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Aircraft deconfliction via Mathematical Programming: Review and insights

Mercedes Pelegŕın1, Claudia D’Ambrosio1

Abstract

Computer-aided Air Traffic Management has increasingly attracted the interest of the Operations
Research community. This includes, among other tasks, the design of decision support tools for
detection and resolution of conflict situations during flight. Even if numerous optimization ap-
proaches have been proposed, there has been little debate towards homogenization. We synthesize
the efforts made by the Operations Research community in the past few decades to provide math-
ematical models to aid conflict detection and resolution at a tactical level. Different mathematical
representations of aircraft separation conditions are presented in a unifying analysis. The mod-
els, which hinge on these conditions, are then revisited, providing insight into their computational
performance.

Keywords: air traffic control; optimization; conflict detection and resolution; separation
conditions

1. Introduction

Air traffic control (ATC) is a challenging field where complex decisions have to be made in
a short time. The increase in the daily volume of flights engenders the need for decision-making
tools to support manual control to improve airspace capacity while ensuring safety. The urgency
for automation or support tools within ATC systems has been observed in several corporate ini-
tiatives including the NextGen— Next Generation Air Transportation System— project in the US
(see Hansman 2012), and the SESAR— Single European Sky Air Traffic Management Research—
(see European Commission & EUROCONTROL 2009) and ERASMUS—En-Route Air traffic Soft
Management Ultimate System— (see Brochard 2005) projects in Europe. On the other hand, fly-
ing vehicles’ daily volume is expected to grow, especially due to the development of technology
and its emerging application in urban air mobility. As a result, there is a growing interest in
decision-making approaches for ATC, which is being captured by the Operations Research (OR)
community.

Congested airspace can lead to loss of separation between aircraft, which has to be avoided to
guarantee safety. Ensuring aircraft separation during flight is one of the major tasks of ATC and
is known as conflict detection and resolution (CDR) or aircraft deconfliction. CDR takes place at
different stages. First, it is performed on the earliest planning of the flights. This is known as
strategic deconfliction and usually occurs before departure; however, it is not limited to a priori
actions, in particular when the duration of flights is long, see Rios (2018), Liang et al. (2014).
The following stage involves tactical deconfliction, which usually takes place during flight, generally
from five to thirty minutes before conflicts occur. Finally, the collision avoidance stage is the latest
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Figure 1: Safety cylinder around aircraft

avoidance of hazard, aimed at addressing imminent conflicts (in less than one minute). Congestion
also affects other segments of ATC, such as airport traffic, which is currently one of the bottlenecks
of ATM systems, see for example Wu & Caves (2002), Fairbrother et al. (2020), Samà et al. (2017).

Tactical CDR has been typically modeled as an optimization problem in which aircraft tra-
jectories are corrected to ensure that a minimum separation is maintained. At a tactical level,
specific operational aspects have to be considered, which principally affect the changes allowed for
trajectories. Feasible maneuvers are typically classified into three types, namely: speed changes
(acceleration or deceleration), heading angle changes (right or left bearing), and vertical changes
(flight level reallocation). All of these maneuvers are limited by some operational bounds. The
goal of optimization varies between works and includes maximizing the number of solved conflicts,
having equally affected flights (fairness), minimizing deviation from nominal aircraft trajectories,
and economic factors such as fuel consumption or total delay.

According to the International Civil Aviation Organization (see ICAO 1996), aircraft must be
separated by at least 5 NM horizontally and 1000 ft vertically during the flight, which yields a
safety cylinder as shown in Figure 1. A pair of aircraft violating at least one of these rules are
said to be in conflict; one can speak respectively of horizontal or vertical conflicts. At the cruising
phase, airspace is segregated in independent flight levels, see Mori (2017). Therefore, tactical
deconfliction usually assumes that all aircraft fly at the same flight level, eliminating the need to
address vertical conflicts. Once the problem dimension is fixed (2D for horizontal conflicts and
3D in the more general case), aircraft trajectories can be modeled by different kinds of equations.
In the most simple case, they are linear functions of time, that is, aircraft motion is supposed
to be rectilinear. Alternatively, if a constant acceleration is assumed, the aircraft position is a
quadratic function of time. Another common approach is to consider piece-wise linear functions
to represent trajectories. Regarding the modeling of aircraft maneuvers, there also exists a range
of possible choices. The most frequent assumption among the approaches covered here is that all
aircraft will execute maneuvers at the beginning of the time horizon and instantaneously. On the
contrary, more complex models allow aircraft to change their trajectories at different time instants
and consider aircraft kinetics during maneuvers. Trajectory recovery after conflict resolution is
sometimes considered as well. The right choice of modeling assumptions depends on the specific
problem requirements and varies between applications. Also, it is important to look for a trade-off
between flexibility and tractability of the resulting optimization problem.

Leaving aside technical modeling aspects and moving to an OR perspective, CDR involves two
types of decisions. The first and most evident is the modification of aircraft trajectories, which will
be expressed in terms of speed, heading or altitude changes, or a combination of them. Possible
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variables such as the new kilometers or miles per hour or the bearing angle take (in principle) their
values in continuous domains. Therefore, they are naturally modeled with continuous decision
variables. The second type of decision is not obvious at first sight: one needs to investigate the
problem further to identify it. This will be extensively addressed in the next sections, but for
the moment we just say that some combinatorial decisions characterize CDR and stand for the
choice among possible scenarios. Such combinatorial decisions are typically modeled in OR models
with binary variables. Therefore, a natural mathematical programming formulation for CDR will
be a Mixed Integer Linear Program (MILP) or a Mixed Integer Nonlinear Program (MINLP)—
constraints and objective function will be linear or nonlinear depending on the modeling choices
made.

