±14° scan 

angle from nadir and pulse rate designed to achieve a point density of ≥8 points per square meter. To 

reduce laser shadows and increase laser coverage, each flight line had ≥50% side-lap, which equates to 

≥100% overlap throughout the study area. The system is capable of a maximum number of four returns 

per pulse. The onboard differential GPS unit measured aircraft position twice per second (2 Hz) and 

the inertial measurement unit (IMU) measured aircraft attitude 200 times per second (200 Hz) [31]. 
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Ground control was conducted simultaneously with the airborne LiDAR survey using a static GPS 

located over ground stations with known locations at a rate of one point collected per second (1 Hz) 

with indexed time.  

The LiDAR data accuracy was described by the vendor as the mean error and standard deviation of 

the LiDAR point coordinates compared to RTK surveyed ground point coordinates. The vendor 

provided laser point density and accuracy (Table 3). Although a 1 meter resolution DEM of the ground 

surface was provided, no methodology or accuracy statistics were made available by the vendor. 

Table 3. Laser point density and accuracy reported by vendor. 

 Target Reported 

Average First Return Point Density ≥8 points/m2 10 points/m2 

Average Ground Point Density  1.12 points/m2 

Vertical Accuracy (1σ) <0.13 m 0.020 m 

Average Relative Accuracy  0.053 m 

Absolute Accuracy  0.026 RMSE 

Absolute Z Accuracy  0.007 ME, 0.026 SD 

2.6. LiDAR Processing 

Several different algorithms have been developed to delineate individual tree crowns and measure 

tree heights. We compared three extraction algorithms (methods) including WS segmentation, TreeVaW, 

and FUSION. The WS segmentation and TreeVaW methods automatically delineate and measure 

features determined to be trees from the CHM (Figure 3), whereas FUSION requires manual location 

and measurement of each tree feature from the LiDAR point cloud and, if needed to aid in extraction, a 

CHM. We used FUSION to create CHM rasters at spatial resolutions of 0.1, 0.3, and 1 m in order to 

examine resolution influence on tree determination processes. Additionally, FUSION uses mean and 

median convolution smoothing filters in creating a CHM. The program preserves the local maxima 

(peaks) while smoothing the surrounding pixels based on the mean or median value of the pixel values 

within the filter kernel, forcing the surface to adhere to the tree tops. Besides the value of the local 

maxima, which maintains the value as the highest point in each tree neighborhood, the values of the 

surrounding crown are stepwise smoothed [28]. We experimented with both filter approaches and 

found that the mean filter when compared to the field measured data appeared to have increased errors 

of omission, thus we used the median filter. Filter options tested were: none, 3 × 3, and 5 × 5. We also 

applied these filter options in examining WS segmentation and TreeVaW output. After running WS 

segmentation and TreeVaW iteratively using each CHM resolution, two factors were used to select the 

model that best matched the field survey data. The first factor was the number of trees and the second 

was spatial variation. The closest matched sum of trees was selected first, and then the spatial variation 

of the tree points were observed in a GIS. Spatial variation included two subparts: location and pattern. 

In many cases the LiDAR generated tree count by plot matched the field survey count, however, when 

viewing the spatial location of the points in a GIS map, it became obvious that errors of commission 

occurred, e.g., many points were clustered in a location where only one tree was field measured; or 

many single trees were located in locations that trees did not exist and were well outside a reasonable 
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distance from a field measured tree, thus creating a spatial pattern that did not match the field 

measured pattern. 

Figure 3. Canopy Height Model (CHM) representing (a) CHM-Plot C20 Clearcut and 

(b) CHM-Plot O69 old growth plots. Each CHM image represents 100 m
2
. 

 

(a) (b) 

ArcGIS software was used to conduct watershed segmentation. Watershed segmentation determines 

tree locations and heights by inverting the CHM so that when the model is turned upside down the 

peaks become depressions. When the raster surface is configured as a depression model, watershed 

segmentation can then be performed to delineate basins (canopy basins). The canopy basin raster 

model is converted to canopy polygons which delineate a polygon canopy vector file. The model then 

uses zonal statistics to overlay the canopy basin file on the CHM and assign the highest pixel value per 

individual tree canopy basin while replacing all other pixels with a no-data value leaving one pixel 

remaining with a height value per designated canopy. This value becomes the tree height (Z) and tree 

bole location (X and Y). Two shapefiles are created in the process, one with only a tree X and Y 

location and another with a tree X and Y location that includes tree height (Z). 

We used TreeVaW software version 1.0 [32]. TreeVaW implements the CHM processing software 

in Interface Definition Language (IDL) to locate and measure trees. TreeVaW uses the CHM in ENVI 

image format and produces output consisting of tree positions in x and y coordinates, tree heights, and 

crown radii [32]. The “VaW” in TreeVaW is an acronym for variable window. The program delineates 

trees by deriving an appropriate size circular search window to find tree tops from the CHM based on 

the relationship between the height of trees and their crown size. As found in nature, the taller the tree, 

the larger the crown size [12]. The program is designed for conifer forest applications and uses  

a search window based on a default regression relationship of crown diameter as a function of  

height developed in the southeastern United States, thus the crown diameter relationship was edited 

using the field collected data for this project. The program’s default regression formula is  

CW = 2.51503 + 0.012000 H
2
 where CW is crown width and H is height. Initial attempts at TreeVaW 

tree delineation met with poor results in clearcut plots when the regression equation from all field 

collected trees was used, thus a separate equation was used for the clearcut plots based only on the 

field database of clearcut plot conifer species. Three attempts were made to determine which 
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regression equation to use for delineating trees in clearcut plots and are further discussed in the results 

section. For all other plots, the field collected database of all trees except snags having no crown was 

used for the regression. Dead trees with discernable crowns were included. The input of minimum and 

maximum crown width and maximum expected tree height parameters are also required before 

running TreeVaW. We input these values based on our field data. 

We applied FUSION software version 2.70 [33] for tree delineation. The FUSION software 

consists of two main programs, FUSION and the LiDAR data viewer (LDV). Many component 

command line programs also come with the FUSION package for preparing and processing raw 

LiDAR data for analysis in FUSION and LDV. Once pre-processing steps are completed and the 

LiDAR data are prepared for plot level analysis, trees are manually selected and measured in LDV 

using the LiDAR point cloud (Figure 4(a)) and measurement marker (Figure 4(b)). Although canopy 

base height was not measured by field crews in our study, of the three LiDAR software programs used 

in the study, FUSION is the only one capable of this measurement. In the FUSION generated plots, we 

measured heights of the upper portion of the point cloud, which in most cases is likely the top of the 

crown and not the apex of the tree, and measured the lowest discernible portion of the point cloud 

coincident with what appeared to be the lowest whorl of branches. This was only possible in larger 

trees in primary canopy where sufficient returns were available to identify the minimum and maximum 

crown heights. Crown diameter was measured using the measurement marker in either a circular form 

for a generally round-shaped crown, or elliptically where the crown was more oval-shaped from an 

orthogonal perspective. Spatial x and y location was measured based on where the analyst determines 

the apex and center of the tree to be located. Each set of measurements is added to a Comma Separated 

Value (CSV) file database of individual trees. 

Once the LiDAR was prepared for each software program used in this study, there were significant 

differences in time required to delineate trees. Both TreeVaW and watershed segmentation were 

automated tree delineation programs that processed each hectare sized plot in this study rapidly within 

seconds. FUSION on the other hand requires the operator to manually measure and save each tree. 

This process is relatively quick (30–60 seconds per tree) for large trees in the primary canopy, but 

becomes progressively more difficult to differentiate smaller trees in the sub-canopy. Based on the 

time required to delineate individual trees using FUSION, and that this project involved thousands of 

trees, we limited tree delineation using FUSION to six plots (C110, E200, O16, O69, U8, U13). The 

advantage to using TreeVaW and watershed segmentation is the speed of processing. The disadvantage 

to these two programs is that they are limited by the CHM, which inherently due to interpolation loses 

tree information below the upper canopy. The advantage of FUSION is that it uses the LiDAR point 

cloud, where all points are available to the user.  

Field measured tree X and Y locations and tree heights were compared to those determined by each 

LiDAR extraction method. For this study, the main purpose of comparing the accuracy of each tree’s 

spatial location was to establish confidence that tree height comparisons between ground and LiDAR 

were based on the same tree. The only confirmation of this was similar spatial location and height. The 

most accurate method used for determining tree spatial location in this study was by total station 

survey instrument.  

