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ABSTRACT

Compared to the conventional ground measurement of gravity, airborne

gravimetry is relatively efficient and cost-effective.  Especially, the combination of GPS

and INS is known to show very good performances in the range of medium frequencies

(1-100 km) for recovering the gravity signal.

Conventionally, gravity estimation using GPS/INS was analyzed through the

estimation of INS system errors using GPS position and velocity updates.  In this case,

the complex navigation equations must be integrated to obtain the INS position, and

the gravity field must be stochastically modeled as a part of the state vector.  The

vertical component of the gravity vector is not estimable in this case because of the

instability of the vertical channel in the solution of the inertial navigation equations.

In this study, a new algorithm using acceleration updates instead of

position/velocity updates has been developed.  Because we are seeking the gravitational

field, that is, accelerations, the new approach is conceptually simpler and more

straightforward.  In addition, it is computationally less expensive since the navigation

equations do not have to be integrated.  It is more objective, since the gravity

disturbance field does not have to be explicitly modeled as state parameters.

An application to real test flight data as well as an intensive simulation study has

been performed to test the validity of the new algorithm.  The results from the real

flight data show very good accuracy in determining the down component, with

accuracy better than ±5 mGal.  Also, a comparable result was obtained for the

horizontal components with accuracy of ±6 to ±8 mGal.  The resolution of the final

result is about 10 km due to the attenuation with altitude.

The inclusion of a parametric gravity model into the new algorithm is also

investigated for theoretical reasons.  The gravity estimates from this filter showed

strong dependencies on the model and required extensive computation with no

improvement over the approach without parametric gravity model.
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CHAPTER 1

INTRODUCTION

1.1 Background

The determination of the Earth’s gravity field is one of the most important areas

in geodesy for the determination of an Earth model (geoid) and for the prediction of

dynamical parameters of low Earth-orbiting satellites.  In addition, gravity information

is important for many scientific and engineering areas such as geophysical exploration

and navigation, and in studying geophysical phenomena of the Earth.  Conventionally,

the gravity signal is determined by measuring its magnitude with a gravimeter and

determining the deflections of the vertical, defined by the difference of the directions

between the natural gravity and normal gravity vector, by astronomical observations.

Although this produces highly accurate gravity vector information, it is extremely

expensive and time consuming.

Due to the recent satellite technology, it is possible to determine the gravity

field using satellite observations mostly in the form of satellite altimetry, and a more

refined global gravity model based on terrestrial gravity and satellite data is available,

e.g., EGM 96 (Lemoine et al., 1998).  Hence the long wavelength gravity signal can be

obtained by using a global model (Rapp and Pavlis, 1990; Jekeli, 1995).  According to

the recent study by Jekeli (1999), however, the shorter-wavelength signatures of the

global model are either poorly modeled or only moderately well known in the global

model resulting in under-powered at wavelengths shorter than 200 km.  Therefore, the

purpose of the airborne gravimetry is to recover the Earth’s gravity field on the

medium-frequency gravity signal, which then fills the gap between the terrestrial gravity

field measurements and global gravity models in the wavelengths between 1 and 100-

200 kilometer (Hein, 1995).

By the middle of this decade, measurements from GRACE (Tapley et al.,

1997), CHAMP (Reigber et al., 1997) and GOCE (Rummel, 1999) gravity mapping

missions are expected to provide revolutionary improvement in our knowledge of the

Earth's static gravity field and its temporal component.  Especially, the accuracy of the

mean geoid will be about 1 cm at a wavelength of 100 km or longer (primarily by

GOCE).  The accuracy and resolution from these missions, however, are not still good

enough for the geophysical exploration in which 1 mGal over less than 10 km is

required (Salychev et al., 1994).  In addition, there will be polar gaps with radius of

700 km due to the sun-synchronized orbits for GOCE.  Therefore, even after these
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missions, the airborne gravimetry will still play an important role in improving the

model for the earth’s gravity field.

As a matter of fact, the Inertial Navigation System (INS) was introduced as a

surveying instrument in the late 1960’s, and immediately it was noticed that the

potential of INS for precise positioning was limited by the unknown anomalous gravity

field (Nash, 1968; Huddle, 1977).  Conversely, this means that the anomalous 3-D

gravity field could be recovered from the INS if accurate kinematic positions and/or

velocities were known and the system errors were kept small.  Among early studies in

vector gravimetry, Rose and Nash (1972) showed the ability of an INS to measure the

deflection of vertical directly.

The important issue in gravity recovery using INS is the separation of the

gravitational acceleration from kinematic acceleration as well as system errors.  The

kinematic acceleration can be separated from the sensed acceleration of INS by using a

different sensor such as GPS.  The separation between the gravitational acceleration

and system errors from INS can be achieved by introducing external information e.g.,
ZUPT (Zero Velocity Update, Torge, 1989).  That is, bring the vehicle to a stop

periodically, thus controlling the unknown systematic errors by feeding the zero

velocity information back to the system.  Although this semi-kinematic method had

been successfully used in many cases (Huddle, 1988; Salychev et al., 1994; Wang and

Gao, 1996), it is still inefficient and expensive for the exploration of large areas.  In

addition, it cannot be used in areas essentially inaccessible to land vehicles or

helicopters such as seas, deserts, or mountains.

Obviously, an alternative way of determining the kinematic position and

velocity was necessary to perform the mobile, especially airborne, gravity survey.  In

1967, Moritz proposed the combination of INS and a gravity gradiometer, and

simulation studies on such a combination showed promising results (Heller and Jordan,

1976).  Because of the high cost of the gradiometers, however, other combinations

such as the combination of INS with a radio navigation system, Loran-C (Lacoste et
al., 1982), were investigated.  The accuracy of the gravity field from the system was

poor because of the low data rate and accuracy of the radar altimeter.

Clearly, the advent of the Global Positioning System (GPS), providing high

accuracy position and velocity, created revolutionary progress in the area of the

airborne gravimetry.  Schwarz (1987) compared different kinematic methods for

airborne gravimetry with combinations of GPS, INS, and gradiometer.  He concluded

that the GPS/INS combination showed good medium-wavelength performance, while

the GPS/gradiometer combination was better for high-frequency components.

Compared to the other positioning instruments, GPS is inexpensive and the accuracy of

the vehicle acceleration from GPS is sufficient for airborne gravimetry.

There have been many studies on the feasibility of GPS/INS gravimetry in both

time and spectral domains (Jekeli, 1995; Knickmeyer, 1990; Schwarz et al. 1994).  This

research has shown that the gravity disturbance can be recovered with errors in the

order of (RMS) ±1-2 mGal using a high-accuracy INS (Jekeli, 1995) within a spectral

window of 10-200 km (Schwarz et al., 1994).
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The main obstacle in GPS/INS gravimetry is the low signal to noise ratio of the

system.  Typically, gravity disturbance vector does not exceed 100 mGal in each

component over distance of about 100 km while the noise level of the system is much

higher (Hammada, 1995).  Analyses and simulations were conducted by many

investigators mainly applying a low pass filter on the signal to reduce the system noises

and extract the optimal gravity signatures in GPS/INS airborne gravimetry (Hehl, 1994;

Wei and Schwarz, 1995).  In addition, the development as well as the analysis of the

INS error model has been investigated theoretically, and tested throughout simulations

(Arshal, 1987; Goshen-Meskin and Bar-Itzhack, 1992; Wei and Schwarz, 1994).

Recently, some test flights also have been carried out to determine the feasibility and to

assess the accuracy in airborne gravimetry.  It has been shown that 1 mGal accuracy in

GPS acceleration and 2-3 mGal of accuracy in the vertical gravity component can be

achieved (Wei and Schwarz, 1998).

1.2 Statement of the Problem

There are two main categories in airborne gravimetry based on measurements

of accelerometer, namely scalar gravimetry and vector gravimetry.  Gravity

gradiometry may be considered as the third type (Hein, 1995), where observations are

the gradient of gravity.  Scalar gravimetry determines either the vertical component or

the magnitude of the gravity anomaly vector while vector gravimetry aims to recover

the full gravity anomaly vector in all three dimensions.  Obviously, the advantage of the

vector gravimetry compared to the scalar gravimetry is that the (relative) geoid can be

determined directly by along-track integration of the horizontal gravity components.

Thus, the numerical integration of the vertical gravity component over large region

(Vening-Meinesz integrals; Heiskanen and Moritz, 1987) can be avoided.

Currently, airborne gravimetry is conducted using either sea/air gravimeters on

a Schuler-tuned stabilized platform for scalar gravimetry, or with an Inertial Navigation

System mainly strapdown INS for scalar or vector gravimetry.  In both cases, the

separation of the gravitational and kinematic accelerations from the system errors is

very crucial in estimating the gravity field.  Results of scalar airborne gravity survey

using gravimeters, modified for high dynamics of the aircraft, in Greenland, Antarctica,

and Switzerland show that an accuracy of 3 to 5 mGal and a resolution of 10 km

wavelength is achievable with current technology (Brozena and Peters, 1994, 1995;

Forsberg and Kenyon, 1994).  The main error source in this case was insufficient

platform stabilization.  Another test using ITC-2 inertial platform system showed that

an accuracy of 1 mGal with resolution of 2-3 km is achievable (Salychev et al., 1994).

Unlike to the stabilized systems, there is no physical stabilizing platform in

strapdown system.  Instead, the inertial sensors are physically bolted down to the

vehicle so that the measured data in the body frame are transformed to the local level

frame computationally.  The advantage of the strapdown INS is its smaller size, lower

cost and more operational flexibility (Jekeli, 1995a).  It has been shown that the

performance of the SINS is comparable to the airborne gravimeter (Glennie et al.,
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1999).

The traditional way of analyzing the determination of gravity using the

GPS/INS signal is to integrate the error dynamics equations of the INS system, and

model the INS errors and gravity disturbance as stochastic processes (Grejner-

Brzezinska and Wang, 1998; Jekeli, 1995, 1995b; Knickmeyer, 1990; Wang, 1997;

Forsberg, 1987; Eissfeller and Spietz, 1989).  The apriori stochastic information of the

INS errors such as biases and scale factors are obtained from the manufacturer’s

specification.

There are good arguments for modeling the gravity disturbance field as a

stochastic process – it is one of the basic tenets of least-squares collocation in geodesy

(Moritz, 1980).  In a sense, a stochastic model is introduced to regularize an otherwise

ill-posed problem.  However, in this case we must treat the gravity state as a variable of

a finite-dimensional state-space (Jekeli, 1995), and furthermore, one that satisfies a

linear differential equation (Jordan, 1972).  Practically, however, it is one of the main

proposed approaches in airborne gravimetry (Wang, 1997).  In this method, GPS

position or velocity is used as an update in a Kalman filter estimation and the

calculation is done in the navigation frame.

Although there are some investigations about vector gravimetry using

covariance analyses (Knickmeyer, 1990; Jekeli, 1995) and error analysis through

simulation (Wei and Schwarz, 1994), actual implementations have not been widely

achieved for the horizontal gravity components.  Because the horizontal components

are more sensitive to the orientation and dynamics of the vehicle, more accurate

orientation information is necessary to achieve the same accuracy as for the vertical. A

horizontal accuracy of 1 mGal corresponds to about 0.2 arcsec in orientation accuracy,

and it has been claimed that an accuracy of about 1 arcsec can be achieved using

current technology.

The objective of this research is to develop a new efficient algorithm for

GPS/INS vector gravimetry. The main idea of this research is that the gravity

disturbance can be obtained directly by differencing the GPS and INS sensed

accelerations (Jekeli, 1992).  This is analogous to conventional airborne scalar

gravimetry using gravimeters (Brozena, 1991).  One of the conceptual differences

between the traditional and this approach concerns the different methods used to

integrate INS and GPS data.  While the traditional method uses complex error

dynamics associated with the solution to the navigation equations, the new method has

a very simple set of equations based on accelerations.  In addition, the calculations in

the new method are carried out in the inertial frame, not in the navigation frame, so

many computations related to the integration of the error dynamics equations in the

traditional method can be saved.  Through intensive simulations as well as application

to real test flight data, the validity and efficiency of the new algorithm are presented.

The gravity field is not specifically modeled as a stochastic process in this new

approach.  Instead, it will be treated as an observation model error that can be seen in

the residuals after estimating the INS system error parameters.  In other words, it is

assumed that no information is available on the gravity disturbance, even its existence,
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so that it cannot be modeled.  If a mathematical model is incorrect in an adjustment

problem, the effect should be seen in the residual after the adjustment.  Although this

intentional mismodeling has its theoretical drawbacks, it has turned out to be very

useful for the airborne gravimetry.  However, proper interpretations and limitations

must be considered and will be discussed.

1.3 Chapter Descriptions

The mathematical background including the descriptions of various coordinate

systems, transformations among the systems, and the definitions of the related

quantities are presented in Chapter 2.

In Chapter 3, an overview of both GPS and INS systems is described.  The

system description, observables, related errors, and principles of kinematic positioning

are addressed for GPS.  System mechanizations, measurement methods, error models

for both accelerometers and gyros, and navigation equation are reviewed for INS.

The traditional approach for estimating the gravity components using position

or velocity update routine is presented in Chapter 4.  The details on the error dynamics,

stochastic modeling for systematic errors, gravity modeling and Kalman filtering are

discussed in this chapter.  The results and analysis of the application to real data using

the traditional methods are also presented for comparison.

The full development from the mathematical model to the data processing

procedure for the new algorithm is presented in Chapter 5.  Details on error parameters

and some aspects on the smoothing are also discussed.  The validity test and the

investigations on the error behaviors are described through simulation.  The results,

analysis and the full descriptions of comparison between the traditional and new

approach are given in terms of the mathematical model, the error parameters, their

estimability and the efficiency of the algorithm.

In Chapter 6, cooperation of a gravity model in the mathematical model to the

new algorithm is discussed.  Using a Gauss-Markov model and an expansion of

trigonometric functions, the feasibility as well as the validity of the approach is

presented.  Advantages and disadvantages of the gravity modeling are also addressed.

A brief discussion of all results, future studies, conclusions and suggestions are

presented in Chapter 7.
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CHAPTER 2

COORDINATE FRAMES AND TRANSFORMATION

2.1 Introduction

To describe locations of points on or near Earth’s surface, a coordinate system

should be defined.  Although one could describe the whereabouts of objects and places

using a relational or synthetic database, it is necessary to assign an algebraic coordinate

system if one wants to know more than the location information such as the measure of

distance, area, volume and direction (Jekeli, 1995a).  In navigation, it is also necessary

to measure the progress and determine the course and destination of a vehicle based on

the selected coordinate system.

It should be noted that the term coordinate system and coordinate frame do not

have the same meaning.  The coordinate system includes the description of the physical

theories and their approximations that are used to define the coordinate axes, while

frame denotes the accessible realization of the system through a set of points whose

coordinates are monumented or otherwise observable (Jekeli, 1995a; Moritz and

Mueller, 1988).

The most common system in use is the Cartesian coordinate system whose axes

are mutually orthogonal.  To define a Cartesian coordinate system, three elements such

as origin, orientation and scale factors should be determined.  Figure 2.1 shows a right-

handed Cartesian coordinate system.

It is constructed in such a way that right angle rotation about the 1 axis, viewed

toward the origin, rotates the 2 axis into the 3 axis.  Similarly, rotation about the 2 axis

rotates the 3 axis into the 1 axis and that about the 3 axis rotates the 1 axis into the 2

axis.  An arbitrary vector in the Cartesian coordinate system can be decomposed into

its component on each axis.  Denoting the components with a subscribed letter, a

vector x  can be represented as an ordered triplet of coordinates:

x =
x

x

x

1

2

3

. (2.1)

It can be also written using unit vectors as:

x e e e= + +x x x1 1 2 2 3 3 (2.2)
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1

2

3

e1

e2

e3

x2

x1

x3

x

Figure 2.1 Cartesian coordinates of vector x, and unit vectors ej.

There are several coordinate frames in use in the field of geodesy.  Those

frames can be divided into global and local frames.  While the global Cartesian

coordinates are fixed either to the Earth or the celestial sphere, the local Cartesian

coordinates are defined by local directions; for example north, east and down.  The

curvilinear frame, defined by the geodetic latitude, longitude and height, is also used for

its appropriateness of representing the motion and position on the sphere or ellipsoid.

For the inertial navigation system, one has to deal with a couple of more coordinate

frames related to the navigation instruments, the platform on which those are installed

and the vehicle carrying the platform.

The obvious problem when dealing with several different coordinate frames is

to establish the mutual relationship of a frame to all other frames so that the

measurements in a frame can be transferred to the other frames.  This is called

coordinate transformations.  Before describing the transformations, each coordinate

system will be defined in detail in the next section.  It should be noted that most of the

derivation and equations are from the lecture notes of Inertial Geodesy (Jekeli, 1995a),

to which one can directly refer for details.

2.2 Coordinate Frames

The first coordinate system to be discussed is the fundamental coordinate

system called the inertial system, in which Newton’s Laws of motion hold.  The famous

Newton’s Laws of motion state that:

• First Law - Any object in a state of rest or having uniform linear motion will
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remain in such a state unless acted upon by an unbalanced external force.

• Second Law - Unbalanced force acting on an object produces acceleration in

the direction of the force, directly proportional to the force, and inversely proportional

to the mass of the object.

• Third Law - For every action (or force) there is a reaction (or opposing force)

of equal strength but opposite direction.

As one can notice already, the inertial system is just an abstraction in our world

because of the existence of the gravitational field.  Therefore, instead of pure inertial

frame, the designation quasi-inertial frame is treated as a practical alternative to the

inertial frame.  The quasi-inertial frame is defined as Earth-centered, and accelerating,

without rotating, around the sun.

To account for the acceleration due to the gravitational field, Newton’s second law

of motion needs to be modified.  Newton’s second law of motion is formulated as

equation (2.3) in the pure inertial frame:

F x= d

dt
im

�
, (2.3)

where mi

✁
x  is the linear momentum of the particle with inertial mass m

i
 and velocity✂

x .  Assuming constant mass, the above equation will be simplified as:

F x= mi

✄ ✄
. (2.4)

Under the existence of the gravitational field, the above equation should be modified to

include the gravitational effect.

m mi g

☎ ☎
x F g= + (2.5)

The gravitational vector g is the proportional factor between the gravitational mass mg

and the gravitational force.  Using the Principle of the Equivalence stating that

mi=mg=m, one can derive the fundamental equation in GPS/INS gravimetry.

  
✆ ✆
x a g= + , (2.6)

where a = F/m is the acceleration caused by the applied (specific) force.

Now, we are ready to define the first fundamental frame called i-frame.  The i-

frame is attached to the Earth’s center, is in free-fall, and is not rotating.  The

orientation of the i-frame is determined by the directions of quasars and fixed to the

celestial sphere.  It is freely falling because of the ambient gravitational field of the solar

system.  The International Earth Rotation Service (IERS) maintains, uses and makes

available the inertial frame, being the realization of the International Celestial Reference

System (ICRS).  Specifically, the system is realized through the estimates of the

coordinates of a set of quasars, the International Celestial Reference Frame (ICRF).

The coordinates of a point in the i-frame are components of the position vector

designated x
i
.  Note that the superscript denotes the frame in which the coordinates are

represented.

The next frame to discuss is the Earth-centered-Earth-fixed (ECEF) frame, or

e-frame with the origin also at the Earth’s center of the mass (Figure 2.2).   The

orientation of the e-frame is defined by convention parallel to a mean polar axis and a

mean equator on which the zero longitude is defined.  The IERS establishes the
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International Terrestrial Reference Frames (ITRF) is based on geodetic observations of

satellites and quasars, as well as plate tectonic models (McCarthy, 1996).  The example

of an ECEF frame is the one realized by GPS.  The coordinates of a point in ECEF

frame are represented as x
e
 in the same way.

Another set of ECEF coordinates being used in geodesy is the conventional

geodetic reference system.  It consists of curvilinear coordinates ( φ λ, ) and the normal

height (h) of an adopted ellipsoid of revolution (Figure 2.2).

h

x
e

x3
e

x2
e

x1
e

1
e

3
e

2
e

λ
φ

Figure 2.2 Earth-fixed-Earth-centered coordinates and geodetic coordinates with

respect to an Earth ellipsoid.

The angles 
✝

and ✞ , known as geodetic latitude and longitude, determine the

horizontal positions and the ellipsoidal height does the vertical position.  With a

geocentric ellipsoid, the geodetic reference system could be used in place of the

Cartesian ECEF coordinate system.

One of the most popular coordinate frames in the field of inertial navigation is

the north-east-down frame, known as n-frame; the first axis points north, the second

axis points east, and the third axis points down along the ellipsoid normal.  The origin

of the n-frame is either on the ellipsoid or at the location of the measurement system

(Figure 2.3).  The third axis does not pass through the Earth’s center of mass because

of the eccentricity of the ellipsoid.
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φ
λ

3
2

1

1
e

3
e

2
e

Figure 2.3 Local north-east-down coordinate frame.

It should be emphasized that this n-frame is not used to represent a vehicle’s

position because the n-frame itself moves with the vehicle carrying the navigation

system.  Therefore, only the third component of the coordinate x
n
 could be non-zero by

definition.  The advantage of the n-frame is that it provides the local direction of the

vehicle motion through north, east and down velocities.  Because the inertial sensors

are always aligned with the local horizontal and vertical either mechanically or

computationally, this frame is the one to which the platform or the sensor frame is

directly related.

There are a couple more Cartesian coordinate frames related to the

measurement systems and the vehicle itself.  The body frame, or b-frame, refers to the

vehicle itself.  Conventionally, the axes are defined along the forward, right, and

through-the-floor directions.  The sensor frame, or s-frame, refers to the sensors

physical or mechanical properties.  It is used to model and identify instrument errors for

data processing.  The platform frame, or p-frame, refers to a physical set of fiducial

axes for the platform.  In addition, the accelerometer and the gyroscope have their own

frame.  Accelerometer frame may be defined as one of the accelerometer’s sensitive

axis (input axis) being aligned with a frame axis.  The non-orthogonality of the other

accelerometer is determined through a special calibration procedure.  The origin of the

accelerometer frame is the point of specific acceleration computation.  Similarly, the

gyro frame is orthogonal with only one of the input axes aligned along a frame axis.  Its

origin is the same as the accelerometer frame.

2.3 Coordinate Transformations

There are several ways to define the coordinate transformation from one to
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another frame and three types of elements need to be considered: relative orientation,

scale, and translation.  Since the translation is the simple vector addition and scale is

universally defined in general, the relative orientation would be the primary concern.

Three angles are enough to describe the coordinate orientation transformation between

orthogonal coordinate frames in three-dimensional space.  The transformation between

two Cartesian coordinate frames can be achieved with direction cosines, Euler angles,

or quaternions.

