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Abstract

Machine vision represents a particularly attractive solution for sensing and detecting po-

tential collision-course targets due to the relatively low cost, size, weight, and power re-

quirements of vision sensors (as opposed to radar and TCAS). This paper describes the

development and evaluation of a real-time vision-based collision detection system suitable

for fixed-wing aerial robotics. Using two fixed-wing UAVs to recreate various collision-

course scenarios, we were able to capture highly realistic vision (from an onboard camera

perspective) of the moments leading up to a collision. This type of image data is extremely

scarce and was invaluable in evaluating the detection performance of two candidate target
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detection approaches. Based on the collected data, our detection approaches were able to

detect targets at distances ranging from 400m to about 900m. These distances (with some

assumptions about closing speeds and aircraft trajectories) translate to an advanced warning

of between 8-10 seconds ahead of impact, which approaches the 12.5 second response time

recommended for human pilots. We overcame the challenge of achieving real-time computa-

tional speeds by exploiting the parallel processing architectures of graphics processing units

found on commercially-off-the-shelf graphics devices. Our chosen GPU device suitable for

integration onto UAV platforms can be expected to handle real-time processing of 1024 by

768 pixel image frames at a rate of approximately 30Hz. Flight trials using manned Cessna

aircraft where all processing is performed onboard will be conducted in the near future,

followed by further experiments with fully autonomous UAV platforms.

1 Introduction

The problem of unmanned aerial vehicle (UAV) collision avoidance or ‘sense-and-avoid’ has been identified as

one of the most significant challenges facing the integration of UAVs into the national airspace (Unmanned

Aircraft Systems Roadmap 2007–2032, 2007; DeGarmo, 2004). The full potential of UAVs can never be

realised unless the sense-and-avoid issue is adequately addressed. To this end, machine vision has emerged

as a promising means of addressing the ‘sense’ and ‘detect’ aspects of collision avoidance, which demands

the ability to automatically detect and track targets in naturally lit, high noise environments.

Machine vision represents a particularly attractive solution for sensing and detecting potential collision-course

targets due to the relatively low cost, size, weight, and power requirements of the sensors involved (Maroney

et al., 2007). Man-in-the-loop (MITL) solutions have been prototyped and demonstrated (Bryner, 2006).

Furthermore, an automated detection system developed by Defense Research Associates was implemented

and flight tested, where the detection approach is based on target pixel movement (or energy flow) in the

image frame (Utt et al., 2005; Utt et al., 2004). Recently, the problem of aircraft detection using passive vision

has been tackled using 1) a combination of morphological filtering and support vector machine classification

(Dey et al., 2009; Geyer et al., 2009), and 2) a machine learning approach based on AdaBoost that exploits

a modified version of the Viola and Jones object detector (Petridis et al., 2008).

There are many hurdles that must be overcome in the use of machine vision for target detection and tracking.

We need to contend with not only the inherent noise of imaging sensors, but also with noise introduced by



changing and unpredictable ambient conditions. The desire to overcome these challenges has driven the

development of specialized image filtering and processing techniques that are optimized for the type of dim-

target characteristics that are experienced in near collision events between fixed-wing aircraft or fixed-wing

aerial robots.

Over the last three decades, a two-stage processing paradigm has emerged for the simultaneous detection

and tracking of dim, sub-pixel sized targets (Gandhi et al., 2006; Gandhi et al., 2003; Arnold et al., 1993;

Barniv, 1985). These two stages are: 1) an image pre-processing stage that, within each frame, highlights

potential targets with attributes of interest; and 2) a subsequent temporal filtering stage that exploits target

dynamics across frames. The latter temporal filtering stage is often based on a track-before-detect processing

concept where target information is collected and collated over a period of time before the detection decision

is made.

Generally, the goal of the image pre-processing stage is to enhance potential target features whilst suppressing

background noise and clutter. There is an abundance of techniques and algorithms available which may

be considered for this image processing role. In particular, non-linear spatial techniques such as median

subtraction filters (Deshpande et al., 1999) have been widely discussed in the literature. Another non-linear

image filtering approach that has received much attention over the last decade has its basis in mathematical

morphology (Dougherty and Lotufo, 2003). Numerous morphology-based filters have been proposed for the

detection of small targets in infrared (IR) images (Zhu et al., 2000; JiCheng et al., 1996; Tom et al., 1993).

Specific implementations of the morphological filtering approach include the Hit-or-Miss filter (Schaefer

and Casasent, 1995), Close-Minus-Open filter (Casasent and Ye, 1997), and the Top-Hat filter (Braga-Neto

et al., 2004). Although a large proportion of research has focused on IR images, there are recent examples

of morphological filters being incorporated into target detection algorithms operating on visual spectrum

images (Carnie et al., 2006; Gandhi et al., 2006; Gandhi et al., 2003). Moreover, a sign of the increasing

popularity of morphological filters for small target detection is evident in the host of studies undertaken

into the issue of parameter design (Zeng et al., 2006; Yu et al., 2003). Finally, there have been efforts made

to compare existing techniques with the morphology-based filters (Gandhi et al., 2006; Warren, 2002; Tom

et al., 1993; Barnett et al., 1993), with the median filtering technique often featuring in the comparison

studies.

On the other hand, the temporal filtering stage that follows the image pre-processing is designed to extract

image features that possess target-like temporal behaviour. For this role, there are two particular filtering

approaches that have received much attention in the literature: Viterbi based approaches and Bayesian



based approaches. The Viterbi algorithm has formed the basis of the temporal filtering stage in numerous

track-before-detect algorithms (Davey et al., 2008; Gandhi et al., 2006; Tonissen and Evans, 1996; Arnold

et al., 1993; Barniv, 1985). The popularity of the Viterbi algorithm is in part due to its utility in the context

of tracking where, under a number of assumptions, it is able to efficiently determine the optimal target track

within a data sequence (Forney, 1973). Some analysis of the Viterbi algorithm’s detection and tracking

performance have been conducted (Johnston and Krishnamurthy, 2000; Tonissen and Evans, 1996; Barniv

and Kella, 1987), and modifications that enhance the algorithm’s tracking performance in the presence of

non-Gaussian clutter noise have been proposed (Arnold et al., 1993). An alternative temporal filter design

for track-before-detect algorithms is based on Bayesian filtering (Davey et al., 2008; Bruno, 2004; Bruno and

Moura, 2001; Bruno and Moura, 1999). Advances in this filtering approach have considered the relaxation

of typical white Gaussian noise assumptions and spatially correlated clutter (Bruno and Moura, 1999).

Moreover, the modeling of clutter has been expanded to encompass a variety of Gaussian and non-Gaussian,

correlated and uncorrelated clutter types, and the Bayesian algorithm is extended to accommodate multiple

targets that may feature randomly varying amplitudes or intensities (Bruno and Moura, 2001). Finally, some

comparison between the Viterbi and Bayesian approaches has been made at the theoretical level (Bruno and

Moura, 2001), as well as on the practical level via Monte Carlo simulation trials (Davey et al., 2008).

A survey of potential technologies for unmanned aerial vehicle (UAV) sense-and-avoid concluded that the

visual/pixel based technology offered the best chances for regulator approval (Karhoff et al., 2006). It is

interesting to note that some studies have shown that it is actually difficult to detect and avoid a collision

using the human visual system (Limitations of the See-and-Avoid Principle, 1991). To date, public domain

hardware implementation of vision-based sense-and-avoid systems have been limited to a small number.

Arguably, the most significant developments have been made by (Utt et al., 2005), where a combination

of field programmable gate array chips and microprocessors using multiple sensors were tested in a twin-

engine Aero Comander aircraft. A challenge that faces any vision-based sense-and-avoid system is the

requirement of real-time operation. Motivated by this fact, we exploit the capabilities of data-parallel

arithmetic architectures such as Graphics Processing Units (GPUs), which have proven to be very capable

parallel processing devices that can outperform current CPUs by up to an order of magnitude (Owens et al.,

2005).

