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Abstract This paper addresses the analysis of aircraft control capabilities during the cruise

phase (flying at the established level with practically constant configuration and speed) in

the presence of windshears. The study uses a point-mass aircraft model describing flight in a

vertical plane. The problem is formulated as a differential game against wind disturbances.

The first player, autopilot, controls the angle of attack and the power setting, whereas the

second player, wind, produces dangerous gusts. The state variables of the model are subjected

to constraints expressing aircraft safety conditions. Namely, the altitude, path inclination, and

velocity are constrained. Viability theory is used to find the so-called viability kernel, the

maximal subset of the state constraint where the aircraft trajectories can remain arbitrary long

if the first player utilizes an appropriate feedback control, and the second player generates

any admissible disturbances. The computations are based on grid methods developed by the

authors and implemented on a multiprocessor computer system.
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1 Introduction

There is permanent interest in designing aircraft guidance schemes (possibly for use with

autopilots) ensuring safe aircraft trajectories under conditions of windshear. In this connec-

tion, we can refer to papers [6,13,18–20,22,23,29] where optimal control theory, robust

control techniques, and differential game theory have been used to design appropriate con-

trols. Both the case of known wind velocity field and the case of unknown wind disturbances

have been considered.

While the papers quoted above deal with obtaining control strategies for survival enhanc-

ing, it is reasonable to address the question of the existence of such controls. In particular, it is

meaningful to impose constraints on the state variables of the system to define an appropriate

flight domain (AFD) and to study the question of the existence of controls keeping the system

there (see [3,32]).

Such an approach is concerned with viability theory (see [1]). In recent time, there has

been an essential progress in approximate computing viability kernels for control and con-

flict control problems. A comprehensive outline of abstract algorithms and their numerical

implementations can be found in [26]. Traditionally, viability kernels are approximated by

approaches proposed in [5,27,31]. Algorithms for computing approximate discriminating

kernels are given in [11,12]. In particular, efficient numerical implementations are developed

in the case of linear control problems (see [21]). Because of the relationship between reachable

sets and viability kernels, it is easy to adopt level set algorithms based on Hamilton–Jacobi

equations (see, e.g., [25]) to approximate these kernels. A realistic example of the application

of such a technique is given in [28] where stabilization of a realistic vehicle is achieved using

a viability approach.

The relation between differential games and viability kernels should also be mentioned. In

particular, the current paper utilizes theoretical and numerical results on differential games.

There are two approaches to numerical solving of differential games. The first one is related to

the construction of the so-called maximal stable bridges introduced in [16]. The works [15,17]

show typical techniques based on approximations of stable bridges. The second approach is

concerned with viscosity solutions to Hamilton–Jacobi equations and grid-based algorithms.

Here, the current state of scientific knowledge is well reflected in Refs. [2,4,14,24]. In papers

[7,8], the Hamilton–Jacobi equation approach is extended to more general cost functionals.

In the current paper, a numerical method (see Sect. 4) for finding viability kernels, i.e.,

the largest sets of initial states lying in AFD from which viable trajectories emanate, is

proposed. Moreover, feedback controls that produce trajectories remaining in the viability

kernel for all possible admissible wind gusts are constructed. Thus, the dynamics of the

aircraft is considered as a differential game, formalized according to [16], where the first

player is associated with control inputs, whereas the second player forms the worst wind

disturbance. The first player can measure the current state of the plant, whereas the second

one has at his disposal both the current state and current control of the opponent (“future”

values are not available). In other words, the second player uses the so-called feedback

counter-strategies. The value function of this game is computed using a stable grid algorithm

reported in [9,10]. Each level set of the value function converges to a viability (discriminating)

kernel as the backward time tends to infinity. Since the first player is discriminated, the

resulting viability kernels are called minimax ones. Taking into account that feedback counter-
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strategies and non-anticipative open-loop counter-controls of the second player yield the same

result (cf. [33]), minimax viability kernels coincide with discriminating ones for Hamiltonians

defined through the minu maxv operation. The specific of minimax viability kernels is that

they are defined without assuming the Isaacs (saddle point) condition. Therefore, the notation

“minimax viability kernel” is used through the current paper. Similar arguments are true for

maximin viability kernels related to feedback counter-strategies of the first player and pure

feedback strategies of the second one.