2.3.1 Direction Cosines

Consider two concentric frames, s-frame and t-frame, and an arbitrary point in

those frames, x
s
and x

t
 (Figure 2.4).  With unit vectors in each frame, the coordinates of

the point can be expressed as:

x e e es s s s s s sx x x= + +1 1 2 2 3 3 (2.7)

x e e et t t t t t tx x x✟ ✠ ✠
1 1 2 2 3 3 (2.8)

Each component in a position vector can be obtained by taking the inner product of the

vector with the unit vector for the axis, e.g., x j

s

j

s s✡ ☛e x , j=1,2,3.  Analogously, the

coordinates of the t-frame unit vector ek

t  in the s-frame are

c j k j

s

k

t

, = ⋅e e , (2.9)

e e e ek

t

k

s

k

s

k

sc c c= + +1 1 2 2 3 3, , , . (2.10)

Note that c j k,  is the cosine of the angle between the j
th
 s-frame axis and k

th
 t-frame axis.

C3,3

e3
t

x3
t

x1
t

x2
t

x3
s

x1
s

x2
s

x

1
s

1
t

2
s

2
t

3
t 3

s

Figure 2.4 Vector x in Coordinate frames s and t.

By substituting (2.10) to (2.8) and comparing the result with (2.7), one can obtain the
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transformation between the coordinates:

x xs

t

s tC= , (2.11)

with the transformation matrix C t

s  given by

C

c c c

c c c

c c c

t

s =
1 1 1 2 1 3

2 1 2 2 2 3

3 1 3 2 3 3

, , ,

, , ,

, , ,

. (2.12)

It should be noted that the matrix C t

s , or the direction cosine matrix, is an orthogonal

matrix:

C C I C Ct

s

s

t

t

s

t

s T☞ ☞ ( ) . (2.13)

Understanding the transformation matrix, the transformation of any 3-by-3 matrix can

be derived as follows.  Consider a linear mapping in the t-frame, y xt t tA✌ .

Then, using (2.11) and (2.13)

C A Cs

t s t

s

t sy x= , (2.14)

y x xs

t

s t

s

t s s sC A C A= = . (2.15)

So, we reach the fact that

A C A Cs

t

s t

s

t= . (2.16)

2.3.2 Euler Angles

The relative orientation of the s- and t-frames could be described by a sequence

of rotations about specific axes by Euler angles (Arfken, 1985, p. 199).  The rotation

about the 1, 2 and 3 axis with the angle of θ  is given by

R R R1 2 3

1 0 0

0

0

0

0 1 0

0

0

0

0 0 1

( ) cos sin

sin cos

; ( )

cos sin

sin cos

; ( )

cos sin

sin cosθ θ θ
θ θ

θ
θ θ

θ θ
θ

θ θ
θ θ=

−
=

−
= −   (2.17)

Note that each R j( )θ  is also a direction cosine matrix; it is orthogonal R Rj j

T− =1( ) ( )θ θ ;

and the inverse is the reverse rotation R Rj j

− = −1( ) ( )θ θ .

Let’s suppose that the s-frame is the result of rotating the t-frame, first about 1-

axis by α , then about 2-axis by β , and about 3-axis by γ .  Then, the total

transformation from t- to s-frame is R R R3 2 1( ) ( ) ( )γ β α  and it is the transformation

matrix C t

s .  With the definition of rotation matrix in (2.17):

C R R Rt

s =

=
+ − +

− − + +
−

3 2 1( ) ( ) ( )

cos cos cos sin sin sin cos cos sin cos sin sin

sin cos sin sin sin cos cos sin sin cos cos sin

sin cos sin cos cos

γ β α
γ β γ β α γ α γ β α γ α
γ β γ β α γ α γ β α γ α

β β α β α

 (2.18)

It should be emphasized that the transformation is dependent on the order of the

rotation.  That is, R R R R1 2 2 1( ) ( ) ( ) ( )α β β α≠ .
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By comparing (2.18) with (2.12), the relation between Euler angle and the

direction cosine can be found.

α β γ=
−

= =
−

arctan ; arcsin ; arctan
,

,

,

,

,

c

c
c

c

c

3 2

3 3

3 1

2 1

1 1

(2.19)

If the rotation angles are small, we may use the first order approximation for cosine and

sine terms.  Then, (2.18) becomes

R R R I3 2 1

1

1

1

1 0 0

0 1 0

0 0 1

0

0

0

( ) ( ) ( )γ β α
γ β

γ α
β α

γ β
γ α
β α

≈
−

−
−

= −
−

−
−

= − Ψ.  (2.20)

Ψ  is a skew symmetric matrix of the small rotation angles.  With (2.18), we also have

C I C I It

s

s

t T T≈ − ≈ − = −Ψ Ψ Ψ; ( ) . (2.21)

Note that the order of rotations about the axes does not affect the result in this

approximation.

2.3.3 Quaternions

A quaternion is a number that represents a vector in a specific four-dimensional

algebra.  It is a kind of generalized complex variable so that the properties and

manipulations of the quaternion are very similar to those of the complex variable.

The definition of the quaternion is given by

q a ib jc kd= + + + , (2.22)

where q is the quaternion; a, b, c, d are real numbers; and i, j, k are the imaginary units

having properties as follows:

i j k2 2 21 1 1= − = − = −; ; (2.23)

ij ji k jk kj i ki ik j= − = = − = = − =; ; . (2.24)

 The conjugate of the quaternion and the square of the magnitude of q are

q a ib jc kd* = − − − (2.25)

qq q q a b c d* *= = + + +2 2 2 2 . (2.26)

When a complex number e
iθ

 multiplies an arbitrary complex number, z ei= ρ φ ,

the vector represented by z is rotated by the angle θ
e z e e ei i i iθ θ φ θ φρ ρ= = +( ) . (2.27)

Analogously, a particular type of quaternion, rotation quaternion, can describe the

rotation of the three dimensional vectors in Euclidean space.  Consider the quaternion

q ib jc kd a ib jc kdζ ζ ζ ζ ζ
ζ ζ= + + + = + + +cos sin ( )
2 2

, (2.28)

where the numbers b, c and d satisfy the condition

b c d
2 2 2

1+ + = . (2.29)

Consider the representation of this quaternion analogously to Euler’s equation,

e iiθ θ θ= +cos sin ,
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q e
ib jc kd

ζ

ζ

=
+ +

2
( )

(2.30)

The magnitude of the above quaternion is one and the exponent term represents the

three dimensional vector with magnitude ζ / 2  and the direction cosines b, c, and d.

When a three-dimensional vector, x = + +ix jx kx1 2 3 , is pre multiplied by this

quaternion and post multiplied by its complex conjugate, the vector is rotated about the

vector ib jc kd
✍ ✍

 by the angle ζ  to the vector ′x :

′ =x xq qζ ζ
* (2.31)

The vector ib jc kd
✎ ✎

 is called rotation vector whose direction specifies the single

axis about which one rotation transforms one frame to another.  It should be noted that

there is always a rotation vector for an arbitrary transformation.

 Now, let’s relate the rotation quaternion with the usual orthogonal

transformation C t

s .  Consider a unit rotation vector eζ
t , whose direction cosines in the

t-frame are b, c and d (Figure 2.5).

eζ

θ λ
θ λ

θ

t

b

c

d

= =
sin cos

sin sin

cos

(2.32)

Note that the representation of the spherical polar coordinates is used.  To describe the

rotation about this axis, a new frame called ✏ -frame needs to be defined, whose 3-axis

lies along the direction of eζ
t
, and 1-axis is in the plane formed by eζ

t
 and the 3-axis of

the t-frame.  Then, the transformation from t- to ✑ -frame is given by

C R Rt

ζ θ π λ= − − +2 3( ) ( ) (2.33)

By definition, the matrix for the ✒  rotation in the ✓ -frame is R3( )
✔

.  According to

(2.16), the same rotation in the t-frame is given by

C C R Ct

s t

t= ζ
ζζ3( ) (2.34)

With (2.33) and (2.32), the transformation C t

✕
 can be represented in terms of

quaternion elements.

C

db

d

dc

d
d

c

d

b

d
b c d

t

ζ =

−
−

−
−

−

−
−
−

1 1
1

1 1
0

2 2

2

2 2
(2.35)
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ζeζ
t

θ

λ

1
t

2
t

3
ζ

3
t

1
ζ

b

c

d

Figure 2.5 The unit rotation vector eζ
t ; and the ζ- and t-frames.

Finally, the transformation C t

s  is obtained with (2.28) and (2.34).

C

a b c d b c d a b d c a

b c d a a c b d c d a b

b d c a c d a b a d b c

t

s =
+ − − + −

− + − − +
+ − + − −

ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ

ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ

ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ

2 2 2 2

2 2 2 2

2 2 2 2

2 2

2 2

2 2

( ) ( )

( ) ( )

( ) ( )

(2.36)

The above equation shows the clear relationship between the transformation matrix and

quaternion.  Because of their stable numerical characteristics, quaternion methods are

applied in most practical strapdown navigation systems for the attitude determination

(Da, 1997).  Details on determining attitude using quaternion will be discussed in

Chapter 5.

2.4 Some necessary definitions and derivations

2.4.1 Axial Vectors

In inertial navigation systems, the concept of axial vector is applied in the

differential equations for the angular data output from the Inertial Measurement Unit

(IMU).  The axial vector, by definition, is the ordered triple of Eulerian angles

(α β γ, , ).  Because of the dependency of transformations on the order of the rotation,

the axial vector does not perfectly behave like vectors.  For example, the commutativity

property of the two vectors is not applicable for the axial vectors.

If, however, the angles are small, the axial vector behaves like a vector.

Because the purpose of introducing axial vectors in this study is to represent the

attitude errors in INS, we can allow the small angle constraints.  Therefore, the triple of
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small angles ψ = ( , , )α β γ T  will be treated as a vector through this study.

Under the assumption of small angle rotation, the transformation from t- to s-

frame can be written as

x x x x x x xs

t

s t t t t t tC I= = − = − = − ×( )Ψ Ψ ψ . (2.37)

In addition, the axial vector in the t-frame can be transformed to the s-frame by

applying the transformation matrix.

ψ ψS

t

s t S

t

s t

s

tC C C= =; Ψ Ψ (2.38)

2.4.2 Angular Rates

To describe the frames that are rotating with respect to each other, it is

necessary to define a systematic notation for the angular rates, ✖ ✖ ✖ ✖✗ ( )1 2 3 ,

between two frames.  The angular velocity of the t-frame with respect to the s-frame

with coordinates in the t-frame is denoted as ✘ st

t .  Considering the angular velocity as a

vector, one can reach the following properties:

ω ω ωst

t

s

t

st

s

s

t

ts

sC C= = − , (2.39)

ω ω ωst

t

su

t

ut

t= + . (2.40)

The skew-symmetric matrix for the angular rates is defined as

ωst

t

st

t

st

t× = =
−

−
−

Ω Ω;

0

0

0

3 2

3 1

2 1

ω ω
ω ω
ω ω

. (2.41)

It should be emphasized that the angular rate does not have to be small because by

definition, it is the infinitesimal angle in the ratio to infinitesimal increments of time.

2.4.3 Differential Equation of the Transformation

When two frames are rotating with respect to each other, the relative

orientation is changing with respect to time.  Therefore, it is necessary to derive the

differential equation of the transformation with respect to time.   The differential

equation of the transformation as a function of time is given by✙
lim

( ) ( )
C

C t dt C t

dt
t

s

dt

t

s

t

s

= + −
→0

(2.42)

Assuming the small changes in the transformation for the time interval dt, the

transformation at time t+dt can be expressed as:

C t dt C C t I C tt

s s

t

s s

t

s( ) ( ) ( ) ( )+ = = −δ Ψ (2.43)

Substituting (2.43) into (2.42) yields✚
lim

( ) ( ) ( )
lim

( )
C

I C t C t

dt

C t

dt
Ct

s

dt

s

t

s

t

s

dt

s

t

s

ts

s

t

s= − − = − = −
→ →0 0

Ψ Ψ Ω . (2.44)

Using (2.16),
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Ω Ω Ωts

s

st

s

t

s

st

t

s

tC C= − = − . (2.45)

The final form of the differential equation for the transformation is given by✛
C Ct

s

t

s

st

t= Ω . (2.46)

The well-known law of Coriolis is derived using (2.46).  By taking the time derivative

of (2.11), ✜ ✜ ✜
( ✢ ); ✣ ✣x x x x x x x xs

t

s t

t

s t

t

s t

st

t t

s

t s t

st

t tC C C C= + = + = +Ω Ω (2.47)

The differential equation for the quaternion elements can also be derived

analogously.  Using (2.36), one can solve for a ✤2  in terms of the trace of C t

s .

a tr C t

s

ζ
2 1

4
1= +( ( ) ) (2.48)

Taking time derivative of the above equation

2
1

4

1

4
a a tr C tr Ct

s

t

s

st

t

ζ ζ
✥

( ✦ ) ( )= = Ω . (2.49)

Substituting (2.36) and (2.41) into (2.49)✧
( )a b c dζ ζ ζ ζω ω ω= + +1

2
1 2 3 , (2.50)

where ωst

t = ( , , )ω ω ω1 2 3 .

Also, from (2.12) and (2.36), one can find that

4 23 32a b c cζ ζ = − . (2.51)

With (2.46), the time derivative of the above equation is given as

4 23 32 21 2 22 1 31 3 33 1( ★ ★ ) ✩ ✩a b a b c c c c c cζ ζ ζ ζ ω ω ω ω+ = − = − + − . (2.52)

Substituting the elements in the last equation with corresponding ones from (2.36) and

solving for ✪bζ ,

✫
( )b a d cζ ζ ζ ζω ω ω= − − +1

2
1 2 3 . (2.53)

In the same way, one can derive the equations for ✬cζ  and ✭dζ .

✮
( )c d a bζ ζ ζ ζω ω ω= − −1

2
1 2 3 (2.54)

✯
( )d c b aζ ζ ζ ζω ω ω= − + −1

2
1 2 3 (2.55)

2.5 Specific Coordinate Transformation

2.5.1 Inertial Frame and ECEF frame

The relationship between the quasi-inertial and ECEF frame is quite trivial.

Because e- and i-frames have the same origin, the center of the Earth’s mass, and the

same direction of the 3-axis, these frames are different by a rotation only about the 3-

axis.  Assuming the uniform rotation rate of the Earth, ✰ e , the angular rate of the e-
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frame with respect to the i-frame is given by

ωie

e

e= ( )0 0 ω (2.56)

So, the transformation matrix from i- to e-frame is simply a rotation about the 3-axis by✱
et .

C R t

t t

t ti

e

e

e e

e e= = −3

0

0

0 0 1

( )

cos sin

sin cosω
ω ω
ω ω (2.57)

2.5.2 ECEF and Geodetic coordinates

As mentioned before, the ECEF coordinates can be equivalently represented

with the geodetic latitude, longitude and height.  The relationship between the ECEF

and geodetic coordinates is given by

x

x

x

N h

N h

N e h

e

e

e

1

2

3

2
1

=
+
+
− +

( ) cos cos

( ) cos sin

( ( ) ) sin

φ λ
φ λ

φ
, (2.58)

where N is the radius of curvature of the ellipsoid in the prime vertical plane,

N
a

e
=

−1 2 2sin φ
, (2.59)

a is the length of the semi-major axis, e f f
2 2

2= −  is the square of the first eccentricity

, and f is the flattening of the ellipsoid.  The radius of curvature in the meridian M is

also given for a future reference.
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The inverse relationship of (2.58) is usually presented in iterative form.  For instance:
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(2.61)

For details on the above derivations, see Rapp (1994).

2.5.3 ECEF and Navigation Frame

Because the e- and n-frame are not concentric, the transformation is more or
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less complicated.  The orientation transformation needs two successive rotations; first

rotate about the local east axis by the angle ( / )π φ2 + ; then rotate about the new 3-

axis by the angle −λ :

C R Rn

e = − + =
− − −
− −

−
3 2 2

0

( ) ( / )

sin cos sin cos cos

sin sin cos cos sin

cos sin

λ π φ
φ λ λ φ λ
φ λ λ φ λ

φ φ
. (2.62)

The angular rates can be derived using Ωen

n

e

n

n

eC C= ✲  as in (2.46):

ωen

n T= − −( ✳ cos ✴ ✴ sin )λ φ φ λ φ . (2.63)

By intuition, the angular rates of the n-frame with respect to the i-frame can be also

given as:

ωin

n

e e

T= + − − +(( ✵ ) cos ✶ ( ✷ ) sin )λ ω φ φ λ ω φ (2.64)

2.5.4 Body and Navigation Frame

The transformation between the body and navigation frame is also represented

by the three successive rotations; about 1-axis by the negative roll angle, ✸ ✹ ; about 2-

axis by the negative pitch angle, −χ ; and about 3-axis by the negative yaw angle, −α .

C R R Rb

n = − − −3 2 1( ) ( ) ( )α χ η (2.65)

From (2.65) and (2.46), one can derive the relationship between the angular rates and

the attitude rates. ✺
✺
✺

sin tan cos tan

cos sin

sin sec cos sec

η
χ
α

η χ η χ
η η

η χ η χ
= −

1

0

0

ωnb

b (2.66)

The above differential equation must be integrated to obtain the attitude information of

the vehicle from given body to navigation frame rates.  It should be noted that the

equation is singular for pitch angles of 90 degrees.  The alternative differential equation

is the one in terms of the quaternion (2.50), (2.53)-(2.55).  In this case, no singularity

exists.  So, the quaternion method is preferred for high dynamic aircraft such as the

military plane.



20

CHAPTER 3

GLOBAL POSITIONING SYSTEM

AND INERTIAL NAVIGATION SYSTEM

3.1 GPS System Overview

3.1.1 Introduction

The NAVSTAR (Navigation System with Timing And Ranging) GPS was

initiated in 1973 by the Joint Program Office (JPO) at the US Air Force Systems

Command’s Space Division.  The original objectives of the GPS include point

positioning, the determination of a vehicle’s position and velocity, and the precise

coordination of time.  It is designed as an all-weather, continuous, passive and space-

based navigation system.  Currently, it is fully operating and at least four satellites are

simultaneously observable in any place of the world at any time.

The GPS satellite continuously transmits the signal with the transmission time

and ephemeris information.  Once the receiver receives the signal, the signal travel time

from the satellite to the receiver can be calculated.  By multiplying the travel time with

the velocity of the signal, one can get the pseudorange.  Here, the term “pseudorange”

is used instead of “true range”, as the clocks of the satellite and the receiver are never

perfectly synchronized.  If the satellite positions are known, four simultaneous

pseudoranges are necessary to solve for the receiver position as well as the clock

errors.

3.1.2 Space Segment

The GPS consists of three segments: space segment, control segment and user

segment.  The space segment is responsible for the GPS satellites from development to

launch.  Currently, 27 high-altitude (22,000km) GPS satellites are on six near-circular

orbital planes with 55
o
 inclination (except Block I) and 12 sidereal hour period.  With

this constellation, four to eight GPS satellites above 15
o
 elevation angle are

simultaneously observable from anywhere on the earth at any time of the day.

So far, four main classes of GPS satellites have been developed.  These are

Block I, Block II, Block IIA and Block IIF.  The first generation Block I satellites were

launched by JPO between 1978 to 1985.  The inclinations of the Block I orbits are 63
o

and the expected life time was 4.5 year.  There is, however, a Block I satellite still in
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operation (PRN 12).  This PRN 12 is quite useful for satellite clock studies because the

Selective Availability (SA) has not been implemented in Block I satellites (Heroux and

Kouba, 1995).  The first Block II satellite, PRN 14, was launched in 1989 with the

inclination of 55
o
.  The essential difference between the Block I and Block II satellites

is that Block II signal is restricted to civilian users while Block I is fully available.  The

Block IIA satellites are equipped with mutual communication capability and all 15

satellites were launched since 1990.  Block IIR satellites, designed to replace the Block

II satellites, will have the capability to autonomously navigate (AUTONAV)

themselves and generate their own 50 Hz navigation message data.  The designed life is

10 years.

The GPS satellite carries a high performance rubidium or cesium frequency

standard as a precise time base with a proportional accuracy of 10
-13

 to 10
-14

.  From the

frequency standards, GPS satellites produce the fundamental L band frequency of

10.23 MHz.  Two coherently derived carriers L1 and L2 are generated by multiplying

the fundamental frequency by 154 and 120 (L1 = 1575.42MHz, L2 = 1227.60MHz).

The L1 carrier is modulated by C/A (Coarse/Acquisition code) and P code (or Y code),

while L2 is modulated by P or Y code only.  In addition, the information about the

satellite clock, position and velocity is also modulated onto the carriers.  The C/A code

is designated as the Standard Positioning Service (SPS), and it is available for civilian

use.  The P code is also designated as the Precise Positioning Service (PPS), and the Y

code is generated by the modulo 2 sum of the P-code and an encrypting W-code.

Therefore, P or Y code is only accessible to the authorized users like U.S. military.

The effective wavelengths of the C/A and P code are approximately 300m and 30m,

respectively.

The Selective Availability (SA) and the Anti-Spoofing (AS) are implemented to

prevent the civilian from full use of the GPS system.  SA degrades the user’s

positioning accuracy from 30-40m to approximately 100m by dithering the satellite

clock (δ-process) and manipulating the ephemerides (ε-process).  Since the δ-process is

achieved by introducing various errors into the fundamental frequency of the satellite

clock, the effect appears in the code and carrier pseudorange in the same way.  By

differencing the pseudoranges from two receivers, the dithering effect can be

significantly reduced.  In absolute positioning, however, the satellite clock should be

estimated to do precise positioning (Kwon et al., 1999).  The ε-process is achieved by

truncating the orbital information so that the precise position of the satellite cannot be

calculated.  The erroneous satellite position has a direct impact on the receiver position

which is degraded up to 40m in absolute single positioning.  In baseline determination,

however, only the relative satellite position errors produce the relative baseline errors.

As stated previously, the Block II satellites have the capability to “turn off” the

P-code or generate the encrypted code (Y-code) so that unauthorized user cannot have

the full access to the system.  This feature is permanently implemented from January

31, 1994.  It should be noted that the integer ambiguity resolution requires longer time

of averaging or filtering to compensate for the AS effect (Yang, 1995).
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3.1.3 Control Segment

The control segment consists of a master control station, worldwide monitor

stations, and ground control stations.  They are responsible for tracking the satellites

for the orbit and clock determination, prediction modeling, time synchronization of the

satellites, and updating the navigation message for every satellite.  The master control

station, located in Colorado Springs, is responsible for overall management of the

remote monitoring and transmission sites.  The monitor stations check altitude,

position, speed, and overall health of each satellite twice a day.  Any anomalous

behavior of the satellite is reported to the master control station for analysis.  Ground

control stations are the communication links to the satellites and track the satellites

from horizon to horizon. They also transmit correction information to individual

satellites via S-band radio links (Hofmann-Wellenhof et al., 1997).

3.1.4 User Segment

The user segment consists of numerous types of GPS receivers and the GPS

user community.  This segment uses broadcast data from satellites and determines the

precise position of the receiver antenna.  There are literally thousands of GPS users

such as navigators, surveyors, geodesists and other users who require position

information.