The key contributions of this paper are: 1) demonstration of the coordinated flight of fixed-wing UAVs

performing collision-course scenarios for collection of suitable test image data; 2) application of HMM and

Viterbi-based target detection approaches to a computer vision sense-and-avoid problem; 3) analysis of the



target detection approaches in terms of maximum detection range; and 4) implementation of the target

detection approaches using GPU-based hardware and the demonstration of real-time detection capabilities.

The use of fixed-wing UAVs for data collection presents unique challenges, particularly in relation to the

synchronisation of aircraft flights to ensure a realistic scenario is replicated, and to maximise the target

aircraft’s time spent in the camera field of view. Furthermore, we highlight that we are particularly interested

in determining the performance limits of passive machine vision for detecting collision-course aircraft, and

hence our focus on the maximum detection range of our candidate detection algorithms. We acknowledge that

the detection range will be influenced by various environmental conditions (such as weather and lighting);

however, a detailed characterisation of the quality of the collected data is beyond the scope of this paper.

Finally, we also provide some insight into the impact of image jitter on the performance of our candidate

target detection approaches, as it has been previously shown that detection performance can be quite sensitive

to jitter effects (Utt et al., 2005).

This paper is structured as follows. Section 2 introduces the basic characteristics of collision behaviour

that make vision-based collision detection a difficult problem. Section 3 separately introduces the HMM

and Viterbi based detection approaches examined in this paper. Section 4 evaluates the performance of

the proposed collision detection system in three key areas: 1) the resilience of the detection algorithms to

undesired camera motion (image jitter); 2) the target detection capability of the detection algorithms; and

3) the real-time processing capacity of a GPU-based hardware implementation. Section 5 describes some of

the lessons learnt and future work planned.

2 Basic Characteristics of Potential Collision-Course Objects

It may be possible to detect collision course objects based on their physical appearance or the dynamics

that they exhibit. The physical attributes of collision course objects, such as colour, brightness, shape, and

size, depend largely on ambient lighting and atmospheric conditions, as well as the distance to the object.

Sophisticated models have been devised in an attempt to describe and predict these observed target attributes

as a function of distance, taking into account the effects of haze, atmospheric scattering, and potential defocus

blur due to poor or mismatched optics (Geyer et al., 2009). However, it is difficult to accurately model the

complex and unpredictable nature of lighting and atmospheric conditions, so we choose to instead exploit

some simple but reliable characteristics of collision-course objects which are sufficient for our purposes of

determining the maximum detection range of our candidate algorithms. More specifically, we elect to exploit

the typical size, shape, and dynamics of a collision-course object on the image plane of a camera. We do not



claim that any of these characteristics alone can uniquely identify a collision-course object, but we believe

a combination of the three has the ability to eliminate the majority of non-genuine targets. Given the

12.5 second reaction time recommended for human pilots (FAA Advisory Circular: Pilots’ role in collision

avoidance, 1983), a collision-course object must be detected at a distance of over 1 kilometer (assuming

a closing velocity of 100 m/s) to avoid a collision1. At this distance, aircraft and other objects of similar

dimensions may take up an area anywhere from a few pixels to less than one pixel on the image plane2. It can

be argued that a few pixels cannot really define any sort of ‘shape’, but at least it can be deduced that in the

context of early detection, collision-course objects will tend to be small, point-like features, becoming smaller

and dimmer the earlier that detection is required. Of all the characteristics of collision-course objects, their

somewhat unique dynamics is perhaps the most suitable attribute to exploit. Objects on a collision course

appear at the output of a fixed onboard vision sensor as relatively stationary features on the image plane

(Limitations of the See-and-Avoid Principle, 1991). Features that are moving rapidly across the image plane

do not correspond to collision-course objects.

The typical output from an computer vision sensor is a sequence of images (i.e. a video stream). Detecting

collision-course objects is then a matter of searching for objects within the image sequence that possess the

above characteristics; that is, dim sub-pixel size targets that are slowly moving in the image frame. These

target properties correspond to the two stage detection paradigm that is described in the next section: mor-

phological filtering to detect pin-like targets, and temporal filtering to detect persistent or almost stationary

features.

We are aware of existing guidelines and requirements (Standard specification for design and performance of an

airborne sense-and-avoid system, F2411-04, 2004; Office of the Secretary of Defense, 2004; Ebdon and Regan,

2004; FAA Advisory Circular: Pilots’ role in collision avoidance, 1983) stipulating functional capabilities that

a sense-and-avoid system must satisfy to gain regulatory approval. These are not inconsistent with our earlier

characterisation of collision-course targets; they are merely specifications at a higher functional level which

we will consider at the next stage of our research once we have determined the performance limits of a

vision-based detection approach. For a detailed analysis of current regulatory requirements see (Geyer et al.,

2008).

1Even though an automated system is likely to require less time to recognise threats and take evasive action, it can be argued
that in the interests of safety, it is best to detect targets as early (i.e. as far away) as possible.

2Depending on camera resolution, field of view etc.
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Figure 1: Candidate detection algorithms.

3 Detection Algorithms

The two candidate detection algorithms that will be considered in this paper are designed to process the

sensor measurements in two stages: 1) image pre-processing, followed by 2) track-before-detect temporal

filtering. Both algorithms will share a common ‘Close-Minus-Open’ morphological image pre-processing

stage, but one approach will be coupled to a hidden Markov model temporal filter, whereas the other

approach will be coupled to a Viterbi-based temporal filter, as illustrated in Figure 1. We highlight that

after detection has occurred the position estimate output of our candidate detection algorithms could then

be passed to a high-level target tracking filter (such as an extended Kalman filter). This has the potential

to improve tracking performance, the analysis of which will be considered in future investigations.



3.1 Morphological Image Pre-Processing

This paper considers an image pre-processing technique that exploits grayscale morphological operations in

order to process discrete 2D image data quantized to a finite number of intensity or grayscale levels, such

as might be expected from the output of an electro-optical sensor. In particular, the Close-Minus-Open

(CMO) morphological filter used is based on image morphology operations known as top-hat and bottom-hat

transformations (Gonzalez et al., 2004). The effect of the top-hat transformation is to identify positively

contrasting (brighter than background) features within an image that are smaller than a certain size (the

cut-off size is specified through filtering kernels known as structuring elements), while the bottom-hat trans-

formation performs a similar function but instead targets negatively contrasting (darker than background)

features. It can be shown that summing the top-hat and bottom-hat transformations of the same image,

which defines the Close-Minus-Open filtering operation, simultaneously identifies both positively and nega-

tively contrasting features. This combination of morphological operations has been referred to elsewhere in

the literature as a self-complementary top-hat filtering approach (Soille, 2003).

In this paper, the CMO filter is configured to serve as a powerful tool in the identification of small point-

like features within the measurement image. For performance and computational reasons, the CMO filter

implemented in this paper exploits a directional decomposition technique (Casasent and Ye, 1997). More

specifically, the minimum response from a pair of CMO filters using orthogonal 1D structuring elements is

used. Here, one CMO filter operates exclusively in the vertical direction, while the other operates exclusively

in the horizontal direction. The vertical and horizontal structuring elements of the CMO morphological pre-

processing filter are given by sv = [1, 1, 1, 1, 1]
′

and sh = [1, 1, 1, 1, 1], respectively. An example of the output

after CMO morphological pre-processing is illustrated in Fig. 4b.