Although CDR optimization was originally proposed in the context of ATC, it is nowadays
gaining importance in other arising domains. For instance, urban shared mobility has become
popular in recent years (see Mourad et al. 2019) and will soon be part of our skies, yielding a new
layer of air traffic. Moreover, collision avoidance is a hot topic in the field of autonomous vehicles,
including unmanned aerial vehicles (UAVs), see, for example, Huang et al. (2019). This interest is
motivated by the potential applications of these vehicles in commercial, military, or governmental
contexts. Finally, algorithms and protocols for collision-free trajectories are essential in the design
of control architectures of robots, see Bareiss & den Berg (2013). This includes, among others,
material handling vehicles in warehouses or production plants, which transport raw materials or
perform tasks in production processes.

This work aims at providing a unified mathematical framework for tactical CDR. Special em-
phasis is placed on the mathematical representation of aircraft separation conditions. This has been
represented through different equations, which we revisit here. Existing alternative separation equa-
tions are motivated, explained, and compared, showing the relation between them. Mathematical
Programming models for CDR are then revised, presenting a total of 10 mathematical formulations
under a unified notation. Even if there exist other reviews on closely related topics (Barnhart et al.
(2003) presents a review on OR applications in air transport including scheduling, routing, crew
assignment, and ATC, among other topics; Kuchar & Yang (2000) gives an overview on CDR meth-
ods), to the best of our knowledge this is the first work synthesizing Mathematical Programming
approaches for tactical CDR.

The rest of the paper is organized as follows. In Section 2, we formally state the problem
and fix some notations. Section 3 is devoted to present and analyze the different mathematical
representations of separation constraints. An explanatory exposition of the different formulas and
their interrelation is also provided. Since separation constraints are the core of CDR, this analysis is
essential for Section 4, where some mathematical programming formulations are presented. Section
5 gives details about the performance of the state-of-the-art approaches. Finally, Section 6 discusses
current challenges in CDR and future research directions, and Section 7 closes the paper with some
conclusions.

2. Problem definition

In ATC for aircraft deconfliction, a particular sector of the airspace is tracked during a given
time horizon, [0, T ]. During this time window, a set of aircraft, A, traverses the observed sector.
We consider control actions at a tactical level, that is, they are taken some minutes before potential
conflicts occur (values of T usually range between 10 and 20 minutes). Aircraft nominal trajectories
can be described through a family of functions, p̂i(t) : [0, T ]→ R3, which give the position of aircraft
i ∈ A at instant t of the time horizon according to a nominal plan. If we denote by d the minimum
separation distance required between aircraft, the CDR problem can be stated as follows: “ find
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new trajectories pi(t) : [0, T ] → R3 satisfying operational restrictions and such that, for all pair of
aircraft i, j ∈ A and time instant t ∈ [0, T ], ‖pi(t)− pj(t)‖ ≥ d ”, where ‖ · ‖ denotes the Euclidean
norm.

As mentioned in the introduction, aircraft are usually assumed to have either a rectilinear (null
acceleration) or uniformly accelerated (constant acceleration) motion. Most of the works covered
in this review are of the first type, but we also discuss examples of the second type such as Omer
& Farges (2013), and Omer (2015). In our analysis, in order to fix ideas and given that this is the
case of most of the approaches, we assume pi(t) to be linear functions. Namely,

pi(t) = p̂i + Vit,

where p̂i := p̂i(0) is the initial position of aircraft i and Vi is its vector of modified velocity. These
equations of motion are the base upon which most of the mathematical constraints for aircraft
separation are built, as we discuss in the next section. This is the main reason for setting pi(t) as
above, although, in general, the reader can think on the CDR without restricting aircraft position
equations. Position vectors are very often assumed to be in R2, which corresponds to aircraft flying
at the same flight level. Therefore, we denote the initial position and vector of velocity components
by p̂i = (x̂i, ŷi) and Vi = (Vxi, Vyi), respectively. Similarly to new trajectories, nominal ones are
represented by p̂i(t) = p̂i + V̂it, where V̂i denotes aircraft nominal velocity.

Operational limitations typically result in mathematical constraints on the vectors of aircraft
velocities. Let us denote by vi the (scalar) speed of i and by θi its heading angle. These variables
are subject to lower and upper bounds vi, v̄i and θi, θ̄i, respectively. Note that we save the term
velocity to refer a vector of velocity, which comprises information on the heading angle and speed of
the aircraft. The term speed is thus saved for a scalar magnitude and corresponds to the Euclidean
norm of the vector of velocity. This way, speed vi and heading angle θi characterize the i-th velocity
vector as follows

Vi = (vi cos θi, vi sin θi).

However, the new speed and heading angle of an aircraft can be also represented by using decision
variables corresponding to the relative modification made to the nominal values. Typically,

vi = qiv̂i and θi = θ̂i + ωi,

where v̂i and θ̂i are the nominal speed and heading angle of i, qi ≥ 0 is a scale factor (qi = 1 means
no speed change) and ωi is the variation of the heading angle i (ωi = 0 means no bearing). Scale
factor qi is usually considered to range between 0.94 and 1.03, which means modifying the speed
between a −6% and 3% of its nominal value. According to the European aeronautical project
ERASMUS (see Brochard 2005), this allows a subliminal control, yielding modifications that are
barely perceived by air traffic controllers.

Different versions of the CDR problem, which differ on the type of maneuvers allowed, have
been studied in the literature. The most prominent ones are those in which only speed changes
(SC) are allowed, only heading angle changes (HAC) are permitted and that in which both changes
are contemplated (SHAC). Since airspace is usually assumed to be divided into flight levels, there
is not a specific variant for altitude changes. One of the previous configurations, namely SC, HAC,
or SHAC, is supposed for each flight level instead. The following definition uses the notation above
to give a mathematical statement of the CDR in its more general version.

Definition 1 (SHAC). Given a set of aircraft A and time horizon [0, T ], suppose that each i ∈ A
has initial position p̂i and nominal speed and heading angle v̂i and θ̂i, respectively. The conflict
detection and resolution problem is to find new speeds and heading angles vi and θi such that
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(i) ‖pi(t) − pj(t)‖ = ‖p̂i + Vit − (p̂j + Vjt)‖ ≥ d for all i, j ∈ A and t ∈ [0, T ], where Vi =
(vi cos θi, vi sin θi) for all i ∈ A;

(ii) given the control bounds q
i
, q̄i and ωi, ω̄i for every i ∈ A, there is qi and ωi such that

- vi = qiv̂i, θi = θ̂i + ωi,

- q
i
≤ qi ≤ q̄i, ωi ≤ ωi ≤ ω̄i.