3.2 GPS Data Modeling

3.2.1 GPS Observables and Observation Equation

There are two types of observables provided by the GPS receiver, namely code

pseudorange and carrier phase.  The pseudorange is derived from the signal travel time

calculated from the satellite and receiver clock information and carrier phase is derived

from the difference between the phase of the carrier received from a satellite and a

reference phase generated by the receiver’s oscillator.  The observation equation for the

pseudoranges and carrier phases are given as follows (Goad and Yang, 1995):
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where

P Pi

j

i

j

, ,,1 2  - pseudorange from satellite j measured at station i on L1 and L2,

Φ Φi

j

i

j

, ,,1 2  - phase ranges from satellite j measured at station i on L1 and L2,

�
i

j  - geometric range between satellite j and receiver i,

Ti

j  - tropospheric refraction term from satellite j to receiver i,

c  - the vacuum speed of light

dt dti

j,  - clock error for receiver i and satellite j, respectively,

f f1 2,  - frequencies of L1 and L2 carrier,

λ λ1 2,  - wavelengths of L1 and L2 carrier,

I

f

I

f

i

j

i

j

1

2

2

2
,  - ionospheric refraction terms for L1 and L2, respectively,

ϕ ϕ0 0

j

i,  - initial fractional phases at the transmitter j and receiver i,

N Ni

j

i

j

, ,,1 2  - integer ambiguities associated with Φi

j

,1  and Φi

j

,2 , respectively,

e ei

j

i

j

, ,,1 2  -  measurement noise for pseudoranges on L1 and L2,

✁ ✁
i

j

i

j

, ,,1 2  - measurement noise for phases on L1 and L2,

b b bi i i, , ,, ,1 2 3  - b i,1  is the interchannel bias between L1 phase and L2 phase, b i,2  and

b i,3  are the interchannel bias between L1 phase and P Pi

j

i

j

, ,,1 2 , respectively.

Note that the phase observation equations have additional terms for ambiguity and the

effect of the ionosphere appears in opposite way to that of the pseudorange.

The noise level of the phase is known to be on the order of a few tenths of a

millimeter while that of the pseudorange is much larger.  The P-code pseudorange can

be as good as ±20cm but the C/A code pseudorange could be worse than ±1m

depending on the types of receiver (Yang, 1995; Grejner-Brzezinska, 1995).  The

interchannel biases for i-th receiver are caused by time non-synchronization of the four

measurements.  This non-synchronization results from the fact that the L1 and L2

signal must travel through different hardware paths inside the receiver and transmitter

(Coco, 1991).

 The ionospheric effect can be cancelled or reduced by forming the so-called

ion-free combination, given in the next section.  The tropospheric effect, however,

cannot be cancelled by any combination of observables because of its nondispersive

characteristics.  Thus, it is modeled using the information about the temperature,

humidity and the atmospheric pressure as well as the elevation of the space vehicle

(SV).  The well-known tropospheric model can be found in Goad and Goodman

(1974), called modified Hopfield model.  The effect of the troposphere can reach up to

one decimeter (Seeber, 1993, p.290).
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3.2.2 Differencing and Combinations of GPS Measurements

As described in the previous section, the GPS observables are affected by many

nuisance parameters such as clock biases, ionospheric effect and AS effect.  To

eliminate or reduce the errors caused by these parameters, the differencing technique

can be used.  Basically, the differencing eliminates or significantly reduces the errors

from a common satellite or receiver.  The single differenced measurement is obtained

by two simultaneous observables of satellite k, tracked by two receivers i and j:
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From the above equations, one can notice that the satellite clock error as well as the

satellite initial phase term are cancelled by the differencing.  The errors related to the

receivers, however, such as receiver clock errors, interchannel biases and initial phases

are still present.  These errors make it impossible or very difficult to estimate the

integer phase ambiguities.  Because the interchannel biases are nearly collinear with the

ionospheric effect as well as the integer ambiguity terms, it is not possible to estimate

those unknowns separately.  Furthermore, the initial phase cannot be separated easily

from the ambiguity as seen in equation (3.2).   Therefore, a more favorable way to

estimate or recover the integer phase ambiguity is to use the double differencing

technique explained next.

The receiver clock error and receiver initial phase terms can be cancelled by

performing one more differencing using the single differenced measurement from

another satellite l (Figure 3.1).

Φ

Φ

ij

kl

ij

kl ij

kl

ij

kl

ij

kl

ij

kl

ij

kl

ij

kl ij

kl

ij

kl

ij

kl

ij

kl

ij

kl

ij

kl ij

kl

ij

kl

ij

kl

ij

kl

ij

kl ij

kl

ij

kl

ij

kl

I

f
T N

I

f
T N

P
I

f
T e

P
I

f
T e

, , ,

, , ,

, ,

, ,

1

1

2 1 1 1

2

2

2 2 2 2

1

1

2 1

2

2

2 2

= − + + +

= − + + +

= + + +

= + + +

ρ λ ε

ρ λ ε

ρ

ρ

(3.3)



25

i j

lk

ρi

k ρ j

k

ρi

l

ρ j

l

Figure 3.1 Scheme of the double differencing.

Because of the advantage to determine the integer ambiguity, the double differencing is

the most popular method being used in precise Differential GPS (DGPS) positioning.

Further differencing is possible between double differenced measurements

obtained at two successive epochs to eliminate the phase ambiguity N1  and N2 .

Because the ambiguities remain constant over time unless a cycle slip or loss of lock

occurs, those can be cancelled out.  The triple differencing over time span dt is

expressed as follows:
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The advantage of triple differencing is that it is very easy to detect any cycle slip.  As

soon as the cycle slip occurs, the effect will clearly appear as an outlier.  It should be

emphasized that the equation (3.4) is no longer equivalent with (3.3) because, by taking

triple differences, loss of information and redundancy occurs for phase and code

observables, respectively.  In other words, the number of observations of code (last

two equations) reduced by one resulting in the loss of redundancy in the triple
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differencing.  In addition, the integer characteristic of the ambiguity is lost in phase

observables.  Therefore, when forming models in terms of the differenced observables,

one has to check whether the new model is equivalent to the original ones.  For

conditions to check the equivalency, one can refer to Schaffrin and Grafarend (1986).

The characteristic dual frequency measurement in GPS leads to the possible

elimination or at least significant reduction of the ionospheric effect.  For example,

using two phase measurements in L1 and L2, one can form ion-free phase measurements

as follows:

Φ Φ Φ1 2 1 1 2 2, ,= +α α (3.5)

where α α1
1

2

1

2

2

2 2
2

2

1

2

2

2
=

−
=

−
f

f f

f

f f
, .

Note that the integer characteristics of the phase ambiguity is lost by forming this ion-

free combination.  There exist, however, phase combinations which form ion-free

observables preserving the integer characteristics of the ambiguity, for example

α1 77= , α 2 60= − .  For details, refer to Han and Rizos (1996).

Another popular combination of the GPS measurements is the so-called

widelane combination, obtained by subtracting the L2 phase from L1 phase.  The

frequency of the widelane is fw = 347 82.  MHz and the corresponding equivalent

wavelength λ w = 86 2. cm.  This increased widelane wavelength provides increased

ambiguity spacing so that the widelane ambiguity ( N N Nw ✂ ✄1 2 ) can be resolved

more easily (Hofmann-Wellenhof, 1997, p.214).

Before ending this section, it should be mentioned that the noise level of the

combined or differenced observations is larger than that of the original observation.

Assuming the same noise level for both phases, one can apply simple error propagation

law for the widelane observable.  The noise of the widelane is larger by the factor of

2  than that of a single phase.  In addition, the differencing introduces statistical

correlations among the observables while the original data set of GPS is assumed to be

uncorrelated.  Therefore, one has to consider the proper correlations when making a

new, differenced model equivalent to the original one (Schaffrin and Grafarend, 1986).

3.3 Relative GPS Kinematic Positioning in Post-Processing Mode

Since the role of GPS in this research is to provide the kinematic acceleration

derived from the precise GPS position, a general concept and adjustment technique in

terms of post-processing kinematic GPS positioning is addressed in this section.  In

general, the relative positioning, namely the baseline vector determination, shows

higher accuracy than the absolute positioning because the errors in GPS measurements

such as satellite orbit error, atmospheric effect, and the clock errors can be cancelled or

reduced through differencing.  Currently, the DGPS kinematic positioning in post

process mode provides the position accuracy of ±10cm or better.  The idea behind all
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differential positioning is to eliminate bias portions at one location by comparing them

with these seen at a known position.  Therefore, it is essential to track the same set of

satellites at both base and remote receivers.  Furthermore, the accuracy in baseline

determination is highly dependent on the baseline length.

In real-time DGPS, two correction methods are in use.  The first method is to

correct the position of the remote receiver using calculated and known position of the

base station.  The second method is based on the pseudorange corrections derived from

the difference between calculated ranges and observed ranges at the base station.

Thus, a fast radio link between the base and remote receiver is required in this case.  In

addition, the ambiguities must be resolved on-the-fly to use phase measurements for

better accuracy.

In the post-processing, the relative position of the remote receiver ( , , )∆ ∆ ∆x y z

is solved using the observations from both base and remote receivers instead of

applying the corrections to the remote receiver.  The most popular observables used in

precise kinematic positioning is the double differencing (3.3) because of its compact

structure and the rather simple (block diagonal) weight matrix.  The constant errors

caused by the common receivers and the common satellites are cancelled and the

ambiguity remains as integer in this case.  Because of the non-linearity between the

observations and the unknowns, the equations (3.3) should be linearized to set up an

adjustment model.

For simplicity, the adjustment model is derived with a simplified double

differenced model neglecting the atmospheric effects.  As a matter of fact, the

ionospheric effect could be reduced using an ion-free combination and the tropospheric

effect could be modeled and then removed prior to the adjustment.  Thus, after

understanding the basic simple adjustment equation, one can refine the various

adjustment models depending on the purpose at hand.  Neglecting the atmospheric

effect, the double differenced observation equation for the phase measurements can be

reduced as follows:
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where the double differenced geometric range in above equations is expanded as:
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Assuming the satellite positions and the base position ( , , )x y zi i i are known, the above

equations (3.6) would be linearized in terms of the approximate remote receiver

position ( , , )x y zj j j0 0 0 .
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Rearranging (3.8) with (3.9), the usual adjustment model y A e e N= +ξ , ~ ( , )0 Σ  can

be established.  Assuming four satellites k, l, m and n are simultaneously tracked, the

corresponding components in the adjustment model are:
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The covariance matrix of the observations is obtained by applying the simple error

propagation law.  Consider two double differenced observation Φij

kl  and Φij

km , and

define DD as follows:

DD F
ij

kl

ij

km
:= = ⋅

Φ
Φ

Φ , (3.11)

 where F

i

k

i

k

i

k

i

k

i

k

i

k

=
− −
− −

=
1 1 1 1 0 0

1 1 0 0 1 1
, Φ

Φ
Φ
Φ
Φ
Φ
Φ

.
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Assuming no correlations among each observation in matrix Φ , the covariance of DD

is calculated as

cov( ) cov( )DD F F

F F

T

T

=

= ⋅

=

Φ

σ

σ

2

2
4 2

2 4

. (3.12)

So, the double differenced observables are correlated because of the common satellites

and receivers.  It should be noted that the above model (3.10) is underdetermined

because we have six observations and nine unknowns.  Theoretically, the above system

can be solved if the receiver could be stationary for one more epoch because each

epoch adds six observations while the number of unknowns remain the same.

Afterwards, the remote receiver can be in motion and its position can be determined.

If cycle slips or losses of lock occur while the receiver is moving, the ambiguity

should be re-determined.   The most popular methods in ambiguity fixing are the

ambiguity function and the search technique.  The former uses the concept of minimum

variance of the estimated ambiguities and the latter uses the adjustment technique

applied to trial positions in search space.  For more details on ambiguity fixing, refer to

Remondi (1991), Hwang (1991), etc.

3.4 Inertial Navigation System Overview

The Inertial Navigation System (INS) is a self-contained position and velocity

measuring device using sensors which react on the basis of physical laws: Newton’s law

of motion and Sagnac effect for mechanical and modern ring laser gyro, respectively.

Unlike other systems such as GPS, the INS depends entirely on electromagnetic

instruments that do not require visual or radio link with the environment.  The INS is

mainly designed for the vehicles such as cars and ships, but also airplanes.  So the

fundamental function of the inertial navigation system is to indicate the position,

velocity, heading, and direction of vertical over a period of time (Broxmeyer, 1964).  In

addition to the military applications, INS has been used in many scientific and

engineering areas such as auto- navigation, flight control and survey.

The sensors of the INS comprising the Inertial Measurements Unit (IMU)

consist of accelerometers and gyroscopes.  The accelerometer senses acceleration,

more precisely the specific force, and the gyroscope senses angular rate of a moving

object for translational and rotational motion, respectively.  Among various specific

force measurements, measuring the variations of spring or pendulum with a proof mass

is most commonly used for accelerometers.

Similarly, the reaction of a spinning proof mass is measured in the mechanical

gyroscope.  In case of the modern gyroscope, a property of light in a rotating frame,

called Sagnac effect, is utilized instead of a spinning proof mass.

The role of gyroscope is to provide a reference frame for navigation.  In other

words, the accelerometer senses the acceleration in its own frame, while the sought
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position is in a reference frame such as the navigation or inertial frame.  Using the

angular and orientation information from the gyroscopes, the position derived from the

accelerometer could be transformed into the reference frame.  Therefore, three single-

degree-of-freedom (SDF) gyros are necessary with mutually perpendicular sensitive

axes to determine the three-dimensional reference for attitude.

3.4.1 Mechanization

There are two types of mechanization of the IMU, namely the stabilized

platform and the strapdown configuration.  The stabilized platform provides angular

motion isolation from the vehicle.  In other words, the amount of rotation needed to

isolate the platform from the vehicle motion is obtained from the output of gyros.

Then, the stabilization is accomplished by rotating the platform back to the original

position using the servo motor of the gimbal.  Through this feedback, called space

stabilization, gyros maintain a fixed orientation in the inertial space.  Using the

accelerometers mounted on the space-stabilized platform, the specific forces at a fixed

orientation can be obtained.  Because of the vehicle’s motion isolation, the stabilized

system usually shows better performance than the strapdown system.

In strapdown mode, the gyros and accelerometers are physically bolted to the

vehicle.  Therefore, those sensors are subjected to the entire range of dynamics of the

vehicle.  This means that, in general, the performance of the strapdown system is

poorer than that of the local stabilized system.  In addition, an extra computation is

necessary to transform the data from the body to the navigation frame since the

orientation of the platform is not maintained.  The advantages of the strapdown system

are lower cost, smaller size and lighter weight.  Furthermore, the installation on a

vehicle is much easier than that of the stabilized system.

3.4.2 Gyroscope

Two major types of gyros are in use, namely the mechanical gyro and the

optical gyro.  The modern Ring Laser Gyro (RLG) and Fiber Optic Gyro (FOG) are in

the category of the optical gyro.  As mentioned previously, the physical backgrounds of

the mechanical gyro and modern RLG or FOG are totally different.  While the

mechanical gyro is based on the angular momentum conservation law and implemented

in the stabilized system, RLG or FOG are based on the Sagnac effect and implemented

in the strapdown system.  In both cases, however, the role of the gyro providing a

reference for relative attitude, or orientation, is the same.  Since this study utilizes the

strapdown system, the description on the mechanical gyro will not be discussed.

3.4.2.1 Sagnac Effect



31

The Sagnac effect describes the propagation of a light beam around a closed

path in a frame that rotates with respect to the inertial frame.  Because light should not

be affected by the dynamics of the environment in which the gyro finds itself, it is the

natural alternative to the spinning proof mass of the mechanical gyro for the strapdown

system.  When a light beam travels in a closed path that is rotating with respect to the

inertial space, apparent lengthening or shortening of the path on which the light travels

occurs.  The lengthening occurs when the light travels in the same direction in which

the path rotates and the shortening occurs in the opposite case.

 Consider a light beam traversing an arbitrary circuitous planar path having

length L in the counterclockwise direction as shown in Figure 3.2.  After time t, the

light left from the emitter E returned to the same inertial position E.  The emitter,

however, is not at the position anymore but at the position E’ because it is rotating.  To

catch up with the emitter, the light must travel extra path ( ☎ L ) during extra time ✆ t .

Therefore, one can set up a relationship between the rotation of the path and the

apparent lengthening/shortening.

t

t’

t+∆t

r
E’

E”

E

∆θ

ω

Figure 3.2 The Sagnac effect showing apparent path lengthening.

The differential change in path during a differential time interval dt is given by

dt
r d

c
= ⋅ θ

(3.13)

In the mean time, the circuit rotates by

d L) r dt(∆ = ⋅ ⋅ω (3.14)

Notice that the total apparent lengthening of the path occurs while the light travels a

total angle of 2π+ ∆θ .  Also, the integration variable can be changed from angle to

area, A, swept out by the light wave using the following relationship:

dA r rd= ⋅ ⋅1

2
θ (3.15)

Substituting (3.13) in to (3.14) and then changing the integration variable using (3.15),

one can derive the apparent lengthening as
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∆L
c

A= 2ω
, (3.16)

where c is the light velocity and ω is the angular rate of the path with respect to the

inertial space.

In the opposite case, that is, the light travels in the opposite direction to that of the

path, the apparent shortening ( )
✝

l  occurs as

∆l
c

A= − 2ω
(3.17)

3.4.2.2 Ring Laser Gyro

As one can see in (3.16) and (3.17), it is very difficult to detect the rotation by

measuring the change of the wavelength of light.  For example, the apparent path

lengthening caused by the rotation of 2πrad / sec  of a circuit defined by a circle with

radius equal to 10 cm is just ∆L m≈ ⋅ −
13 10

9
. .  Instead, the RLG uses a fringe pattern

of two counter-traversing light beams to detect the rotation of the platform.  As shown

in Figure 3.3, two light beams traversing in opposite direction are generated by a gas

discharge in the resonant cavity of a laser.  The resonant cavity is built such a way that

the optical path length for each beam and frequencies of two beams are identical when

gyro is at rest.  When the gyro is rotating about an axis perpendicular to the lasing

plane, one beam shows apparent path lengthening, and the other shortening.

Consider a laser with wavelength λ  and the integer number N, inside a

resonant cavity of length L.

L N= λ (3.18)

The change in apparent length of the resonant cavity implies the change in the

wavelength:

 ∆ ∆λL N= . (3.19)

Using f c= / λ , change in the wavelength can be converted to the change in the

frequency:

∆ ∆f
f

L
L= − . (3.20)

From (3.20), (3.16) and (3.17), one can derive the relationship between the angular

rate of the rotation and the difference in the frequencies of the two counter-travelling

light beams.

δ
λ

ωf
A

L
= 4

(3.21)
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Figure 3.3 Schematic of three-mirror ring laser gyro (Honeywell H-423).

Finally, the relationship between the phase difference and the change in angle is

obtained by integrating the above equation.

δφ δ
λ

δθ= = f dt
A

L

4
(3.22)

The phase change is measured by detecting the transitions from light to dark in the

fringe pattern.  The fringe pattern remains stationary if there is no rotation with respect

to the inertial space.  In the presence of rotation, however, the fringe pattern migrates

and the number of the fringes passing a detector indicates the rate of rotation.

The problem in RLG is so-called frequency lock-in.  From imperfections in the

various components of the resonant cavity, the two counter-traversing beams oscillate

at nearly the same frequency and lock together at the same frequency over a range of

low angular rates.  In this case, the RLG does not recognize the rotation and produces

zero rotation.

To overcome the lock-in problem, an artificial bias can be imposed in the sensed

angular rate by generating the deliberate asymmetries into the device.  Then, the true

rate is obtained by correcting the known effect of the designed asymmetry.  There are

two main approaches introducing the asymmetries, namely using mechanical motion
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and magnetic fields.  In the first case, an artificial bias in the form of an alternating

rotation (dithering) of the gyro about the sensitive axis is imposed.  This means,

however, that the gyro has to pass the lock-in range twice per dither period.

Therefore, the gyro will not sense the actual rotation for a small amount of time and

this causes an error that can be modeled as a random walk.  In the second case, so-

called Faraday cell is placed in the path of the light beams so that a frequency bias

between two beams is created by the polarization effect in the cell.  The bias modulated

by the switching the magnetic field is periodic, but the time in the lock-in range is

extremely short because it corresponds to the switching time of the magnetic field.

One of the successful implementation of the magnetic asymmetries could be found in

the Litton’s “zero-lock” RLG which uses four light beams to create two laser gyros in

the same cavity.  It uses two sets of oppositely polarized beam pairs so that the Faraday

bias can be cancelled while the signal is doubled.

The output of the strapdown gyro is the angular rate of the platform, or body,

on which the gyro is installed, with respect to the inertial space represented in the b-

frameωib

b .  The essential error model for the RLG is given by three components: drift

error, scale factor error, and random noise.

 δω ω εb

g g g= + +b k (3.23)

The scale factor error includes a constant part and linearly varying parts.  The drift bias

includes a constant part, effects of the misalignment, and temperature and magnetic

sensitivity terms.

3.4.3 Accelerometer

The primitive form of the accelerometer can be well described using the spring-

mass combination.  Although details of the construction are not the same, all

accelerometers operate more or less on the basis of similar principles.

In a modern accelerometer, the degree of freedom of the proof mass is

pendulous rather than translational as in the spring-mass combination.  As shown in

Figure 3.4, there are three axes associated with the accelerometer: input axis (1-axis),

output axis (2-axis) and the pendulous reference axis (3-axis) related to the proof mass.

The proof mass is the arm of the pendulum hinged to the case so that the applied

acceleration is measured from a rotation about the hinged point.

When a specific force is applied along the 1-axis, the pendulous axis will deviate

from the reference axis.  The rotation occurs around the 2-axis and sensed by the signal

generator (SG) at one end that creates a corresponding torque to the torque generator

(TG) at the other end to null out the rotation.
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Figure 3.4 Schematic of torque rebalance pendulous accelerometer.

Figure 3.5 shows the cross-section of the QA2000 accelerometer integrated in

Honeywell’s LaserRef III RLG inertial navigator.  The torquer coil/seismic element is

supported by the quartz-flexure suspension.  When the seismic mass responds to an

applied specific force, the capacitor plates generate corresponding ac output voltage.

This signal is fed back to the torquer coil, producing an electromagnetic torque to

nullify the effects of the sensed acceleration.  The feedback current for this

counterbalancing is the measurement of the input acceleration.
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Figure 3.5 QA2000 Accelerometer
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The errors affecting the accelerometer measurements are very similar to those

for the mechanical gyro.  The general model includes a general bias, a scale factor error

and the random noise terms.

δa b k ab

a a

b

a= + + ε , (3.24)

where δab  is the total error in the body frame, ba is the general bias, ka is the scale

factor error and ε a  is the random noise.  In spite of its name, ba is considered random.