3.2 Temporal Filtering

In many machine vision based detection problems, the existence of a target in a 3D volume of space must be

determined from observations of a projection of the target space onto a 2D image plane. Here, target detection

can be viewed as evaluating the likelihood of 2 alternate hypotheses, where H1 denotes the hypothesis that

there is a single target present in the camera field of view, and H2 denotes the hypothesis that there is no

target present.

The temporal filtering approaches implemented in this paper will assume that under hypothesis H1, the

projected target motion resides on a 2D plane fixed in space that is represented by the set of discrete 2D grid



points { ( i, j )| 1 ≤ i ≤ Nv, 1 ≤ j ≤ Nh}, with vertical and horizontal resolutions Nv and Nh respectively. Let

N = Nv ×Nh denote the total number of grid points. The measurements are provided by an imaging sensor

whose field of view is represented by a 2D grid of image pixels locations aligned with the target space and

denoted { ( p, q )| 1 ≤ p ≤ Nv, 1 ≤ q ≤ Nh}.

3.2.1 Hidden Markov Model Filtering

It will be assumed that, when present, the target is located within a particular pixel of the image frame

at each time instant. Thus, each pixel (i, j) represents a unique state of the HMM in the target detection

problem. For notational convenience, the columns of the image frame are stacked to form a vector of pixel

locations. In this way, each state may be referenced by a single index, in the sense that if the target is at

pixel location (i, j), this corresponds to it being in the state m = [( j − 1 )Nv + i].

Let xk denote the state (target location) at time k. Between consecutive image frames the target may move

to different pixel locations; that is, the target can transition between the states. The likelihood of state

transitions can be described by the HMM’s transition probabilities Amn = P (xk+1 = state m|xk = state n)

for 1 ≤ m, n ≤ N , which is the probability of moving from any one pixel position (state) n to any other

pixel position (state) m. The transition probabilities can therefore be used to describe the expected mean

target motion. For example, in the case of slow moving targets low probabilities tend to be assigned for

transitions between distant pixels. Moreover, initial probabilities π
m = P (x1 = state m) for 1 ≤ m ≤ N

are used to specify the probability that the target is initially located in state m. Finally, to complete the

parameterisation of the HMM, there are the measurement probabilities Bm (Yk) = P (Yk|xk = state m)

for 1 ≤ m ≤ N that are used to specify the probability of obtaining the observed image measurement

Yk ∈ RNv×Nh , given that the target is actually in pixel location (state) m (see (Elliott et al., 1995) for more

details about the parameterisation of HMMs). A possible approach to estimate the probabilistic matrices A

and B is discussed later on in the implementation of a HMM filter bank.

HMM Detection Strategy The HMM filtering approach performs temporal integration of the input

measurements by recursively propagating α
i
k, an unnormalised probabilistic estimate of the target state xi

k,

over time. This is achieved via the forward part of the forward-backward procedure (Rabiner, 1989), which

can be decomposed into two stages: initialisation and recursion.

For 1 ≤ m ≤ N



1. Initialisation: Let α
m
k denote the probability P (Y1,Y2, . . . ,Yk,xk = state m). Then α

m
1 =

π
mBm (Y1).

2. Recursion: At time k > 1, set α
m
k =

[

∑N

n=1 α
n
k−1A

mn
]

Bm (Yk).

The forward procedure filtering result is closely related to the two probabalistic measures that facilitate the

detection of targets: 1) the probability of measurements up to time k assuming H1, given by

P (Y1,Y2, . . . ,Yk|H1) =

N
∑

m−1

α
m
k , (1)

and 2) the conditional mean filtered estimate of the target state m given measurements up to time k and

assuming H1, given by

x̂m
k = E [xk = state m|Y1,Y2, . . . ,Yk, H1] (2)

=
α

m
k

∑N

n=1 α
n
k

,

where E [.|.] denotes the mathematical conditional expectation operation (Billingsley, 1995). The probability

P (Y1,Y2, . . . ,Yk|H1) may be interpreted as an indicator of target presence (following the probabilistic

distance results of (Xie et al., 2005)), and the conditional mean estimate can be regarded as an indicator of

likely target locations.

In the interest of computational efficiency, the conditional mean estimate is evaluated directly from the

following expression (Elliott et al., 1995):

x̂k = NkBk (Yk)Ax̂k−1, (3)

where Nk is a scalar normalisation factor; Bk (Yk) is a N × N matrix where the main diagonal is occupied

by the values of Bm (Yk) for 1 ≤ m ≤ N and all other elements are zero; A is a N ×N matrix with elements

Amn; and x̂k is a N × 1 vector consisting of elements x̂m
k for 1 ≤ m ≤ N that are equivalent to those given

in (3). Moreover, note the following relationship between the normalisation factor Nk and the probability of

measurements up to time k assuming H1:

P (Y1,Y2, . . . ,Yk|H1) =

k
∏

l=1

1

Nl

. (4)



For the HMM filtering approach, let ηk, the test statistic for declaring the presence of a target, be given by

the following exponentially weighted moving average filter with a window length of L:

ηk =

(

L − 1

L

)

ηk−1 +

(

1

L

)

log

(

1

Nk

)

. (5)

In the later performance evaluation studies, we found a window length of L = 10 produced good detection

results. A shorter window length may give earlier detections, but this is likely to be at the expense of

increased false alarms. When ηk exceeds a predefined threshold, the HMM detection algorithm considers the

target to be present and located at state

γk = argmax
m

(x̂m
k ) (6)

at time k. The definition of ηk and γk is motivated by the filtering quantities discussed earlier.

HMM Filter Bank Previous studies have shown that a multiple filter approach (filter bank) provides

superior detection performance compared with a standard single filter implementation under a range of

target speed and signal-to-noise ratio scenarios (Lai et al., 2008). The superior performance of the filter

bank approach can be attributed largely to the collective ability of multiple filter models to provide a more

precise description of the target dynamics (however, this more precise modelling of the target dynamics can

have drawbacks when the modelling assumptions are violated; see Section 4.1). In this paper, a HMM filter

bank consisting of four filters is implemented (Lai et al., 2008). Each HMM filter in the bank uses the same

pre-processed image data, but otherwise operates independently of all other filters. The filter bank approach

is less well characterised than the standard single HMM filter, and its application has not been prevalent in

the context of dim-target detection from imaging sensors.

The transition probability parameters of each filter in the HMM filter bank are designed to handle target

motion where the target either remains stationary or moves to an adjacent neighbouring pixel between

consecutive image frames. In practice when the system is liable to the effects of image jitter, we allow for the

possibility of larger inter-frame target motion. For example, Figure 2 illustrates a 3-by-3 patch of the possible

transitions as seen in the image plane (which could handle target motion within 1 pixel per frame). The

possibility of larger motion can be handled by larger patch sizes (for example, a 5-by-5 patch could handle

target motion within 2 pixels per frame). These type of target motions correspond to transition probability

matrices that only have non-zero probabilities for self-transitions and transitions to states nearby in the

image plane (all other transitions have zero probability).



Figure 2: Transition patch of size 3-by-3 corresponding to only 9 non-zero transition probabilities.

An ad hoc approach to assigning the specific probability values within the patch has been used in this paper;

better performance might be possible by designing the parameters according to relative entropy rate based

strategies (Lai and Ford, 2010).

Furthermore, note that the implemented HMM filter exploits the following probabilistic relationship between

target location xk and the pre-processed measurements Yk:

Bm (Yk) =
P (Ym

k |xk = state m)

P (Ym
k |xk 6= state m)

, (7)

for 1 ≤ m ≤ N . Note the computational advantage that (7) affords, given that P (Ym
k |xk = state m) and

P (Ym
k |xk 6= state m) can each be determined on a single-pixel basis (rather than requiring the probability

of a whole image (Lai et al., 2008)).