The paper is organized as follows:

Section 2 presents a point-mass model describing a generic modern regional jet transport

aircraft flying in a vertical plane. The model is written in the kinematic reference system,

and therefore, it does not contain the time derivatives of the wind components.

In Sect. 3, conflict control problems are formulated, state constraints corresponding to

the cruise phase are imposed, and computed viability kernels are presented. Additionally,

trajectories generated by an optimal feedback control, working against different disturbances,

are shown.

Section 4 outlines the concept of differential games and viability kernels. A grid algorithm

for the computation thereof is sketched, and a method for the design of optimal feedback

strategies is given.

2 Model Equations

This section introduces a point-mass aircraft model representing the flight of a modern generic

regional jet transport aircraft in a vertical plane. To describe the influence of the relevant forces

on the aircraft dynamics, the following euclidian coordinate systems (COS) with their origin

either in the center of gravity of the aircraft (CG) or at a fixed reference point on the earth

surface (O) are considered (see Table 1; Fig. 1).

Here,
−→
VK and

−→
VA are kinematic and aerodynamic airfraft velocities, respectively.

The angles which define the relationship between the coordinate systems are the kinematic

angle of attack αK , the aerodynamic angle of attack αA, the kinematic path inclination angle

γK , and the thrust inclination angle σ (see Fig. 1).

The translation dynamics are derived in the kinematic coordinate system (K ) for which

the xK -axis points into the direction of the kinematic velocity of the aircraft,
−→
VK , and the

position propagation is given in the local coordinate system (N ):

Table 1 Aircraft coordinate

systems
COS Index x-axis Origin

Local N Parallel to the earth surface O

Kinematic K In direction of
−→
VK CG

Aerodynamic A In direction of
−→
VA CG

Thrust P In direction of the symmetry

axis of the turbine (positive aft

looking forward)

CG

Body fixed B In direction of the nose and in

the symmetry plane of the air-

craft

CG
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Fig. 1 Aircraft coordinate systems (local, kinematic, aerodynamic, thrust, and body fixed) and associate

angles. The corresponding, not shown, “z” axes are orthogonal to the “x” axes

mV̇K = PV − D − mg sin γK , (1)

mVK γ̇K = Pγ + L − mg cos γK , (2)

ḣN = VK sin γK . (3)

In the above equations, PV and Pγ denote the thrust forces, m is the aircraft mass, g the

gravitational constant, and D and L represent the drag and lift forces, respectively. The last

two variables are defined in the kinematic coordinate system (K ) as follows:
(

D

L

)
=

[
cos(αA − αK ) − sin(αA − αK )

sin(αA − αK ) cos(αA − αK )

]
·
(

D̂

L̂

)
, (4)

where D̂ and L̂ are, respectively, the drag and lift forces in the aerodynamic reference system

(A). They are given by the relations

D̂ = 1

2
fD(αA, M)ρ(h)SV2

A, (5)

L̂ = 1

2
fL(αA, M)ρ(h)SV2

A, (6)

where αA is the aerodynamic angle of attack, M the Mach number, ρ(h) the air density at

altitude h, S the wing area, and VA is the absolute value of the aerodynamic velocity. The lift

and drag coefficients fD(αA, M) and fL(αA, M) are taken in the form:

fD(αA, M) = cD
1 + cD

2 αA + cD
3 M + cD

4 α2
A + cD

5 αA M

+ cD
6 M2 + cD

7 α3
A + cD

8 α2
A M + cD

9 αA M2, (7)

fL(αA, M) = cL
1 + cL

2 αA + cL
3 M + cL

4 α2
A + cL

5 αA M

+ cL
6 M2 + cL

7 α3
A + cL

8 α2
A M + cL

9 αA M2, (8)

where the constants cD
i and cL

i , i = 1, . . . , 9 are found from least square fitting to experimen-

tal data. The absolute value of the aerodynamic velocity VA can be derived using its relation
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to the kinematic velocity
−→
VK considered in the local frame (N ) and the wind velocities Wx

and Wh in the xN - and hN -direction, respectively:

VA =
∥∥∥∥
−→
VK −

(
Wx

Wh

)∥∥∥∥ . (9)

Therefore,

VA =
[
(VK cos γK − Wx )

2 + (VK sin γK − Wh)2
]1/2

.