The general bias term includes unknown constant and anisoelasticity effect due

to unequal compliance in the pivots of the pendulum.  The scale factor error consists of

constant, linear and quadratic dependencies on the input acceleration, and effects

generated in the torque rebalance electronics.  There is another error, the misalignment

error, caused by the offset between the reference axes and the axes of the case.

Through calibration, careful design and mechanization, this effect could be significantly

reduced or minimized.

3.4.4 Navigation Equation

The output from the a strapdown INS system consists of the inertial

acceleration in the body frame ( )ab  and the angular rate of the body frame with respect

to the inertial frame ( )ωib

b .  Therefore, this sensed acceleration should be converted to

the n-frame inertial acceleration to be used in the navigation equation.  The

transformation from the i- to n-frame can be done using gyro data.  Then, those

accelerations in the n-frame must be integrated to get the position and velocity of a

vehicle through the navigation equation.

The fundamental equation (2.6) that modified Newton’s Second Law of motion

under the existence of the gravitational field, from which the navigation equation is

derived, is rewritten for convenience as:✟ ✟
x a gi i i= + . (3.25)

It states that the kinematic acceleration is the sum of both specific force and gravitation

in the inertial frame.  Applying the transformation matrix from i- to n-frame:

a a x g x gn

i

n i

i

n i i

i

n i nC C C= = − = −( ✠ ✠ ) ✡ ✡ . (3.26)

Now, let v
n
 be the e-frame velocity vector coordinatized in the n-frame.  Then, from

the Coriolis law:

v x x xn

e

n e

e

n

i

e i

ei

i iC C C= = +☛
( ☞ )Ω . (3.27)

Solving for ✌xi
, ✍

x v xi

n

i n

ei

i iC= − Ω . (3.28)

The time derivative of (3.27) yields

d

dt
C Cn

i

n i

ei

i i

i

n i

ei

i iv x x x x= + + +
✎

( ✏ ) ( ✑✒✑ ✑ )Ω Ω . (3.29)

Substituting (3.27) and (3.28) into (3.29) and using the differential equation for the

transformation (2.46):
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d

dt
C Cn

i

n i

ni

i

ei

i

n

i n

ei

i

ei

i iv x v x= + + −✓ ✓
( )Ω Ω Ω Ω . (3.30)

Finally, use (2.16) and substitute (3.26) into (3.30):

d

dt

n n

in

n

ie

n n nv a v g= − + +( )Ω Ω , (3.31)

where g g xn n

ie

n

ie

n n= − Ω Ω  is the gravity vector being the sum of gravitational and

centrifugal acceleration of the Earth.

Using the relationship between the velocity in the n-frame and the e-frame represented

by the geodetic latitude, longitude and height,

v
n

M h

N h

h

=
+

+
−

✔
( )✕

( ) cos✖
φ

λ φ , (3.32)

and substituting the angular rate matrices in (3.31) explicitly, one can derive six

differential equations as:

d

dt

v

v

v

h

a g v v v

a g v v v v

a g v v v

v

M h
v

N h

v

N

E

D

N N e E D E

E E e N e D N D

D D e E E N

N

E

D

φ
λ

ω φ φ λ φ
ω φ ω φ λ φ λ φ

ω φ λ φ φ

φ

=

+ − + −
+ − + + +

+ − − −

+

+
−

2

2 2

2

sin ✗ ✗ sin

sin cos ✘ sin ✙ cos

cos ✚ cos ✛

( ) cos

. (3.33)

These are the navigation equations which need be integrated to get Earth-referenced

position and velocity, coordinatized in the n-frame.  Note that horizontal gravity values

are needed for the north and east components.

As mentioned at the beginning, the outputs from the strapdown IMU must be

transformed into the navigation frame.  Basically, the acceleration in the body frame

can be transformed into the n-frame through the transformation.

a an

b

n bC= (3.34)

Here, the transformation Cb

n  can be obtained from the angular rate ✜ nb

b derived as

follows:

ω ω ω ω ωnb

b

ni

b

ib

b

ib

b

n

b

in

nC= + = − . (3.35)

The angular rate ωib

b  can be obtained from gyro, and ωin

n  is given in formula (2.64)

that needs the position and the velocity of the vehicle for evaluation.  Note that (2.66)

should be integrated to get the transformation Cb

n .  The initial conditions for (2.66)

involve the initialization procedure of INS.



38

3.4.5 Initialization and Alignment

Briefly speaking, the initialization is used to determine various initial conditions,

to define the navigation frame and resolve error sources.  The position and velocity in

the inertial navigation is obtained by integrating the acceleration.  Thus, the initial

conditions are associated with those integration constants and must be supplied by

external sources.  Furthermore, the initialization of the INS includes the initial

alignment of the inertial sensors.  This initial direction cosine matrix between the b- and

n-frame serves as the starting point for the gyro angle integration (2.66).  The effect of

misalignment, or initial orientation error, appears as a global trend and will be discussed

in detail in Chapter 5 through a simulation.

In the broad sense, the initial alignment also includes the determination of the

systematic errors of the IMU.  Because errors like the accelerometer bias may change

from turn-on to turn-on, they cannot be corrected through a lab calibration procedure.

Usually, the initialization takes place while the vehicle is at rest.  A priori information

on the position and velocity are inserted into the system and used for the initialization

and error determination.  If the vehicle is moving, an external source of position and/or

velocity required, for example GPS, to aid the INS.

One of the most difficult parts in the initialization is to determine the heading.

The reason for this is that the vertical orientation error is just weakly coupled to the

velocities.
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CHAPTER 4

TRADITIONAL AIRBORNE GRAVIMETRY

WITH POSITION UPDATE

4.1 Introduction

A schematic diagram for the traditional GPS/INS gravimetry is shown in Figure

4.1.  The term ‘traditional’ is used for this approach because many previous studies on

the GPS/INS airborne gravimetry utilized GPS positions/velocities as an external

source for estimating the INS systematic errors as well as the gravity disturbances.

There are three procedures involved in the traditional method.  First, the raw

data from the IMU, δ δv, θ , are integrated to get the INS positions through the

navigation equations.  Secondly, the phase data of the GPS are processed to get the

GPS positions.  Usually, double differencing is used for the reasons explained in

Chapter 3. Finally, the INS systematic errors and the gravity disturbances are estimated

through the Kalman filter using the GPS position/velocity updates.  Here, the INS

errors as well as the gravity disturbance are modeled as stochastic processes, and

assigned as unknown parameters in the Kalman filter derived from the error dynamics

equations.

The primary concerns in the traditional approach consist of two parts: the

derivation of the error dynamics equations, and stochastic modeling for the gravity

disturbances.  Because of the various IMU errors, the indicated positions or velocities

of the INS deviate from the true values.  The behavior or effects of the IMU errors can

be analyzed by investigating the error dynamics equations.  Using those equations, the

propagation of errors from the sensors to the navigation solution can be identified and

analyzed.

The error dynamics equations contain the gravity disturbance terms as one of

the errors which should be either modeled or known to estimate the IMU errors.  One

of the practical ways to model the gravity field is as a stochastic process.  Although

there are arguments on modeling the gravity field, it is still a good approach in practical

gravity determination (Wang, 1997).
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Figure 4.1 Schematic diagram for the traditional GPS/INS gravimetry.

In this chapter, the error dynamics equations of the navigation equation will be

derived first.  After briefly investigating the stochastic modeling of the IMU errors and

gravity disturbances, the estimation of gravity disturbances using real flight data are

presented.  The analysis of the results closes this chapter.

4.2 Error Dynamics Equations in n-frame

The error dynamics equations of the INS can be obtained by simply applying the

differential operator, δ , to the navigation equations (3.31).  Here, the differential

operator implies making the small changes or perturbations of the values.  It is the

linear part of an analytic expansion into Taylor’s series, and the higher order terms are

assumed to be negligible.  After applying the differential operator to the navigation

equation, they have to be explicitly expressed in terms of the geodetic coordinates to

derive the n-frame error dynamics equations.

The linear perturbation of formula (3.31) is

d

dt

n

in

n

ie

n n

in

n

ie

n n n n n nδ δ δ δ δ δv v v a p g= − + − + + + +( ) ( )Ω Ω Ω Ω Γ , (4.1)

where Γ n n n= ∂ ∂g p/  is the second-order tensor of partial derivatives of the gravity

vector with respect to the coordinates, and 
�
pn  is a vector of differentials along the

double-difference
phase processing
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axes of the n-frame.

δ
δφ
φδλ

δ
pn

M h

N h

h

=
+

+
−

( )

( ) cos (4.2)

Note that the perturbation δan  is the error of the sensed acceleration in the n-frame.

Because the frame of the accelerometer is assumed to be parallel to the b-frame,

the accelerometer errors in the b-frame should be transformed to the n-frame.  The

transformation, however, also contains errors because it is determined by the output

from the gyro.  Therefore, the dynamics of the errors in the orientation of the b-frame

with respect to the n-frame should be considered as well.

Now, let us define the orientation error as:

ψ n n n n T n

n n

n n

n n

= =
−

−
−

( , , ) ,ψ ψ ψ
ψ ψ

ψ ψ
ψ ψ

1 2 3

3 2

3 1

2 1

0

0

0

Ψ (4.3)

Then, the matrix Ψn
 describes the orientation error in the form of a small rotation

between the true n-frame and the computed n-frame.  Denoting the true transformation

as Cb

n  and erroneously computed transformation as ✁Cb

n , the relationship between them

is given as: ✂
C I Cb

n n

b

n= −( )Ψ (4.4)

Then, the error in the transformation is given by

δC C C Cb

n

b

n

b

n n

b

n= − = −
✄

Ψ (4.5)

Now, the perturbation of acceleration in the n-frame can be computed as follows:

δ δ δ

δ

δ

a a a

a a

a a

n

b

n b

b

n b

b

n b n

b

n b

b

n b n n

C C

C C

C

= +

= −

= + ×

Ψ

ψ

. (4.6)

Note that the acceleration error in the n-frame includes the orientation error as well as

the acceleration error in the b-frame.

The dynamic behavior of the error angle can be derived by differentiating the equation

(4.5).

δ δ δ δΩ
☎

( )✆C C C C

C C

b

n

b

n

nb

b

b

n

nb

b

b

n

nb

b

n

b

n n

b

n

nb

b

= = +

= − −

Ω Ω

Ψ Ψ Ω
   (4.7)

Substituting (4.5) into the second equation of (4.7) and solving for ✝Ψn  yields✞
, ✟Ψn

b

n

nb

b

n

b n

b

n

nb

bC C C= − = −δΩ δψ ω , (4.8)

where δωnb

b  is the error in the rotation rate of the b-frame with respect to the n-frame.

To derive the equation for the error δωnb

b , the output of the gyro is divided into two

terms, namely the rotation of the n-frame with respect to the i-frame and that of the b-

frame with respect to the n-frame.
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ω ω ωib

b

in

b

nb

b= + (4.9)

Perturbing the above equation and using ω ωin

b

n

b

in

nC= ,

δ δ δ δ
δ δ

ω ω ω ω
ω ω ω

ib

b

n

b

in

n

n

b

in

n

nb

b

n

b n

in

n

n

b

in

n

nb

b

C C

C C

= + +
= + +Ψ

, (4.10)

where δ
δλ φ λ ω δφ φ

δφ
δλ φ λ ω δφ φ

ωin

n

e

e

=
− +

−
− − +

✠
cos ( ✡ ) sin☛
☛
sin ( ☞ ) cos

 is the error in the angular rate of the n-

frame with respect to the i-frame.

Finally, solving for δωnb

b  and substituting it into (4.8) yields the dynamic equation for

the angles in the transformation from the b-frame to the n-frame:✌
ψ ω ψ ω ωn

in

n n

b

n

ib

b

in

nC= − × − +δ δ . (4.11)

Now, using (3.32), one can derive the differentials and dynamic behavior of the

velocity errors as follows:

δ
δ δ φ δφ

δ δ φλ φδλ φλδφ
δ

v
n

M h M h

N h N h

h

=
+ + +

+ + + −
−

( ) ✍ ( ) ✎
( ) cos ✏ ( )(cos ✑ sin ✒ )✓ (4.12)

d

dt

M h M h M h M h

N h N h N h

N h

h

nδ

δ δ φ δφ δ δ φ δφ
δ δ λ φ δλ φ λδφ φ δ δ λ φ λφ φ

δλ λφδφ φ λδφ δλφ λδφ φ
δ

v =

+ + + + + + +
+ + + − + + −

+ + − − + +
−

( ✔ ✔ ) ✕ ( ✖ ✖ ) ✗ ( ) ✘ ✘ ( ) ✙ ✙
( ✚ ✚ ) ✛ cos ( ✜ ✜ )( ✢ cos ✣ sin ) ( )( ✤ ✤ cos ✥ ✥ sin )

( ) ( ✦ ✦ ✦ ✦ )cos ( ✧ ✧ ✧ ✧ ✧ ✧ )sin★ ★
(4.13)

In above equation, the terms involving ✩ ✩ ✩ ✩N M N M N and M, , ✪ , ✫ , ✬ , ✭ are all second-order

terms so that those can be neglected in our linear approximation.  In addition, the

principal radii of curvature, N and M can be replaced with the Gaussian mean radius,

R NM✮ , to the first-order approximation.

Then, the equation (4.12) and (4.13) can be simplified as:

δ
δ φ δφ

δ φλ φδλ φλδφ
δ

v
n

h R h

h R h

h

=
+ +

+ + −
−

✯
( ) ✰

cos ✱ ( )(cos ✲ sin ✳ )✴ (4.14)

d

dt

h h h R h

h h h

R h

h

nδ

δ φ δφ δ φ δφ
δ λ φ δλ φ λδφ φ δ λ φ λφ φ

δλ λφδφ φ λδφ δλφ λδφ φ
δ

v =

+ + + +
+ − + −

+ + − − + +
−

✵ ✵ ✵ ✵ ✵ ✵
( ) ✶ ✶

✶ ✶ cos ✷ ( ✸ cos ✹ sin ) ( ✺✻✺ cos ✼ ✼ sin )

( ) ( ✽✻✽ ✽ ✽ ) cos ( ✾✻✾ ✾ ✾ ✾ ✾ ) sin✿✻✿
(4.15)

Using equation (2.56) and (2.64), the first perturbation term in (4.1) can be

derived in terms of the geodetic coordinates as follows:
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δ

δλ φ λ ω φδφ δφ
δλ φ λ ω φδφ δλ φ λ ω φδφ

δφ δλ φ λ ω φδφ

( ) ❀
sin ( ❁ )cos ❂

❂ sin ( ❃ )cos ❄ cos ( ❅ )sin❆ ❆
cos ( ❇ )sin

Ω Ωin

n

ie

n

e

e e

e

+

=
+ + −

− − + − + +
− +

0 2

2 0 2

2 0

(4.16)

Now, based on all the developments above, one can derive linear dynamic error

equations in terms of the position, velocity and orientation. The usual form of the linear

dynamic model is given as the first order differential equation as follows:

d

dt
F Gn n n nε ε= + u , (4.17)

In our case, the parameter vector is given as:

ε n n n n Th h= ( ❈ ❈ ❈ )ψ ψ ψ δφδλ δ δφδλ δ1 2 3 . (4.18)

In addition, consider the vector of system errors composed of errors in angular rate, in

acceleration and in gravity:

u a

g

=
δ
δ
δ

ωib

b

b

n

. (4.19)

With r =  R + h , ❉ ❉l e1 ❊ ❋● ❍
, and ■ ■l e2 2❏ ❑▲ ▼

, each matrix in (4.17) can be derived in

terms of the geodetic coordinates in the n-frame.  It should be noted that the systematic

errors from IMU’s and gravity can be included in the set of system states with proper

stochastic modeling.  For the explicit representation of the elements in (4.17)

augmented by the parameters, the stochastic modeling should be discussed in detail.

4.3 Stochastic Modeling for System Errors and Gravity Disturbance

To complete the dynamic error equations discussed in the previous section, the

system errors as well as the gravity disturbance should be identified and modeled.  All

data from physical instruments and sensors contain random errors, and the data cannot

be fully described in a deterministic sense.  In this case, the description may be put in

probabilistic terms with reasonable models that sufficiently describe the behavior of the

observed system.  Here, the choice of the model depends on the type of the

instrumental or the sensor errors.

Because of the dependencies on time, the errors in the IMU are usually modeled

as random or stochastic processes.  A stochastic (random) process is defined as a

collection, or ensemble, of random variables associated with a deterministic parameter

such as a time or space coordinate.  At each point in time or in space, the process is a

random variable and the probabilistic property of the process, in general, changes in

time or space.

In many cases, the first and second-order joint distribution or density functions

are enough to characterize a stochastic process.  The characterization is usually given

by two functions, using the second moments of the probabilistic distributions, called
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auto-covariance and cross-covariance functions.  The auto-covariance function is

defined as

ϕ x x t t E x t x t dx dx x E{x x E{x f x t x t, ( , ) ( ) ( ) ( })( }) ( , ; , )1 2 1 2 1 2 1 1 2 2 1 1 2 2= = − −
−∞

∞

−∞

∞

 (4.20)

where x(t1), x(t2) are the realizations (observed values) of the random process x at time

t1 and t2; x1, x2 are the random variable x at time t1 and t2; f(x1,t1;x2,t2) is the second-

order joint probability density function of the random variable x1 and x2 given as:

f x t x t
F x t x t

x x
( , ; , )

( , ; , )
1 1 2 2

2

1 1 2 2

1 2

= ∂
∂ ∂

, (4.21)

where F x t x t x t x and x t x( , ; , ) Pr ( ( ) ( )1 1 2 2 1 1 2 2= ≤ ≤  is the corresponding joint

probability distribution function.

The cross-covariance function is similarly defined as

ϕ x y t t E x t y t dx dy x E{x y E{y f x t y t, ( , ) ( ) ( ) ( })( }) ( , ; , )1 2 1 2 1 2= = − −
−∞

∞

−∞

∞

, (4.22)

where x(t1), y(t2) are the realizations (observed values) of the random process x and y

at time t1 and t2, respectively; f x t y t( , ; , )1 2  is the second-order joint probability density

function of the random variable x and y:

 f x t y t
F x t y t

x y
( , ; , )

( , ; , )
1 2

2

1 2= ∂
∂ ∂

, (4.23)

where F x t y t x t xand y t y( , ; , ) Pr ( ( ) ( )1 2 1 2= ≤ ≤  is the corresponding joint probability

distribution function.

 Of course, the most easily modeled process is the stationary process whose

probabilities do not change in time or under parallel shift in space.  The joint probability

density function for any set of random variables of a stationary process corresponding

to any set of time coordinates is independent of the time origin.  Furthermore, the

stationary process is said to be time-invariant; if and only if the mean value and the

variance of the random variable xk  at any time k are the same, and the second-order

probability density function does not depend on the time origin but depends on the time

interval τ = −t t2 1 .  Thus, the covariance functions are functions of the single variable

τ .

ϕ τ τx x E x t x t, ( ) ( ) ( )= +1 1 (4.24)

ϕ τ τx y E x t y t, ( ) ( ) ( )= +1 1 (4.25)

Some useful properties of these covariance functions for the stationary processes are:

ϕ xx E x E{x( ) [ }]0
2 2= − (4.26)

ϕ τ ϕ τ ϕ τ ϕ τxx xx xy yx( ) ( ), ( ) ( )− = − = (4.27)

ϕ ϕ τxx xx( ) ( )0 ≥ (4.28)

An important concept associated with stationary random processes is the

ergodic hypothesis stating that any statistics calculated by averaging over all members
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of an ergodic ensemble at a fixed time can also be calculated by averaging over all time

of a single representation member of the ensemble.  Briefly speaking, it means that the

stochastic properties of the ergodic process can be analyzed from the temporal

behavior of one single realization.  It should be noted that not all stationary processes

are ergodic.  A typical example for this case is the ensemble of functions that are

constant in time.  The common statistics associated with an ergodic process are:

E x
T

x t dt
T

T

T

[ ] lim ( )=
→∞

−

1

2
(4.29)

E x
T

x t dt
T

T

T

[ ] lim ( )
2 21

2
=

→∞
−

(4.30)

ϕ τ τxx
T T

T

T
x t x t dt E{x( ) lim ( ) ( ) [ }]= + −

→∞ −

1

2

2 (4.31)

ϕ τ τxy
T T

T

T
x t y t dt E{x E{y( ) lim ( ) ( ) } }= + −

→∞ −

1

2
(4.32)

4.3.1 System Error for the IMU

As any other physical instruments, gyros and accelerometers also contain

system errors represented by specific force errors and angular rate errors, respectively.

In general, both gyro and accelerometer measurements are affected by general biases,

scale factor errors and white noise, although the detailed error models for inertial

navigation sensors depend on the particular instrument design.  For measurements from

accelerometers, non-orthogonality of the axes, second-order scale non-linearity, and

correlated noise could be considered in extended error models (Wei and Schwarz,

1994).  The extended models for the gyros could also include the non-orthogonality of

the axes and correlated noise.

The major error sources of gyro and accelerometer measurements are those

basic common elements (biases, scale factor errors and white noise).  Since other error

sources are not large relative to the basic elements, they are neglected in this study for

simplicity (see equations (3.23), (3.24)).  Clearly, the effects of the general biases of the

accelerometer and the gyro appear as long-term trends while the effect of the scale

factor error appears as short-term variations.  The quantitative effect of each error

parameters is given in Chapter 5 through acceleration simulations.

The necessary concepts to describe the basic elements of the IMU errors in the

stochastic modeling are random constant and white noise.  Continuous white noise,

Ω( )t , is defined to be a stationary random process having a constant spectral density

function over all frequencies (Brown and Hwang, 1992, p. 99).  The auto-covariance

function of the white noise is given by:

ϕ τ δ τΩ ( ) ( )= q , (4.33)

where q is a constant and the delta function is defined as:
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 δ τ τ τ δ τ τ( ) ; , ( ) ( ) ( )t t f t d f t− = ≠ − =
−∞

∞

0 (4.34)

for any square-integrable function of f(t).  This means that random variables from the

white noise process are completely uncorrelated for any set of time instances.  A

discrete white noise process, W(t )k , can be derived from the continuous white noise

using an averaging process with respect to time.  The mean of the discrete white noise

is the same as that of the continuous white noise and the variance is given as q t/ ∆ .

E t E W t
q

t
k w( ( )) ( ( ));Ω

∆
= =σ2 (4.35)

If the distribution of each random variable of the discrete white noise process is

Gaussian with zero mean, the process is called Gaussian white noise

W t W N q tk k( ): ~ ( , / )= 0 ∆ .

A random constant assumes a constant value for all variables of a single

realization of the process.  The random constant is represented by the following

differential equation: ◆
( ) ; ( )x t x t x= =0 0 0 , (4.36)

where x0  is a random variable.  It should be noted that the random constant is

stationary but not ergodic.  Also, it is fully correlated.  The mean of the random

constant may be assumed to be zero and the auto-covariance would be the variance

σx

2
.  The discrete form of the random constant is represented as:

x xk k+ =1 . (4.37)

The general biases and scale factor errors for the gyros and accelerometers can be

modeled as random constants since these are known to be very stable after turn on.