To construct the measurement probability matrix Bk (Yk), estimates of the probabilities

P (Ym
k |xk 6= state m) and P (Ym

k |xk = state m) are required. The former describes the prior knowledge

about the distribution of pixel values in the absence of a target (i.e. the noise and clutter distribution),

while the latter captures the prior knowledge about the distribution of values at pixels containing a

target. The required probabilities for Bk (Yk) are trained directly from sample data. The probability

P (Ym
k |xk 6= state m) is estimated as the average frequency that each pixel value resulted from a non-target

location; one way this can be calculated is by sampling pixel values from image sequences without a target.

Using a similar procedure, P (Ym
k |xk = state m) is estimated as the average frequency that each pixel

value measurement resulted from a target location, and this can be calculated based on image sequences



containing a target. We acknowledge that in using an empirical approach for estimating the measurement

probabilities, the amount of data available will influence the quality of the estimates. In general, estimates

of P (Ym
k |xk 6= state m) tend to be easier to obtain, due to the relative abundance of non-target image

data compared with those containing targets. From our experiences, probabilities estimated from at least

100 image frames have provided reasonable performance.

Note that in the HMM filter bank, detection events may be triggered by any filter. In particular, if a target

is present and this presence is declared in more than one filter, then look to the dominate filter (the one with

the highest γk) to provide the estimate of target position.

Remark: Strictly speaking, the right hand side of (7) is proportional to Bm (Yk) (the applicable scaling

factor may be absorbed by Nk in the implementation of (3)). Moreover, this relationship only holds un-

der the following assumptions: 1) the statistical properties of pixel values within an image are spatially

independent, and 2) individual pixels do not allow the opportunity of perfect detection, in the sense that

P (Ym
k |xk 6= state m) > 0 whenever P (Ym

k |xk = state m) > 0. Admittedly, the presence of extended

(multi-pixel) targets or spatially correlated noise would violate the above assumptions, but has been found

to only have moderate impact on performance.

3.2.2 Viterbi-Based Filtering

A Viterbi-based temporal filtering approach that is based on a dynamic programming algorithm (Carnie

et al., 2006; Gandhi et al., 2006) was also examined. In this approach, pre-processed image frames are

integrated over time along possible target trajectories in order to improve the signal-to-noise ratio. The

output is an image, with large pixel values indicating likely target locations.

The motion of the target is modelled in terms of discrete velocity cells, where each cell (u, v) encompasses

a range of possible target velocities. Assuming constant target velocity (i.e. no transitions between velocity

cells) and a velocity cell resolution of one pixel/frame, is can be shown that if the target is at any particular

pixel (i, j) at time k, there exists a neighbourhood of four connected pixels within which the target will be

located at time k + 1 (Tonissen and Evans, 1996). This neighbourhood of four connected pixel is denoted

by Qij and collectively referred to as the forward state transitions. By symmetry, if the target is at any

particular pixel (i, j) at time k, there exists a neighbourhood of four connected pixels within which the target

was located at time k − 1. This neighbourhood of four connected pixels is denoted by Q̄ij and collectively

referred to as the backward state transitions. Hence, for each velocity cell (u, v) there exists a unique set



of forward state transitions Qij
uv and backward state transition Q̄ij

uv corresponding to each particular pixel

(i, j). This model for target dynamics can be modified to allow for transitions covering more than four pixels

at a time by adjusting the resolution of the velocity cells. However, previous analysis (Tonissen and Evans,

1996) showed that better performance is achieved for smaller numbers of possible transitions, with four

transition cell possibilities considered to be a reasonable choice for slow, non-manoeuvring targets (Gandhi

et al., 2006).

Viterbi-based Detection Strategy The Viterbi-based algorithm performs temporal integration of the

input measurements by recursively generating a set of intermediate images D for each velocity cell (u, v)

that is considered. This process can be divided into two stages: initialisation and recursion.

For all (u, v), 1 ≤ i ≤ Nv, and 1 ≤ j ≤ Nh

1. Initialisation: Let Dij
k (u, v) denote the ijth pixel of the intermediate image frame at time k for

velocity cell (u, v). Then Dij
1 (u, v) = 0.

2. Recursion: At time k > 1, set

Dij
k (u, v) =

[

(1 − β)Yij
k

]

+ β. max
(i

′
,j

′)∈Q̄
ij
uv

[

Di
′

j
′

k−1 (u, v)

]

,

where Yij
k is the ijth pixel of the pre-processed image at time k, and β represents a memory factor

that can vary between zero and one.

At any time k when a detection decision is required, take the maximum output across corresponding pixels

of the intermediate image frames belonging to each velocity cell:

Dij
max,k = max

(u,v)

[

Dij
k (u, v)

]

, (8)

for 1 ≤ i ≤ Nv and 1 ≤ j ≤ Nh. This final image Dmax,k that consolidates target information from across

all velocity cells then serves as the basis for declaring detections.

For the Viterbi-based filtering approach, a test statistic λk for declaring the presence of a target at time k

is given by

λk = max
ij

(

Dij
max,k

)

. (9)

When λk exceeds a predefined threshold, the Viterbi-based algorithm considers a target to be present and



located at state

ςk = argmax
ij

(

Dij
max,k

)

(10)

at time k. The definition of λk and ςk follow from the interpretation of the Viterbi-based algorithm’s output

as an image, where the pixel values correspond to target signal strength.

Viterbi-Based Filter Implementation The Viterbi-based filter implemented here mirrors those de-

scribed in the existing literature (Carnie et al., 2006; Gandhi et al., 2006), where four velocity cells are used

to detect targets that move with constant velocity in any direction, but are limited to a maximum speed of

1 pixel per frame (this is analogous to the 4 filters in the HMM filter bank). Non-maximal suppression is ap-

plied to the output of the filter to reduce an undesirable “dilation” effect where pixels in the neighbourhood

of the target also attain significantly large values (Gandhi et al., 2006).

We highlight that the selection of memory factor β has been investigated previously (Carnie et al., 2006;

Gandhi et al., 2006). Larger β values give more weighting to past measurements, and can reduce the incidence

of false alarms at the expense of a delay in detection. In our implementation of the Viterbi-based filter, we

let β = 0.75, which has been demonstrated to be a reasonable choice for the memory factor (Carnie et al.,

2006).

4 Collision-Detection System Evaluation

We begin by evaluating our two candidate target detection approaches in terms of robustness to image jitter

and target detection performance. We then discuss our proposed hardware implementation of the detection

system, and evaluate the capacity of this system to support real-time execution of the candidate detection

algorithms. The candidate detection algorithms are:

• CMO image pre-processing with HMM temporal filtering (patch size 5-by-5); and

• CMO image pre-processing with Viterbi-based temporal filtering.

To facilitate the evaluation of the detection algorithms, we will consider two types of signal-to-noise-ratio

(SNR) quantities: 1) a target distinctness SNR (TDSNR), and 2) a false-alarm distinctness SNR (FDSNR).



The TDSNR provides a quantitative measure of the detection capability of the algorithm, and is defined as:

TDSNR = 20 log10

(

PT

PN

)

, (11)

where PT is the average target pixel intensity and PN is the average non-target pixel intensity at the filtering

output. In general, the more conspicuous the target is at the output of the filter, the higher the TDSNR

value. On the other hand, FDSNR measures the tendency of the algorithm to produce false-alarms, and is

defined as:

FDSNR = 20 log10

(

PF

PN

)

, (12)

where PF is the average of the highest non-target pixel intensity and PN is the average non-target pixel

intensity at the filtering output. Strong filter responses away from the true target location will tend to

increase the FDSNR value. We highlight that TDSNR and FDSNR are calculated directly from the output

of the filter, and are not based on the SNR quality of the input image measurements. For convenience, we

will let ∆DSNR denote the difference between the two SNR metrics:

∆DSNR = TDSNR − FDSNR (13)

= 20 log10

(

PT

PF

)

.