The Mach number M is defined as the ratio between the absolute value of the aerodynamic

velocity VA and the speed of sound c:

M = VA

c
, c =

√
κRT(h), (10)

with c depending on the adiabatic index for air, κ , the gas constant for ideal gases, R, and

the temperature of air, T (h), at the altitude h.

From the formulas of the International Standard Atmosphere ISA (DIN ISO 2533) for the

troposphere layer (h = −2 . . . 11 km, relative to sea level), the temperature of air, T (h), and

air density, ρ(h), are approximated as follows:

T (h) = Ts ·
[
1 − n − 1

n

g

R · Ts
· HG

]
, (11)

ρ(h) = ρs ·
[
1 − n − 1

n

g

R · Ts
· HG

] 1
n−1

, (12)

HG = rE · h

rE + h
. (13)

In the formulas above, n is the polytropic exponent, g the gravitational constant, rE the earth

radius, and Ts and ρs are the reference temperature and density of air, respectively.

Note that, in all following state constraints, the altitude hN is defined relative to the altitude

h = 5000 m.

For modeling thrust forces, a two engine setup with thrust inclination angle σ is considered.

The following three main components influencing the thrust can be referred: the gross thrust

(GT), the ram drag (RD), and the cowl drag (CD). The net thrust components PV and Pγ ,

appearing in Eqs. (1) and (2), are defined as follows in the kinematic frame (K ):

(
PV

Pγ

)
=

[
cos αK sin αK

− sin αK cos αK

]
·
(

P̂V

P̂γ

)
, (14)

where the components P̂V and P̂γ are computed by subtracting the drag components RD and

CD from the gross thrust GT in the body-fixed frame (B):

P̂V = 2 · [GT · cos σ − (RD + CD) · cos αA], (15)

P̂γ = 2 · [GT · sin σ − (RD + CD) · sin αA]. (16)

Here, the thrust components GT, RD, and CD are approximated by a second-order polynomial

least squares fit depending on the thrust command δT ∈ [0, 1] and the Mach number M using
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the constants cGT
i , cRD

i , and cCD
i i = 1, . . . , 5:

GT(δT , M) = cGT
1 + cGT

2 M + cGT
2 δT + cGT

3 M2 + cGT
4 δT M + cGT

5 δ2
T , (17)

RD(δT , M) = cRD
1 + cRD

2 M + cRD
2 δT + cRD

3 M2 + cRD
4 δT M + cRD

5 δ2
T , (18)

CD(δT , M) = cCD
1 + cCD

2 M + cCD
2 δT + cCD

3 M2 + cCD
4 δT M + cCD

5 δ2
T . (19)

Introduce the following additional equations that smooth the controls:

α̇K = α̃K , δ̇T = δ̃T . (20)

The following equations smooth the wind disturbances:

Ẇx = −kw

(
Wx − W̃x

)
, Ẇh = −kw

(
Wh − W̃h

)
, with kw = 1 1/s. (21)

3 Problem Statement and Simulation Results

Problem 1 The model consists of Eqs. (1)–(3) and (20). Thus, the state vector has five

variables: VK , γK , hN , αK , and δT . The rate of the angle of attack, α̃K , and the rate of the

thrust setting, δ̃T , are considered as controls, whereas Wx and Wh are regarded as disturbances;

see formula (9). The following constraints are imposed on the controls and disturbances:

α̃K ∈ [−5, 5]◦/s, δ̃T ∈ [−0.3, 0.3] 1/s, |Wx | ≤ 4 m/s, |Wh | ≤ 4 m/s. (22)

Therefore, instantaneous changes in the angle of attack and thrust setting are not permitted.