  



Remote Sens. 2011, 3             

  

2505

Figure 4. (a) FUSION LiDAR Data Viewer (LDV) measurement window displaying tree 

height measurement capability. Tree X and Y location, height, crown width, crown base 

height, and elevation at tree base may be measured and saved to file; (b) FUSION 

measurement marker surrounding a single LiDAR tree. 

(a) (b) 

2.7. Geographic Information System (GIS) Processing 

Tree and shrub locations were measured by total station on five of the eleven plots as discussed 

above. Height and species was nominally noted, i.e., tree heights were noted as small, average, large, 

or extra large for the respective plot. Species was noted as conifer or broadleaf. GPS measurements 

were made in all 11 plots. In addition to absolute spatial location, tree height, crown radius, and 

species were determined and recorded. In the total station surveyed plots, the specific tree data 

collected in the GPS survey was used to match total station surveyed trees such that the most accurate 

horizontal coordinates were combined with specific species and height measurements. Total station 

feature points were matched to those determined by GPS using ArcGIS software. Each tree feature was 

matched manually, based on proximity, height (absolute to nominal), and species (specific to nominal) 

and assigned the same unique identification number. Trees were only matched if relative confidence 

existed that the two represented the same tree. Where there was doubt, features were not matched. The 

least amount of confidence in matching occurred in the even-aged plot (E200), where most of the trees 

were a similar height and species (Douglas-fir). Proximity was the only matching metric, thus some 

bias may exist in horizontal error between tree locations determined by GPS and total station. 

2.8. Biomass 

Total above ground biomass (TAGB) was calculated using allometric equations from the biomass 

computation package BIOPAK [34] (Table 4). Because we measured only height and crown diameters 

for shrubs, and did not measure stem or basal diameters we chose to use percent crown cover for shrub 
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TAGB estimates. We used GIS software to calculate crown cover by creating a polygon layer using 

the field measured crown diameter measurements for all shrubs in the plot, clipping the shrub crown 

polygon layer using the plot perimeter data, and then calculating percent crown cover for the 1 ha plot. 

The majority of the shrubs in the study area were California hazel (Corylus cornuta), thus we used this 

species to calculate a general shrub TAGB estimate on a by-plot basis. The closest allometric 

equations using crown cover we could find for our study area were based on destructive sampling of 

California hazel collected in riparian zones and meadows in the Sierra Nevada, California. The 

equation used was BAT = (5.01 × COV) × m
2
. BAT is TAGB including foliage, COV is the cover 

percentage, and m
2
 is the plot dimension in square meters [34]. Crown (canopy) cover is the proportion 

of vertically projected tree or shrub crown (above ground vegetation) that covers the forest floor 

measured as the presence or absence of canopy vertically above sample points across an area of forest. 

The height of the tree or shrub has no impact on this measurement as it is the vertical projection of the 

crown that is measured. Crown cover may be used to predict volume by species because crown area to 

trunk (stem) basal area has a near linear relationship (biomass) [35]. All tree TAGB estimates were 

based on allometric equations related to DBH or DBA, with some equations including height. For trees 

smaller than 0.13 m DBH, the DBA equations were used. Where weights were calculated in cm
3
, 

weights were converted to kg. All LiDAR TAGB estimates were based on Douglas-fir TAGB 

estimates. Two Douglas-fir equations were used, one for trees ≥0.13 m DBH and trees <0.13 m 

(Table 4) based on BIOPAK values [34]. BIOPAK provides a Coast Range region equation for small 

trees whose stem diameter is measured at the base and another based on DBH of larger trees). We used 

a cutoff of 0.13 m DBH for large and small trees. If a tree was smaller than 0.13 m DBH, then the stem 

diameter was measured at ground level (DBA). LiDAR DBH estimates were based on regression 

analysis from trees measured in this study. 

3. Results 

3.1. LiDAR Model Selection 

Stem count spatial variation were used to compare LiDAR model results to field measurements 

(Table 5). Each method resulted in various errors of omission and commission. For WS segmentation 

and TreeVaW, we experimented with different resolution CHMs interpolated from the original LiDAR 

point clouds. When using a CHM, any vegetation below the dominant/co-dominant canopy is likely to 

fall below the CHM surface, thus we experimented with higher resolutions to determine if smaller 

trees could be discernible within the LiDAR data. In some cases clustering was observed where errors 

of commission occurred. One example of this was many tree points clustered around only one  

field-surveyed tree. In some cases this was due to multiple hits on a single broadleaf tree and in others, 

false tree tops on a conifer tree. Errors of commission were also observed where a tree was delineated 

in a location where no field surveyed tree existed. This was primarily due to higher resolution CHM 

interpolation causing errors of commission. The 0.1 m resolution was decisively in error compared to 

the other, coarser resolutions. The best matching LiDAR designated results also had instances of 

clustered points around a single field surveyed vegetation point, which in most instances appeared to 

be multiple hits on a broadleaf tree such as bigleaf maple. 
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Table 4. Equations used to determine plot biomass from biomass computation package BIOPAK [34]. 

Species Bio Component Description Region * Biomass Equation 

Abies amabilis (Pacific silver fir) BAT = Total aboveground biomass G BAT = 12,800 + 0.1836 × DBH2 × HT 

Abies grandis (grand fir) BAT = BAT without dead branches G BAT = 30.2 + 146.9 × DBH2 × HT 

Acer circinatum (vine maple) BFT = Total foliage biomass W ln(BFT) = 1.8820 + 1.9754 × ln(DBA) 

Acer circinatum (vine maple) BST = Total stem biomass W ln(BST) = 3.1591 + 2.5335 × ln(DBA) 

Acer macrophyllum (bigleaf maple) VAE = Volume (cm3) above grd. C ln(VAE) = 1.623161 + 2.22462 × ln(DBH) + 0.57561 × ln(HT) 

Arbutus menziesii (Pacific madrone) BAT = Total aboveground biomass C BAT = −1,080 + 918.92 × DBA2 

Berberis repens (Oregon grape) BAT = Total aboveground biomass G ln(BAT) = 2.976 + 2.092 × ln(DBA) 

Cornus nuttallii (Pacific dogwood) BFT = Total foliage biomass W ln(BFT) = 2.7920 + 1.8685 × ln(DBA) 

Cornus nuttallii (Pacific dogwood) BBL = Live branch biomass W ln(BBL) = 2.2606 + 2.8737 × ln(DBA) 

Cornus nuttallii (Pacific dogwood) BST = Total stem biomass W ln(BST) = 3.2943 + 2.0625 × ln(DBA) 

Corylus cornuta californica (Cal. hazel) Cover S BAT = 5.01 × COV 

Holodiscus discolor (oceanspray) BAT = Total aboveground biomass R ln(BAT) = 3.769 + 3.033 × ln(DBA) 

Pinus ponderosa (ponderosa pine) BAT = Total aboveground biomass G BAT = 1,160 + 0.1870 × (DBH)2 × HT 

Populus trichocarpa (black cottonwood) BAT = BAT without dead branches  G BAT = 7,400 + 0.1564 × DBH2 × HT 

Prunus emarginata (bitter cherry) BAT = Total aboveground biomass E ln(BAT) = −9.27455 + 2.8934 × ln(LEN+WID) 

Pseudotsuga menziesii (Douglas-fir) 
BAT (Large trees) = Biomass 

aboveground (w/o dead branches) 
C ln(BAT) = 4.7824 + 2.2985 × ln(DBH) 

Pseudotsuga menziesii (Douglas-fir) 
BAT (small trees) = Geometric mean 

stump dia.above grd biomass. 
C ln(BAT) = 4.59314 + 2.03553 × ln(DBA) 

Quercus garryana (Oregon white oak) 
VAE = Volume (cm3), above ground. 

live+dead wood plus bark 
G ln(VAE) = 0.793195 + 2.14321 × ln(DBH) + 0.7422 × ln(HT) 

Thuja plicata (western redcedar) BAT = Total aboveground biomass G BAT = 40,400 + 0.0969 × DBH2 × HT 

Tsuga heterophylla (western hemlock) BAT = Total aboveground biomass G BAT = 29,800 + 0.1558 × DBH2 × HT 

Umbellularia californica (Cal. laurel) 
VAE = Volume (cm3), above grd. live 

+ dead wood plus bark 
C ln(VAE) = 0.2643834 + 1.94553 × ln(DBH) + 0.88389 × ln(HT) 

* Region abbreviations: G: General, W: Western Cascades, C: Coast Range, E: Eastern Cascades, R: Rocky Mountains. 
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Table 5. Delineated stem counts resulting from watershed segmentation using various CHM 

resolutions compared to field measured vegetation. Checked numbers indicate the resolution 

and filter method that best matched field count numbers.  