4.1 Impact of Image Jitter

In this paper, we consider image jitter as the apparent motion of the image background between two consec-

utive frames of an image sequence. This apparent motion is caused by displacement of the camera relative

to the objects in the scene, and gives the illusion that objects in an image are moving when in fact they

are stationary in the environment. Image jitter is inherently present in all image data recorded on moving

platforms. Passive motion-dampening devices or actively stabilised camera mounts may serve to reduce the

effects of image jitter; however, jitter cannot be completely eliminated as no platform can be perfectly stable.

In many cases, the effects of jitter can be quite severe, particularly for small UAV platforms that are more

susceptible to unpredictable disturbances caused by wind gusts and air turbulence.

In addition to the physical mechanisms that can be employed to reduce jitter effects whilst images are being

recorded, there are ego-motion compensation techniques that can be used after the image is captured to

produce a jitter-corrected version of the raw image. Ego-motion compensation techniques typically rely on

estimating the amount of camera displacement either indirectly via gyroscopes, accelerometers, and other



(a) (b)

Figure 3: (a) Sample image from jitter characterisation test data set; (b) Region of interest containing target.

inertial sensors (Jorge and Jorge, 2004), or directly through tracking salient features (Jung and Sukhatme,

2005).

In this study, we are concerned with the inherent robustness of the detection algorithms to jitter affected

data that have not undergone ego-motion compensation. Characterising this inherent robustness of the de-

tection algorithms is important for two main reasons. Firstly, particularly in an airborne environment, it

would not be uncommon to encounter ‘blue-sky’ conditions where the background is more or less uniform,

rendering feature-based compensation techniques much less effective, if not useless. Moreover, no compen-

sation technique is perfect, and hence it would be highly desirable for any practical detection algorithm to

at least possess some level of resilience to image jitter in the absence of ego-motion compensation. We will

characterise the jitter performance of the two candidate detection algorithms by applying them to some

test image sequences containing varying degrees of jitter. The filtering output of the candidate detection

algorithms will then be evaluated in terms of the two types of SNR quantities, TDSNR and FDSNR, defined

earlier.

4.1.1 Test Data

Figure 3a provides a sample of the type of data that was used to characterise the detection algorithms. The

typical target size and background contrast can be seen in a close-up region of interest depicted in Fig. 3b.

Another close-up sample is provided in Fig. 4a. Here, the target occupies around 6-10 pixels, is quite distinct,

and may be considered fairly easy to detect. The relatively high target signal-to-noise ratio does not diminish

the significance and practical relevance of the performance characterisation because investigating the impact



of image jitter on algorithm performance is the main interest of this study, as opposed to investigating dim

target detection performance (this is considered separately in the next subsection).

In the data sets, a range of jitter characteristics has been artificially introduced, ranging from low to moderate

to extreme. A low amount of jitter is defined as involving apparent inter-frame background motion of between

0 and 1 pixels per frame. A moderate amount of jitter is defined as involving apparent inter-frame motion

of between 1 and 3 pixels per frame. Finally, an extreme amount of jitter is defined as involving apparent

inter-frame motion is greater than 4 pixels per frame.

4.1.2 Jitter Test Results

Tables 1 and 2 illustrate the typical performance of the HMM and Viterbi-based temporal filtering approaches

under various jitter scenarios. In the presence of a low level of jitter both detection approaches were able

to successfully track the target (successful tracking implies that the target is able to be located within two

pixels of its true position). Figure 4 (c) and (d) illustrate the typical output of the HMM and Viterbi-based

filter, respectively, under low jitter conditions. We highlight that in this case the target in the HMM filter

output is considerably more distinct than in the Viterib-based filter output, and this is reflected in the larger

∆DSNR value for the HMM filter. However, under moderate jitter conditions, there were periods when the

HMM filter failed to track the target successfully. This suggests that the HMM filter is more sensitive to

the effects of jitter. Part of this sensitivity may be attributed to the jitter dynamics not being explicitly

modelled in the HMM filter. Moreover, we highlight that the HMM algorithm exploits extra target dynamic

behaviour information (i.e. modelling assumptions) that is not used in the Viterbi-based filter. This extra

information improves baseline performance of the HMM filter, but also make the filter more sensitive to

how valid these assumptions are, some of which are violated by image jitter. Hence, the impact of jitter is

more pronounced on the ‘optimised’ performance of the HMM filter compared to the more ‘ad hoc’ Viterbi-

based filter. Finally, in the presence of extreme jitter, both filtering approaches demonstrated poor tracking

capabilities and exhibited correspondingly low ∆DSNR values.

Overall, the ∆DSNR values seem to provide a reasonable indication of the detection algorithms’ jitter tracking

performance. Using as a baseline the value from the low jitter scenario, which we denote by ∆DSNR0, the

results suggest that as a rough rule-of-thumb successful tracking can be accomplished under a particular

jitter scenario x when:

∆DSNRx > 0.5 ∆DSNR0, (14)



Table 1: Jitter performance of HMM temporal filtering

SNR Value (dB)

Jitter Level Tracking Outcome TDSNR FDSNR ∆DSNR

Low Success 72.84 40.71 32.13

Moderate
Success Period 71.12 40.93 30.19

Fail Period -58.61 38.10 -96.71

Extreme Fail -57.60 35.61 -93.21

Table 2: Jitter performance of Viterbi-based temporal filtering

SNR Value (dB)

Jitter Level Tracking Outcome TDSNR FDSNR ∆DSNR

Low Success 36.20 33.28 2.92

Moderate Success 35.33 32.30 3.03

Extreme Fail 30.00 29.60 0.40

where ∆DSNRx is the ∆DSNR value corresponding to jitter scenario x.

Although neither the HMM nor Viterbi-based approaches handle extreme jitter, we note that if the target

signal-to-noise ratio is high enough it may be possible to detect potential collision-course targets from the

output of the morphological image pre-processing stage alone.

4.2 Target Detection Performance

In a potential collision scenario it is desirable to identify the other aircraft as early as possible to ensure

enough time is available to plan and carry out appropriate actions. For instance, evasive manoeuvres may

take a period of time to execute as the aircraft cannot be expected to respond instantaneously to control

inputs. In general, increasing the range at which the threat can be detected will lead to earlier detection and

hence more time to react. Thus, detection range may be considered a suitable statistic for characterising the

detection performance of the candidate filtering algorithms.

In this study, we will firstly quantify detection performance in terms of the maximum range at which

consistent detection occurs. We define consistent detection to have occurred when a simple threshold on the

output of the filter allows the target to be detected in 10 successive frames with zero false-alarms. A consistent

detection, however, does not preclude the existence of strong filter responses at non-target locations which

are undesirable as they may be mistaken for the true target. Hence, ∆DSNR values (averaged across the



Figure 4: Sample of (a) test data frame; (b) CMO image pre-processing output; (c) HMM filter bank output
(dominant member filter); and (d) Viterbi-based filter output, after processing 41 frames.

10 consistent detection frames) will be presented together with the detection range statistics to provide an

indication of the detection confidence.

We highlight that special experiments involving two fixed-wing UAVs flying near collision-course trajectories

were conducted to collect suitable test data for offline post-processing by the detection algorithms. We

elaborate on the details of these data collection experiments in the following paragraphs.

4.2.1 Test Data

Image sequences depicting aircraft on collision-course naturally serve as ideal test cases for evaluating collision

detection algorithms; however, due to the inherent risk of flying aircraft on converging paths, this type of

image data is extremely scarce. This motivated us to conduct our own special flight experiments to collect

suitable test data.