The following state constraints are imposed:

VK ∈ [100, 170] m/s, |γK | ≤ 20◦, hN ∈ [−150, 150] m,

αK ∈ [0, 16]◦, δT ∈ [0.3, 1].
(23)

In the numerical construction, the box [90, 180]× [−25, 25]× [−160, 160]× [−4, 20]×
[0.2, 1.2] of the space (VK , γK , hN , αK , δT ) was divided in 100 × 50 × 320 × 24 × 14 grid

cells, and the grid method (36) described in Sect. 4.1 is applied. The sequence of time steps,

{δℓ}, was chosen either as δℓ = 0.01/ ln(3 + ℓ2) or δℓ ≡ 0.01, and the computations were

performed until |Vh

ℓ+1 − V
h

ℓ | ≤ ǫ = 10−6 for all grid nodes. About 30,000 time steps were

carried out. In both cases of choosing {δℓ}, the results were identical. Moreover, the maximin

viability kernel computed with the grid schema (37) is only a few larger, which shows that

the additional information about current values of the wind disturbances does not provide

too much improvement of the control quality.

It should be noted that the constraints imposed on the disturbances, see (22), are near to

critical. That is, the viability kernel is empty if the bound on the disturbances is larger than

5 m/s.

Figure 2 shows the cross section of the minimax viability kernel if the last two state

variables are fixed, αK = 8 and δT = 0.65.

Figure 3 shows the same set as in Fig. 2 and two optimal trajectories emanating from

the same initial point lying in the viability kernel near to its boundary. The trajectories are

computed when the first player (control) uses its optimal feedback strategy. The trajectory (0–

1) corresponds to the case where the second player (disturbance) utilizes its optimal feedback

counter-strategy. The trajectory (0–2) is computed when the disturbance is chosen as follows:

Wx (t) =
{

4, t ∈ [20, 40],
−4, t /∈ [20, 40], Wh(t) = −Wx (t + 15). (24)
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Fig. 2 Cross section (αK = 8

and δT = 0.65) of the

five-dimensional minimax

viability kernel

Fig. 3 Cross section (αK = 8

and δT = 0.65) of the

five-dimensional minimax

viability kernel. The trajectory

(0–1) corresponds to an optimal

feedback strategy of the control

and an optimal feedback counted

strategy of the disturbance. In the

case of the trajectory (0–2), the

impulse open-loop control (24) of

the disturbance is used (Color

figure online)

The simulated flight time is equal to 30 min. The trajectories go to their attraction points and

stay there.

Figure 4 shows another cross section of the viability set. Namely, the second and fifth

components of the state vector are fixed, γK = 0 and δT = 0.65. The projections of the same

trajectories are shown: The black and red curves correspond to (0–1) and (0–2), respectively.

In the case of Fig. 5, the second and fourth components of the state vector are fixed,

γK = 0 and αK = 8. The projections of the same trajectories are shown.

Figure 6 is analogous to Fig. 3. The difference is that the sparse grid approximation

technique is used for the construction of an optimal feedback strategy of the control and an

optimal feedback counter-strategy of the disturbance (see Sect. 4.2).

The computation was performed on the SuperMUC system at the Leibniz Supercomputing

Centre of the Bavarian Academy of Sciences and Humanities. The problem was parallelized

between 200 computers with 16 cores per computer and two threads per core. About 30,000

time steps were done. The runtime was about 1 h.

Problem 2 The model consists of Eqs. (1)–(3), (20), (21). Thus, the state vector has seven

variables: VK , γK , hN , αK , δT , Wx , and Wh . The rate of the angle of attack, α̃K , and the

rate of the thrust setting, δ̃T , are considered as controls. In the same way as in Problem 1,

their instantaneous changes are not permitted. The disturbances are now associated with the

artificial variables W̃x and W̃h that define the physical wind components Wx and Wh . Thus,

the physical wind components do not exhibit instantaneous changes now.