Plot 

0.1 m, 

5 × 5 

Filter 

0.3 m, 

3 × 3 

Filter 

0.3 m, 

5 × 5 

Filter 

1 m, 

No 

Filter 

Field 

Count 

Tree/Shrub 

Field 

Count 

Total 

LiDAR/Field 

Count (%) 

all/tree only* 

C20 6,780 948 595 825  691/8 699 118/119 

C27 1,249 366 250 647  565/15 580 111/115 

C61 3,969 684 411 632  534/0 534 118/118 

C110 3,535 381 247 619  575/118 693 89/108 

E200 6,848 1,067  776 476 946/56 1,002 107/113 

E412 12,268 1,540 957  546 929/57 986 97/103 

O16 14,728 2,049 999 210  363/140 503 42/58 

O69 14,769 1,736 974 222  257/45 302 73/86 

U8 19,994 1,727 991 191  367/153 520 37/52 

U13 18,312 1,623 688 311  498/47 545 57/62 

U56 17,331 1,523 824  256 1,255/72 1,327 62/66 

Total  1,067 1,781 3,657    

Grand Total 6,505 (from  selected values) 6,980/711 85/93 

* Percent of best matching LiDAR count to field count total and trees only. 

A one meter resolution CHM interpolated without a convolution filter resulted in watershed 

segmentation tree designations that appeared to best match field measured trees (Table 5). Three 

exceptions to this were in the even-aged plots and one uneven-aged plot. In plot E412 the 0.3 resolution 

CHM using 3 × 3 and 5 × 5 filters displayed the spatial pattern obviously created by planting in rows, and 

the 5 × 5 filter best matched the number of stems to field measured. The GPS field collected data did not 

reflect this pattern based on random spatial error caused by the GPS. TreeVaW did not display this 

pattern either except when using the 0.3 m resolution canopy height model with a 3 × 3 filter. 

Several iterations were run in the clearcut plots to find the best match of TreeVaW delineated trees to 

field measured trees (Table 6). The two decision factors used to determine the best match for TreeVaW 

were numbers of trees and spatial relationship as discussed in methods. The first iteration utilized the 

crown to tree height relationship from all field measured trees (minus snags with no crown): 

CW = 0.0028 + 1.1207 × (H), where CW = crown width and H = tree height (R
2
 = 0.74). TreeVaW also 

requires inputs of expected maximum height and crown widths. We used expected values for the 

entire project which were based on maximum ground measured heights and crown widths from all 

plots combined. The second iteration used the same crown to tree height relationship but the required 

inputs of maximum tree height and crown width were limited to sizes expected only in the clearcut 

plots, which were determined from our field sampled database of all clearcut plot trees. The third 

iteration used the crown to tree height relationship found only in clearcut plot conifer trees, 

CW = 0.09550 + 0.5173 × (H) (R
2
 = 0.77), and the required input of tree height and crown width 

remained limited to sizes expected in clearcut only plots, also determined from our database of field 

sampled clearcut conifer trees. All other plots besides clearcut plots used the crown to tree height 

relationship of CW = 0.0028 + 1.1207 × (H). Individual tree measurements are saved in a text file 

including height, spatial location, and crown radius. Crown radius is used for generation of circular 
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crown buffers in GIS, thus converting the radius into a diameter. Each TreeVaW text file was then 

converted to an ESRI shapefile for GIS analysis. 

Table 6. TreeVaW LiDAR stem counts compared to GPS and total station field counts. 

Checked numbers indicate the resolution and filter method that best matched field measured 

trees based on count and spatial relationship.  

Plot 

CHM Resolution and Filter Size 
GPS Field 

Count 

Tree/Shrub 

Total 

Station 

Count 

Tree/Shrub 

Difference 

(%)/tree n 

* 

0.1 m, 5 × 5 

Filter 

0.3 m, 3 × 3 

Filter 

0.3 m, 5 × 5 

Filter 

1 m, No 

Filter 

C20 98/385/385 102/132/70 96/135/52 98/172/98 691/8 N/A 14/14 

C27 16/51/51 95/54/53 65/51/39 58/ 115/58 565/15 N/A 19/20 

C61 776/316/316 120/108/78 193/112/57 82/111/62 534/0 N/A 15/15 

C110 281/540/540 165/81/105 104/80/58 101/182/101 575/118 N/A 15/18 

E200 973 664 704 616 946/56 910/78 70/74 

E412 2,507 1,049 475 664 929/57 N/A 106/113 

O16 822 197 218 114 363/140 355/173 43/60 

O69 1,129 276 197 125 238/- 257/45 65/77 

U8 1,243 123 118 88 192/- 367/153 24/34 

U13 1,987 457 285 211 498/47 385/48 52/57 

U56 1,117 276 187 167 1,255/72 N/A 84/89 

Total 1,117 1,172 1,604 197    

Grand Total 4,090 (from  selected values) ** 6,980/711 53/59 

Clear cut iterations are listed in order from left to right third, second, and first iteration. * Percent of best matching 

LiDAR count to field count total and trees only. Field counts used were based on the GPS inventory, with the exception 

of Plots O69 and U8 where GPS excluded shrubs. ** Shaded counts with an  indicate values used to calculate totals. 

GIS point files were generated from field measured data and each of the three tree extraction software 

programs used in this study (Figure 5). Visual inspection of tree patterns suggest that all methods 

compare relatively well to the field measured points for Plot E200 as little canopy height differentiation 

existed. In plots O16 and U13, strictly looking at numbers, the watershed segmentation achieves the 

greatest number of trees, followed by TreeVaW and FUSION (Table 7). The most obvious pattern is 

displayed in plot E200. Tree planting pattern is observed using all methods, the least obvious of which is 

the field measured data likely due to the random horizontal error associated with mapping grade GPS. 

3.2. LiDAR Count Comparison 

Comparing each method of LiDAR tree detection shows a great deal of variation in the number of 

trees detected in each plot with manual detection trees in FUSION consistently delineating fewer 

(Table 7), noting that FUSION was only used on six plots. Based only on field measured tree counts, 

tree delineation was best performed by watershed segmentation followed by TreeVaW and FUSION 

with overall percentages equaling 93%, 59%, and 44% respectively. Watershed segmentation appeared 

to perform noticeably better on the clearcut and even aged with the exception of plot E412 where 

TreeVaW had a similar percentage (Table 7). All methods did considerably poorer in uneven aged and 

old growth treatments due primarily to missing understory trees. 
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Figure 5. LiDAR tree extraction method comparison for plots representing even aged 

(E200), old growth (O16), and uneven aged (U13) conditions. The figure rows (ordinate) 

contain images of the plotted tree/vegetation stem locations by method and the columns 

(abscissa) are the corresponding plots. Field measured points are displayed with trees (solid 

dots), shrubs (hollow dots), and with trees only. 

 

 

Each program was relatively consistent when manually matching trees to field measured tree points 

in a GIS (Table 8). FUSION again demonstrated the fewest matches, followed by TreeVaW and 

watershed segmentation. FUSION was within 16% (969) and TreeVaW 14% (994) of the count 

achieved by watershed segmentation (1,151). In this portion of the study, only trees that were within a 

reasonable distance (based on height) and similar height were compared. Taller trees were subjectively 

given greater manual search windows based on having larger crowns that could potentially be struck by 

LiDAR pulses. 
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Table 7. Tree feature count by LiDAR extraction method compared to field count by total 

station and GPS. 