Two fixed-wing UAVs were deployed to collect suitable test data: 1) a Flamingo UAV (Silvertone UAV,

www.silvertone.com) measuring 2.9m from nose to tail with a wingspan of 4m; and 2) a Boomerang 60

model airplane (Phoenix Models) measuring 1.5m from nose to tail with a wingspan of 2.1m. The Flamingo

was powered by a 26cc 2-stroke Zenoah engine driving a 16 by 6 inch propeller. The powerplant for the

Boomerang was an O.S. 90 FX engine driving a 15 by 8 inch propeller.

The avionics payload of the Flamingo included a MicroPilot R© MP2128g flight controller, Microhard radio

modems, an Atlantic Inertial SI IMU04 inertial measurement unit (IMU), a separate NovAtel OEMV-1 GPS

device (in addition to the standard GPS capability provided by the MicroPilot R© board), and an extensively

customised PC104 mission flight computer. In contrast, the Boomerang only possessed a basic setup that

featured a MicroPilot R© MP2028g flight controller and Microhard radio modems.

In our experiments, the Flamingo served as the image data acquisition platform and was further equipped

with a fixed non-stabilised Basler Scout Series scA1300-32fm/fc camera fitted with a Computar H0514-MP

lens that offered 51.4 degree horizontal, 39.5 degree vertical, and 62.3 degree diagonal angles of view. The

camera could be turned on and off remotely from the ground control station, and was configured to record

1024 by 768 pixel resolution image data at a rate of 15Hz with a constant shutter speed to maintain consistent

lighting in the image frames. A solid-state hard-disk was used to store the recorded image data, as opposed

to conventional mechanical disk drives which may be susceptible to vibrations during flight.

Figure 5 shows our UAV platforms (the Boomerang is in front of the Flamingo) configured for data collection.

We highlight the streamlined pod just forward of the Flamingo’s wing that houses the camera along with the

IMU. Our goal was to use the Flamingo, denoted as the camera aircraft, to record images of the Boomerang,

which acted as the target aircraft, whilst both aircraft were flown autonomously along preset waypoints

that defined near collision-course paths (adequate height and time separation was maintained at all times

for safety reasons). In this way we could then capture realistic examples of what would be observed by an

aircraft in the moments leading up to a collision. In particular, we sought image data that depicted the

target aircraft gradually emerging from a state of being imperceptible to the naked eye to being clearly

distinguishable (as opposed to data where the target aircraft suddenly enters into the field of view). We

considered this type of data to be ideal for evaluating the detection range capability of the candidate filtering

algorithms. The captured image data was timestamped during flight so that it could be later correlated with

inertial and GPS-based position logs from both aircraft in order to estimate the detection range.

We conducted numerous flights at an altitude of approximately 450m above mean sea level over agricultural



Figure 5: UAV platforms used to collected test image data. The Boomerang is in front of the Flamingo

and livestock fields in the town of Kingaroy, about 210km north-west of the city of Brisbane, Australia. Our

testing site covered a 4 by 4 kilometer area centered on an unsealed rural airstrip. Apart from obtaining

permission from the landowner, no additional approvals or waivers were required as our flight operations fell

under existing civil aviation safety authority regulations ((Civil Aviation Safety Regulations 1998, 2009);

specifically, Part 101, subpart 101.F). Figure 6 illustrates our general approach to recreating a head-on

collision scenario (not to scale). Typically after take-off, both aircraft were placed in holding patterns until

they were ready to be released to follow predefined waypoints that brought the aircraft onto converging

paths (a similar strategy was used in the simulation of other collision geometries). Apart from take-offs and

landings, the aircraft were flown autonomously throughout the collection of data. Figure 7 illustrates the

aircraft trajectories in an actual head-on engagement scenario that was enacted.

One of the key challenges of this approach involved timing the release of the aircraft from their respective

holding patterns in a way that maximised the time spent by the target aircraft in the field of view of the
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Figure 6: Typical flight plan for enacting a head-on collision scenario (not to scale). After exiting from their
respective holding patterns (HP), the paths of the camera aircraft (solid line) and the target aircraft (dashed
line) followed predefined waypoints (×) before converging at the designated area for capturing data (shaded
region). The aircraft are approximately 2km apart at the start of their passing runs.

camera aircraft. In the case of the head-on collision scenario, this meant having both aircraft simultaneously

in the shaded region of Figure 6 for as long as possible. However, it was difficult to perform this synchro-

nisation, and some of the data collected was not considered suitable for analysis. In spite of this, we were

able to locate useful image sequences from three separate engagement scenarios featuring two different types

of collision geometries. In two out of the three scenarios, the camera aircraft and the target aircraft are

converging head-on; and in one scenario the aircraft are converging at right-angles to each other. Figures

7 to 9 illustrate overhead views of the collision geometries flown in each of the three engagement scenarios;

also shown is a zoomed in sample of the typical vision obtained of the target aircraft for each scenario. The

aircraft paths are plotted in a local East, North, Up (ENU) Cartesian coordinate system relative to a runway

used for take-offs and landings (not shown).
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Figure 7: Engagement scenario 1. (a) Camera aircraft (�) and target aircraft (©) positions leading up to
point of detection (solid line) and shortly after detection (dashed line); (b) sample image frame containing
target aircraft.
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Figure 8: Engagement scenario 2. (a) Camera aircraft (�) and target aircraft (©) positions leading up to
point of detection (solid line) and shortly after detection (dashed line); (b) sample image frame containing
target aircraft.



900 1000 1100 1200 1300 1400 1500 1600 1700 1800

-400

-300

-200

-100

0

100

200

300

East (m)

N
o

rt
h

 (
m

)

(a) (b)

Figure 9: Engagement scenario 3. (a) Camera aircraft (�) and target aircraft (©) positions leading up to
point of detection (solid line) and shortly after detection (dashed line); (b) sample image frame containing
target aircraft.

Analysis of the data in all three scenarios revealed the presence of extreme jitter magnitudes exceeding 4

pixels per frame. This level of jitter was not completely unexpected; the usual jitter anticipated from the

use of a non-stabilised camera was exacerbated by the relatively lightweight UAV platforms (compared with

manned aircraft), which are more liable to external disturbances such as wind gusts and air turbulence.

Given the presence of extreme jitter and in light of the results from the earlier jitter performance characteri-

sation, we considered it appropriate to undertake some level of jitter compensation of the image data before

applying the detection algorithms. As this paper is not primarily concerned with the subject of camera-

motion compensation, we implemented a basic image correction procedure involving a combination optical

flow (Lucas and Kanade, 1981) and template matching (Brunelli, 2009) techniques. Although this image

correction procedure only accounted for translational motion, it was sufficient to reduce the overall effect of

jitter to a moderate level. Image sequences with this moderate level of ‘residual’ jitter were then processed

by the detection algorithms.

4.2.2 Detection Results

Table 3 illustrates the detection performance of the HMM and Viterbi-based filtering approaches in each

of the three engagement scenarios. The detection ranges are calculated based on the camera and target



aircraft GPS position information corresponding to the image frame that detection is declared (given that

no unusual satellite geometries were encountered during the collection of the data, we estimate the 1-σ 3D

position error of the GPS positions to be approximately 17 meters, based on standard values for HDOP,

VDOP, and UERE (Parkinson and Spilker, 1996)).