The following constraints are imposed on the controls and disturbances:

α̃K ∈ [−5, 5]◦/s, δ̃T ∈ [−0.3, 0.3] 1/s, |W̃x | ≤ 5 m/s, |W̃h | ≤ 5 m/s. (25)
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Fig. 4 Cross section (γK = 0

and δT = 0.65) of the

five-dimensional minimax

viability kernel. The black and

red trajectories correspond to the

trajectories (0–1) and (0–2) from

Fig. 3, respectively (Color figure

online)

Fig. 5 Cross section (γK = 0

and αK = 8 ) of the

five-dimensional minimax

viability kernel. The black and

red trajectories correspond to the

trajectories (0–1) and (0–2) from

Fig. 3, respectively (Color figure

online)

Fig. 6 Same cross section

(αK = 8 and δT = 0.65) of the

five-dimensional minimax

viability kernel as in Fig. 3. The

difference is that the sparse grid

approximation technique is used

for the construction of an optimal

feedback strategy of the control

and an optimal feedback

counter-strategy of the

disturbance (Color figure online)

The following state constraints are imposed:

VK ∈ [100, 200] m/s, |γK | ≤ 10◦, hN ∈ [10, 190] m,

αK ∈ [0, 16]◦, δT ∈ [0.3, 1].
(26)

Notice that the state constraints |Wx | ≤ 5 m/s and |Wh | ≤ 5 m/s hold automatically because

of Eq. (21) and the constraints (25).

In the numerical construction, the box [90, 210] × [−15, 15] × [0, 200] × [−4, 20] ×
[0.2, 1.2] × [−6, 6] × [−6, 6] of the space (VK , γK , hN , αK , δT , Wx , Wh) was divided in

120 × 30 × 200 × 24 × 14 × 12 × 12 grid cells, and 300 steps of the algorithm (36) were

carried out. The same computer resources as in Problem 1 were involved. The runtime is



602 Dyn Games Appl (2017) 7:594–608

Fig. 7 Cross section (αK = 8,

δT = 0.65, Wx = 0, and

Wh = 0) of a rough

approximation of the minimax

viability kernel. The computation

was stopped after 300 steps of the

algorithm (36)

about 1 h. The aim of this simulation is to show the feasibility of the computations in high

dimensions. It should be noted that the computer resources used are regarded as “middle

task” on the SuperMUC system.

Figure 7 shows the cross section of the computed seven-dimensional set if the last four

state variables are fixed, αK = 8, δT = 0.65, Wx = 0, and Wh = 0.

4 Differential Games and Viability Kernels

Let us shortly outline a method for computing viability kernels. The description will be given

from the point of view of nonlinear differential games.

Consider a conflict control system with the autonomous dynamics

ẋ = f (x, u, v), x ∈ Rn, u ∈ P ⊂ R p, v ∈ Q ⊂ Rq . (27)

Here, x is the state vector; u and v are control parameters of the first and second players,

respectively; and P and Q are compacts of the corresponding dimensions. In the following,

it is assumed that all functions of x are defined on the whole Rn and have global regularity

properties. Thus, the right-hand side f is supposed to be globally bounded, continuous in

(x, u, v), and Lipschitzian in x .

The following relation is called saddle point condition:

min
u∈P

max
v∈Q

〈ℓ, f (x, u, v)〉 = max
v∈Q

min
u∈P

〈ℓ, f (x, u, v)〉, ℓ ∈ Rn, x ∈ Rn . (28)

Note that this condition does not hold for Problem 1 but holds for Problem 2 in Sect. 3.

Bearing in mind the conflict control system (27), consider for any v ∈ Q the differential

inclusion

ẋ ∈ Fv(x) = co{ f : f (x, u, v), u ∈ P}. (29)

Let u → v(u) be a Borel measurable function with values in Q. Consider the differential

inclusion

ẋ ∈ Fv(·)(x) = co{ f : f (x, u, v(u)), u ∈ P}. (30)

Let G ⊂ Rn be a compact set satisfying the condition G = int G, T an arbitrary time

instant, and N = (−∞, T ] × G. For any subset W ⊂ N and any time instant t ≤ T , denote

W (t) := {x ∈ Rn : (t, x) ∈ W }. The set G plays the role of state constraint.