In addition, a certain function of the changes made should be minimized.

Condition (i) in the previous definition is the core of the CDR problem, and it is known as
the separation condition. Two initial observations are that it is nonlinear because of the Euclidean
norm and that it depends on time. Section 3 is entirely devoted to discussing the separation
condition and how it has been modeled in the literature using different approaches. Before that,
we summarize some useful notations.

2.1. Notation

In addition to the already introduced terminology, we find many other elements characterizing
the CDR problem in the literature. For instance, relative positions and velocity vectors of pairs of
aircraft are key for mathematical representation of separation, as well as some relative angles. We
have unified existing mathematical notation to present the different approaches in the literature
within a common working framework. The mathematical notation of this paper can be summarized
as follows:

• Problem input

– A set of aircraft, i, j ∈ A
– d safety distance between aircraft, in NM

– p̂i = (x̂i, ŷi) initial position of aircraft i ∈ A
– v̂i magnitude of nominal speed of aircraft i ∈ A, in NM/h

– θ̂i nominal heading angle of aircraft i ∈ A, in radians

– V̂i = (v̂i cos θ̂i, v̂i sin θ̂i) nominal vector of velocity of i ∈ A
– p̂ij := p̂i− p̂j vector difference, p̂ij = (x̂ij , ŷij), with x̂ij := x̂i− x̂j , ŷij := ŷi− ŷj , i, j ∈ A
– d̂ij initial distance between aircraft i and j (coincides with ‖p̂ij‖), i, j ∈ A
– βij slope of the line joining i and j (coincides with heading angle of p̂ij), i, j ∈ A

– αij := arcsin
(
d
d̂ij

)
, i, j ∈ A

• Variables

– vi magnitude of modified speed of aircraft i ∈ A
– θi modified heading angle of aircraft i ∈ A
– qi scale factor applied to nominal speed of aircraft i ∈ A, vi = qiv̂i

– ωi bearing applied to nominal heading angle of aircraft i ∈ A, θi = θ̂i + ωi

– Vi = (Vxi, Vyi) modified vector of velocity of i ∈ A. It can be expressed in different
forms:

Vi = (vi cos θi, vi sin θi)

Vi = (qiv̂i cos(θ̂i + ωi), qiv̂i sin(θ̂i + ωi))
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– pi(t) := p̂i + tVi position of aircraft i ∈ A at instant t ∈ [0, T ]

– fij(t) := ‖pi(t)− pj(t)‖2 squared distance between i and j at instant t ∈ [0, T ], i, j ∈ A
– Γ(vi, vj , γij) minimum difference between the instants in which i and j traverse the

crossing point of their trajectories, which intersect with angle γij .

– Vij := Vi−Vj modified relative velocity. We will denote its coordinates by (Vxij , Vyij).
Alternatively, it can be expressed as follows:

Vij = (vi cos θi − vj cos θj , vi sin θi − vj sin θj) or

Vij = (‖Vij‖ cosφij , ‖Vij‖ sinφij),

where φij is the heading angle of Vij (note φij 6= θi − θj in general).

• Bounds

– q
i
, q̄i ≥ 0 : q

i
≤ qi ≤ q̄i

– ωi, ω̄i such that [ωi, ω̄i] ⊆ [−π/2, π/2] : ωi ≤ ωi ≤ ω̄i
– vi, v̄i such that vi := q

i
v̂i, v̄i := q̄iv̂i : vi ≤ vi ≤ v̄i

– θi, θ̄i such that θi := θ̂i + ωi, θ̄i := θ̂i + ω̄i : θi ≤ θi ≤ θ̄i

3. The separation condition

This section is devoted to the study of the so-called separation condition, namely

‖pi(t)− pj(t)‖ ≥ d ∀t ∈ [0, T ], ∀i, j ∈ A : i < j. (1)

Such a condition cannot be directly plugged-in a mathematical programming solver, mainly because
one of its quantifiers is t, which ranges on a continuous domain. A natural way of dealing with this
is to consider discrete time steps within [0, T ] at which (1) is then imposed, see Richards & How
(2002). If the lag between steps is sufficiently small, safety is ensured. However, time discretization
is not the only valid approach here. Many authors used different versions of (1) that are not
time-dependent to write their models. In the following, we revise the different ways of translating
(1) into mathematical programming constraints that have been proposed in the literature. For
these separation constraints that are not indexed by a temporal component, T = +∞ is implicitly
assumed. For the sake of equations readability, we drop the condition i < j in our analysis.

3.1. Geometrical conditions

We start with the simple observation that

‖pi(t)− pj(t)‖ = ‖p̂i + tVi − (p̂j + tVj)‖ = ‖p̂i + t(Vi − Vj)− p̂j‖ ∀t ∈ [0, T ], ∀i, j ∈ A,

provides an equivalent condition to (1). Namely, to ensure separation between i and j, one can
consider that i flies at the relative velocity given by Vij := Vi − Vj and that j remains still. That
is, (1) can be rewritten into the following equivalent condition:

‖p̂i + tVij − p̂j‖ ≥ d ∀t ∈ [0, T ], ∀i, j ∈ A. (2)

Figure 2 shows a geometrical analysis of the conflict between two aircraft i and j based on (2).
When Vij points somewhere inside the disk of radius d and center p̂j , D(p̂j , d), (2) is not satisfied
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Figure 2: Geometrical analysis of conflict between two aircraft based on relative velocity

and vice versa. To avoid the conflict, Vi and Vj must be adjusted so that the new relative vector,
Vij , lies outside the disk. The two tangents to D(p̂j , d) passing through p̂i, which are depicted on
dashed-dotted lines in the figure, mark the limits for such a suitable vector Vij .