Using the linear dynamic equations in (4.36), the general biases and the scale factors

can be included as unknown parameters (random effects) in the error dynamics

equation (4.19).

4.3.2 Gravity Disturbances

The last row of the systematic error vector (4.19) is associated with the error in

the Earth’s gravity field.  In other words, it is the difference between the actual Earth’s

gravitation and a selected model for the gravitation.  The most popular gravity model in

the field of navigation is the normal gravity field generated by an ellipsoid of revolution.

This ellipsoid contains the Earth’s mass and its equipotential surface approximates the

Earth’s mean sea level surface.  It should be noted that the normal gravity vector on its

surface does not have horizontal components because, by definition, it is perpendicular

to the ellipsoidal normal.  At given altitude, however, the north-south component of the

normal gravity is not zero (see Heiskanen and Moritz, (5-34)).  The actual horizontal

component of the gravity vector with a magnitude at the order of 4 6 10
4

~ ❖ P  m/s
2

causes position error up to several hundred meters (Jekeli, 1995a) when neglected.

To compensate the position error caused by neglecting the horizontal gravity
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vector, one can model the incremental gravity field, or gravity disturbance vector, as a

spatial process.  Many forms of spatial models have been developed to represent the

random-like fashion of the variations of the horizontal gravity field disturbances.  These

models are used in accounting for position errors and/or to obtain optimal estimates for

the disturbing gravity field.  In airborne gravimetry, the spatial models of the disturbing

gravity field have been used for estimating the gravity field while assuming that all

other INS related errors could be estimated using other instruments like GPS.  Usually,

the models for the gravity field assume ergodicity and, hence, stationarity and some

isotropic covariance function that depends on two parameters: variance and the

correlation distance.  For details or forms of the covariance models, see Wang and

Jekeli (1998), Jekeli (1995), Knickmeyer (1990), Forsberg (1987) and Eissfeller and

Spietz (1989).

One of the often used models for the horizontal gravity components along a

trajectory is the Gauss-Markov process. The (first order) Markovian property states

that the conditional probability density of the random variable at any time is the same as

the conditional probability density of the variable given just the most recent values of

the process.  If the process is also Gaussian, the process is called a Gauss-Markov

process.  With some information on variance and correlation distance obtained from an

empirical covariance function, one could integrate the gravity model into the error

dynamics equation.

The differential equation for the first-order Gauss-Markov model is given by◗
( ) ( ) ( )x t x t t= − +β Ω (4.38)

where β  is a constant, and Ω  is a zero mean Gaussian white noise process with

covariance:

E t t t t( ( ) ( ’)) ( ’)Ω Ω = −2 2σ βδ . (4.39)

The process, x t( ) , in this case is stationary with zero mean, and covariance function

and the corresponding PSD (power spectral density, Fourier transform of the

covariance) are given by

C ex ( )τ σ β τ= −2 , (4.40)

Φx ( )ω σ β
ω β

=
+

2
2

2 2
. (4.41)

The inverse of the constant β , 1/β , called the correlation time and defines the degree

of correlation.  When β  approaches zero, the signal becomes a random constant.

The higher-order Gauss-Markov processes are also defined on the basis of

higher-order differential equations with the parameter β .  The differential equation for

the third-order model and the corresponding quantities are given as:❘ ❘ ❘
( ) ❙ ❙ ( ) ❚ ( ) ( ) ( )x t x t x t x t t+ + + =3 3 2 3β β β Ω , (4.42)

E t t t t( ( ) ( ’)) ( ’)Ω Ω = −16

3

5 2β σ δ , (4.43)
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C ex x( ) ( ); ( )
( / )

( )
τ σ β τ β τ ω β σ

ω β
β τ= + + =

+
−2 2 2

5 2

2 2 3
1

1

3

16 3Φ . (4.44)

4.4 Kalman Filter Estimation in the Conventional Approach

Establishing the stochastic models for the INS systematic errors and the gravity

disturbances, one can revise the error dynamics equation by adding more parameters

into the vector ε n  of equation (4.19).  In other words, a 30-state linear error dynamics

equation can be derived that models the general biases and scale factor errors for both

gyros and accelerometers as random constants, and the gravity disturbances as the

third-order Gauss-Markov models;

d

dt

n n n nx F x G u= + . (4.45)

Note that the notation for the error vector ε n is now changed to x
n
 denoting it as the

state vector.  The state vector x
n
 is composed of 3 orientation errors, 3 velocity errors,

3 position errors, 3 accelerometer biases (random effects), 3 accelerometer scale

factors, 3 gyro biases (random effects), 3 gyro scale factors and 9 parameters

associated with the third-order Gauss-Markov gravity disturbance vector.

x
n

N E D aN aE aD aN aE aD gN gE gD gN gE gD

N E D N E D N E D

T

h h b b b k k k b b b k k k

g g g g g g g g g

= ( ❯ ❯ ❯
’ ’ ’ ’’ ’’ ’’ )

ψ ψ ψ δφδλδ δφδλ δ

δ δ δ δ δ δ δ δ δ         
(4.46)

The dynamics matrix F, the noise influence matrix G and the white noise vector u are

given as below.  Note that each element in the matrices F12, F13 and G is a 3 × 3 matrix.

F

F F F

F

n

F

l l

l l

l l

a

r

a

r

h

r
l

r
l

l

r
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r

a

r
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n n

n n

n

n n

❱

❲

❳ ❳
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❳ ❳ ❳ ❳
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(4.47)
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0 0 0 0 0 0 0 0 1

0 0 3 0 0 3 0 0

0 0 0 3 0 0 3 0

0 0 0 0 3 0 0 3

=

− − −
− − −

− − −

β β β
β β β

β β β

(4.49)
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1 1
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w
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a
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g

a

g
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σ
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(4.50)

where D is the matrix converting from angular to linear measure and inverting the

vertical axis; σg

2
, σa

2
 and σδg

2
 are variances of the white noise for gyro,

accelerometer and gravitational disturbance respectively.

 D

R h

R h=
+

+
−

0 0

0 0

0 0 1

( ) cosφ (4.51)

Optimal estimates for the 30 states at each epoch are easily obtained from the

error dynamics equations and additional observations by Kalman filtering.  Since the

Kalman filter is well described in the literature (Gelb, 1994; Brown and Hwang, 1997),
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only the essential concepts and equations are presented.  There are three things to be

defined before applying a Kalman filter: System model, Measurement model and Initial

conditions.  The measurement model, also called the observation equations, is given by

Z x v vk k k k kH N R= + , ~ ( , )0 , (4.52)

where the subscript k indicates the epoch to which the data refer, Z is the 3×1

observation vector (GPS position – INS position), H is the 3×30 design matrix with 1

for elements at the positions (1,7), (2,8), (3,8) and zeros for all other elements, v is the

3×1 observation error vector assumed normally distributed with zero mean and 3×3

covariance matrix R.

The system model representing the dynamics of the parameters at time tk-1 and

tk is given as:

x x w wk k k k k k kG N Q= +− − − −Φ 1 1 1 1 0, ~ ( , ) , (4.53)

 where Φk−1  is the state transition matrix between times tk and tk-1.  Assuming the

system dynamics matrix F is constant during transition time ( ∆t ), the transition matrix

can be calculated as follows.

Φ ∆ ∆ ∆k

F t te I F t F t F tk k

−
−= = + + + +−

1

2 3
1

1

2

1

3

( )

! !
..... (4.54)

Note that the state transition matrix Φk−1  and the input matrix Gk−1  are assumed

constant during transition times, and the input noise vector w k  is described by a

Gaussian, zero-mean, white-noise processes with covariance matrix Qk  derived using

the relationships between the continuous and discrete white noise (see equations (4.33)

and (4.35)).  It is assumed that v k  and w k  are not correlated with each other.  If there

are no measurements, the dynamics of the state vector totally depend on the system

model.

For the initial conditions, we need to define the estimates and variances of the

state parameters at starting time.  The initial estimates are set to zero for all error

states.  In addition, the initial variances are set to the values from the manufacturer’s

specifications for INS errors.  The initial variance and the correlation distance for the

gravity disturbance vector could be obtained from previous spatial analysis of the

incremental field being surveyed.  Table 4.1 shows the initial variances for the states

applied in this study.

The advantage of the Kalman filter lies in the fact that the estimation procedure

is explicitly divided into two stages: prediction and update.  In addition, the procedures

for the state estimates are independent of those of the covariances of the estimates

(Figure 4.2).  Therefore, one can conduct covariance analyses without using real data.

These analyses are useful for a pre-planning or a feasibility test.  For the covariance

analysis of airborne gravimetry, see Jekeli (1995) and Knickmeyer (1990).
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INS Error Parameters Standard deviation

Accelerometer Biases (random) ±25 mGal

Accelerometer Scale Factor ±10 ppm

Gyro Bias (random) ±0.005 deg/hr

Gyro Scale Factor ±10 ppm

Gyro White Noise ±0.002 deg/ hr

Accelerometer White Noise ±40 mgal/ Hz

Velocity ±1 m/s

Position ±10 m

Orientation for Horizontal Direction ±2 arcsec.

Orientation for Vertical Direction ±1 arcmin.

3
rd

 order G.M Process for Gravity Disturbances ±20 mGal

Inverse of the Correlation Time 1 × 10
-4

Table 4.1 INS error parameter specification.
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Figure 4.2 Kalman filter loop following Jekeli (1995a).
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If no real measurements are available, one can perform only the prediction given

by ➋ ➋
x xk k k

−
− −= Φ 1 1 , (4.55)

P P G Q Gk k k k

T

k k k

T−
− − −= +Φ Φ1 1 1 , (4.56)

where P denotes the covariance matrix for the states.

Note that the negative sign on the superscript means the observation at that time tk has

not been accounted for.  So, the predicted states only depend on the system transition

matrix, and covariances of those depend on the corresponding error propagation laws.

Once actual data are available, one can perform the updating procedure that

results in new estimates for the states and covariances that include the information from

the measurement. ➌ ➌
( ➍ )x x y xk k k k k kK H= + −− − , (4.57)

P I K H P I K H K R Kk k k k k k

T

k k k

T= − − +−( ) ( ) , (4.58)

where K is the Kalman gain matrix defined as

K P H H P H Rk k k

T

k k k

T

k= +− − −( ) 1 . (4.59)

In general, the GPS position is derived from the double differencing procedure

as mentioned in Chapter 3.  Currently, the accuracy of the positions derived from the

double differencing is less than ±10 cm in the kinematic case.  Since the observation

vector in this traditional approach is the difference between the GPS and INS positions,

the navigation equations (3.33) should be integrated first.  The integrated positions

from INS, of course, include all the effects of the system errors.  Using the more

accurate positions from GPS, system errors in INS are to be estimated in the Kalman

filter.  At the same time, the gravity disturbance vector is also to be determined based

on the selected gravity model. The algorithm for integrating the navigation equations

using quaternions is given in the Appendix A.

4.5 Results from the Traditional Approach

4.5.1 Test Data Description

The data used in this study were provided by M. Wei, under the promotion of

the Special Study Group 3.164, Airborne Gravimetry Instrumentation and Methods, of

the International Association of Geodesy (IAG).  These data were collected by the

University of Calgary on 1 June 1995 for the purpose of conducting an airborne gravity

survey over a part of the Rocky Mountains to assess repeatability as well as the

accuracy of airborne gravimetry using GPS and INS.  The strapdown inertial system,

Honeywell LASEREF III, together with two GPS receivers, Ashtech Z-XII and

NovAtel GPSCard, were equipped on the airplane.  To perform the DGPS positioning,

three base stations were also operated on the ground.  The data include the coordinates

of the airborne and ground GPS antennas at 0.5s intervals, and raw accelerometer and

gyro data from INS at a data rate of 50 Hz.

In this survey, four flights, of which three flight data are usable, in the east-west
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direction over the same ground track were carried out.  The overlapping flight

trajectory was designed to meet the objectives of the test.  The total length of the east-

west profile was 250 km and the flying altitude was 5.5 km.  Average flying speed was

about 430 km/h so the corresponding spectral resolution for 90 and 120 seconds

smoothing was about 5.0 km to 7.0 km.  For details on the data description, see Wei

and Schwarz (1998).

Figure 4.3 shows the trajectories of the three flights.  Lines 1 and 3 are almost

on top of each other and the line 2 is a little north (.005 degree ≈ 540 meters) from

those.
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Figure 4.3 Flight trajectory for the test data June 1995.  Dashed line (middle) line is

leg1, dotted line (top) is leg 2, and dash-dotted (bottom) line is leg 3.

Note the high frequency variations of the trajectories showing the dynamics of the

flight.  The main oscillations occurred around the first (roll) and the third (yaw) axes of

the body frame.  Probably, these dynamics are caused by the auto-pilot function of the

airplane which automatically maintains the direction and the velocity of the airplane.

Comparing the attitude of the airplane (Figure 4.4) with the trajectory shows that those

variations correspond well to the roll and yaw motions of the airplane with periods of

50-60 seconds.
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Figure 4.4 The attitude of the airplane for Line 1 (392500-394900 GPS seconds).

Obviously, it is very hard to separate the gravity signal with the frequency in the range

of these dynamics.  The effect of dynamics will be explained in more detail in the next

Chapter.

4.5.2 Horizontal Gravity Disturbances from the Traditional Approach

Using the algorithm explained in the previous sections, the traditional approach

of position update with gravity modeling was tested.  It should be mentioned that only

the horizontal components of the gravity disturbance vector could be estimated in the

conventional approach, since the INS is unable to navigate in the vertical in the free-

inertial mode (see section 4.5.3).

Figure 4.5 shows the horizontal gravity disturbance estimates of all three legs

for the north and east direction as determined by the traditional algorithm.  One can

notice the high frequency oscillations with periods of 50-60 seconds in the north

component, which are caused by the roll dynamics of the aircraft motion.  The very

high frequency variations in the line 2 and 3 of the east component are caused by a

numerical instability of the filter due to unknown effects.

In addition, low frequency trends as well as the biases (random) still appear to

remain in all legs.  This means that the biases of the accelerometers could not be

estimated unless external information on the gravity, for example the gravity values at

the starting and ending point, is provided.  Therefore, some further data processing is

necessary to remove the high frequency errors, low frequency trends, as well as the

effects of airplane dynamics.  For these purposes, B-spline smoothing and wave number

correlation filtering (WCF) has been adopted in this approach.

The usual method to remove high frequency components from a signal is to
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apply a low pass filter, or a smoother.  In this study, a third-order B-spline smoother

with window length of 60 seconds was applied to remove the high frequency error

from the estimated gravity disturbances.  Because of its simplicity and flexibility, the B-

spline smoother is distinguished by its elegant theory and model behavior in numerical

calculations (Kincaid and Cheney, 1996, p. 392).

To remove low frequency trends as well as other residual errors that are not

correlated between overlapping trajectories, one can apply the wavenumber correlation

filter (WCF) developed by von Frese et al. (1997).  Basically, the WCF decomposes

space domain data into wave domain coefficients through a Fourier transformation, and

then constructs the correlation spectrum by comparing coefficients of a pair of co-

registered data at corresponding wavelength.

The wavenumber correlation coefficient between two data sets x  and y  is

defined as:

CC
x y

x y
k k

k k

k k

= = •
cos( )∆θ , (4.60)

where CCk  is the correlation coefficient for the wave number k, ∆θk  is the

phase difference of the data set x  and y , ∆θk x y= −θ θ , and ➎  denotes the scalar

product of vectors.  By setting the correlation tolerance, the components showing less

correlation than the tolerance is assumed as noise and filtered out.  For example, if the

correlation tolerance is set to 0.5 all components having correlation coefficient larger

than the tolerance are kept as signal.  For a detailed derivation of the wave number

correlation coefficient, see Kim (1995).

The repeated tracks provide an opportunity to decorrelate the gravity signal

from some of the system errors, since presumably the gravity signature has not changed

from one leg to the other.  In other words, since we have three overlapping flight legs,

one can assume that the gravity signal is commonly detected in all three legs, but the

random noise and system errors would not usually be common for those legs.

Therefore, using WCF, one can filter out the random noise or overall trends that are

not common in other lines.  With the WCF the removal of overall trends as well as the

medium frequency airplane dynamics effects could be achieved.  It should be noted that

two filtered data sets are obtained from WCF, thus the average of those are presented

as results from WCF.  As a matter of fact, tracks do not have to be on top of each

other to apply WCF.  As long as the signal could be co-registered such as in parallel

tracks, WCF can be applied.

The correlation tolerance in this study is set to zero.  It should be noted that the

correlation tolerance is decided rather subjectively based on the signal characteristics.

In other words, there is a trade-off between the correlation and noise, but it is intended

to keep the correlated signal as much as possible for each pair of tracks.  Therefore,

after examining the correlation coefficients for each frequency component, one has to

decide the tolerance imposing the amount of signals to be extracted.
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Figure 4.5 Gravity disturbance components, north (top) and east (bottom), computed

from the traditional position update Kalman-filtering.  The dashed, dotted, and dash-

dotted lines are the gravity components calculated for legs 1, 2 and 3, respectively.
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Finally, we assume that the gravity values for the endpoints are known in order

to remove the biases random effects.  This endmatching is done by applying linear

corrections to the estimates based on values at both ends of each leg using reference

data provided by the National Imagery and Mapping Agency (NIMA).  The reference

data consist of the deflections of vertical (horizontal gravity component) for this area

extracted from 2 min. by 2 min. grids of gravity anomalies.

It should be noted that this additional data procedures could be applied in

different order.  In other words, one can apply the endmatching first, and then the

WCF, or the other way around.  Interestingly, the order of the processing seems to

affect the results of the gravity estimates.  The results of the first case were better than

the other (compare Table 4.2 and 4.3).

Figure 4.6 shows the horizontal gravity disturbance estimates after applying the

60-seconds smoothing, WCF and endmatching.  The High frequency oscillations are

removed by the smoothing, the gravity components along all three lines are adjusted to

match given values at the end points, and the global trends are reduced by WCF.

Estimated gravity disturbances, generally, show higher amplitude than the reference

data.  The reason for this could be explained through model error, including wrong

statistical models for the INS error parameters and for the gravity disturbances, as well

as wrong initial values from insufficient a priori knowledge in the orientation of the

INS.  As a matter of fact, the results shown in Figure 4.6 were selected from repeated

use of trials of different models for the gravity disturbances and initial variances for the

parameters.  For the gravity disturbance, the 3
rd

 order Gauss-Markov model with

correlation distance in the range of 10-1000 km and variance in the range of 100-10000

mGal
2
 were tested.  The gravity disturbance estimates were more sensitive to the

correlation distance than the variances in this case.

Therefore, it is very crucial to establish an appropriate model for the gravity

disturbances as well as to assign good correlation distance and initial variances in the

traditional approach.  A numerical comparison with respect to the reference gravity

data is given in Table 4.2.  It should be mentioned that the wavenumber correlation

filtering should be done between legs having opposite directions.  That is, it seems that

some systematic errors appear to be associated with the direction (see the phase delay

in leg 2 of the east component in Figure 4.5).  This will be demonstrated more clearly in

case of the acceleration update algorithm and will be explained in the next chapter.

The best result with the traditional approach is obtained for the north

component from the combination of lines 1 and 2.  In both combinations in Table 4.2,

the north components are better estimated than the east component.  If these errors are

attributed to incorrect modeling, especially the gravity modeling errors, then one might

conjecture that the adopted Gauss-Markov process for the gravity disturbance was

better for the north component than for the east component.  As a matter of fact, the

east component estimates turned out to be better in the acceleration algorithm (see

Chapter 5) that does not rely on a statistical model for the gravity disturbances.
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Figure 4.6 Gravity disturbance components, north (top) and east (bottom), after

applying 60-seconds smoothing, WCF and endmatching.  The solid line shows the

reference gravity data; the dashed, dotted, and dash-dotted lines show the gravity

components calculated from the combinations of lines 1-2, 1-3, and 2-3, respectively.
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Lines 1/2 (mGal) Lines 2/3 (mGal)

Mean Std. Dev. Mean Std. Dev.

North

East

11.67

4.68

9.98

28.88

-3.61

-0.16

17.13

25.74

Table 4.2 Mean and standard deviation of the difference between the calculated

horizontal gravity disturbance from the traditional approach and the control data. The

data are processed by first applying the 60-seconds smoothing, then WCF and

endmatching.

Figure 4.7 shows the horizontal gravity disturbances after 60-seconds

smoothing, end-matching and WCF.  Note the partially reversed order of processing

compared to the previous case.  Although the low wavelength parts of the estimates

for this case and the previous case are very similar, there are some minor differences

in the local peaks and valleys due to from the change in order of the processing steps.

The standard deviations of the differences between the reference gravity and the

estimated gravity are given in Table 4.3.

Lines 1/2 (mGal) Lines 2/3 (mGal)

Mean Std. Dev. Mean Std. Dev.

North

East

7.65

9.03

8.87

26.34

7.62

0.32

16.21

25.52

Table 4.3 Mean and standard deviation of the difference between the calculated

horizontal gravity disturbance from the traditional approach and the control data. The

data are processed by first applying the 60-seconds smoothing, then endmatching and

WCF.
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60-seconds smoothing
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Figure 4.7 Gravity disturbance components, north (top) and east (bottom), after

applying 60-seconds smoothing, endmatching and WCF.  The solid line shows the

reference gravity data; the dashed, dotted, and dash-dotted lines show the gravity

components calculated from the combinations of lines 1-2, 1-3, and 2-3, respectively.
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4.5.3 Vertical Gravity Disturbances from the Traditional Approach

As mentioned, the vertical component of the gravity disturbance can not be

estimated using the traditional method.  The reason for this can be explained by a

simple analysis showing the instability of the vertical channel in the INS.

The analysis starts with the fundamental equation of airborne gravimetry again.
� �

( )x g x ai i i i= + (4.61)

Note that the dependency of the gravitational acceleration on the position vector is

explicitly expressed.  Applying the linear differential operator, 
✁

, to (4.61),

δ δ δ δ✂ ✂
x

g

x
x g a= ∂

∂
+ +  (4.62)

Now, use the spherical approximation of the gravitational acceleration, g n= −kM

r2
,

where n is the unit normal vector pointing outward along the radial direction; kM is

the gravitational constant times the mass of the Earth ( kM m s≈ ×3 986 10
14 3 2

. / ).  And

approximate 
∂
∂

≈
−

−g

x

kM

r
3

1 0 0

0 1 0

0 0 2

, then the differential equations for the

components of the position error are given by

δ δ δ δ✄ ✄
x x g a1 3 1 1 1+ = +kM

r
, (4.63)

δ δ δ δ
☎ ☎
x x g a2 3 2 2 2+ = +kM

r
, (4.64)

δ δ δ δ
✆✝✆
x x g a3 3 3 3 3

2− = +kM

r
. (4.65)

The homogeneous solution of the horizontal components, (4.63) and (4.64), represents

the forced harmonic oscillation with Schuler frequency, ωs kM r= / 3  while that of

the vertical component increases exponentially on time.  So, initial errors in horizontal

position and velocity are modulated by the Schuler frequency and that in vertical

position causes exponential growth with respect to time.  This instability in the vertical

channel consequently causes the corresponding navigation solution fail.  Therefore,

the position update will not be able to distinguish the gravity signal from other errors

in the vertical channel.