Plot 
WS 

Segment. 
TreeVaW 

Fusion 

Count 

GPS 

Tree/Shrub 

GPS Field 

Count Total 

Total Station 

Count Tree/Shrub 

C20 825 96 N/A* 691/8 699 N/A* 

C27 647 115 N/A 565/15 580 N/A 

C61 632 82 N/A 534/0 534 N/A 

C110 619 104 184 575/118 693 N/A 

E200 1067 704 652 946/56 1,002 910/78 

E412 957 1049 N/A 929/57 986 N/A 

O16 210 218 181 363/140 503 355/173 

O69 222 197 86 238/- 238 257/45 

U8 191 123 88 192/- 192 367/153 

U13 311 285 135 498/47 545 385/47 

U56 824 1,117 N/A 1,255/72 1,327 N/A 

Total 6,505 4,090 1,326 Field Count 6,980/711 

% of Fld Count  

(all/trees). 
85/93 53/59 37/44   

* N/A indicates that FUSION or total station summaries were not performed on this plot. 

3.3. LiDAR Height Comparison 

We compared field measured and LiDAR derived tree heights using three comparisons. The first 

comparison was conducted on select plots by matching and pairing individual features as explained in 

methods. Height errors between the three methods of extracting LiDAR features compared to ground 

measurements were initially calculated by tree. Average height errors, standard deviations (SD), and 

root mean square errors (RMSE) were then calculated for five plots (plots E200, O16, O69, U8, and 

U13) where field total station measurements were made (Table 8). Additionally, the same height 

comparison was performed for one clearcut plot (plot C110) where only field GPS measurements were 

made. This second height comparison is differentiated from the other by three primary factors: field 

spatial location measurement, field height measurement, and silvicultural treatment. The spatial 

locations were measured by GPS, tree heights were measured using a height pole, and the silvicultural 

treatment was a clearcut consisting of seedlings. The difference in the clearcut is important because the 

trees were small, but no overstory existed to prevent the LiDAR pulses from striking the tree. Since 

overstory was not a factor, then the primary factor impacting whether a tree was detected is LiDAR 

pulse density. Another factor is that the point matching was completed manually in FUSION. We found 

it difficult to identify small trees in FUSION and believed this to be primarily due to overstory 

obscuration. We wanted to determine if small trees could be detected in FUSION when no overstory 

obscuration existed. Because of these differences, we chose to display this comparison separately.  

A third comparison evaluated plot averages for all study plots. 
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Table 8. LiDAR tree extraction method comparing spatial location and average and absolute 

tree height* error (m) to field measurements. 

Plot Method Statistic 
XTS − 

XLiDAR 

YTS − 

YLiDAR 

Horizontal 

Difference 

Field Height − 

LiDAR Height 
Trees 

E200 FUSION Avg. (Abs.) 0.29 0.03 1.66 0.41 (0.86) 589 

 SD (RMSE) 1.50 1.29 1.10 (1.99) 1.27 (1.33) 

 TreeVaW Avg. (Abs.) 0.14 0.02 1.70 0.50 (0.91) 620 

 SD (RMSE) 1.50 1.34 1.08 (2.02) 1.25 (1.35) 

 WS Seg. Avg. (Abs.) −0.35 −0.18 1.73 0.52 (0.96) 691 

 SD (RMSE) 1.49 1.32 1.06 (2.03) 1.28 (1.38) 

O16 FUSION Avg. (Abs.) −0.48 −0.50 2.95 −0.22 (1.33) 119 

 SD (RMSE) 2.73 2.45 2.28 (3.72) 2.19 (2.19) 

 TreeVaW Avg. (Abs.) −0.89 −0.14 3.59 0.15 (1.79) 86 

 SD (RMSE) 3.51 2.29 2.32 (4.27) 2.62 (2.61) 

 WS Seg. Avg. (Abs.) −0.63 −0.33 3.52 0.17 (1.74) 104 

 SD (RMSE) 3.03 2.97 2.45 (4.28) 2.49 (2.49) 

O69 FUSION Avg. (Abs.) −0.23 −1.34 2.72 −2.72 (3.79) 70 

 SD (RMSE) 2.37 1.97 1.96 (3.35) 4.22 (4.99) 

 TreeVaW Avg. (Abs.) −0.17 −0.53 3.36 −1.75 (3.50) 72 

 SD (RMSE) 3.92 2.38 3.15 (4.59) 4.52 (4.82) 

 WS Seg. Avg. (Abs.) −0.34 −0.73 2.97 −1.97 (3.73) 71 

 SD (RMSE) 2.66 2.34 2.06 (3.61) 4.69 (5.05) 

U8 FUSION Avg. (Abs.) 0.36 0.32 1.66 −1.29 (3.44) 83 

 SD (RMSE) 1.16 1.65 1.24 (2.06) 4.90 (5.04) 

 TreeVaW Avg. (Abs.) 0.11 0.01 1.78 −0.02 (2.79) 74 

 SD (RMSE) 1.41 1.89 1.53 (2.34) 4.31 (4.29) 

 WS Seg. Avg. (Abs.) 0.18 0.34 2.19 −0.44 (3.43) 108 

 SD (RMSE) 2.19 1.94 1.97 (2.94) 5.02 (5.02) 

U13 FUSION Avg. (Abs.) −0.12 −0.22 3.04 −0.06 (1.14) 108 

 SD (RMSE) 2.86 2.69 2.48 (3.91) 1.52 (1.51) 

 TreeVaW Avg. (Abs.) 0.07 −0.12 3.14 0.25 (1.22) 142 

 SD (RMSE) 3.03 2.42 2.27 (3.87) 2.16 (2.16) 

 WS Seg. Avg. (Abs.) 0.00 −0.23 3.67 0.34 (1.13) 177 

 SD (RMSE) 3.52 3.10 2.91 (4.68) 1.59 (1.62) 

Total FUSION Avg. (Abs.) 0.12 −0.14 2.05 −0.09 (1.38) 969 

 SD (RMSE) 1.94 1.79 1.67 (2.64) 2.43 (2.43) 

 TreeVaW Avg. (Abs.) 0.02 −0.06 2.19 0.28 (1.23) 994 

 SD (RMSE) 2.24 1.76 1.83 (2.85) 1.86 (1.88) 

 WS Seg. Avg. (Abs.) −0.27 −0.19 2.31 0.22 (1.46) 1,151 

 SD (RMSE) 2.23 2.01 1.94 (3.02) 2.45 (2.46) 

* Field measured tree spatial location and height were determined by total station and laser rangefinder 

respectively. 

In the total station to LiDAR comparisons, three plots (E200, O16, and U13) had mean height errors 

no greater than 0.52 m (SD 1.28 m). Among these three plots, the largest average mean height error was 

in plot E200 with the watershed segmentation method and the lowest was in plot U13 at −0.06 m (SD 

1.52 m) (Table 8). The overall greatest amount of height error occurred in plot O69 (−2.72 m (SD 4.22)) 

with FUSION. Plot 069 also had the most error when comparing LiDAR approaches across plots. 



Remote Sens. 2011, 3             

  

 

2513

Height errors in O69 may have been impacted by the plot’s severe sloping terrain. When comparing the 

height measurement results using a paired t-test, plots E200 and O69 were significantly different for all 

LiDAR techniques except one (p < 0.01), thus indicating that there is a high probability that mean tree 

heights measured by LiDAR compared to those measured by laser range finder are generally not the 

same (Table 9). The lone exception occurred in plot E200 for the watershed segmentation results  

(p = 0.19). Statistically significant differences also occurred with FUSION in plots O16 and U8. The 

significant differences that were determined in plot E200 are noteworthy because this plot is generally a 

monoculture of Douglas-fir planted at the same time and having a similar mean height. For these 

reasons, plot E200 is the plot most expected to have similar results when comparing LiDAR results to 

field measurements. 

Table 9. Statistical comparison of paired LiDAR-derived tree heights to laser range finder 

(LRF) tree heights. 

Plot Avg LRF Height * Avg LiDAR Height df t-stat p-value 

E200      

FUSION 14.09 13.69 588 4.59 <0.01 

TreeVaW 13.85 13.35 619 5.94 <0.01 

WS Seg. 13.75 13.24 690 1.30 0.19 

O16      

FUSION 34.98 35.19 118 −2.34 0.02 

TreeVaW 33.66 33.51 85 1.36 0.18 

WS Seg. 37.06 36.89 103 −0.76 0.45 

O69      

FUSION 41.53 44.25 69 −5.39 <0.01 

TreeVaW 35.04 36.79 71 −3.28 <0.01 

WS Seg. 39.45 41.43 70 −3.54 <0.01 

U8      

FUSION 44.39 45.68 82 −2.40 0.02 

TreeVaW 36.90 36.92 73 −0.04 0.97 

WS Seg. 38.37 38.81 107 −0.91 0.36 

U13      

FUSION 18.48 18.54 107 −0.13 0.90 

TreeVaW 14.15 13.90 141 1.15 0.25 

WS Seg. 13.28 12.93 176 0.16 0.88 

* Field measured tree spatial location and height were determined by mapping grade 

GPS and height pole respectively. 