To give a mathematical expression of aircraft separation according to this new interpretation,
we will focus on the angles depicted in Figure 2. First, let us consider the segment joining p̂i and p̂j ,
whose slope, measured from the x-axis and counter-clockwise, we denote by βij . Then, the slopes
of the mentioned tangents can be obtained by adding to and subtracting from βij a same angle αij .
If we call φij the heading angle of the relative vector of velocity Vij , it is sufficient to impose that
either φij is greater than βij + αij or smaller than βij − αij to guarantee the desired separation.
That is, assuming that all angles belong to the interval [0, 2π] and are measured counter-clockwise
from the x-axis, the following constraint is equivalent to (2)

∀i, j ∈ A : φij ≥ βij + αij or φij ≤ βij − αij . (3)

Note that both βij and αij only depend on the problem input, i.e., they should be considered
as problem data. The only variable in the new separation condition is then φij . For illustrating the
following mathematical expression of the angle αij , we shall refer again to Figure 2. We observe
that each tangent is the hypotenuse of a right triangle formed by the corresponding perpendicular
radial segment in D(p̂j , d) and the segment that links p̂i to p̂j . Using then trigonometric relations,
the following expression for αij is obtained

αij := arcsin

(
d

d̂ij

)
,

where d̂ij is the distance between the initial positions p̂i and p̂j .
Several authors have used different versions of (3) in their models. In the following, we describe

their separation conditions by chronological order of paper publication.

3.1.1. Bilimoria’s equations.

To the best of our knowledge, Bilimoria was the first one to suggest this geometrical interpre-
tation of conflicts, see Bilimoria (2000). He proposed closed-form expressions oriented to correct
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relative vectors heading so that they satisfy (3). As a starting point, he supposed that one of the
constraints in (3) was going to be satisfied as equality for every pair of aircraft in conflict. That is,
for i, j ∈ A in conflict, the author set φij = βij ±αij . This means that such pairs attain horizontal
separation equal to the safety distance d in the solution. The author argued that other changes in
φij would not be “efficient”, since the objective was to minimize deviation from nominal paths (note
that this approach is oriented to address single conflicts only). Once φij was fixed, the following
chain of identities helped the author to derived his closed-form equations:

sin(φij)

cos(φij)
=

vi sin θi − vj sin θj
vi cos θi − vj cos θj

(4a)

sin(φij)(vi cos θi − vj cos θj) = cos(φij)(vi sin θi − vj sin θj) (4b)

vi sin(φij − θi) = vj sin(φij − θj). (4c)

Bilimoria addressed the three main variants of the CDR: SC, HAC, and SHAC. In the first two
cases, expressions for vi and θi were obtained respectively from (4c), assuming that i is the only
aircraft in the conflicting pair that makes the correcting maneuvers:

vi = vj

(
sin(φij − θ̂j)
sin(φij − θ̂i)

)
, θi = φij − arcsin

(
v̂j
v̂i

sin(φij − θj)
)
. (5)

Some additional considerations that we omit here, such as the objective function of the problem
and some trigonometric relations, were used by the author to derive the equations for the SHAC
variant. For multiple-aircraft conflicts, the proposed approach was to perform several cycles to
resolve them sequentially by pairs. As the author reported himself, such a strategy is not optimal.

3.1.2. Pallottino et al.’s equations.

A second work that relied on the presented geometrical characterization of conflicts is that of
Pallottino et al. (2002). In this case, the authors proposed two MILPs for SC and HAC, respectively.
These were some of the first mathematical programming formulations of the CDR in the literature.
The authors introduced different separation conditions for each version of the problem, which were
linear respectively on aircraft speeds and heading angles. The separation constraints for the SC
variant read as follows

∀i, j ∈ A :
vi sin θi − vj sin θj
vi cos θi − vj cos θj

≥ tan(βij + αij) or
vi sin θi − vj sin θj
vi cos θi − vj cos θj

≤ tan(βij − αij). (6)

Note that (6) is equivalent to taking tangents on the inequalities of (3). The new inequalities
were linearized by the authors by introducing binary variables to indicate the sign of the denomi-
nators. Regarding HAC, Pallottino et al. proposed a second approach to aircraft deconfliction. In
their framework, the authors do not only consider constant aircraft speed but also suppose speed
to be the same for all aircraft. For a given pair i, j ∈ A, they define the bisector of the sum of
their heading angles, i.e., the line with slope

θi+θj
2 , and the orthogonal to the bisector, with slope

θi+θj+π
2 . They argue then that

∀i, j ∈ A :
θi + θj + π

2
≥ βij + αij or

θi + θj + π

2
≤ βij − αij (7)

is a separation condition for the HAC variant, where angles are taken in [−π, π]. It is easy to
see that (7) is equivalent to (3) if all aircraft fly at the same speed. Indeed, the parallelogram
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(a) If vi = vj : Yes (b) If vi 6= vj : No

Figure 3: Can be φij expressed in terms of θi and θj?

representing the sum of the vectors Vi and −Vj is a rhombus in such a case (see Figure 3a). As
illustrated by the figure, a diagonal of the rhombus bisects its interior angle. It can be proven
that φij =

θi+θj+π
2 + π by using a basic geometrical argument on the same figure (namely that

φij = θj + π + σ and π = θj − θi + 2σ). The shift π between the two formulas, (7) and (3), is due
to a change in the angles domain. Note that this equivalence only stands if the magnitude of the
velocity vectors coincides (see Figure 3b for a counter-example).

After conditions (6) and (7) were proposed in Pallottino et al. (2002), they have been used by
other authors, see, for instance, Alonso-Ayuso et al. (2010, 2014, 2016).

3.1.3. Vela et al.’s equations.

Finally, Vela et al. (2010) derive their separation conditions in a similar way to Pallottino
et al. (2002). We do not report here their equations since they are indeed the same as (6), except
that the tangent functions of the right-hand sides of the disjunctive constraints are substituted by
their values at the given angles. Indeed, this is proven in Section 3.4, where tan(βij + αij) and
tan(βij − αij) are explicitly calculated.

3.2. Analytical conditions

A different way of obtaining mathematical programming constraints for separation is to apply
some analytical calculus on (1). The idea is to find, for each pair of aircraft, the critical time instant
at which this constraint has to be satisfied. Since distances are positive, we base our analysis on
the squared version of (1).