Table 3: Target detection performance of HMM and Viterbi-based temporal filtering

HMM Filter Viterbi-based Filter

Scenario Geometry Detection Range (m) ∆DSNR Detection Range (m) ∆DSNR

1 Head-On 412 38.04 425 1.61

2 Head-On 562 31.94 564 1.23

3 Right-Angle 881 19.55 893 2.83

In all three scenarios detection occurred a few frames earlier for the Viterbi-based algorithm when compared

with the HMM algorithm. This is reflected in the slightly greater detection ranges for the Viterbi-based

approach. The approximate positions of the aircraft at the time of detection are marked on the flight paths

given in Figures 7(a), 8(a), and 9(a) (due to the small differences in detection ranges, the aircraft positions

corresponding to when detection is declared are not separately marked for the two algorithms). Overall, we

obtained detection ranges that are generally consistent with the results reported in an earlier study (Carnie

et al., 2006), which applied a detection algorithm similar to the Viterbi-based approach discussed in this

paper. The earlier study attempted to detect a manned Cessna aircraft using image data captured by a fixed

ground-based camera, and reported detection ranges out to about 6km. This range is roughly in proportion

to our results in Table 3, considering that a Cessna aircraft is around 6-7 times the size of our Boomerang

target aircraft. While we do not claim that a linear relationship exists between target size and detection

distance, this comparison of detection range results reinforces the intuitive notion that larger targets should

be able to be detected at greater ranges. We plan to conduct further experiments using full-scale Cessna

aircraft in order to better understand the relationship between target size and detection range.

Furthermore, Table 3 shows the ∆DSNR values corresponding to the two target detection approaches. The

∆DSNR values for the HMM filter are consistently higher than the values for the Viterbi-based filter. This

suggests that the HMM filter may be more effective at suppressing non-target responses (whilst maintaining a

strong response at the true target location), and as a consequence, we may expect in general a lower incidence

of false-alarms for the HMM filter than the Viterbi-based filter. We may also interpret the ∆DSNR values in

terms of the empirical SNR criterion (14) established earlier for successful tracking. For the HMM filtering

approach, the SNR criterion is easily satisfied, with the ∆DSNR values in all three scenarios clearly greater



than 16.065 = 0.5×32.13. On the other hand, the results for the Viterbi-based filtering approach are mixed.

Scenario 1 is a borderline case, and in Scenario 2 the ∆DSNR value is just below the threshold of 1.46 =

0.5×2.92. This suggests that the consistent detections established by the Viterbi-based filter in scenarios 1

and 2 are perhaps less reliable, in the sense that the filter may possibly be on the verge of losing track of

the target.

We conjecture that residual jitter effects present in the image sequences after compensation (after all, no com-

pensation technique is perfect) may be partly responsible for the difference in detection range performance.

This is because residual jitter would tend to affect the HMM filter slightly more so than the Viterbi-based

filter in view of our results from the earlier jitter performance analysis. We also highlight the significantly

larger detection ranges reported for the right-angle collision geometry compared with the head-on cases. One

possible explanation for this is that the target aircraft tends to appear as a larger object from the right-angle

perspective (cross-section area approximately 0.25m2) than from head-on (cross-section area approximately

0.1m2).

We have used detection range as a metric for comparing the performance of the two candidate target detection

algorithms. However, from an operational point of view it is the time-to-impact from the point of detection

that is perhaps more informative, rather than the absolute distance to the conflicting aircraft. This is because,

analogous to the time needed by human pilots to respond to a collision situation, an automated system also

requires an interval of time to plan and carry out appropriate actions. Depending on the closing speed of

the aircraft involved, a particular detection range may or may not provide sufficient time to accommodate

both processing needs and aircraft response lag.

The Federal Aviation Administration has issued an advisory circular that provides guidance on the time

required for a pilot to recognise an approaching aircraft and execute an evasive manoeuvre (FAA Advisory

Circular: Pilots’ role in collision avoidance, 1983). According to the advisory circular, as a general rule, a

conflicting aircraft must be detected at least 12.5 seconds prior to the time of impact. This motivates us to

undertake some further analysis to gauge approximately how much time ahead of impact the system was able

to detect the target. We chose to conduct our analysis on the worst-case scenarios i.e. the head-on geometries

of scenarios 1 and 2. In our study we projected, from the point of detection, hypothetical trajectories for each

aircraft corresponding to the shortest possible collision-course path (this path is defined by a straight line

drawn between the camera and target aircraft positions at the point of detection). Each aircraft’s average

speed in the last 5 seconds leading up to the point of detection was used as the speed travelled along the

projected trajectories. Under these circumstances, the time-to-impact at the point of detection in Scenario 1



was estimated to be around 8 seconds (based on a combined closing speed of 51m/s), and for Scenario 2 the

time was around 10 seconds (based on a combined closing speed of 53m/s). It is clear that these times are

below the recommended 12.5 seconds; however, our results must be considered in the appropriate context.

The advisory circular information pertains to human pilots, with the 12.5 seconds broken down into the

time taken to perform various sub-tasks. Over half of the time is allocated to the tasks of recognising the

existence of the collision situation, making a decision to perform an avoidance manoeuvre, and manipulating

the aircraft controls to execute the manoeuvre. An automated system must also carry out similar tasks, but

there is potential for the tasks to be completed much more quickly given the rapidly improving processing

capacities of computing hardware and the near instantaneous actuation of flight controls. Hence, we expect

an equivalent safe detection time ahead of impact for automated systems to be less than 12.5 seconds.

4.3 Proposed System Hardware Configuration and Performance

Image processing is traditionally a very computationally intensive task. Hence, we considered it a challenge

to achieve real-time performance for our proposed vision-based collision detection system. The increasing

complexity of image processing algorithms is pushing at the processing limits of modern CPU-based comput-

ing architectures, even with the use of optimized computer vision libraries. Highly specialised hardware such

as field programmable gate arrays (FPGAs) and dedicated digital signal processors have been used to over-

come the limitations of the CPU; however, such hardware are typically not readily accessible. In this paper,

we investigate the potential of widely available commercial-off-the-shelf (COTS) Graphics Processing Units

(GPUs) for running our candidate target detection algorithms. The parallel processing (single-instruction,

multiple-data (SIMD)) capability of GPUs is ideally suited to computer vision tasks, which often require

the same calculations to be performed repeatedly on each individual pixel (or group of pixels) over an entire

image.

Figure 10a illustrates the high-level hardware architecture of our collision detection system. Particular

attention was paid to the interaction between hardware components to enhance processing speed. The key

design strategies that we followed included: 1) the GPU module should carry out all the computationally

intensive image processing tasks; 2) memory transfers between the host computer and the GPU module

should be minimized; and 3) the host computer should be kept free to perform other non-image related

tasks. By adhering to these strategies, we produced a system whereby each image frame captured by the

vision sensor was directly copied from the host computer to the GPU module for processing. This allowed

the entire detection algorithm to be executed on the GPU module and ensured that the GPU was utilized
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Figure 10: (a) High-level system architecture; (b) GPU image processing architecture.

efficiently (in addition, offloading all the image processing to the GPU module eliminated time consuming

memory transfers that would otherwise be required if the processing was shared between the host and GPU).

Once processing is completed on the GPU, only one additional memory transfer was needed to return the

processing result (for example, a detection probability) to the host computer for further analysis. This entire

process is repeated at the capture of the next image frame.

Recently, the parallel processing capabilities of GPUs have been exploited by other authors for tracking

applications (Ohmer and Redding, 2008). Figure 10b illustrates the general way in which we exploited the

GPU for processing images. At a high level, this involved dividing the image frame into blocks, with each

block containing a number of threads. We aimed to allocate one thread to each pixel of the image frame so

that operations could be carried out simultaneously on all pixels, greatly enhancing the processing speed.