For the one clearcut plot (C110) where height comparisons were made by tree matching, height 

measurements were compared between field horizontal measurements determined by mapping grade 

GPS and height measurements determined mostly by height pole to the same measurements determined 

by the three LiDAR extraction methods (Table 10). In this plot it appeared that shrubs were detected as 

no canopy existed to prevent LiDAR pulses from reaching shrubs. In all plots except for the clearcut 

plots it appeared shrubs were not detected due to LiDAR pulse obstruction by canopy. This observation 

is based on manual observations of point clouds in FUSION, and features delineated in watershed 

segmentation and TreeVaW that did not correspond to field measured shrub locations, and LiDAR 
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heights that indicated trees rather than shrubs. The least amount of error occurred when comparing 

TreeVaW trees to field measured, however only 17 trees could be matched. The greatest amount of error 

was 1.27 m (SD 0.51 m) comparing shrubs detected by watershed segmentation to field measurements. 

The second least amount of error was 1.17 m with watershed segmentation and FUSION in detecting 

shrubs and trees, respectively. 

Table 10. LiDAR tree extraction method comparing spatial location and height (m) of trees 

and shrubs to field measurement in one clearcut plot.  

Plot Statistic 
XTS minus 

XLiDAR 

YTS minus 

YLiDAR 

Horizontal 

Difference 

Field Height minus 

LiDAR Height * 

n 

Paired 

C110 Trees Trees 

FUSION Avg. (Abs.) −0.93 0.42 1.42 0.56 (1.08) 83 

SD (RMSE) 0.82 0.81 0.59 (1.53) 1.07 (1.36) 

TreeVaW Avg. (Abs.) −0.71 1.46 2.63 0.28 (1.30) 16 

SD (RMSE) 1.92 2.33 2.15 (3.35) 1.69 (1.56) 

WS Seg. Avg. (Abs.) −1.07 0.42 1.59 1.17 (1.23) 339 

SD (RMSE) 0.85 2.14 2.02 (2.57) 0.68 (1.37) 

C110 Shrubs Shrubs 

FUSION Avg. (Abs.) −1.03 0.67 1.30 1.17 (1.17) 44 

SD (RMSE) 0.42 0.40 0.38 (1.36) 0.48 (1.26) 

TreeVaW Avg. (Abs.) −0.98 0.60 1.23 0.97 (0.97) 4 

SD (RMSE) 0.49 0.37 0.32 (1.26) 0.59 (1.10) 

WS Seg. Avg. (Abs.) −1.13 0.53 1.37 1.27 (1.27) 57 

SD (RMSE) 0.62 0.49 0.56 (1.48) 0.51 (1.37) 

* Average (avg.) and absolute (abs.) height differences provided. 

Statistically significant height errors (p < 0.01) (Table 11) were observed with all methods in the 

clearcut plot except with TreeVaW, but only sixteen and four features were compared in trees and 

shrubs respectively and with this method. 

Table 11. Statistical comparison of LiDAR-derived tree heights (h) to height pole measured 

(HP) tree heights in one clearcut plot. 

Plot 
µ (HP h) − (LiDAR h) 

(m) 

(HP h) − (LiDAR h) 

95% CI (m) 
df t-stat p-value 

C110 Trees 

FUSION 0.56 0.24 − 1.46 82 2.93 <0.01 

TreeVaW 0.28 −0.66 − 1.21 15 −2.00 0.54 

WS Seg. 1.17 1.04 − 1.33 338 22.45 <0.01 

C110 Shrubs 

FUSION 1.17 1.01 − 1.30 43 16.31 <0.01 

TreeVaW 0.97 −0.16 − 2.10 3 2.33 0.08 

WS Seg. 1.27 0.94 − 1.59 56 18.72 <0.01 

Comparing all field laser range finder (LRF) height measurements to the three methods of LiDAR 

height measurements in each plot using a Welch modified two-sample t-test resulted in significant 
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differences (p < 0.01) in all comparisons but four (Table 12). Results were inconclusive with TreeVaW 

in plot O16 (p = 0.68) and O69 (p = 0.83); and with watershed segmentation in plot C61 (p = 0.95) and 

E200 (p = 0.46). 

Table 12. Statistical comparison of mean LiDAR tree heights (h) to field measured (FM) 

tree heights as measured by a laser range finder. 

Plot Method 
Average 

Height (m) 

(µ FM h) − (µ LiDAR h) 

95% CI (m) 
df t-stat p-value 

C20 Field Measured 1.06     

 FUSION NOT MEASURED 

 TreeVaW 1.20 −1.46 − (−1.11) 451 −14.54 <0.01 

 WS Seg. 0.87 0.08 − 0.31 1067 3.34 <0.01 

C27 Field Measured 1.04     

 FUSION NOT MEASURED 

 TreeVaW 2.50 −1.75 − (−1.18) 125 −10.05 <0.01 

 WS Seg. 0.53 0.16 − 0.33 1,207 5.66 <0.01 

C61 Field Measured 1.70     

 FUSION NOT MEASURED 

 TreeVaW 15.03 −15.57 − (−11.09) 189 −11.75 <0.01 

 WS Seg. 1.68 −0.49 − 0.53 1,091 0.06 0.95 

C110 Field Measured 1.87     

 FUSION 2.06 −0.39 − 0.00 256 −1.93 0.05 

 TreeVaW 3.16 −1.55 − (−1.03) 206 −9.79 <0.01 

 WS Seg. 0.97 0.78 − 1.01 1,189 15.67 <0.01 

E200 Field Measured 12.52     

 FUSION 13.67 −1.37 − (−0.94) 1,482 −10.67 <0.01 

 TreeVaW 13.02 −0.74 − (−0.27) 1,724 −4.23 <0.01 

 WS Seg. 12.43 −0.14 − 0.31 1,807 0.74 0.46 

E412 Field Measured 6.56     

 FUSION NOT MEASURED 

 TreeVaW 4.69 1.74 − 2.01 1,855 27.80 <0.01 

 WS Seg. 4.45 1.95 − 2.28 1,819 25.60 <0.01 

O16 Field Measured 18.86     

 FUSION 31.16 −15.22 − (−9.39) 334 −8.31 <0.01 

 TreeVaW 19.46 −3.51 − 2.30 390 −0.41 0.68 

 WS Seg. 35.15 −19.14 − (−13.44) 384 −11.23 <0.01 

O69 Field Measured 20.22     

 FUSION 43.94 −28.15 − (−19.29) 147 −10.58 <0.01 

 TreeVaW 19.81 −3.28 − 4.10 387 0.22 0.83 

 WS Seg. 31.49 −14.86 − (−7.68) 436 −6.17 <0.01 

U8 Field Measured 18.00     

 FUSION 45.65 −29.80 − (−25.51) 417 −25.37 <0.01 

 TreeVaW 25.97 −11.94 − (−4.01) 188 −3.97 <0.01 

 WS Seg. 35.56 −20.12 − (−15.00) 490 −13.47 <0.01 

U13 Field Measured 6.67     

 FUSION 16.66 −12.86 − (−7.13) 177 −6.88 <0.01 

 TreeVaW 10.53 −5.64 − (−2.10) 465 −4.29 <0.01 

 WS Seg. 16.18 −11.54 − (−7.48) 456 −9.20 <0.01 
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Table 12. Cont. 

U56 Field Measured 6.66     

 FUSION NOT MEASURED 

 TreeVaW 15.18 −10.49 − (−6.57) 329 −8.55 <0.01 

 WS Seg. 26.69 −21.02 − (−19.05) 1,615 −39.79 <0.01 

3.4. LiDAR Horizontal Comparison 

The LiDAR detected and delineated tree horizontal location compared to known locations of field 

measured trees were similar in each method (Table 8). The least horizontal difference between LiDAR 

measured trees occurred with FUSION software in all plots. The overall mean horizontal difference 

between field measured trees and LiDAR-measured trees by FUSION, TreeVaW, and watershed 

segmentation were 2.05, 2.19, and 2.31 m respectively. The horizontal difference by method can be 

explained by the precision of the measurement method. FUSION utilizes the point cloud compared to 

other methods, which use the raster-based CHM. Measurement of the spatial location of a tree in 

FUSION is based on identifying the single highest discrete point. Error may be introduced by the 

operator who may not align the measurement marker precisely with the highest point. Methods that rely 

on a CHM also rely on the highest point however this point is represented by a raster cell (pixel), with a 

precision that is limited by the resolution of the cell and a coordinate location based on the cell center. 