3.2.1. Minimum-distance time equations.

Given a pair of aircraft i, j ∈ A, let fij(t) := ‖pi(t) − pj(t)‖2 represent the squared distance
between them as a function of time. By assuming a rectilinear motion of the aircraft, the following
expression yields

fij(t) = ‖Vij‖2t2 + 2t〈p̂ij , Vij〉+ d̂2
ij ∀t ∈ [0, T ], (8)

where we have used the fact that d̂ij = ‖p̂ij‖. It is now possible to calculate the time instant at
which minimum separation between aircraft i and j is attained, tminij . Indeed, by calculating the
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first and second-order derivatives of fij(t), it can be easily seen that

tminij =
−〈p̂ij , Vij〉
‖Vij‖2

. (9)

If tminij < 0, the minimum separation between i and j was attained in the past, and their trajectories

are diverging in the given time horizon. Otherwise, by substituting tminij in (8), we obtain the
minimum squared distance between i and j during their observed trajectories,

fminij =
−〈p̂ij , Vij〉2

‖Vij‖2
+ d̂2

ij . (10)

A new separation condition, also equivalent to (1), can be thus stated as follows,

∀i, j ∈ A : tminij < 0 or fminij ≥ d2. (11)

Some authors used this alternative separation condition in their mathematical programming models
for the CDR, see for instance Cafieri & Durand (2014), Cafieri & D’Ambrosio (2018). As we discuss
in Section 4, binary variables are typically considered to model the disjunction in (11). Observe
that (11), unlike the original separation equation (1), does not depend on time, which solves the
main obstacle for mathematically formulating the problem. The possibilities of analytical calculus
on distance-related functions, however, do not end here.

Before continuing, let us write an extended version of (11),

∀i, j ∈ A : tminij < 0 or ‖Vij‖2(d̂2
ij − d2)− 〈p̂ij , Vij〉2 ≥ 0, (12)

and consider the following function

g(Vxij , Vyij) := Vxij
2(ŷ2

ij − d2) + Vyij
2(x̂2

ij − d2)− 2VxijVyij x̂ij ŷij ,

which coincides with the scalar form of the left-hand side of the inequality in the second disjunctive
term in (12).

3.2.2. Rey & Hijazi ’s disjunctive equations.

Rey & Hijazi (2017b) studied the sign of g to characterize the regions of the space of relative
velocities (Vxij , Vyij) in which (12) was satisfied. To that end, the authors study the roots of g by
treating either Vyij or Vxij as a constant. The discriminants of the resulting univariate quadratic
function are, respectively:

∆xij = 4d2Vyij
2(x̂2

ij + ŷ2
ij − d2) and ∆yij = 4d2Vxij

2(x̂2
ij + ŷ2

ij − d2),

and the roots are:

Vxij =
2x̂ij ŷij ±

√
∆xij

2(ŷ2
ij − d2)

and Vyij =
2x̂ij ŷij ±

√
∆yij

2(x̂2
ij − d2)

.

The authors noted that these roots always exist since the discriminants are positive because x̂2
ij +

ŷ2
ij − d2 ≥ 0 (aircraft are assumed to be initially separated). Then, substituting the discriminants

10



(a) Sign of g(Vxij , Vyij) (b) Non-convex disjunctive feasible regions

Figure 4: Regions of the space (Vxij , Vyij) delimited by (13), (14), Π and Π⊥

in the equations of the roots, they conclude that the points satisfying g(Vxij , Vyij) = 0 satisfy one
of the following equations

(ŷ2
ij − d2)Vxij − (x̂ij ŷij + d

√
x̂2
ij + ŷ2

ij − d2)Vyij = 0 (13)

(ŷ2
ij − d2)Vxij − (x̂ij ŷij − d

√
x̂2
ij + ŷ2

ij − d2)Vyij = 0 (14)

(x̂2
ij − d2)Vyij − (x̂ij ŷij − d

√
x̂2
ij + ŷ2

ij − d2)Vxij = 0 (15)

(x̂2
ij − d2)Vyij − (x̂ij ŷij + d

√
x̂2
ij + ŷ2

ij − d2)Vxij = 0. (16)

It is easy to observe that (13) and (15) define an identical line in the space (Vxij , Vyij) (their
coefficients are proportional). Similarly, (14) and (16) also stand for the same line. The problem
remains then to identify in which portions of the space delimited by those lines g(Vxij , Vyij) ≥ 0
holds.

Rey & Hijazi considered Π ≡ Vxij x̂ij + Vyij ŷij = 0, the plane equation of the dot product
〈p̂ij , Vij〉. They defined two sub-spaces,

{(Vxij , Vyij) : Vyij x̂ij − Vxij ŷij ≤ 0} and {(Vxij , Vyij) : Vyij x̂ij − Vxij ŷij ≥ 0},

induced by the plane perpendicular to Π, Π⊥. As proven in Dias et al. (2020), Π and Π⊥ are
bisectors of the angles formed by lines (13) and (14). Moreover, Dias et al. proved that g is
negative on the points of Π⊥, which allowed them to classify the space as desired. Figure 4a gives
an illustration of the resulting partition in sub-spaces and the sign of g in each of them. Dashed
lines represent (13) and (14) and blue hashed sub-spaces define the disjunctive region where g is
positive. Grey hashed sub-space corresponds to diverging trajectories, while the blank area matches
the unfeasible ones. Figure 4b illustrates the feasible region of the space of relative velocities, i.e.,
the region in which either g is positive or the trajectories diverge. Rey & Hijazi identified such
non-convex region based on the sign of x̂ij and ŷij , as follows:

1. If Vyij x̂ij − Vxij ŷij ≥ 0, the formulas are derived from (13) and (15):

• Case x̂ij ≥ 0 and ŷij < 0: (x̂2
ij − d2)Vyij − (x̂ij ŷij − d

√
x̂2
ij + ŷ2

ij − d2)Vxij ≥ 0

11



• Case x̂ij < 0 and ŷij ≥ 0: (x̂2
ij − d2)Vyij − (x̂ij ŷij − d

√
x̂2
ij + ŷ2

ij − d2)Vxij ≤ 0

• Case x̂ij ≥ 0 and ŷij ≥ 0: (ŷ2
ij − d2)Vxij − (x̂ij ŷij + d

√
x̂2
ij + ŷ2

ij − d2)Vyij ≤ 0

• Case x̂ij < 0 and ŷij < 0: (ŷ2
ij − d2)Vxij − (x̂ij ŷij + d

√
x̂2
ij + ŷ2

ij − d2)Vyij ≥ 0

2. If Vyij x̂ij − Vxij ŷij ≤ 0, the formulas are obtained from (14) and (16):

• Case x̂ij ≥ 0 and ŷij < 0: (ŷ2
ij − d2)Vxij − (x̂ij ŷij − d

√
x̂2
ij + ŷ2

ij − d2)Vyij ≤ 0

• Case x̂ij < 0 and ŷij ≥ 0: (ŷ2
ij − d2)Vxij − (x̂ij ŷij − d

√
x̂2
ij + ŷ2

ij − d2)Vyij ≥ 0

• Case x̂ij ≥ 0 and ŷij ≥ 0: (x̂2
ij − d2)Vyij − (x̂ij ŷij + d

√
x̂2
ij + ŷ2

ij − d2)Vxij ≤ 0

• Case x̂ij < 0 and ŷij < 0: (x̂2
ij − d2)Vyij − (x̂ij ŷij + d

√
x̂2
ij + ŷ2

ij − d2)Vxij ≥ 0

Each of the descriptions 1 and 2 corresponds to one of the sub-spaces yellow and blue in Figure 4b.
To find the correct sign of the inequalities like in the above case analysis, it is sufficient to evaluate
(13)-(16) on a point of Π⊥, for instance (−x̂ij ,−ŷij).

Now, separation condition (12) can be expressed based on the above analysis. To this end, let
us synthesize it by considering the separation inequalities h1(Vxij , Vyij) ≤ 0 and h2(Vxij , Vyij) ≤ 0,
with h1 and h2 having the right coefficients depending on the analysis made on cases 1 and 2 above.
The following is then a separation condition for the CDR,

∀i, j ∈ A : (Vyij x̂ij − Vxij ŷij ≥ 0 and h1(Vxij , Vyij) ≤ 0) or

(Vyij x̂ij − Vxij ŷij ≤ 0 and h2(Vxij , Vyij) ≤ 0) .
(17)

Rey & Hijazi and Dias et al. used these disjunctive conditions to build their models. Note that the
gain with respect to (12) is not negligible: the new equations are linear in Vij .

3.3. Crossing point conditions

A third alternative to model aircraft separation (1) is to develop a geometrical analysis of
conflicts based on aircraft encounters. This approach builds on the fact that conflicts may only occur
around the crossing points of aircraft pairs trajectories. The main assumption, so that separation
is ensured, is that aircraft trajectories are straight within this region (although they may include
turns before and after it). Let i and j be two aircraft with co-planar crossing trajectories, and
let γij be their confluence angle, γij ∈ [0, π]. After squaring condition (1), it can be rewritten as
follows

‖pi(t)‖2 + ‖pj(t)‖2 − 2‖pi(t)‖ · ‖pj(t)‖ · cos γij ≥ d2 ∀t ∈ [0, T ], ∀i, j ∈ A. (18)

3.3.1. Irvine’s equations.

Equation (18) was first suggested in Irvine (2001, 2002). The author considers the two-
dimensional space of aircraft positions to have its origin at the crossing point of the trajectories of
i and j. Then, (18) describes an ellipse in the two-dimensional space given by (‖pi(t)‖, ‖pj(t)‖),
i.e., the vector of distances between i and j and the crossing point of their trajectories, at time
t. Whether or not a conflict will occur, depends upon whether the line defined by the points

12



(a) ∆tij ≥ 0 (b) ∆tij ≤ 0

Figure 5: Trajectories meeting at the origin

(‖pi(t)‖, ‖pj(t)‖) passes through the ellipse. According to Irvine, the tangents to the ellipse have
equations

y =
vj
vi
x±

d

√
v2j
v2i
− 2

vj
vi

cos γij + 1

sin γij
,

thus being the following a separation condition

∣∣∣‖pj(t)‖ − vj
vi
‖pi(t)‖

∣∣∣ ≥ d

√
v2j
v2i
− 2

vj
vi

cos γij + 1

sin γij
∀t ∈ [0, T ]. (19)

The author then relies on (19) to discuss conflict probability estimation under the so-called along-
track and cross-track errors. We refer the interested reader to Irvine (2002) for further details since
the discussion on uncertainty is out of the scope of this paper. However, we notice that the analysis
of Irvine of conflict probability inspired later works, including Vela et al. (2009a), Lehouillier et al.
(2017a), which are mentioned in Section 4.

3.3.2. Carlier et al.’s equations.

As for Irvine’s equations, we assume here that the trajectories of i and j meet at the origin. In
addition, supposing without loss of generality that the trajectory of i coincides with the x-axis, the
following equations describe the motion of the aircraft,

pi(t) = t(vi, 0), pj(t) = (t−∆tij)(vj cos γij , vj sin γij), (20)

where ∆tij is the time difference between the crossing of the origin by i and j. Figure 5 illustrates
aircraft trajectories under this configuration. In principle, one can think in ∆tij as a positive or
negative value (see, respectively, the left and right-hand sides of the figure). Note that motion
equations (20) involve a shift in the time horizon, which now starts from negative instant times.
The following example further illustrates the equations.

Example 1. Figure 5 shows an example of two crossing trajectories illustrating equations (20).
Marks on the axes stand for steps of 0.5 units.

Figure 5a on the left shows the trajectories of aircraft i and j crossing at the origin, being i
the first one traversing the crossing point (∆tij ≥ 0). Conversely, Figure 5b on the right shows a
similar scenario where j traverses the crossing point before i (∆tij ≤ 0).