The following definitions describe stability properties of subsets of N .

Definition 1 (Maximin u-Stability Property [16]) A set W ⊂ N is said to be u-stable in

maximin sense on the interval (−∞, T ] if for any initial position (t∗, x∗) ∈ W , for any time
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instant t∗ ∈ [t∗, T ], for any v ∈ Q there exists a solution x(·) to the differential inclusion

(29) with the initial state x(t∗) = x∗ such that (t∗, x(t∗)) ∈ W .

Definition 2 (Minimax u-Stability Property [16]) A set W ⊂ N is said to be u-stable in

minimax sense on the interval (−∞, T ] if for any initial position (t∗, x∗) ∈ W , for any time

instant t∗ ∈ [t∗, T ], for any Borel measurable function u → v(u) with values in Q there

exists a solution x(·) to the differential inclusion (30) with the initial state x(t∗) = x∗ such

that (t∗, x(t∗)) ∈ W .

Properties of u-stable (both in maximin and minimax sense) sets.

1. The closure of an u-stable set is u-stable set.

2. The union of any family of u-stable sets is u-stable set.

3. There exists a unique (closed) maximal u-stable set if there is at least one u-stable subset

of N .

4. If W is a maximal u-stable set, then W (t1) ⊂ W (t2) whenever t1 ≤ t2 ≤ T , and,

additionally, W (T ) = G.

5. Remembering that there are two types of u-stability, the following holds for maximal u-

stable sets: W mima ⊂ W mami, where the upper indexes point out to minimax and maximin

u-stability, respectively.

6. If the saddle point condition (28) holds, then W mima = W mami.

Property 1 follows from properties of the differential inclusions (29) and (30); see, e.g.,

[9] for the proof. Property 2 immediately follows from the definition of u-stability. Property 3

is the consequence of the previous two properties. The first part of property 4 is proved in [9],

and the last part follows from the continuous dependency of the solution sets of the inclusions

(29) and (30) on the initial state and from the condition G = int G. The last two properties

are true due to the following climes: the minimax u-stability property implies the maximin

one, and they are equivalent if the saddle point condition holds.

The next proposition gives rise to the definition of viability kernels. The proposition deals

with both types of u-stability.

Proposition 1 (See [9] for the proof) Let W be a maximal u-stable subset of N = (−∞, T ]×
G. If W (t) �= /© for all t ≤ T , then the set

K =
⋂

t≤T

W (t)

is non-empty, and W (t) → K in the Hausdorff metric as t → −∞. The set K is called the

viability kernel of G and denoted by Viab(G).

The next proposition also deals with both types of u-stability.

Proposition 2 (See [9] for the proof) The set (−∞, T ] × Viab(G) is u-stable.

The following propositions show the appropriateness of the above-given definitions.

Proposition 3 Let x∗ ∈ Viabmima(G), and t̄ > 0 be an arbitrary time instant. Then there

exists a pure feedback strategy U (t, x) of the first player such that all trajectories generated

by U and started at t = 0 from x∗ remain in the set Viabmima(G) for all t ∈ [0, t̄]. If

x∗ /∈ Viabmima(G), then there exists a feedback counter-strategy V c(t, x, u) and a time

instant t f such that all trajectories generated by V c and started at t = 0 from x∗ violate the

state constraint G for t > t f .
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Proposition 4 The same as Proposition 3 but with Viabmami(G), feedback counter-strategy

U c(t, x, v), and feedback pure strategy V (t, x).

Proposition 5 The same as Proposition 3 but with Viab(G) := Viabmami(G) =
Viabmima(G) and feedback pure strategies U (t, x) and V (t, x).