The cell resolutions used for this study in most cases for TreeVaw (Table 5) and watershed 

segmentation (Table 4) were 0.3 and 1.0 m, respectively.  

In many cases it was obvious when the same tree was identified by each program based on spatial 

location and height. It is also interesting to note that in no case was the same tree identified in the exact 

same location (Figure 6, Table 13). Again this may be attributed to differences in spatial resolution and 

precision of measurement, but some may also be attributed to differences in computer algorithms. 

Table 13. Comparison of horizontal distance (m) between trees determined to be the same 

feature. Selection criterion was that the tree was delineated in all four methods (field, 

FUSION, TreeVaW and watershed segmentation). 

Plot/Statistic 

Field to 

Fusion 

distance 

Field to 

TreeVaW 

distance 

Field to 

WS Seg. 

distance 

Fusion to 

TreeVaW 

distance 

Fusion to 

WS Seg. 

distance 

TreeVaW 

to WS Seg. 

distance 

Combined n 

C110        9 

Average 0.99 1.49 1.51 1.04 0.91 0.65 1.10  

SD 0.87 0.96 1.14 0.62 0.41 0.42 0.81  

E200        534 

Average 1.66 1.68 1.75 0.48 0.85 0.61 1.17  

SD 1.11 1.08 1.06 0.45 0.43 0.39 0.98  

O16        62 

Average 3.02 3.44 3.18 1.50 1.46 0.98 2.26  

SD 2.50 2.30 2.20 1.64 1.63 1.72 2.24  

O69        46 

Average 2.76 3.23 3.18 1.43 1.34 1.46 2.23  

SD 1.75 2.97 2.12 2.55 1.87 3.09 2.57  
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Table 13. Cont. 

U8        55 

Average 1.59 1.38 1.42 0.70 0.99 0.68 1.13  

SD 1.17 1.21 0.99 0.45 1.58 1.57 1.27  

U13        75 

Average 3.21 3.28 3.49 1.41 1.16 1.15 2.28  

SD 2.61 2.62 2.97 1.41 1.30 1.85 2.44  

Total        781 

Average 1.97 2.04 2.09 0.73 0.97 0.75 1.42  

SD 1.62 1.73 1.67 1.05 0.95 1.20 1.53  

Field data for plot C110 was collected using GPS, all other plots by total station. 

Figure 6. Plot maps of trees used for height comparisons of FUSION, TreeVaW and 

watershed segmentation matched trees and all field measured trees. Tree locations were 

measured by GPS in C110 and total station in all others. Plot E200 tree symbols are smaller 

than others to facilitate point differentiation detail and pattern based on the larger number of 

trees delineated. 
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Figure 6. Cont. 

 

3.5. Biomass Comparison 

The TAGB comparison includes a total of all feature to feature comparisons for each plot (Table 14), a 

comparison of mean TAGB per feature in each plot (Table 15), and a comparison of total TAGB for 

each plot for each LiDAR extraction method (FUSION, TreeVaW, and watershed segmentation) 

compared to TAGB estimated from field measurements (Table 16). In comparing model-based estimates 

to field-based estimates overall, FUSION underestimated TAGB by 25%, TreeVaW underestimated by 

31%, and watershed segmentation overestimated by 53% of total weight by kg (Table 14). The 

watershed segmentation overestimation was primarily due to an extreme overestimation in one plot (U56, 

504%). Excluding plot U56, the watershed segmentation method overestimated TAGB by 10%. LiDAR 

TAGB underestimation occurred in 66% of the plot comparisons (19 of 29) and overestimation occurred 

in 34% of the comparisons. Nine of the 29 comparisons were within 20% (over or under) of the ground 

estimations. In five out of six comparisons, FUSION underestimated TAGB. In plot U8, FUSION 

overestimated by 10%. TreeVaW underestimated TAGB in eight of eleven comparisons. The 

overestimations occurred in plot C61 (20%), plot U13 (29%), and plot U56 (3%). Watershed 

segmentation resulted in underestimation in six of eleven plots. The watershed segmentation method 

overestimations occurred in all plot treatments except clearcut (E200, 25%; O69, 14%; U8, 54%; U13, 

35%; U56 504%) (Table 14). The anomaly in plot U56 was due to count and height overestimation of 

trees over 20 m tall. The field survey resulted in 146 trees over 20 m tall however the watershed 

segmentation method delineated 665 features over 20 m tall. Average tree height for plot U56 was larger 

than the field measured data by a factor of four. It was thought that multiple over 20 m tall features were 

designated where large bigleaf maples occurred, however not enough maples were on this plot to 

account for such an excess. We evaluated TAGB estimates for plot U56 with TreeVaW for 0.3 m 

resolution CHM using a 3 × 3 filter and a 0.1 m resolution CHM and 5 × 5 filter to illustrate TAGB 

differences caused by errors of commission in the 0.1 m CHM. The 0.1 m resolution CHM resulted in a 

total biomass estimate (743,438 kg/ha) that was nearly five times that of the 0.3 m resolution CHM. The 

watershed segmentation method resulted in similarly extreme errors of commission in plot U56. We 

could not determine another explanation for the overestimation. 
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Table 14. TAGB estimates by plot using BIOPAK. Field measurement data calculated per tree by species. LiDAR calculations by feature 

based on large Douglas-fir (DBH ≥ 0.13 m) and small Douglas-fir (DBH < 0.13 m). 

Plot Method 
Average Tree 

Height (m) 

Min. Tree 

Height (m) 

Max Tree 

Height (m) 

Tree Biomass 

kg/ha 

Shrub 

Biomass 

kg/ha 

Biomass 

Total kg/ha 

Percent of 

Field measured 

C20 Field Measured 1.06 0.02 35.00 553 58 611 

 FUSION NOT MEASURED 

 TreeVaW 1.20 0.03 8.66 442 72.37 

 WS Segmentation 0.87 0.35 9.05 478 78.19 

C27 Field Measured 1.04 0.54 8.63 357 59 416 

 FUSION NOT MEASURED 

 TreeVaW 2.50 1.21 9.36 289 69.49 

 WS Segmentation 0.53 0.19 20.65 345 83.03 

C61 Field Measured 1.70 0.32 44.45 16295 0 16,295 

 FUSION NOT MEASURED 

 TreeVaW 15.03 1.22 41.55 19,479 119.54 

 WS Segmentation 1.68 0.35 41.85 4,731 29.03 

C110 Field Measured 1.87 0.32 9.40 987 240 1,227 

 FUSION 2.06 0.36 9.69 333 27.12 

 TreeVaW 3.16 1.37 9.53 612 49.85 

 WS Segmentation 0.97 0.35 9.58 457 37.28 

E200 Field Measured 12.52 1.04 18.31 83070 266 83,336 

 FUSION 13.67 6.50 17.40 69,006 82.80 

 TreeVaW 13.02 5.69 17.34 75,700 90.84 

 WS Segmentation 12.43 1.07 17.34 103,913 124.69 

E412 Field Measured 6.56 1.21 21.37 15592 239 15,831 

 FUSION NOT MEASURED 

 TreeVaW 4.69 1.76 20.56 6,993 44.17 

 WS Segmentation 4.45 0.90 20.56 12,883 81.38 
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Table 14. Cont. 