Overall, as a minimum standard, the system was required to handle real-time processing of image data

(1024 by 768 pixel image frames, encoded at 8 bits per pixel) captured at a rate of 30Hz. As a first step to

characterizing the performance of a GPU based system, we bench-tested an implementation of the system

architecture in Figure 10a using the following desktop computer components:

• Host Computer: Intel Pentium IV 3.2GHz CPU (with Hyper-threading); 1Gb SDRAM at 666MHz;

Linux Ubuntu 32 Bit operating system

• GPU Module: NVIDIA GeForce GTX 280, 1Gb GDDR3 RAM (GV-N28-1GH-B)



The NVIDIA GeForce GTX 280 has 30 multiprocessors and a compute capability of 1.3 (NVIDIA CUDA

Compute Unified Device Architecture: Programming Guide Version 2.0, 2008). Programming access to

the GPU module was facilitated by NVIDIA’s Compute Unified Device Architecture (CUDA) framework

(NVIDIA CUDA Compute Unified Device Architecture: Programming Guide Version 2.0, 2008). Using this

configuration we were able to achieve an average frame rate of approximately 150Hz (or an average of 7.47ms

to process each frame) for the Viterbi-based detection algorithm, and a frame rate of approximately 130Hz

(or an average of 6.51ms to process each frame) for the HMM algorithm (these processing times include file

input/output operations). It is clear that the processing rates for both algorithms are well in excess of our

earlier 30Hz requirement.

Our bench-test with desktop components has demonstrated the enormous potential of GPUs for realising

real-time performance in vision-based systems. Motivated by these encouraging results, we have implemented

a flight-ready system architecture using the following components:

• Host Computer: Intel Core 2 Duo Merom 800MHz CPU; 2Gb SDRAM at 800MHz; Linux Debian

32 Bit operating system

• GPU Module: NVIDIA GeForce 9600 GT, 512Mb GDDR3 RAM (GV-N96TGR-512I)

Figure 11 illustrates the physical hardware layout of the system, which is currently being integrated on a

custom-modified Cessna 172 aircraft, as shown in Figure 12.

The NVIDIA GeForce 9600 GT was selected as it offered a good balance between processing performance,

power consumption, and volume requirements. Specifically, it was the highest performing (in terms of the

number of multiprocessors) GPU device that did not require an external power connection to supplement

supply from the PCI bus. Figure 11 illustrates the GeForce 9600 GT (right) alongside the host computer. The

GPU has 8 multiprocessors, a compute capability of 1.1, and consumes only 59 Watts of power (low-power

version).

From experience, our implementation of the detection algorithms on the GPU scales roughly linearly with

the number of multiprocessors. Hence, we anticipate processing rates on our flight hardware configuration to

be approximately four times less than those reported for the bench-tests. This translates to a frame rate of

around 37Hz for the Viterbi-based algorithm and a frame rate of around 32Hz for the HMM approach, which

both still satisfy our 30Hz requirement. We highlight that there is still scope for further improvement in

processing speeds, as we have yet to exploit advanced GPU code optimisation techniques (such as pipelining



and dynamic memory allocation methods).
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Figure 11: Flight-ready hardware configuration.

Figure 12: Cessna 172 aircraft.



5 Lessons Learnt and Future Work

Our long term goal extends beyond the ability to simply detect potential collision threats. We aim to

establish a well-refined target detection capability, before progressively evolving this into a fully autonomous

closed-loop collision avoidance system. This closed-loop system will include decision-making and control

modules so that the aircraft may automatically and actively respond to any detected threats. In the near

term, our plans are to conduct further testing and refinement of the detection system, as discussed in the

following sections.

5.1 Hardware Implementation and Evaluation

Implementation of the flight hardware configuration is complete. The next step is to verify the anticipated

processing speed of the hardware under realistic operating conditions via several flight trials using full-

scale manned Cessna aircraft and UAV platforms. Should the actual speed fall below our expectations or

our minimum requirements, we may consider employing advanced code optimisation techniques to improve

processing speed. Alternatively, we may choose to upgrade to a more powerful GPU device at the expense

of increased energy consumption.

5.2 Target Detection

Based on the detection range and image jitter performance results, neither the HMM nor the Viterbi-based

algorithm stood out as the decidedly better detection approach. Admittedly, only three data sets were used

in the analysis of detection range; hence, we intend to collect more data so that a more comprehensive

performance analysis can be conducted. Our next planned flight experiments will be carried out using

manned Cessna aircraft, which we anticipate may alleviate the synchronisation issues we encountered with

UAV platforms (see next section) and allow higher quality data to be collected in larger quantities. A custom

designed bracket has been manufactured that allows a camera to be mounted near the intersection of the

wing and the supporting strut, as shown in Figure 13.

Moreover, our image jitter analysis results combined with the inter-frame motion observed in the collected

image data suggests that jitter compensation is necessary for our target detection algorithms to perform

effectively on a UAV platform using an unstablised camera. In addition to the simple image-based com-

pensation approach used in this paper, we are testing more advanced image correction techniques based on

aircraft attitude and inertial measurements. If our compensation techniques prove to be inadequate, we may



Figure 13: Camera mounting bracket for Cessna aircraft.

consider the use of a stabilised camera and/or increasing the data capture rate to further mitigate jitter

effects in the captured data.

5.3 Data Collection

We encountered many challenges in the collection of suitable test data, particularly in our flight trials that

simulated collision-course scenarios. These experiments required the aircraft flights to be synchronised in

time so that the target aircraft is kept in the field of view of the camera aircraft for as long as possible.

We found it particularly difficult to achieve a precise sychronisation of the flights. On reflection, we have

identified several factors that have contributed to this: 1) The inability to colocate the ground control

stations of each aircraft due to the range limits of aircraft communication links (our suboptimal approach to

overcoming this was to station personnel at separate ground control stations and to coordinate the release

of the aircraft from their holding patterns via hand-held radios); 2) The use of fixed-wing platforms which



are more difficult to position accurately as they must be kept in constant motion (aircraft positions were

monitored by sight and through the MicroPilot R© Horizon software); 3) The inability to make adjustments

to flight paths once the aircraft are released from their holding patterns. This is due to the aircraft being

operated in an autonomous mode.

In the short term, we will switch to manned Cessna platforms in an attempt to improve the synchronisation

of flights in future data collection experiments. In the long term, we are considering upgrades to antennas

and cabling to improve signal gain so that the UAV ground control stations can be colocated. This will allow

the flights to be better coordinated. It may also be possible to improve flight synchronisation by introducing

more flexibility into the flight plan; for example, by adding a small segment of manual control just after

the aircraft’s release from the holding pattern so that adjustments and corrections can be made to improve

timing if necessary (remotely piloting the aircraft for the entire experiment is not considered feasible as it is

too difficult to maintain a consistent altitude for an extended period of time). An alternative is to develop

new software that will allow both UAV platforms to be controlled by a single control station. This will

open up the opportunity to have the aircraft flights automatically synchronised without human intervention.

Overall, the field and operational experiences gained from our flight trials will be invaluable in fine-tuning

future data collection experiments.

6 Conclusion

This paper proposes a vision-based collision detection system for aerial robotics. It considers two target

detection approaches and a GPU-based hardware implementation. Special flight experiments were conducted

to collect suitable test data for evaluating the detection capabilities of a HMM-based detection algorithm and

a Viterbi-based algorithm. The detection algorithms were able to detect targets at distances ranging from

400m to around 900m (depending on the collision geometry). Based on aircraft closing speeds leading up

to the point of detection and a hypothetical extrapolation of aircraft trajectories, these detection distances

would provide an advanced warning about 8 to 10 seconds prior to impact. These results are not too far from

the 12.5 second response time recommended for human pilots, and are an encouraging sign for vision-based

collision detection approaches. We exploit the parallel processing capabilities of GPUs to enable our detection

algorithms to execute in real time, and anticipate our flight-ready hardware configuration to achieve frame

rates of approximately 30Hz, based on earlier bench-testing results.
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