The proof of these propositions is based on results of the monograph [16]. Consider, for

example, Proposition 3. Note that the set [0, t̄]×Viabmima(G) is also u-stable in the minimax

sense, and therefore, the first part of Proposition 3 is exactly a result of [16, Chapter 10].

If now x∗ /∈ Viabmima(G), then there exists a time instant t∗ such that x∗ /∈ W (t∗), where

W is the maximal u-stable in the minimax sense subset of N . According to [16], there exists

a feedback counter-strategy V c such that all trajectories generated by V c and started from x∗

at t = t∗ remain outside of a closed neighborhood of W . Since W (T ) = G (see Property 4),

all trajectories violate the state constraint G at t = T . Since the system (27) is autonomous,

we can set t∗ = 0 and t f = T − t∗, which proves the second part of Proposition 3.

Remark 1 It should be mentioned that the notion of maximin and minimax viability kernels

is introduced in this paper to modify the concept of discriminating kernel (see [11,12]) in

the case where the saddle point condition (28) does not hold. According to the approach of

[16], adopted in the current paper, a player is discriminated by prescribing him the usage of

feedback strategies against feedback counter-strategies of his opponent. Therefore, each of

the players can be discriminated, which results in maximin and minimax viability kernels.

As it is proved in [16], the discrimination does not play any role if the saddle point condition

(28) holds. In this case, each of the players cannot improve his result by using feedback

counter-strategies instead of pure feedback controls, and therefore, maximin and minimax

viability kernels coincide in this case.

Taking into account that the use of feedback counter-strategies and non-anticipative open-

loop counter-controls of the players yields the same result, maximin and minimax viability

kernels can be referred as discriminating kernels for the Hamiltonians defined through the

maxv minu and minu maxv operation, respectively. The specific is that maximin and minimax

viability kernels are defined without requiring the saddle point condition (28).

4.1 Grid Method for Computing Viability Kernels

The numerical method utilizes the idea of representation of viability kernels as level sets of

appropriate functions. Suppose that a family of state constraint sets, Gλ, is defined by the

relation

Gλ = {x ∈ Rn, g(x) ≤ λ}, (31)

where g is an appropriate continuous function. It is required to construct a function V repre-

senting the viability kernels as follows:

V iab(Gλ) =
{

x ∈ Rn, V (x) ≤ λ
}
. (32)

A grid approximation of such a function can be computed as a limiting solution, as

t → −∞, of an appropriate Hamilton–Jacobi equation arising from conflict control problems

with state constraints (see [7]). The algorithm looks as follows (cf. [9,10]).
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Let δ > 0 be a time step, and h := (h1, . . . , hn) space discretization steps. Set |h| :=
max{h1, . . . , hn}. Consider the following operators defined on grid functions:

Π∗[δ, h;φ](x) = φ(x) + δ min
u∈P

max
v∈Q

n∑

i=1

(
p

right

i f +
i + p left

i f −
i

)
, (33)

Π∗[δ, h;φ](x) = φ(x) + δ max
v∈Q

min
u∈P

n∑

i=1

(
p

right

i f +
i + p left

i f −
i

)
, (34)

where fi are the components of f (x, u, v), and

a+ = max {a, 0}, a− = min {a, 0},
p

right

i = [φ(x1, . . . , xi + hi , . . . , xn) − φ(x1, . . . , xi , . . . , xn)] /hi ,

p left

i = [φ(x1, . . . , xi , . . . , xn) − φ(x1, . . . , xi − hi , . . . , xn)] /hi . (35)

Let {δℓ} be a sequence of positive reals such that δℓ → 0 and
∑∞

ℓ=0 δℓ = ∞. Consider

the following grid schemes:

V
h

ℓ+1 = max
{
Π∗

(
V

h

ℓ ; δℓ

)
, gh

}
, V

h

0 = gh, ℓ = 0, 1, . . . , (36)

V
h
ℓ+1 = max

{
Π∗

(
V

h
ℓ ; δℓ

)
, gh

}
, V

h
0 = gh, ℓ = 0, 1, . . . , (37)

where gh is the restriction of g to the grid.