During the past two decades, a couple of methods have been developed for

scalar gravimetry in which only the down component is estimated.  The instruments in

the scalar gravimetry are composed of either a gravimeter (Brozena et al., 1989;

Brozena and Peters, 1994; LaCoste et al., 1982; Salychev et al., 1994) or an INS (Wei

and Schwarz, 1998; Glennie et al., 1999) in combination with external positioning

systems such as GPS, radar, Loran C, etc.  In the first case, a stable platform system is

used to maintain the sensor direction to the local down, and a strapdown system is

employed in the second case.
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A method developed at the University of Calgary, called Strapdown Inertial

Scalar Gravimetry (SISG), showed that the down component can be recovered with

accuracy of ±2-3 mGal with 90- or 120-second low pass filtering (Wei and Schwarz,

1998).  The first step of the SISG technique is to transform the specific forces

measured in the body frame into the local level frame using the attitude information

from the gyro.  Secondly, the GPS acceleration is derived from the DGPS position

solution by applying a numerical differentiator.  Thirdly, the difference between the

specific force and the GPS acceleration is calculated to obtain the gravity disturbance.

The errors in INS such as biases (random) scale factors, and drift rates are estimated

and taken out by a closed-loop Kalman filter using the GPS phase and Doppler

observations.  For details about the equations and GPS/INS integration strategy, see

Cannon (1991).

Although the SISG technique uses GPS double-differenced phase and Doppler

measurements instead of GPS derived position or velocity for the estimation of IMU’s

errors, the estimation still needs the integration of the error dynamics equations

derived from the navigation equations.  In addition, the gravity disturbance vector

needs to be modeled because the error dynamics equations contain the gravity terms.

These two aspects distinguishes the traditional approach explained in this chapter and

a new acceleration update algorithm explained in the next chapter.  Detailed

conceptual and numerical comparisons between the traditional and the new approach

are given in next chapter.
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CHAPTER 5

A NEW ACCELERATION UPDATING

KALMAN FILTER FOR VECTOR GRAVIMETRY

5.1 Overview

As investigated in the previous chapter, the traditional approach of GPS/INS

airborne gravimetry integrates the navigation equation to get the INS positions with a

selected gravity model, then the observables from GPS such as phase, Doppler shift,

position and velocity are used to estimate the INS system errors.  Conventionally, the

calculation of the traditional approach is performed in the navigation frame.  The

estimates of the gravity disturbance, in this case, very much depend on the gravity

models so that one has to have a fairly good a-priori information on the gravity field or

perform many trial-and-error experiments by changing the models and parameters.

Therefore, the disadvantage of this approach is its dependency on the model for the

gravity and the expensive computation of the INS position integration.  In addition, the

navigation equations in the n-frame involved with much mathematical formulas and

physical concepts and make the problem unnecessarily complicated.

Alternatively, the gravity disturbance vector can be obtained by direct

differencing between the specific forces measured from INS and the kinematic

accelerations derived from GPS (Jekeli, 1992).  In this case, the GPS acceleration is

used as an update in the estimation of the INS system errors.  The precision of GPS

positions with current technology is better than ±10 cm and that of the velocity is better

than ±1 cm/sec in the post-processing kinematic mode.  Since the derived GPS

accelerations after low pass filtering with a period of 90 seconds have a precision better

than ±1 mGal (Wei and Schwarz, 1995), it can be used to estimate the system errors in

the INS.  Then, the difference between the GPS acceleration and adjusted INS

acceleration would reflect the gravity signal.

The whole schematic procedures of the new acceleration update algorithm are

shown in Figure 5.1.  Mainly, four principal procedures are involved in this new

technique.  First, the GPS accelerations are derived from the GPS positions calculated

through the DGPS technique by applying a numerical differentiator.  In this study, a 5
th

order B-spline differentiator (de Boor, 1978, p.144) was applied to the GPS positions

to obtain the GPS accelerations.  Since the numerical differentiation tends to amplify

high frequency components, the derived GPS accelerations should be smoothed to
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reduce those high frequency effects.  For this purpose, a 3
rd

 order B-spline smoother
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(ibid.) with window length of 60 seconds was applied to the raw GPS accelerations.

Secondly, the raw INS data (increments of velocities and angles) are integrated to

generate the necessary transformation matrix for the INS accelerations.  A third order

integration algorithm, using a quaternion approach, was applied for this procedure. The

integrated acceleration was also smoothed by the same 3
rd

 order smoother which was

applied to GPS acceleration for consistency.  Thirdly, Kalman filtering is performed to

estimate the INS system errors.  Here, the GPS acceleration is used as update value

and the residuals from the filter are interpreted as the approximate estimates of the

gravity disturbances.  Finally, the residuals from three flight lines are processed with

WCF (wavenumber correlation filter) to eliminate uncorrected system errors and

extract the gravity signals with correlations among the lines.  The tolerance of the

correlation coefficient applied in this last procedure is zero for extracting frequency

components having positive correlation among the lines.

Compared to the traditional approach, this alternative approach is conceptually

much simpler because the integration of the navigation equation is not necessary.  In

addition, the computation in the i-frame makes the Kalman filter equations much

simpler so that the computational expenses are less than for the traditional approach.

In this case, the gravity is not modeled parametrically, so the dependency on a gravity

model is also eliminated in the estimation procedure.

In this chapter, the detailed explanations of the above procedures are presented.

Then, the mathematical model and the Kalman filter are verified through simulations

based on real dynamics of an aircraft.  The results are presented and an analysis of the

test flight ends this chapter.

Figure 5.1 Alternative Data Processing for Vector Gravimetry.
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5.2 Data Processing

5.2.1 GPS Acceleration

Once the precise GPS positions are calculated using the DGPS technique, a

numerical differentiator can be applied twice to get the GPS accelerations.

Conventionally, the GPS positions are given in the ECEF coordinate system, so the

transformation of the positions from e- to i-frame should be performed before the

differentiation.  Using the precise GPS positions provided by the University of Calgary

(see section 4.5.1), a 5
th
 order B-spline differentiator (de Boor, 1978, p.144) is applied

to obtain the GPS accelerations.  Because of the characteristics of the numerical

differentiation, the derived GPS accelerations show high frequency effects that make

the identification of the real motions difficult.  Note the four high dynamic peaks

caused by the vehicle turns (Figure 5.2).

The dynamics of the vehicle can be seen after applying a low pass filter or

smoother to the raw acceleration.  Using a B-spline with 60 seconds window length

(ibid.), the high frequency components in the raw GPS acceleration is smoothed out

(Figure 5.3).  Note the patterns of oscillations in the y and z components that seem to

be associated with the vehicle dynamics.  The overall amplitude of the acceleration is in

the range of several thousands of mGal excluding the turns.

5.2.2 INS Acceleration

The raw data from the INS system are the increments of the velocities and

angles with respect to the i-frame obtained in the b-frame by accelerometers and gyros,

respectively.  Using those raw data, it is possible to construct the accelerations in an

arbitrary frame.  Therefore, one has to decide on a frame in which the data are

integrated and select a method for the numerical integration.  The i-frame and a third

order quaternion integration algorithm are selected for this alternative method for their

conceptual and numerical simplicity.

Let’s consider the output from the IMU, accelerometer and gyro pulses, 
✁
v l

and ✂ ✄ l , respectively; where ☎ v l  is a vector of increments in sensor-frame velocity

generated by the three accelerometers and ✆ ✝ l  is a vector of increments in sensor-

frame angles generated by the three gyros at time l.  Defining the corresponding time

increments, ✞ t , those are written as:

δ δ
δδ

v al

s

l is

s

tt

t dt t dt= =( ) , ( )θ ω , (5.1)

where the superscript s means the sensor frame (s-frame).  The acceleration in the i-

frame can be constructed by applying a transformation that is derived from the

orientation information in the ✟ ✠ l s’  to the acceleration in the s-frame calculated from✡
v l s’ .
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Figure 5.2 The derived GPS accelerations in the i-frame; X (top), Y (middle) and Z

(bottom).
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Figure 5.3 GPS acceleration after applying 60 seconds smoothing for line 1; X (top), Y

(middle) and Z (bottom).
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The transformation matrix from s- to i-frame can be constructed by integrating

the differential equation (2.46). ☛
C Cs

i

s

i

is

s= Ω (5.2)

As stated in section 2.4.3, the equivalent differential equation can be derived in terms of

quaternions (see 2.50, 2.53-2.55).

☞
q q= 1

2
A (5.3)

where A is a 4 ✌  4 skew-symmetric matrix of time dependent angular rates:

A =
− −
− −
− −

0

0

0

0

1 2 3

1 3 2

2 3 1

3 2 1

ω ω ω
ω ω ω
ω ω ω
ω ω ω

(5.4)

Using (5.3), one can integrate q over a certain time interval ✍ t , then the

element in the transformation matrix C s

i  can be obtained according to (2.36).

One of the popular numerical integration algorithms is the Runge-Kutta

algorithm that is known to be very stable and to have much flexibility.  It imitates the

Taylor series method without requiring the analytic differentiation of the original

differential equation (Cheney and Kincaid, 1996, p. 581).  A third order Runge-Kutta

algorithm is selected to perform the numerical integration for the quaternions.  Since it

requires that the function being integrated is evaluated at either end of the integration

interval and half-way in between, the integration interval is twice the data interval.

∆t t= 2δ (5.5)

Now, let’s assume that the angular rate ✎ ✎✏
is

s  is expressed as:

ω ω ω( ) ✑ ( ) ( );t t t O t t t tl l l l= + − + − ≤− − − −2 2 2

2

2∆ ∆ , (5.6)

where the subscripts denote the time index for evaluation of the quantity at the

corresponding epochs spanning intervals ✒ t .

With (5.6) and (5.1),

δ δ δθ ω ω ωl l l
t

t

t dt t t O t
l

l

− − −= = + +
−

−

1 2 2

2 31

22

1

( ’) ’ ✓ ( )∆ (5.7)

δ δ δθ ω ω ωl
t

t

l lt dt t t O t
l

l= = + +
−

− −( ’) ’ ✔ ( )
1

2 2

2 33

2
∆ (5.8)

Solving for ωl−2  and ✕ωl−2 ;

✖ ✗ ✗✙✘ ✗✚✘
l l l

t
O t✛ ✛✜ ✢ ✣

2 1

21

2
3( ) ( )

✤
(5.9)

✥
( ) ( )ω θ θl l l

t
O t− −= − +2 2 1

1

δ
δ δ ∆ (5.10)

Substituting (5.9) and (5.10) into (5.6) with specified variable t yields:

ω θ θl l lt O t− −= − +2 1

33∆ ∆δ δ ( ) (5.11)

ω θ θl l lt O t− −= + +1 1

3∆ ∆δ δ ( ) (5.12)
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ω θ θl l lt O t∆ ∆= − +−3 1

3δ δ ( ) (5.13)

Therefore, these observed quantities are accurate up to the second order:✦
ω θ θl l lt− −= −2 13∆ δ δ (5.14)✧
ω θ θl l lt− −= +1 1∆ δ δ (5.15)★
ω θ θl l lt∆ = − −3 1δ δ (5.16)

Now, the third-order R.K. algorithm for ✩ ( , )q q= f t  is given by

✪ ✪
q q q q ql l= + + +−2 0 1 2

1

6
4( )∆ ∆ ∆ , (5.17)

where

∆ ∆q q0 2 2= − −f t tl l( , )
✫

(5.18)

∆ ∆ ∆q q q1 2 0 1

1

2
= +− −f t tl l( , )

✬
(5.19)

∆ ∆ ∆ ∆q q q q2 2 1 02= + −−f t tl l( , )
✭

(5.20)

With an initial value, (5.17) provides quaternions at intervals of ✮ t  for the desired

transformation from the s- to the i-frame.

Considering (5.3) with f t A t( , ) ( )q
q=
2

 and defining ✯ ✯B A tl l
✰ ✱ , one can express the

iteration formula (5.17) in terms of the matrix ✲B .

∆q q0 2 2

1

2
= − −

✳ ✳
Bl l (5.21)

∆q q1 1 2 2

1

2

1

4
= +− − −

✴ ✴ ✴
B I Bl l l (5.22)

∆q q2 1 2 2 2

1

2

1

4

1

2
= + + −− − − −

✵ ✵ ✵ ✵ ✵
B I B I B Bl l l l l (5.23)

After substituting these into (5.17), the final iteration equation for quaternions is given

by

✶ ✶ ✶ ✶ ✶ ✶ ✶ ✶ ✶ ✶ ✶
q ql l l l l l l l l l lI B B B I B B B B B B= + + + + + + −− − − − − − −

1

12
4

1

12

1

4

1

12

1

2
1 2 1 2 1 2 2  (5.24)

The accuracy of the above equation is up to the third-order yielding the fourth order

error.

The initial value of the above equation can be obtained from the initialization

process of the IMU, or from a ZUPT algorithm in the Kalman filter.  Once the initial

matrix is obtained, the inverse relationship of (2.36) can be used to get the initial

elements for the quaternion:

a C C Cs

i

s

i

s

i= + + +1

2
1

1 1 2 2 3 3

1 2

, , ,

/

(5.25)

b
a

C Cs

i

s

i= −1

4 2 3 3 2, ,
(5.26)
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c
a

C Cs

i

s

i= −1

4 3 1 1 3, ,
(5.27)

d
a

C Cs

i

s

i= −1

4 1 2 2 1, ,
(5.28)

Having quaternions to represent the rotational information, one can compute the

transformation matrix from s-frame to i-frame and get the acceleration in the i-frame by

applying the transformation to the acceleration in the s-frame.  For the acceleration in

the s-frame, one can use the first-order calculation as follows:

✷
a v vl

s

l l
t

= ++
1

2
1δ

δ δ( ) (5.29)

Figure 5.4 shows the INS acceleration integrated using the algorithm explained

above.  Comparing it with the GPS acceleration (Figure 5.2), one can notice similarities

in shorter-wavelength characteristics and differences in the global trends.  As in case of

GPS acceleration, the same 3
rd

 order B-spline filter (60-s averaging) was applied to

INS acceleration to reduce the high frequency components (Figure 5.5).

While the high frequency noise, mostly coming from the accelerometer white

noise, is eliminated, the slope trends in the x and y components still remain.  Note the

magnitudes of the INS accelerations.  These are caused by the gravitational

acceleration ( ✸ 9 8 2. / secm  in the down component) distributed in all three axes in the

i-frame.

Using GPS positions, the smoothed accelerations of the GPS and INS can be

transformed into the n-frame.  Figure 5.6 presents the difference between those two

accelerations in the n-frame for all three lines.  In an ideal situation, this should be the

gravity disturbance vector according to the fundamental equation.  The results,

however, have still some systematic errors like global trends in horizontal components.

It should be emphasized that the line 2 has the opposite systematic errors to the line 1

and 3 in the horizontal components.  Note the high frequency oscillation in the north

component.  Because the airplane mainly flew in the E-W direction, the roll motions of

the vehicle directly affect the acceleration of the north component.  Those high

frequency oscillations are considered as effects from the dynamics of the aircraft, called

phugoid motion (Boedecker and Neumayer, 1994).

As one can see, just taking direct differences between the GPS and INS

accelerations already shows the signature of the gravity.  Especially, the down

component signal is very well detected; for example, look at the low anomaly around

λ = 242 9. o  and the high anomaly around λ = 2414. o .  Since the down component is not

much affected by the orientation errors, it does not have a significant global trend.
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Figure 5.4 The integrated INS acceleration in the i-frame; x (top), y (middle) and z

(bottom).
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Figure 5.5 INS acceleration in i-frame after applying 60 seconds smoothing for line 1;

X (top), Y (middle) and Z (bottom).
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Figure 5.6 Difference between the smoothed GPS and INS acceleration in n-frame for

line 1 (dashed), line 2 (dotted), and line 3(dash-dotted) ; North (top), East (middle) and

Down (bottom).

5.2.3 Kalman Filtering Using GPS Acceleration Update
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In the previous section, the gravity signal has been already exposed, more or

less, after the direct differencing between the GPS and INS accelerations.  The global

trends which appear in the horizontal components are assumed to be the effect of

orientation error and the gyro drift that cannot be eliminated by smoothing or low pass

filtering.  Therefore, it is necessary to develop a proper mathematical model from

which the INS system error could be estimated and subsequently removed.

Again, the mathematical model for the new acceleration update algorithm starts

from the fundamental equation (2.6).  It should be noted that the fundamental equation

is given in terms of acceleration, not position.  Since we are seeking gravitation, the

approach using accelerations is more straightforward than using position as in the

traditional approach.

The fundamental equation (2.6) can be expressed by observed accelerations of

GPS and INS: ✹ ✹
~ ✺ ✺ ~x x a a gi i i i i− = − +δ δ , (5.30)

where the superscript i denotes the inertial frame; ✻ ✻~
x

i
 is the GPS observed acceleration;

~a
i
 is the INS observed specific force; gi  is the gravitation; δ δ✼ ✼

,x ai i are the total errors

for the GPS and INS observed acceleration, respectively, interpreted as random effects.

The error of the kinematic accelerations from GPS is assumed to be white

noise, and the same INS error model as in the traditional case is considered (see (3.23)

and (3.24)).  The accelerometer error δa i can be expressed in terms of the error in the

body frame (b-frame) and the orientation error (see (4.6)):

δ δa a ai

b

i b i iC= + ×~ ψ , (5.31)

where C b

i is the transformation matrix from body to inertial frame, δab  is the

accelerometer error in the body frame and ψ i is the orientation error in the inertial

frame.  Including only the general error parameters, the accelerometer and gyro errors

in the body frame are modeled as follows:

δa b k ab

a a

b

a= + + ε  , (5.32)

δω ω εib

b

g g ib

b

g= + +b k ,  (5.33)

where b
a
and bg  are biases (random effects); k

a
 and kg  are scale factor errors; ε a , ε g

represent the white noise; and δωib

b  is the gyro error in the body frame.  The subscript

‘a’ refers to the accelerometer while ‘g’ refers to the gyro.

With (5.33), the dynamics of the orientation error ψ i  are given as follows:✽
[ ]ψ ω ω εi

b

i

ib

b

b

i

g b

i

ib

b

g b

i

gC C C C= − = − − −δ b k , (5.34)

where [ ]ωib

b  is the diagonal matrix that contains the angular rates of body frame

rotation with respect to the inertial frame.

Using equation (5.34) and the models for the random parameters associated

with the INS, the error dynamics equation can be set up as follows.
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✾
✾
✾
✾

✾
[ ]

b

b

k

k

b

b

k

k

a

g

a

g

b

i

b

i

ib

b

a

g

a

g

b

i
gC C Cψ ω ψ ε

=

− −

+

−

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0

0

0

0

0

(5.35)

Note that biases and scale factors are modeled as random effects, i.e. parameters for

which stochastic prior information is assumed.

After some manipulations with proper substitutions, the equation (5.30) can be

expressed as: ✿ ✿
~ ~ [~ ] ~ ❀ ❀x a g b a k a xi i i

b

i

a b

i b

a

i i

b

i

a

iC C C− − = − − − × − +ψ ε δ , (5.36)

where [~ ]a b  is the diagonal matrix that contains measured accelerations in the body

frame.  The gravitation vector g
i
 can be expressed as the sum of the normal gravitation

vector γ n

i  and the gravity disturbance vector δgi  in the inertial frame.  Therefore, in

theory, one has to mathematically model the gravity disturbance vector ❁ g i  to obtain

the estimates.  As described in Chapter 1, however, the modeling of the disturbing

gravity field is very controversial in the field of geodesy.  Furthermore, none of the

mathematical models for the gravity perfectly represents the actual gravity field.

Therefore, as a result of not knowing the gravitation vector g
i
, it can be approximated

by the normal gravitation vector γ
n

i  of a selected ellipsoid (e.g. GRS80; Moritz, 1992).

Now, expressing the gravitation as the sum of the normal gravitation and gravity

disturbances, the equation (5.36) is changed as:❂ ❂~ ~ [~ ] ~ ❃ ❃x a b a k a x gi i

n

i

b

i

a b

i b

a

i i

b

i

a

i iC C C− − = − − − × − + +γ ψ ε δ δ . (5.37)

Note that the left side is composed of observations (GPS, INS accelerations) and a

calculated quantity (normal gravity), while the right side contains unknowns treated as

random parameters and white noises, plus the gravity disturbance.

Clearly, the equation (5.37) would contain a model error when omitting the

gravity disturbance vector δgi .  The main idea of this approach is that the effect of the

non-random gravity disturbance is largely reflected in the residuals after the adjustment

via Kalman filter.  To investigate this effect in detail, let us set up the explicit form of

the Kalman filtering observation equations using the equations (5.37).

z x a: ❄ ❄~ ~= − −i i

n

iγ (5.38)

H C Cb

i i

b

i
: [~ ] [~ ]= − − ×0 0a a (5.39)

x b b k k:= a

T

g

T

a

T

g

T T
T

ψ (5.40)

v x g= − + +( ❅ ❅ )Cb

i

a

i iε δ δ (5.41)

Note that each component in the H matrix is a 3 × 3 matrix and in x it is a 3 × 1 vector.

So now, we have a 15-state system, and the observation is the difference of

acceleration vectors, not of the positions.  Again, the initial conditions for the states
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would be obtained from the manufacturer’s specification or from controlled

experiments.

The Kalman filter for the above model (5.35) through (5.41) generates the

residual, ~v , containing the adjusted observation errors (i.e. the difference between the

observations, z, and the adjusted observations as modeled H ❆x ) which represents – in

large parts – the estimated gravity disturbance vector.  Therefore, if the part

( − +Cb

i

a

iε δ ❇ ❇x ) can be assumed considerably small, having random characteristics, and if

the total difference of the observations and adjusted observations, z x− H ❈ , has

distinguished characteristics with respect to the gravity signature, the residual vector

will be a good approximation for the gravity disturbance vector.

In summary, the two approaches differ as follows:

Method 1 (Traditional Method):

- Integrate INS acceleration and estimate INS system errors using

updates from GPS position.

- Treat δg
N

 and δg
E
 as stochastic parameters.

- Calculation is performed in n-frame.

- Vertical gravity disturbance cannot be estimated.

Method 2 (New Algorithm):

- Differentiate GPS positions and use in combination with INS

acceleration as observation update to estimate orientation and other INS

errors.

- Include δg as the main portion in the total random error budget and

analyze the residuals after the adjustment with respect to this

characteristics.

- Calculation is performed in i-frame.

- Total vector, δg , can be determined.

Note that one could also include δg  in the total random error budget for Method 1.

Again, one would then expect to see an effect in the residuals of the observations.  But

these are residuals in position, not acceleration, and it would be virtually impossible to

extract the gravity disturbance from them.