13



The equations of the trajectories depicted in Figure 5a are

pi(t) = t(1, 0), pj(t) = (t− 0.5)(0.8 cos 0.54, 0.8 sin 0.54) t ∈ [−1.5, T − 1.5].

Note that, due to the equation of pi in (20), this aircraft always traverses the origin at t = 0,
which yields a shift in the considered time horizon equal to x̂i/vi. In the scenario depicted in Figure
5a, the resulting time window is [−1.5, T − 1.5]. At the beginning of this time interval, the initial
positions of the aircraft are

pi(−1.5) = (−1.5, 0); and pj(−1.5) = −2(0.8 cos 0.54, 0.8 sin 0.54) = (−1.36,−0.83).

They cross the origin at time instants 0 and 0.5 respectively, being ∆tij = 0.5 ≥ 0.
On the other hand, the equations of aircraft trajectories of Figure 5b are

pi(t) = t(0.5, 0); and pj(t) = (t+ 1)(0.8 cos 0.54, 0.8 sin 0.54) t ∈ [−3, T − 3].

In this case, the aircraft cross the origin at t = 0 and t = −1 respectively, being ∆tij = −1 ≤ 0.

If we substitute the new motion equations (20) in the encounter separation condition (18), we
obtain the following inequalities:

(v2
i + v2

j − 2vivj cos γij)t
2 − 2∆tijvj(vj − vi cos γij)t+ v2

j∆t
2
ij ≥ d2 ∀t ∈ [0, T ], ∀i, j ∈ A.

Following a similar argument to that of the beginning of Section 3.2, we consider the function of
the squared distance between i and j,

fij(t) = (v2
i + v2

j − 2vivj cos γij)t
2 − 2∆tijvj(vj − vi cos γij)t+ v2

j∆t
2
ij ∀t ∈ [0, T ]. (21)

It attains its minimum at

tminij =
∆tijvj(vj − vi cos γij)

v2
i + v2

j − 2vivj cos γij
,

which can be substituted in (21) to obtain the minimum squared distance

fminij =
−(∆tijvj(vj − vi cos γij))

2

v2
i + v2

j − 2vivj cos γij
+ v2

j∆t
2
ij .

Here, we leave aside the question of the sign of tminij , since we have shifted our time horizon. Then, a

conflict occurs (ignoring if it is being observed in our time window or not) if and only if fminij ≤ d2.
Doing a few calculations, it is possible to isolate ∆tij in this expression to derive the following
separation condition:

∆t2ij ≥
d2(v2

i + v2
j − 2vivj cos γij)

v2
i v

2
j sin γ2

ij

. (22)

It can be easily seen that (22) is equivalent to (19) after taking squares. Indeed, by multiplying
(19) by 1/vj , we obtain that its left-hand side coincides with ∆tij (due to the basic law by which
space equals speed times time). On the other hand, the fact that the right-hand sides also match
after the transformation is trivial.

In conclusion, if the pair i, j satisfies condition (22), there is no conflict between them. But,
what happens with multiple conflicts? We have assumed that the trajectories of a given pair meet
at the origin, but this is surely not true when more than one conflicting aircraft are considered in the
same scenario. On the contrary, (22) does not depend on the coordinate reference or time interval
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chosen at the beginning. Indeed, ∆t is an absolute component in our analysis since it represents a
time lag. On the other hand, γij , the confluence angle between trajectories, is independent of the
coordinate axes chosen. Finally, since vi, vj , and d are just scalar magnitudes, they are not affected
by orientation. Consequently, (22) is a valid separation condition also for the multiple conflicts
case.

Let us now resume the question of the sign of ∆tij . According to the equations in (20), if
∆tij ≥ 0, j traverses the origin (i.e., the crossing point of the trajectories) after i. Conversely,
if ∆tij ≤ 0, j is the first passing through the origin. Then, to simplify (22) by eliminating the
powers, it is necessary to distinguish between two scenarios, namely, which aircraft traverses first
the intersection point of the trajectories. Let us define the following function

Γ(vi, vj , γij) =
d ·
√
v2
i + v2

j − 2vivj cos γij

vivj |sin γij |
,

and denote with ti∩ji and ti∩jj the time instants at which i and j traverse the crossing point of their
trajectories, respectively. The following is a separation condition for the CDR:

∀i, j ∈ A : ti∩ji − ti∩jj ≥ Γ(vi, vj , γij) or ti∩jj − ti∩ji ≥ Γ(vi, vj , γij). (23)

The new separation condition does not seem particularly good. Like its analogous (12), it is
nonlinear on aircraft velocity, and it involves trigonometric functions on the confluence angle (which
would be a problem variable if heading angle changes are allowed). However, the potential of (23)
is that it allows a new interpretation of the problem, focusing on its temporal component rather
than on the spatial one.

Carlier et al. (2003) were the first to propose condition (23) and to interpret aircraft conflict
resolution as a scheduling problem. In their proposed framework, aircraft trajectories were identified
with jobs, and sub-trajectories, which were determined by crossing points, were interpreted as the
tasks of classical scheduling. Aircraft speeds can be recovered from the duration of tasks by using
rectilinear motion laws. This pioneering work inspired other authors to develop their models,
for instance, Vela et al. (2009b), Rey et al. (2014), Omer (2015), Rey et al. (2016), Courchelle
et al. (2019). All of them approximate nonlinear expression in (23) by considering fixed values of
aircraft speeds. This type of work usually considers that aircraft paths are sequences of waypoints,
trajectories being piece-wise rectilinear. Separation conditions (23) are then imposed at common
waypoints, under the assumption that the involved aircraft trajectories are rectilinear within a
neighborhood of the conflict region. These models typically treat parallel trajectories separately,
including the so-called trailing and frontal conflicts, since they are excluded from the analysis made
to arrive at (23).

3.4. Homogenizing separation

Up to this point, we have presented different ways of interpreting and representing the separation
condition (1) with T = +∞. Each of them looks at the problem from a different perspective: some
focus on its underlying geometry and others take an analytic view to obtain some critical points (in
time or space) that characterize the conflicts. But, how are these approaches related? Are there so
many different ways of imposing aircraft separation through mathematical equations? Or some of
them are indeed the same? In this section, we try to answer these questions.