Plot Method 
Average Tree 

Height (m) 

Min Tree 

Height (m) 

Max Tree 

Height (m) 

Tree Biomass 

kg Per Hectare 

Shrub Biomass

kg Per Hectare 

Biomass 

Total kg/ha 

Percent of 

Field Measured 

O16 Field Measured 18.86 1.05 64.70 472,976 1,868 474,844 

 FUSION 31.16 4.02 63.88 293,328 61.77 

 TreeVaW 19.46 3.02 63.57 197,288 41.55 

 WS Segmentation 35.15 1.38 63.62 416,444 87.70 

O69 Field Measured 20.22 2.05 69.71 366,511 1,755 368,266 

 FUSION 43.94 1.14 68.70   261,929 71.12 

 TreeVaW 19.81 2.75 68.20 216,549 58.80 

 WS Segmentation 31.49 1.13 31.49 421,644 114.49 

U8 Field Measured 18.00 1.10 57.88 215,013 1,722 216,735 

 FUSION 45.65 16.07 54.03   238,278 109.94 

 TreeVaW 25.97 1.95 53.91 164,559 75.93 

 WS Segmentation 35.56 0.97 53.79 332,918 153.61 

U13 Field Measured 6.67 0.56 52.60 141,586 279 141,865 

 FUSION 16.66 1.54 53.08 97,340 68.61 

 TreeVaW 10.53 3.36 52.78 183,065 129.04 

 WS Segmentation 16.18 0.92 52.87 191,971 135.32 

U56 Field Measured 6.66 1.00 42.36 146,791 208 146,999 

 FUSION NOT MEASURED 

 TreeVaW 0.3/3 × 3 15.18 1.71 42.52 151,046 102.75 

 TreeVaW 0.1/5 × 5 20.92 2.56 42.52 743,438 505.74 

 WS Segmentation 26.69 0.91 42.52 760,674 503.60 

 Study Totals 

     Field Measured 1,466,425  

 FUSION Total 960,214 74.65 

 TreeVaW Total 1,016,022 69.29 

 WS Segmentation 2,246,459 153.19 
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Plot characteristics in this study were highly variable. The variability in the LiDAR TAGB 

estimation results are a manifestation of the field variability. These results make it difficult to 

consistently predict TAGB per plot however we noted that many TAGB estimates were within 10 to 

20% of the field based estimates. If plot U56 watershed segmentation TAGB results are removed, the 

watershed segmentation overall TAGB estimation was 13% over field estimates, thus the overall 

estimation was within just over 30% or better considering the three delineation methods. These overall 

results indicate promise in using LiDAR for broad, forest level TAGB estimation. 

Using a Welch modified t-test to examine the differences in mean feature (tree/shrub) TAGB by 

plot (Table 15), statistically significant differences (p ≤ 0.03) were observed in all but one plot and in 

17 of 28 LiDAR extraction methods. Potentially equal TAGB means could not be ruled out in plot 

C20. FUSION overestimated mean TAGB in all plots, and in 66% of the plots (E200, O69, U8, and 

U13) this overestimation was statistically significant noting that these were all plots with significant 

canopy cover. Plot O16 also had significant canopy cover, however 58% of the trees were larger than 

10 m tall, and of the 32% below 10 m tall, there were very few seedlings. TreeVaW displayed 

statistically significant differences in 8 of 11 plots (p-values ≤ 0.03). The three plots that did not 

display significant differences were C20, O69, and U13 and were all within 30% of the field measured 

TAGB estimate. The watershed segmentation method had inconclusive results in the clearcut plots, but 

in all other comparisons to field based TAGB estimation resulted in statistically significant differences. 

Table 15. Probability that LiDAR (L) based feature mean TAGB estimates by plot are 

equal to field (F) measurement estimates. 

Plot 
Avg Field 

Biomass (kg) 

Avg LiDAR 

Biomass (kg) 

(µ F bio) − (µ L bio) 

95% CI * 
df t p-value 

C20       

FUSION NOT MEASURED 

TreeVaW 2.40 2.06 3.01 704 0.21 0.58 

WS Seg. 2.40 0.57 4.48 695 1.13 0.87 

C27  

FUSION NOT MEASURED 

TreeVaW 0.63 2.51 −1.31 134 −5.47 <0.01 

WS Seg. 0.63 0.53 0.27 816 0.90 0.81 

C61       

FUSION NOT MEASURED 

TreeVaW 30.34 105.86 −26.66 655 −2.53 0.01 

WS Seg. 30.34 7.49 68.84 540 0.82 0.79 

C110       

FUSION 1.73 1.81 0.25 323 −0.41 0.34 

TreeVaW 1.73 3.56 −1.35 224 −6.34 <0.01 

WS Seg. 1.73 0.74 1.19 947 8.13 1.00 

E200       

FUSION 87.81 105.03 −22.29 − (−13.15) 1,376 −8.29 <0.01 

TreeVaW 87.81 107.53 −24.34 − (−15.09) 1,638 −8.36 <0.01 

WS Seg. 87.81 97.38 −13.81 − (−5.34) 1,578 −4.44 <0.01 

E412       

FUSION NOT MEASURED 

TreeVaW 16.78 6.66 9.04 − 11.20 1,945 18.37 <0.01 
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Table 15. Cont. 

WS Seg. 16.78 13.46 1.82 − 4.82 1,589 4.35 <0.01 

O16       

FUSION 1,288.76 1,585.56 −675.48 − 81.88 504 −1.54 0.12 

TreeVaW 1,288.76 904.99 30.68 − 736.87 581 2.13 0.03 

WS Seg. 1,288.76 1,983.07 −1054.76 − (−333.84) 566 −3.78 <0.01 

O69       

FUSION 1,415.10 3,045.69 −2182.08 − 1079.08 201 −5.83 <0.01 

TreeVaW 1,415.10 1,099.23 −118.14 − 749.87 448 1.43 0.15 

WS Seg. 1,415.10 1,899.30 −909.69 − (−58.70) 457 −2.24 0.03 

U8       

FUSION 584.27 2,707.71 −2302.89 − (−1943.97) 202 −23.33 <0.01 

TreeVaW 584.27 1,337.88 −1027.90 − (−479.31) 170 −5.42 <0.01 

WS Seg. 584.27 1,743.02 −1348.45 − (−969.05) 374 −12.01 <0.01 

U13       

FUSION 284.31 662.18 −579.28 − (−176.45) 218 −3.70 <0.01 

TreeVaW 284.31 325.81 −173.56 − 90.55 658 −0.62 0.54 

WS Seg. 284.31 615.29 −466.54 − (195.42) 689 −4.79 <0.01 

U56       

FUSION NOT MEASURED 

TreeVaW 117.53 547.27 −523.53 − (−335.96) 300 −9.02 <0.01 

WS Seg. 117.53 923.15 −847.36 − (−763.88) 1,273 −37.87 <0.01 

* Clearcut plots are one-sided p values. 

Consolidating features (trees/shrubs) together from all plots and determining a feature average 

resulted in statistically significant differences (p < 0.01) between each LiDAR extraction method 

compared to field measurements (Table 16). All LiDAR TAGB feature average estimates were larger 

than field estimates. When combining and analyzing plot TAGB, statistical significance was 

inconclusive in all cases. Plot average TAGB estimated by LiDAR was less than field measurements in 

both FUSION and TreeVaW but was greater for the watershed segmentation results. 

Table 16. Probability that LiDAR (L) based mean TAGB estimates for all features 

combined are equal to field (F) measurement estimates.  

Plot 
Avg Field 

Biomass (kg) 

Avg LiDAR 

Biomass (kg)
(µ F bio) − (µ L bio) 95% CI df t-stat p-value

Average Feature       

FUSION Plots 425.44 712.85 −376.38 − (−198.45) 2,751 −6.33 <0.01 

TreeVaW Plots 209.41 261.60 −87.47 − (−16.34) 8,300 −2.84 <0.01 

WS Seg Plots. 209.41 345.29 −166.90 − (−105.28) 13,308 −8.75 <0.01 

Average by Plot       

FUSION Plots 214,379 160,035 −145,189.80 − 253,876.60 9 0.61 0.55 

TreeVaW Plots 133,312 84,046 −68,142.39 − 166,673.07 15 0.95 0.38 

WS Seg. Plots. 133,312 204,223 −260,773.90 − 118,950.2 17 −0.79 0.44 
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4. Discussion 

We presented a comparison of FUSION, TreeVaW, and watershed segmentation tree extraction 

methods in clearcut, even-age, uneven-age, and old growth forest plots using an extensive tree 

inventory. Our examination and comparison of metrics from the extraction methods included tree 

height and spatial position. In addition, we compared resulting TAGB estimates from the tree 

extraction methods.  