5.2.4 WCF

In the previous section, it is explained that the residual vector from the Kalman

filter would be at least an approximation of the estimated gravity disturbance vector

under the condition of ( − +Cb

i

a

iε δ ❉ ❉x ) being small, and distinguishable characteristics in

the difference between the observations and the adjusted observations.  Otherwise, the

signal, the gravity disturbance in this case, might still be extracted using WCF.  As

explained in section 4.5.2, the observations of overlapping or almost parallel lines are

required to apply WCF.  In addition, it would be better if those lines represent flights in

opposite directions to remove the uncompensated system errors.
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5.3 Simulation based on the Real Dynamics

To verify the developed algorithm as well as to investigate the behavior of the

INS system errors, it is necessary to perform a simulation based on the real dynamics.

Although Wei and Schwarz (1994) have carried out a similar simulation, its primary

assumption was the local level flight.  Therefore, the effect of the vehicle dynamics was

not characterized at all, although major features in the INS errors were well

investigated. So, this section focuses on a numerical investigation of the INS error

model in a real dynamics situation.  In addition, this will determine if the developed INS

error model and Kalman filtering are appropriate for the GPS/INS airborne vector

gravimetry.

5.3.1 Establishing Simulation Data

To simulate the real dynamics of an airborne gravimetry mission, the GPS

position data for the June 1995 test flight over the Rocky Mountains were chosen as

the base data.  In addition, the attitude estimates from the University of Calgary and

gravity information from Calgary as well as NIMA data were also used to simulate the

IMU sensor data.

The procedure used in this study to conduct the simulation is as follows.

1. Section extraction from GPS position data.  GPS position data at GPS seconds

from t = 395200  to t = 397200  corresponding to Line 2 are extracted.

2. Interpolate GPS 2 Hz position data to 50 Hz data.  A cubic spline interpolator

is used.

3. Compute GPS acceleration by numerical differentiation in the inertial frame.  A

B-spline differentiation with 1-second intervals of smoothing was performed.

4. Simulate gravitation data at each observation position by interpolation of the

gravity information from NIMA and Calgary.

5. Compute transformation matrices Cn

i  and Cb

i  using attitude and position.

6. Simulate errorless INS accelerometer and gyro raw data.

a x gb

i

b i

n

i nC C= −( ❊ ❊ ) (5.42)

ωib

b

i

b

b

i

t
I C t C t t= − −1

δ
δ( ) ( ) (5.43)

7. Integrate the simulated INS raw data to get INS acceleration and assume it as

true INS acceleration.  Because of numerical round-off error, the simulated INS raw

data do not correspond to the original GPS acceleration and gravitation data.

8. Simulated GPS accelerations by taking the difference between the gravitation

and INS accelerations.

As indicated in steps 7 and 8, INS accelerations should be assumed as true

values because of the round-off error in the procedure of making INS raw data.  So,

the simulated GPS acceleration of step 8 does not exactly match with the original

position-derived acceleration.  In other words, the GPS position integrated from the
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simulated GPS acceleration is not the same as the original GPS position.

The position data, however, are only used for the calculation of the normal

gravitation and the transformation matrix from navigation to inertial frame, C
n

i , in the

Kalman filter.  So, by using the original GPS position data and simulated GPS and INS

acceleration, a near-perfect gravitational signal can be obtained.

5.3.2 Numerical Test for each INS Error Parameter

Because perfect simulated GPS and INS data are available, artificial systematic

errors for each INS error parameter such as biases, scale factor errors, and initial

orientation errors can be added to the raw simulated INS data.  After integrating the

IMU data, one can see the effect of the added errors to the INS acceleration, and the

error parameters will be determined through the Kalman filter.  For the magnitude of

error parameters, the specification for the Litton LN93 INS were used (Table 5.1).

The initial variance of an error parameter is set to the square of the intentionally added

error for the parameter; and the variances of other parameters are set to zero to see the

effect of just one error.

Bias Error Scale Factor Error White Noise

Accelerometer ±20 mGal ±40 ppm ±5mGal Hz/

Gyro ±0.003
o
/hr ±0.2 ppm < ±0.001

o
/ hr

Table 5.1. The Error Specification for the LN 93 INS

5.3.2.1 Accelerometer Bias

Figure 5.7 shows the true gravity disturbance, the observations (GPS

acceleration-INS acceleration-Normal gravity) and the residuals from Kalman filtering

after 20 mGal of constant accelerometer bias is added to the simulated INS raw data

for all three axes.  As one can expect, the bias appears in the observations on each axis.

The bias, however, does not appear as a constant in the navigation frame.  That is,

although the bias is a constant in the body frame, it is affected by the vehicle motion

and then is not constant in the navigation frame.  In fact, the bias effect is varying up to

1.5 mGal depending on the dynamics in this case.

The residuals out of the Kalman filter show that the filter is stabilized in the

down direction within 120 seconds while the east and north components take more

time.  The residuals after stabilization, however, are not close to zero but have a

systematic appearance with substantial high-frequency undulations in the north

component.  This can be explained by the high-dynamics of the vehicle and
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mismodeling effects.  In other words, if the model is correct, the residuals should be

close to zero without any systematic appearances.  Furthermore, the estimates for the

bias should be 20 mGal.  This can be tested, by taking out the simulated gravitation

from the observation vector, generating the observation vector as purely a constant of

20 mGal in each axis in the body frame.  Using gi  instead of γ i , the resulting

estimation indicated that the accelerometer biases are well determined as expected.

The filter estimates the biases as 20 mGal for all axes at the first epoch.  If normal

gravitation is used instead of true gravitation, however, a mismodeling effect is

included; hence, the estimates for the biases are also changed.  By ignoring the gravity

disturbances from the parametric model, the effect is nevertheless included in the

observation error represented as random with mean of zero.  The simulated gravity

disturbances, however, are not random white noise and their mean is not zero.

Therefore, the filter attempts to change the bias estimates to match the observations

under the maximum allowance of the covariance to make the residuals as small as

possible.

Note that the residuals of the down component are decreasing continuously

comparing with the control data.  This is caused by the increasing tendencies at the

down component which causes the estimates of the bias for the down component to be

as large as 120 mGal.  The dynamics of the roll with an amplitude of 5 degree (see

Figure 4.4) coupled with the down component’s wrong bias estimates of 120 mGal

caused the high frequency anomalies up to 10 mGal in the north component.

5.3.2.2 Accelerometer Scale Factor Error

Figure 5.8 shows the effect of an accelerometer scale factor error of ±40 ppm.

As for the case of accelerometer bias, high frequency effects appear in the horizontal

components with standard deviations of ±1.11 mGal for north and ±0.15 mGal for east.

Note that the scale error effect for the down component appears as a bias of 40 mGal

( 40 10 406× × ≈− g ) because the down component is rather insensitive to the horizontal

motions.  The residuals from the Kalman filter have a lot of high frequency content

showing that the filter tries to compensate the gravity effect with a scale factor error.

5.3.2.3 Gyro bias

Figure 5.9 shows the effect of a gyro bias of 0.003 deg/hr.  The observation

shows almost linear trends generating errors up to 25 mGal for north and 30 mGal for

east with respect to the control data at the end of the line.  In addition, high frequency

errors in the horizontal components also appear in the observation.  Especially, the high

frequency in the east component of the observation is caused by the airplane dynamics

(roll) since the orientation errors caused by the gyro bias are coupled with the down

acceleration and thus affect the horizontal components as seen in equation (4.47).

The down component, however, does not have an overall trend because of its

insensitivity to the orientation error.  In addition, the standard deviation of the down
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component with respect to the control data is relatively small (±0.45 mGal) compared

to the horizontal components (±7.5 and ±8.6 mGal for north and east, respectively).

The differences between the residuals and the true values show that the filter is

not stabilized in the horizontal components for the first 400 seconds because of the

mismodeling effect.  The standard deviations of the observations and residuals with

respect to the control data after the first 400 seconds (respectively, ±5.8, ±4.1 mGal for

north; ±6.9, ±5.1 mGal for east; ±0.5, ±0.4 mGal for down) indicate that the filter

successfully removes the overall trends from the observations.

5.3.2.4 Gyro Scale Factor Error

The effect of a gyro scale factor error of ±0.2 ppm on the INS acceleration is

very small (less than the standard deviation of ±0.01mGal with respect to the control

data) for all three components, like the accelerometer scale factor error in horizontal

components (Figure 5.10).  The residuals as estimates of the gravity disturbance,

however, show high frequency errors in the north component and low frequency errors

in the east.  The standard deviations for the residuals relative to the control data are

±4.2, ±2.7, ±0.2 mGal for north, east, and down, respectively.  Basically, this means

that the gyro scale factor error is not really estimated by the Kalman filter.

5.3.2.5 Initial Orientation Error

Figure 5.11 shows the effect of an initial misalignment of +2 arc-second in the

horizontal and +2 arc-minute in the vertical, respectively.  In the observation, the linear

trend is shown in north direction (error of 60 mGal at the end of line) while the east

component contains very large high frequency errors up to the amplitude of 25 mGal.

The north orientation error and high dynamics coupled with the down

acceleration caused the dominant high frequency error in the east component.  In

contrast, the east orientation error with less dynamics caused a low-frequency trend in

the north component.  The standard deviations of the observations and residuals with

respect to the control data shows that the filter is very effective in removing the

orientation error (respectively, ±17, ±5.2 mGal for north; ±13.7, ±4.9 mGal for east;

±1.2, ±0.3 mGal for down).  As one can see from the figure, the mean of the

observations and residuals relative to the control data also shows significant reduction

of orientation error is achieved through the filter (respectively, 42.9, –9.9 mGal for

north; 11.5, 2.8 mGal for east; 0.07, 0.0 mGal for down).

5.3.2.6 Including All Error Parameters

Figure 5.12 shows the joint effect on the observation of all error parameters

explained up to now.  The simulated observations have long term errors caused by the

initial orientation error and gyro biases as well as high frequency components caused by
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scale factor errors.  It should be mentioned that one has to be careful in establishing the

parameter vectors in the estimation procedure.  In other words, we know that some

error parameters like accelerometer and gyro scale factor errors cannot be readily

estimated through the filter, so it is natural to exclude those from the error parameter

vector.  One way to determine the optimal set of meaningful error parameters is to

make a test of different combinations of the parameters and compare the results with

the control values.

From intensive tests, the best results from the Kalman filter were obtained

(Table 5.2), when the only error parameter considered was the orientation error (see

also Figure 5.12).  Thus, the overall trends caused by orientation error have been

effectively removed through filtering.

Mean (mGal) Standard Deviation (mGal)

North -4.25 ±5.88

East 5.87 ±7.55

Down 19.32 ±0.78

Table 5.2 Estimated mean and standard deviation of the difference between the true

gravity disturbance and the residual from the filter (with only orientation errors as

system error parameters).
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Figure 5.7 Control data (solid), observations (dashed) after adding 20 mGal of

accelerometer bias, and residuals (dotted) from the Kalman filter for north (top), east

(middle) and down (bottom).
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Figure 5.8 Control data (solid), observations (dashed) after adding 40 ppm of

accelerometer scale factor error, and residuals (dotted) from the Kalman filter for north

(top), east (middle) and down (bottom).
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Figure 5.9 Control data (solid), observations (dashed) after adding 0.003 deg/hr of

gyro bias, and residuals (dotted) from the Kalman filter for north (top), east (middle)

and down (bottom).
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Figure 5.10 Control data (solid), observations (dashed) after adding 0.2 ppm of gyro

scale factor error, and residuals (dotted) from the Kalman filter for north (top), east

(middle) and down (bottom).
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Figure 5.11 Control data (solid), observations (dashed) after adding 2 arc second of

horizontal and 2 arc minute of vertical orientation error, and residuals (dotted) from the

Kalman filter for north (top), east (middle) and down (bottom).
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Figure 5.12 Control data (solid), observations (dashed) after adding all previous errors,

and residuals (dotted) from the Kalman filter for north (top), east (middle) and down

(bottom).  Error parameters modeled in this case were only the orientation errors.

5.4 Results from the Real Test Flight

The investigations on the INS error characteristics through the simulations

provide a basic idea on the types of INS errors to be included in the analysis of real test
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flight data.  The smoothed (60s) observation vector (GPS acceleration – INS

acceleration – normal gravitation) for the test flight clearly shows the long term trends

caused by orientation error or gyro biases and the short term error (see north

component) caused by the airplane dynamics (Figure 5.13).  Note that the high

frequency errors caused by scale factor errors are almost eliminated by the smoothing.

Also note the big anomalies at the vehicle turns.

5.4.1 Residuals from Kalman Filtering

As mentioned in the previous section on the simulation, the parameter vector in

the Kalman filter should be assigned in such a way that the targeted error effects could

be eliminated or reduced.  Looking at the smoothed observations again (Figure 5.13),

one can notice that the major error appears in the long wavelength.

A numerical comparison using computed means and standard deviations of the

observations with respect to the control data, is shown in Table 5.3.  The large

standard deviations for the horizontal components ±(18-78 mGal) are mostly caused by

the overall trends due to the orientation error (see corresponding Figure 5.13).  It

should be noted that the down component shows a much better standard deviation than

the horizontal components.  Especially, the down component of line 3 already has a

very good standard deviation of ±4.5 mGal.  This is because the down component is

less sensitive to the orientation errors.  Therefore, the orientation error and/or gyro

biases should be the appropriate candidates for the system error parameters, to remove

the long-term errors.  In addition, one has to notice that discontinuities occur at

vehicle’s turns.  Because of the discontinuities, the slopes of the trends as well as the

biases are different before and after each turn.  Therefore, it might be a good idea to

include the accelerometer biases in the model parameter vector.

(mGal)

Line 1 Line 2 Line 3

S.D. 63.36 77.85 35.27North

Mean -272.94 -573.86 -827.20

S.D. 31.06 18.62 46.67East

Mean -108.53 -16.79 -215.86

S.D. 10.86 12.42 4.54Down

Mean 35.42 96.77 131.30

Table 5.3 Estimated means and standard deviations of the observations (GPS

acceleration-INS acceleration-Normal gravity) with respect to the control data.
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Figure 5.13 Smoothed observation vector for all lines; North (top), East (middle) and

Down (bottom).

After numerous tests for different sets of error parameters, the set showing the

best results from the Kalman filter are presented.  The error parameters in this case are
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composed of the accelerometer bias and orientation error.  The initial values are set to

zeros for all parameters and the variances are set as (20 mGal)
2
 for accelerometer

biases, (2 arc-second)
2
 for horizontal orientation error and (2 arc-minute)

2
 for vertical

orientation error.  The scale factor errors are excluded as already mentioned because

the effects are small and would be reduced significantly through the smoothing

procedures anyway.

The Figures 5.14-5.16 show the control data versus the residuals from the

Kalman filter with error parameters comprising accelerometer biases and orientation

errors for all three components.  Compared to the smoothed observations in Figure

5.13, the overall trends in north and down component were significantly reduced

through the filter.  The east components, however, still show systematic errors at both

ends of the profiles in all three lines.

The standard deviations of the residuals with respect to the control data show

tremendous improvement in all three components; 25~65 mGal in north, 1~16 mGal in

east, and 0.5~6 mGal in down component (Table 5.4).  The standard deviations for the

east component are not as good as for the north component because of the remaining

systematic error.  Especially, the poor result on the east component of line 3 is caused

by the down tendency after the big anomaly around 243
o
 longitude. Comparing the east

components of lines 1 and 3, with line 2, one can see that the remaining systematic

errors have dependency on the direction of flight.  Therefore, the reason for the poor

standard deviations might be the coupling effect of the uncompensated north

orientation error with the down acceleration.

Note that the local peaks and valleys in the east component, however, are very

well detected so that the results could be refined by further processing such as

endmatching and WCF.

(mGal)

Line 1 Line 2 Line 3

S.D. ±11.6580 ±13.3326 ±14.0436North

Mean -16.5649 -5.6712 -5.1604

S.D. ±17.1909 ±17.0348 ±20.6910East

Mean -14.0085 18.4831 -19.9004

S.D. ±5.0227 ±6.5081 ±3.9132Down

Mean 24.9730 52.4192 49.0363

Table 5.4 Estimated means and standard deviations of the difference between the

residuals from Kalman filter and the control data (accelerometer bias and orientation

error parameters).
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Figure 5.14 Residuals (dotted) from Kalman filter and the control data (solid) for Line

1 (accelerometer bias and orientation error states).
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Figure 5.15 Residuals (dotted) from Kalman filter and the control data (solid) for Line

2 (accelerometer bias and orientation error states).
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Figure 5.16 Residuals (dotted) from Kalman filter and the control data (solid) for Line

3 (accelerometer bias and orientation error states).

5.4.2 Applying Endmatching
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To eliminate the biases and remaining system errors, additional external

information on the gravity field is assumed.  For example, the gravity values at both

ends of the profile are assumed to be available.  Thus, by applying a linear correction

through endmatching, one can obtain refined residuals having better global trends

(Figure 5.17-19).

After applying endmatching, the standard deviations for the east component of

lines 2 and 3 as well as the estimated mean differences for the down component are

significantly improved (Table 5.5).  In some cases, however, the endmatching produced

worse results (see north component of line 1 and 3).  This shows that the global trends

for north are already compensated and a simple linear correction is not enough to

eliminate the other effects such as high frequency errors due to the airplane dynamics.

(mGal)

Line 1 Line 2 Line 3

S.D. ±12.1733 ±11.1466 ±16.8663North

Mean 14.7704 -6.3520 5.9142

S.D. ±17.6997 ±16.5883 ±14.8558East

Mean -0.9360 -30.5066 15.2725

S.D. ±5.1620 ±4.9868 ±3.4742Down

Mean -8.2847 2.2427 -1.8933

Table 5.5 Estimated means and standard deviations of the difference between the

residual after endmatching and the control data (accelerometer bias and orientation

error).
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Figure 5.17 Residuals (dotted) after endmatching and control data (solid) for Line 1

(accelerometer bias and orientation error states).
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Figure 5.18 Residuals (dotted) after endmatching and control data (solid) for Line 2

(accelerometer bias and orientation error states).
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Figure 5.19 Residuals (dotted) after endmatching and control data (solid) for Line 3

(accelerometer bias and orientation error states).

5.4.3 Final Results after WCF

It has been shown that WCF is an efficient method to extract a signal from the
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observations measured from overlapping or parallel tracks in the traditional case.  Since

it operates in the frequency domain, the components having more than a certain amount

of correlation will be preserved in corresponding frequency bands (Figure 5.20-22).

Therefore, as a final procedure in refining the residuals from the Kalman filter, WCF

was applied to all combinations of two parallel tracks (Line1-2, Line1-3 and Line2-3).

The results from WCF show significant improvements in combinations Line1-2 and

Line2-3.

After applying WCF, one can find a very interesting feature from the results,

namely, the dependency of the INS errors on the direction of the flight.  That is, WCF

generates much better results for the combinations line1-2 and line 2-3, while the line1-

3 combination does not show any improvements (Table 5.6).

The residuals for line 1 and line 3 are almost on top of each other, so the

characteristics of the long-term INS error are almost the same while for line 2 they

have opposite characteristics.  Therefore, uncompensated long term errors after the

Kalman filtering in opposite travel paths are canceled out through the WCF as in the

case of line1-2 and line2-3 combinations.  WCF applied to the combination line1-3,

however, does not reduce the errors because they have common characteristics and are

considered as signals in the WCF.

(mGal)

Line 12 Line 13 Line 23

S.D. ±6.84 ±13.12 ±7.80North

Mean 4.21 10.34 -0.22

S.D. ±6.75 ±15.82 ±6.70East

Mean -15.72 -0.31 -0.31

S.D. ±4.38 ±3.43 ±3.16Down

Mean -3.02 -5.09 0.17

Table 5.6 Estimated mean and standard deviation of the difference between the

residuals after endmatching, WCF and the control data (accelerometer bias and

orientation error parameters).
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Figure 5.20 Residuals (dotted) after endmatching and WCF vs. control data (solid) for

Line 1-2 combination (acceleration bias and orientation error parameter model).
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Figure 5.21 Residuals (dotted) after endmatching and WCF vs. control data (solid) for

Line 1-3 combination (acceleration bias and orientation error parameter model).
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Figure 5.22 Residuals (dotted) after endmatching and WCF vs. control data (solid) for

Line 2-3 combination (acceleration bias and orientation error parameter model).

As mentioned before, the estimates for the down component are better than for

the horizontal components because the down component is insensitive to the

orientation error.  The best accuracy of ±3.16 mGal for the down component is
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obtained from line 3.  The other two lines also show that the down component can be

recovered with an accuracy of 3-4 mGal.  Although the accuracy is not as good as for

the vertical component, the horizontal components also are well estimated with an

accuracy of ±(6-8 mGal).  Therefore, it can be concluded that the deflection of the

vertical can be recovered with an accuracy better than ±2 arc seconds (1 arc second ≈
4.75 mGal).  The resolution corresponding to 60-second smoothing is about 3.5 km,

but the resolution of the final results is about 10 km due to the attenuation with

altitude.
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CHAPTER 6

DISCUSSIONS ON THE NEW ACCELERATION

ALGORITHM

6.1 Introduction

Although the results from the new algorithm were comparatively good

compared to the control data sets, one might consider using a statistical or empirical

model for the gravity disturbances to improve the estimation.  As already mentioned

several times, the mathematical model in the new approach includes the gravity

disturbance invisibly in the total random observation error.  Therefore, a modification

of the mathematical model would be advisable for theoretical reasons.  Toward this

aim, two methods are investigated, namely, the iteration method and the inclusion of a

parametric gravity model.

6.2 Iteration for better estimates of the INS system errors

Since the gravity disturbance is not included in the Kalman filter states, the

estimates of the INS system errors are considered to be somewhat inaccurate.  That is,

these estimates will include some effect from the gravity signal.  Thus, once the residual

vector is obtained from the Kalman filter, it can be subtracted from the observation

vector so that the filter may generate better estimates for the INS system errors in a

modified model.

Starting from the fundamental equation (5.30),
� �~ ✁ ✁ ~x x a a gi i i i i− = − +δ δ , (6.1)

one can set up the observation vector, denoted with tilde, as follows:
~ ✂ ✂~
y x gi i i= − , (6.2)

where ~y i  is the formal definition for the observations, 
✄ ✄~
x

i
 contains the GPS kinematic

accelerations, and gi  is the true gravitation vector.  Note that we measure the specific

force ~a
i
.  Then, the observation equation for the parameters will be:

δ δ δy a y a x g a x= − = − + = −~ ~ ~ ☎ ☎~ ✆ ✆i i i i i i i . (6.3)

Note that the true gravity in the above equation is not available.  Thus, using normal

gravity as an approximation;
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δ δ δ δ

δ δ δ

y a y a x a x g

a x g

0 0= − = − + = − −

= + − −

~ ~ ~ ✝ ✝~ ✞ ✞

✞ ✞

i i i i i i i i

s

i

a

i i i

γ

ε
. (6.4)

Note that the observation error of the INS is divided into the system parameters

(random effects) and random noise (δ δa ai

s

i

a

i= + ε ).  The gravity disturbance is

intentionally included in the total observation error budget since we assume that no

information on the gravity disturbances is available.  Assuming random noise for the

GPS observation error, the total observation error budget in (6.4) is:

ε εi

a

i i i= − −δ δ✟ ✟
x g (6.5)

If the gravity disturbance has statistically distinguishable characteristics with respect to

the INS systematic error parameters, the residuals after Kalman filtering using equation

(6.4) will in a certain way reflect the gravity signal.  In addition, if the gravity signal is

much stronger than the adjusted system noise, one can define:

δ δ δy a g0 − = = −
✠ ~ :

✡

s

i iε  (6.6)

The critical factor in the above equation is that the gravity signal should dominate the

total observation error and its estimates can hence be equated with the residuals after

the Kalman filtering.