It can be proved that V
h

ℓ and V
h
ℓ monotonically converge pointwise to grid functions V

h
and

V h , respectively. These functions define approximations of the viability kernels according to

formula (32) (see [9,10] for more details). Note that the relation δℓ/|h| ≤ (
√

nM)−1 should

hold for all ℓ, where M denotes the bound of the right-hand side of (27). Moreover, the

relation δℓ/|hℓ| ≤ (
√

nM)−1 should hold if the grid fineness |hℓ| goes to zero too.

Remark 2 If the saddle point condition (28) holds, then

lim
ℓ→∞

V
hℓ

ℓ = lim
ℓ→∞

V
hℓ

ℓ = V .

The proof follows from the fact that the both operators (33) and (34) satisfy the same con-

sistency condition (see [7]) corresponding to the Hamiltonian

H(x, p) := max
v∈Q

min
u∈P

〈p, f (x, u, v)〉 = min
u∈P

max
v∈Q

〈p, f (x, u, v)〉.

Remark 3 Numerical simulations show that the grid functions V
h

ℓ and V
h
ℓ practically coincide

for large ℓ, if the saddle point condition (28) is true.

4.2 Control Design

This section outlines one of the possible methods (cf. [10]) of control design. Consider the

case of Proposition 3 where the first player uses pure feedback strategies, whereas the second

player utilizes feedback counter-controls. Consider the grid scheme (36) assuming that ℓ is

sufficiently large so that the desired approximation is reached, i.e., |Vh

ℓ+1 − V
h

ℓ |L∞ ≤ ǫ.

Let x be a current state of the game. The control u and the disturbance v(u) are being

found as solutions of the following problem:

u, v → min
u∈P

max
v∈Q

L
h
[
V

h

ℓ

]
(x + δ f (x, u, v)) .
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Here, L
h is an interpolation operator defined on the corresponding grid functions, and δ is

a parameter which should be larger than the time step size of the control scheme to provide

some stabilization.

The following two variants of the interpolation operator were tested:

1. The conventional multilinear interpolation operator (see, e.g., [8]) was used.

2. The grid function V
h

ℓ was transferred to a sparse grid, using the conventional multilinear

interpolation operator, and the operator L
h was implemented as interpolation on a sparse

grid (see, e.g., [30,34]).

The first variant assumes that the whole grid function V
h

ℓ is stored on a hard disk, which

can require several gigabytes of memory. On the other hand, the interpolation process runs

relatively quickly in this case.

The sparse grid method, introduced in [34], is based on the construction of a high-

dimensional multiscale basis, which is a tensor product of one-dimensional multiscale bases.

Thus, the advantage of the second variant is that the grid function V
h

ℓ may be strongly com-

pressed, so that the required disk space is being reduced to several tenth of megabytes. The

disadvantage of this method is its slower performance.

Remark 4 Assume that the first and second players use the above feedback and counter-

feedback strategies, respectively. If the game starts from a state x0, then the point x0 lies in

the approximate viability kernel

{
x ∈ Rn : V

h

ℓ (x) ≤ V
h

ℓ (x0)

}
,

and all trajectories remain in this set. However, if one of the players, say the second one,

works non-optimally for a while, then (most likely) V
h

ℓ (x(t̄)) < V
h

ℓ (x0) for some t̄ > 0, and

therefore, the state vector x(t̄) lies now in the smaller viability kernel

{
x ∈ Rn : V

h

ℓ (x) ≤ V
h

ℓ

(
x(t̄)

)}
.

Thus, faults of the second player improve the result of the first one.

5 Conclusion

The current investigation shows that methods of viability theory can by applied to realistic

models of aircraft to evaluate its potential control ability in the presence of windshear. The

new feature of this approach is the use of viability kernels arising from differential games. In

particular, we define and compute viability kernels related to feedback and counter-feedback

strategies of the players in the case where the saddle point condition does not hold. Such

strategies can be computed and stored in a sparse form, which enables us to integrate them

into realistic control systems.
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