We reported LiDAR tree height errors using FUSION, TreeVaW, and watershed segmentation 

extraction methods in our study plots. These errors are generally consistent with those reported in other 

studies of LiDAR height measurements in various forest conditions compared to field measurements, 

albeit somewhat higher than some in old growth plot O69 and uneven-aged plot U8 [10,38-40]. To 

illustrate the complexity in measuring individual trees with LiDAR, many factors influencing the 

accuracy of LiDAR forest measurement are reviewed below. Some of the key factors that impact 

LiDAR tree height measurement include survey control, location the LiDAR pulse(s) strike the tree, 

base measurement datum, differentiating individual trees, position of the tree within the canopy, and 

use of a raster CHM versus the LiDAR point cloud. 

The vendor provided resolution and accuracy summary for this study stated a point resolution 

specification of ≥8 points/m
2
 and an achieved resolution of 10 points/m

2
, and a vertical accuracy of 

better than 0.13 m. This accuracy is based on measurements made in perfect LiDAR ground 

conditions, such as those found on paved road surfaces with no vertical obstruction. The resolution and 

accuracy deteriorates markedly with variation in natural terrain conditions including forest canopy, 

understory vegetation, small scale topography, and other environmental conditions. 

Field measurements are subject to systematic and random error propagation. The field survey crew 

was trained in proper procedures and the design of proper protocols prevented many potential errors. 

However due to the scope of this study, it is wrought with a myriad of potential accidental errors. The 

field survey measured thousands of features, thus error is likely to have occurred periodically in tree 

height measurement with a laser range finder (both systematic and accidental). Laser range finders are 

known to introduce height error, however we used one that has been shown to have the highest 

accuracy in comparison to other commonly used models [36]. 

Where and how many LiDAR pulses strike and reflect off the tree impacts tree identification and 

measurement. In conifer species the odds of a pulse striking a single, very thin apex are low. These 

odds decrease further when the tree occurs below the primary canopy where pulses that might strike 

the tree are intercepted by the upper canopy. In every method of tree extraction used in this study the 

number of pulses hitting the tree impacts identification and canopy dimension measurements. Without 

an adequate number of pulses striking a tree in FUSION, tree identification was difficult in both dense 

and clearcut forest plots. In dense plots, upper tree identification was relatively easy based on the 

unique shape and canopy of each tree, however, as smaller trees were shrouded by larger ones, tree 

identification was difficult at best. Manually identifying a three dimensional array of dots (the LiDAR 

point cloud) that belong to a single tree is a tedious process. Differentiating small trees in a clearcut 

where overstory trees are not a factor was also very difficult. This is strictly a result of LiDAR 

resolution. Theoretically one would think that a pulse rate of 8–10 pulses per m
2
 would be enough to 

enable the identification of small conifers whose crown is approximately 1 m
2
. However, due to the 
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sparseness of young conifer foliage, often only one or two LiDAR points struck a tree, which made 

identification difficult to impossible. 

TreeVaW and watershed segmentation both rely on a CHM for tree identification and measurement. 

If points are generated from trees existing below the primary canopy, these points will be eliminated in 

rendering the CHM surface, thus the tree that exists in the field will be removed from the model. In 

creating the CHM, we also experimented with raster interpolation resolution. In both models, the 0.1 m 

resolution CHMs resulted in extreme commission errors (Tables 7 and 8). This is likely due to false 

canopy peaks introduced where branch height variation caused algorithm calculation error. The 

software determined a separate tree location based on a LiDAR branch peak returns surrounded by 

lower height LiDAR pulse returns, when in fact many returns were associated with a single tree. This 

consistently occurred in commission errors caused by returns from broadleaf trees where upward 

facing branches along outward extending large branches caused the algorithm to falsely delineate 

individual trees. Watershed segmentation results found that in 8 of 11 plots the 1m resolution CHM 

best matched the field measured results. Since the algorithm relies on an inverted CHM to find 

sills/pits in the raster elevations and in many cases tree tops are 1m apart, it stands to reason that 1m 

resolution raster cells would avoid errors of commission caused by branch peaks associated within the 

same tree. TreeVaW’s algorithm appeared to have difficulty finding small trees, even in the clearcut 

plots where only small trees existed. Excluding the 0.1 m resolution CHM issues addressed above, the 

differences in resolution appears to be mostly related errors of omission associated with small trees. 

All LiDAR tree height measurement methods rely on some form of ground surface elevation model. 

In this study, all utilized methods relied on a vendor provided DEM. We chose to use this DEM 

instead of creating our own based on the vendor having the expertise and software necessary to 

separate ground points from non-ground points such as understory vegetation, stumps, and slash. In 

certain circumstances, when conducting the ground survey, it was obvious that a LiDAR pulse would 

not reach the ground surface. Examples of this are dense blackberry, poison oak, and Oregon grape 

thickets. It is questionable if computer software or an analyst could always identify these features. 

Even if positively identified, many thickets in this study occupied 100 m
2 
or more. Interpolation of the 

ground surface under this vegetation likely introduced error in the DEM.  

What level of vertical accuracy is good enough for a tree height measurement? What is the impact if 

LiDAR height estimation is off by 1 m? If the estimate is under or over from a timber management 

perspective, then tree volume estimates will be wrong. On the other hand, a loss of some of the tree top 

is expected in felling operations. For illustrative purposes and from a biomass estimation perspective, 

we calculated the impact of height errors based on Douglas-fir TAGB in small trees of the same height 

used in this study (Table 17). These calculations are based on small Douglas-fir TAGB equations for a 

single tree and multiplied by the number of trees. This small tree equation was used to represent the 

approximate size of the top of a tree. Volume estimates are highly variable based on the height of the 

tree used in allometric equations, and the allometric equation itself, thus the calculations are conservative. 

Ground truth confirmation would likely be prudent in economic decisions involving LiDAR 

volume/biomass estimation. 
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Table 17. TAGB error estimate based on LiDAR height error. 

1.0 m error (kg) 1.5 m error (kg) 2.0 m error (kg) 

Single Tree 0.68 1.07 1.62 

100 Trees 67.85 106.58 161.67 

500 Trees 339.25 532.91 808.35 

1,000 Trees 678.50 1,065.83 1,616.71 

We found that there are three main factors that influence the accuracy of LiDAR forest TAGB 

estimates: feature (tree/shrub) count, feature height, and species identification. In this study, the factor 

that contributed the most to biomass calculation differences was the tree count. All three algorithms 

did well at detecting large trees however watershed segmentation appears to detect small trees better 

than TreeVaW or FUSION. This study illustrates that the effectiveness of using LiDAR with the 

protocols we used for forest measurement has its limitations. Based on this research and previous 

studies, further investigation is warranted and development of regional protocols could result in 

LiDAR becoming a very effective forest measurement tool for volume and biomass estimates. Clearly, 

this and previous studies have demonstrated that large trees or even-age stands with consistent species 

and size can be measured using LiDAR with relatively accurate results. However, measuring all trees 

and shrubs at the stand or forest level for purposes of estimating TAGB is not necessarily accurate 

compared to field-based estimates. Detecting and measuring small and understory vegetation would 

likely improve with increased LiDAR resolution (greater pulse density) and warrants further 

investigation. We also found that the cell resolution of the CHM impacted tree extraction results in 

TreeVaW and watershed segmentation. Further research is recommended to determine one ideal CHM 

resolution for stand level tree extraction and biomass estimation, or a potential solution is to use 

different resolutions per stand treatment. The use of the LiDAR point clouds enable the measurement 

of all features vertically throughout the canopy structure, however the manual method of feature 

extraction in FUSION is tedious and slow relative to automated methods, but automated methods used 

in this study were limited by the CHM. An automated method of feature extraction using point clouds 

may be a solution to improved measurement accuracy. This study was also limited in estimating 

TAGB because we did not differentiate species in LiDAR estimations. One method to identify species 

is to use other imagery, e.g., multispectral aerial photographs or satellite imagery in conjunction with 

LiDAR. One recommendation is that, if budgets permit, aerial photographs should be taken 

simultaneously with the LiDAR. The LiDAR system used in this study also acquired return intensity 

values, which we feel can be used to differentiate conifer from deciduous species, and will be further 

investigated to improve biomass estimates. Finally, biomass estimates vary widely in their accuracy 

when relying on allometric equations. Based on many site specific factors and age classes, predicting 

TAGB developed from different sites and ages can raise debate [37]. A great deal more variation  

in biomass equation prediction exists than many realize. Variation in equations is likely by at least  

±25–50% (Harmon, M. Personal communication, 30 November 2010). 
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