Now, one can update the approximated gravitation by adding the first

approximation of the gravity disturbance from (6.6).

γ i i+ =δ
☛
:

☞
g g1 (6.7)

Because the gravity model error should be significantly reduced through the updated

gravitation (
✌
g1

i ), it is expected that the estimation of the INS system parameters can be

improved in a new filtering.  By investigating the residuals from the iterative procedure,

one can stop iterations, and take out the estimates of the error parameters from the

original observation vector, thus generating the estimates for the gravity disturbance

vector.

The results from this iteration method, however, showed no improvements at

all.  The main reason is that the model was updated with wrong estimates of gravity

disturbances at each iteration.  The residuals from the initial Kalman filter include the

effect of not only the gravity disturbances but also some uncompensated system errors.

Thus, updates with wrong values did not improve the estimates of the INS system

errors, nor the estimated gravity disturbances.

6.3 Model Refinement with a Gravity Model

Obviously, the disadvantage of the new approach is that one cannot get realistic

standard deviations for the estimated gravity disturbances because of the way they were

estimated.  This leads to the lack of satisfaction in the theoretical treatment of the

model, and a rigorous solution to that would certainly include a gravity model as part

of the observation equation.

The mathematical model is completed with the gravity term as follows

(compare with eq. 5.37):
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[ ]x a b a k a g xi i

n

i

b

i

a b

i b

a

i i i

b

i

a

iC C C− − = − − − × + − +γ ψ εδ δ . (6.8)

Now, a gravity model is introduced to isolate δgi  in the above equation.  Since the

gravity modeling is not the main issue in this study, the well known third-order Gauss-

Markov process and an empirical trigonometric expansion were designed and tested in

this study.

6.3.1 Third Order Gauss-Markov Process

A third order Gauss-Markov process (see equation 4.42 ~ 4.44) has been

selected for the gravity disturbances and included in the observation model.  The

number of the parameters increases to 24 by adding 9 parameters for the gravity

disturbances and the design matrix H as well as the dynamic matrix F are properly

expanded.

H C C Ib

i i

b

i

3 24
0 0 0 0

×
= − − ×: [~ ] [~ ]a a , (6.9)

T
TT T T T T T

a g a g
24 1

: ( ) ( )
×

 ′ ′′= δ δ δ  
x b b k k g g gΤψ , (6.10)

F
F

F
F

C Cb

i

b

i

ib

b

= =

− −

11

22

11

0

0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0

;

[ ]ω

,

F22

1

3

1

2

1

2

3

2

2

2

3

3

3

2

3

0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1

0 0 3 0 0 3 0 0

0 0 0 3 0 0 3 0

0 0 0 0 3 0 0 3

=

− − −
− − −

− − −

β β β
β β β

β β β

.  (6.11)

The detailed formulations and the equations for the gravity part are the same as

described in section 4.4.

As in the traditional case, various values for the gravity model parameters such

as correlation distance (10~150 km) and variances (400~1500 mGal
2
) were tested.

Among them, the best results were achieved with correlation distance about 12 km and

variance of 900 mGal
2
 and are presented in Figure 6.1 for all three legs.  The gravity

estimates in this case were more sensitive to the correlation distance than the variances.
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As one can see, the estimates are poorer than the residuals with no gravity

model in all three components.  Overall standard deviations of horizontal components

as well as vertical components are up to several times larger than in the case of no

gravity model (Table 6.1 vs. Table 5.4). Especially, the east component of leg 1 shows

the worst result caused by the instability of the filter at the beginning of the flight.

(mGal)

Leg 1 Leg 2 Leg 3

North 20.29 13.00 16.64

East 63.62 20.78 33.44

Down 12.53 13.891 6.99

Table 6.1 Standard deviations of the difference between the estimates of the gravity

disturbance and the control data.

The standard deviation is as high as ±63 mGal.  The best result was obtained for the

down component of leg 3 with a standard deviation of ±7 mGal.

Obviously, the proper interpretation of the poorer results would be that the

selected Gauss-Markov process does not represent the gravity field well enough in this

area so that some part of it is still hidden in the residuals.  One can expect refined

results by applying the further application of endmatching and WCF.  Especially, the

east component will be much better by those additional procedures because it seems to

have serious systematic errors.
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Figure 6.1 Estimated Gravity Disturbances using a third order Gauss-Markov Model

for leg 1 (solid), 2 (dashed) and 3 (dotted); North (top), East (middle), Down(bottom).

6.3.2 Empirical Trigonometric Representation for Gravity
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In this section, the gravity disturbance is modeled as a sum of trigonometric

functions.  It should be noted that this approach is purely empirical.  Since the residual

from the original model seems to reflect the gravity more or less, a frequency analysis

was performed to analyze the residual.  After identifying the main frequency band or

highest frequency contained in the residual, a corresponding combination of

trigonometric functions with unknown amplitude is used to model each gravity

disturbance component jgδ .  In other words, the gravity disturbance is modeled as:

n n

j jk jk

k 0 k 0

j0 j1 j2 jn

j1 j2 jn

j j

2 kt 2 kt
g a cos b sin

T T

2 t 2 2t 2 nt
a a cos a cos ... a cos

T T T

2 t 2 2t 2 nt
b sin b sin ... b sin

T T T

D

= =

π πδ = +

π π⋅ π⋅= + + + +

π π⋅ π⋅+ + + +

= ⋅

∑ ∑

β

 (6.12)

The matrix Dj consists of trigonometric functions dependent on time, t.  The vector jβ
consists of the coefficients of the trigonometric functions.  With all three components

combined, we have

Dδ = ⋅g β ,

where

1

2

3 3(2n 1)

3

1 2 3
1 (2n 1)

D 0 0

0 D 0 ,

0 0 D

2 t 2 t 2 2 t 2 t 2 2 t n
D D D 1 cos cos ... sin sin ... sin

T T T T T

D
× +

× +

 
 =  
  

π π ⋅ π π ⋅ π ⋅ = = =   

3010 20

3111 21

3212 22

1

2
3(2n 1) 1 3n1n 2n

3

3111 21

3n1n 2n

aa a

aa a

aa a

; , ,
aa a

bb b

bb b

+ ×

    
    
    
    

      
      = = = =      
       

    
    
    

          

✍✍ ✍

✍✍ ✍

1 2 3

β
β β β β β

β
(6.13)

It should be mentioned that the gravity is modeled as a function of time assuming a

constant velocity of the vehicle for the purpose of simplicity.

Substituting equation (6.12) into equation (6.8) yields:
✎ ✎

[ ] ✏ ✏x a b a k a xi i

n

i

b

i

a b

i b

a

i i

b

i

a

iC C D C− − = − − − × + ⋅ − +γ ψ β ε δ . (6.14)
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With maximum order of expansion n, the number of the unknown parameters

are increase up to 3×(2n+1), so the size of the design matrix H, the state vector x and

the dynamic matrix F should be properly expanded.  The extended parameters, β , are

modeled as random effects with initial variance of (1 m/sec)
2
.

H C C D
n

b

i i

b

i

3 15 6 3
0 0

× + +
= − − ×

( )
[~ ] [~ ]a a , (6.15)

T
T T T T

a g a g
(15 6n 3) 1

:
+ + ×

 =  x b b k k
Τ Τ ΤΤ

1 2 3ψ β β β , (6.16)

F
F

F

C C

n n
n n

b

i

b

i

ib

b

( ) ( )
( ) ( )

;

[ ]

15 6 3 15 6 3

11

6 3 6 3

11

0

0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0

+ + × + +
+ × +

= =

− − ω

(6.17)

Clearly, one has to decide the maximum order n of the trigonometric expansion.

Higher order would generate a more detailed signature of the gravity, but would

require much more calculation time.  To verify the maximum order for the expansion, a

simple least-square fit on the residuals could be performed.  In this study, it was shown

that n should be at least 20 to obtain ±2 mGal accuracy of fit to the residuals.  The

actual estimation was done with n = 10  because of the limitations in computational

time.

Figure 6.2 shows the estimates of gravity disturbances for all three legs.  The

estimates appear much smoother than the residuals with no gravity modeling.

Furthermore, high frequency undulations appearing in the residuals for the north

component have disappeared in this case because of the low frequency modeling.  As

the maximum order n increases, the estimates of the gravity disturbance would include

some higher frequency components.

The main differences of the above result compared to the case of the un-

modeled gravity disturbances include a reduction in the high frequency oscillations and

a greater distortion in the low frequencies, especially in the east and down components

(compare with Figures 5.14~16).  This low frequency distortion led to poorer standard

deviations with respect to the control data (Table 6.2).  The results, however, show

much better consistencies among lines and better stabilization than in the case of the

Gauss-Markov process.

The maximum standard deviation appears in the east component of the leg 3

(±29.9 mGal) and the minimum is in the down component of the same profile (±9

mGal).  It is interesting that the maximum and minimum differences appear in the same

components (east and down in leg 3) for all three cases: no gravity model, Gauss-

Markov model, and trigonometric series model.

It is expected that better estimates could be obtained with higher order

expansions as well as careful selection of the frequency band in this approach.  Since

the purpose of this test is not to design a gravity model but to show a modification of
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the mathematical model for better theoretical justification, further refinement for

improved results was not carried out.
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Figure 6.2 Estimated Gravity Disturbances using a trigonometric expansion of order 10

model for leg 1 (solid), 2 (dashed) and 3 (dotted); North (top), East (middle),

Down(bottom).
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(mGal)

Leg 1 Leg 2 Leg 3

North 14.0 14.6 17.8

East 22.5 22.5 29.9

Down 12.4 10.3 9.0

Table 6.2 Standard deviations of the difference between the estimates of the gravity

disturbance and the control data.

The advantage of this approach compared to the Gauss-Markov process case is

the reduced dependency on a-priori information.  One does not need any covariance

model but only a simple analysis of the residuals may be sufficient.  The disadvantage is

the tremendous cost of calculation.  Using IBM 400MHz PC, it took 35 hrs to process

one leg with the expansion of order 10.
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CHAPTER 7

CONCLUSIONS AND RECOMMENDATIONS

This research addressed a new efficient algorithm for recovery of the vector

gravity field with airborne gravimetry using GPS and INS.  The new algorithm has

three distinct features compared to the traditional algorithm.  First, accelerations from

GPS are used as updates in a Kalman filter while positions are used in the traditional

approach.  Second, the gravity disturbance vector is not explicitly modeled as a

stochastic process in the new approach.  In other words, the gravity disturbance is

intentionally included in the total observation error budget so that the corresponding

effects in acceleration appear in the residuals from the Kalman filter.  Third, the frame

selected for all calculations is the inertial frame, while the navigation frame is selected

in the traditional approach.

From the new approach with these differences, the following is achieved:

1. The concept of the algorithm is much easier because the new approach is based on

the fundamental equations expressed in terms of acceleration.

2. The formulas and the calculations are much simpler and more efficient than in the

traditional method.  The main reasons for these are the selection of the acceleration

update scheme as well as the calculations in the inertial frame.

3. The new algorithm can be applied to any set of gravity data without modeling the

gravity disturbance stochastically because the algorithm does not require such a

model as long as it dominates the “real” observation error.  Under appropriate

circumstances, it leads to a much more efficient way of recovering the gravity

disturbance vector.

The disadvantage of this new approach is that the standard deviations of the

calculated gravity disturbances cannot be obtained directly because of the way they are

estimated.  Note that the gravity is not modeled explicitly and the residual vector from

the Kalman filter is defined to be essentially the estimated gravity disturbance vector.

The effect of each error parameter on the INS acceleration as well as the

validity of the algorithm has been investigated through an intensive simulation.  It

shows that including scale factor errors of gyros and accelerometers as state variables

does not improve the results of the gravity estimates.  In addition, the most important

of the error parameters turned out to be the orientation error which is very difficult to

be separated from gravity.  By including the effect of all system errors, such as biases,

scale factor errors and initial orientation errors, the simulated observations were

corrupted up to the standard deviation of ±(17-21 mGal) for the horizontal, and ±2.5
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mGal for the down component with respect to the true simulated gravity disturbance

data.  The results from the Kalman filter showed that the gravity disturbance was

recovered with an accuracy of ±(5-8 mGal) for horizontal and better than ±1 mGal for

the down component.

Real flight data sets, obtained over the Rocky Mountains, for three overlapping

flight trajectories are processed using the developed new algorithm.  The results,

however, showed that the residuals from the Kalman filter do not completely separate

the orientation error from the gravity.  In addition, the residuals also contain the effect

of system white noise.  Therefore, further data processing consisting of endmatching

and a wave correlation filter was applied to the residuals to extract a more refined

gravity signal.  The final results from all processing showed that an accuracy of ±(6-8

mGal) and ±(3-5 mGal) can be achieved for the horizontal and vertical component,

respectively.  The resolution corresponding to the 60-second smoothing is about 3.5

km although the final results (Figure 5.20-22) do not show a resolution better than 10

km for this area.  For the down component, these results are comparable to the

previous studies in this area (Wei and Schwarz, 1998).  Furthermore, this is the first

successful attempt to extract the horizontal gravity field using GPS/INS to the author’s

best knowledge.

There are several lessons learned through this study.  First, aircraft angular

(rotational) dynamics greatly influence horizontal gravity component estimation as seen

in the north component of the INS acceleration.  Second, endpoint data are important

to eliminate residual trends and biases.  Third, multiple traverses over the same gravity

signal help to eliminate some of the system errors.  Specifically, waveform correlation

can be used to eliminate direction dependent errors when applied to lines with opposite

flight directions.

An iteration scheme was tested to obtain better estimates of the system errors

with the Kalman filter, as well as to assess the standard deviations of the estimates of

the gravity disturbances.  This procedure failed because the system was updated by

wrong estimates of gravitation.  In other words, the residuals from the Kalman filter

contain the effect of the gravitational acceleration as well as uncompensated system

errors.  These uncompensated system errors are imposed on the system during the

update and consequently, no improvement in the estimates of the INS system errors is

shown.

There could be good arguments against the total observation error approach

adopted in this study.  By omitting the gravity terms in the parametric model, the

mathematical model for the adjustment is unbalanced.  Furthermore, the residual vector

out of the Kalman filter is further processed by WCF to extract better gravity signals.

In this case, a general theory of the adjustment is not followed.  In other words, we are

adjusting the gravity disturbances using the residuals from the first adjustment.

Generally, the result is not same as for the estimates from a one-step adjustment in

which all the parameters are modeled.

For theoretical satisfaction, therefore, two gravity models, a Gauss-Markov

stochastic process and a deterministic trigonometric expansion are included in the
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model and tested.  In both cases, the estimates of the gravity disturbance were not

better than the processed residuals of the non-model approach with respect to the

control data.  This reaffirms the difficulty in constructing a reasonable mathematical

model for the gravity disturbance.  The approach with the trigonometric expansion

showed less dependency on the a-priori information, of the model and better estimates

are expected if higher-order terms could be included based on carefully selecting the

frequency band.  The corresponding calculations, however, are extremely extensive

may require a better numerical algorithm or computing system to make the approach

feasible.

A couple of ideas could be tested and implemented in future studies.  First, the

combination of airborne vector gravity data with a global gravity model could be

investigated in order to improve the global model at high frequencies.  Second, since

the most difficult part in airborne vector gravimetry is the separation of the orientation

error from the gravity signal, the integration of other extend systems providing more

precise orientation information could be tested.  For example, Dwaik (1998) showed

the orientation information from the photogrammetry helps to estimate the vector

gravity in the GPS/INS airborne gravimetry.  Third, an intensive study of the iteration

procedure would be necessary.  One can try to update the observations using the final

results out of WCF.  In this case, a theoretical justification should be developed more

fully.  Fourth, the dynamics of the airplane could be investigated with specific

deterministic models in the system equations rather than through stochastic system

states of the filter.  In this way, the dynamics model may be more rigorous and lead to

better results.  Fifth, the approach of the trigonometric functions model could be

investigated in more detail to improve the numerical efficiency.  Finally, a recent study

on wave estimator in GPS/GLONASS-INS positioning showed that the wave estimator

performs better than the Kalman filter when the input disturbances are of low frequency

(Ray et al.).  Since the characteristics of the orientation error appear in the low

frequency, this method could be implemented in extracting the gravity signal in the

GPS/INS airborne vector gravimetry.
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APPENDIX A

INTEGRATION OF IMU DATA

To obtain the positions as well as velocities from the IMU raw data, the data should

be integrated through the navigation equation.  Basically, this can be done using a

numerical integration algorithm.  Here, an algorithm using 3
rd

 order Runge-Kutta

integration via quaternion approach is presented.

1. Consider the raw data from IMU, that is the accelerometer and gyro pulses as:

δvl , δθl . (A.1)

δvl  is a vector of increments in velocity generated by the three accelerometers and

δθl  is a vector of increments in angle generated by the three gyros:

δv a t dtl

b= ( ) , δθ ωl ib

b
t dt= ( ) , (A.2)

where a
b
is acceleration in b-frame, ωib

b
 is angular vector in b-frame.

2. In order to integrate the navigation equation (n-frame), the transformation matrix

Cb

n  must be determined and this can be done using the angular vector ωnb

b
 as

explained in chapter 2.

3. Now, consider the basic integration interval ∆t K t= δ , where K is even integer, and

δt is the IMU pulse interval, e.g. δt s= 1

250
 for 250 Hz pulse rate.  Also, e.g. K=2,

4 or 8 etc., so that ∆t s= 1

128
or 

1

64
s  or 

1

32
s  etc.

The indexes of the time epochs are defined as t k tk = ∆ .

4.  Note that the angular vector ω ω ωnb

b

ib

b

n

b

in

n
C= − ,

where ω
λ ω ϕ

ϕ
λ ω ϕ

in

n

e

e

=
+

−
− +

(
�

) cos
✁

(
✂

) sin

 has components generally smaller in magnitude than

ωib

b
for a strapdown system.  Assume that a good approximation to C t dtn

b

in

nω ( )  is

given by the assumption that Cn

b

in

nω  is constant over the integration interval.  Then

let
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5. In order to use a 3
rd

-order Runge-Kutta numerical integration algorithm, the basic

integration interval must be derived into two parts.  Therefore, define

∆ ∆θ δθ ω1
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6. The numerical integration is done using quaternion, q

a

b

c

d

= .  The transformation

from body to navigation frame using quaternion is given by (2.36).

C

a b c d bc ad bd ac

bc ad a c b d cd ab

bd ac cd ab a d c b
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2 2 2 2

2 2 2 2

2 2

2 2

2 2

( ) ( )
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, (A.6)

where q satisfies the differential equation:

✄

q Aq= 1

2
(A.7)

with
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7. The integration algorithm is given by

q t t I t A

A A A A t A t A q t
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where ∆θ( )t k

2
 means ∆ ∆θ θ( ) ( )t tk

T

k⋅  (sum of squares of elements),
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0

0

1 2 3

1 3 2

2 3 1

3 2 1

∆θ ∆θ ∆θ
∆θ ∆θ ∆θ
∆θ ∆θ ∆θ
∆θ ∆θ ∆θ

   , ∆
∆θ
∆θ
∆θ

θ( )t k =
1

2

3

, (A.10)
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∆θ ∆θ ∆θ

   , ∆
∆θ
∆θ
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θ1
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( )t k = , (A.11)

Aθ2

0

0

0

0

12 22 32

12 32 22

22 32 12

32 22 12

=
− −
− −
− −

∆θ ∆θ ∆θ
∆θ ∆θ ∆θ
∆θ ∆θ ∆θ
∆θ ∆θ ∆θ

   , ∆
∆θ
∆θ
∆θ

θ2

12

22

32

( )tk = . (A.12)

Note that the initial quaternion may be obtained from the inverse relation between

the transformation and the quaternion.

a C C Cb

n

b

n

b

n= + + +1

2
1 11 22 33

1 2

( ) ( ) ( )
/

(A.13)

b
a

C Cb

n

b

n= −1

4
23 32( ) ( ) (A.14)

c
a

C Cb

n

b

n= −1

4
31 13( ) ( ) (A.15)

d
a

C Cb

n

b

n= −1

4
12 21( ) ( ) (A.16)

It should be noted that the reorthogonalization is necessary at each step by

replacing q  by 
1

q q
q

T
.

8. The accelerations from the accelerometers are integrated based on 3-point

Simpson’s rule, which is accurate to third order in ∆t .

∆v t C t a t dtk b

n b

t

t

k

k

( ) ( ) ( )=
−2

(A.17)

Note that the integration interval spans two basic intervals of length ∆t .  The

algorithm accurate to third order is given by:

∆ ∆ ∆

∆ ∆

∆ ∆

v t C t v t v t

C t v t v t

C t v t v t

k b

n

k

b

k

b

k
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n

k

b

k

b

k

b

n

k

b

k

b

k

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

= −

+ +

+ −

− −

− −

−

1

6
3

4

3

2 1

1 1

1

, (A.18)
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where ∆v t v
b

k Kk j

j

K

( ) = +
=

−

∑δ
0

1

  , ∆v t v
b

k K k j

j

K

( ) ( )− − +
=

−

= ∑1 1

0

1

δ .

9. Now, recall the Navigation (3.4.4) equations written as:
☎

( , , )
✆

( , , )

v a f v h

v a f v h

N N N

E E E

= +
= +

ϕ
ϕ

(A.19)

This is integrated using a first-order algorithm:

v t v t v t f v t h t t tN k N k N k N k k k( ) ( ) ( ) ( ( ), ( ), ( ))+ + + + += + + ⋅2 2 1 1 1 2∆ ∆ϕ (A.20)

Note that each integration step spans two basic intervals, ∆t .

10. To compute f v t h t tk k k( ( ), ( ), ( ))+ + +1 1 1ϕ , the previous values of the integrated

navigation equations are needed.  So once v tk( )+2 is determined, compute

ϕ ϕ( ) ( )
( )

( ) ( )
t t

v t

M t h t
tk k

N k

k k

+
+

+ +

= +
+

⋅2
1

1 1
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λ λ
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✝
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✞
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(A.27)

11. The total algorithm is shown at Figure A.1.
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Figure A.1 Flow chart for IMU data integration.
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