Something that the readers might have found noticeable is that equations in both (6) and (13)-
(16) are linear functions of Vij . It seems reasonable then to try to relate the coefficients in (13)-(16)
to the tangent of the angles βij + αij and βij − αij , which appeared in (6). Let us consider again
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Figure 6: Illustration of geometrical calculation of tan(αij)

i, j ∈ A two aircraft in conflict, D(p̂j , d) the safety disk around j, and the tangents to D(p̂j , d) that
pass through p̂i. Any of these tangents, together with their corresponding perpendicular radius in
the disk and the segment joining p̂i and p̂j , form a right triangle (see illustration in Figure 6). The
tangent of αij can be then expressed as follows

tanαij =
d√

d̂2
ij − d2

≡ tanαij =
d√

x̂2
ij + ŷ2

ij − d2
.

On the other hand, the tangent of βij is, by definition,

tanβij =
ŷij
x̂ij

.

By using trigonometric relations and arithmetic calculus we obtain then:

tan(βij + αij) =
tanβij + tanαij

1− tanβij tanαij
=
ŷij
√
x̂2
ij + ŷ2

ij − d2 + dx̂ij

x̂ij
√
x̂2
ij + ŷ2

ij − d2 − dŷij
,

tan(βij − αij) =
tanβij − tanαij

1 + tanβij tanαij
=
ŷij
√
x̂2
ij + ŷ2

ij − d2 − dx̂ij

x̂ij
√
x̂2
ij + ŷ2

ij − d2 + dŷij
.

If we multiply numerator and denominator by the “conjugate” of the denominator in each case,

i.e., x̂ij
√
x̂2
ij + ŷ2

ij − d2 ± dŷij , we obtain the following expressions:

tan(βij + αij) =
x̂ij ŷij + d

√
x̂2
ij + ŷ2

ij − d2

x̂2
ij − d2

, (24)

tan(βij − αij) =
x̂ij ŷij − d

√
x̂2
ij + ŷ2

ij − d2

x̂2
ij − d2

. (25)
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While, if we multiply numerator and denominator by the “conjugate” of the numerator in each

case, i.e. ŷij
√
x̂2
ij + ŷ2

ij − d2 ∓ dx̂ij , we obtain:

tan(βij + αij) =
ŷ2
ij − d2

x̂ij ŷij − d
√
x̂2
ij + ŷ2

ij − d2
, (26)

tan(βij − αij) =
ŷ2
ij − d2

x̂ij ŷij + d
√
x̂2
ij + ŷ2

ij − d2
. (27)

Observe now that, if we substitute the value of the tangents in (6) by the formulas in (24) and
(25), we would obtain the same expressions as in (15) and (16). Similarly, (26) and (27) combined
with (6) will yield the formulas in (13) and (14). As a consequence, the formulas yielding from
the analytical calculus presented by Rey & Hijazi are in essence equivalent reformulations of those
derived by Pallottino et al. following geometrical reasoning.

To summarize, we now know different equivalent separation conditions, namely six: (3), (6),
(12), (17), (19) and (23)— (7) is excluded since it is only valid when all aircraft fly at the same
speed. Some of them can be directly derived from each other, such as (3) and (6) (by taking
tangents), (6) and (17) (as just shown), (19) and (23) (as shown in the previous subsection) or (12)
and (23) (by changing spatial and temporal references). These equivalent separation conditions
are expressed as functions of different elements of the problem such as aircraft velocities, angles,
or even time. However, all of them have one thing in common: they are disjunctive conditions.
This comes to show the combinatorial nature of the problem, which is not evident at first. As
a consequence, existing mathematical programming formulations of the problem are for the most
part mixed-integer, as we discuss in the next section.

4. Mathematical programming formulations

The CDR has been addressed from wide-ranging domains, such as Optimal Control (see, e.g.
Tarnopolskaya & Fulton 2009), Simulation (see, e.g. Alliot et al. 1997), Visual Analytics (see, e.g.
Zohrevandi et al. 2020) or Mathematical Programming (MP), in a heterogeneous effort to provide
decision support tools for ATCs. In this section, we review some of the MP formulations proposed
in the literature, aiming at providing an overview of the different existing kinds of approaches. We
suggest survey Kuchar & Yang (2000) for extended reading on other CDR methods. A classifying
taxonomy is proposed therein, which includes dimension (vertical, horizontal, or 3D), trajectory
propagation model (straight, worst case, or probabilistic), conflict detection threshold (whether
a model explicitly defines when a conflict alert is issued), conflict resolution method (prescribed
maneuvers, optimization, force field, or manual), allowed maneuvers (speed, lateral, vertical, or
combined) and multiple conflicts management (pairwise or global). To the best of our knowledge,
there has not been a similar discussion focusing on the comparison of MP approaches for CDR.
To complete our exposition, which only considers a selection from the existing MP formulations,
we have gathered those and other existing MP approaches in Table 1. They are chronologically
displayed and classified based on different modeling aspects, which are described on the table foot.
Our taxonomy includes the separation condition according to Section 3, which, to the best of our
knowledge, has not been considered before to classify the models.

In MP formulations of CDR, the decision variables are usually the changes on the trajectories
allowed, namely heading angle and/or speed changes. We focus on these two kinds of maneuvers.
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Other works also include variables to represent different altitude levels, to model flight level reallo-
cation. This is frequently done with binary variables that activate or inactive separation constraints
depending on whether a pair of aircraft fly at the same altitude or not.

Some works consider trajectory recovery of aircraft. This is more common when models are
based on heading angle maneuvers since aircraft have to be returned to their original paths. There
are roughly two kinds of strategies to achieve trajectory recovery. One is to consider two optimiza-
tion steps, the first for CDR and the second for recovery. Alternatively, some approaches consider
both in the same optimization process, where maneuvers are considered to start and end at some
time instants, and they finalize by going back to the original configuration.

In the following, we introduce some of the MP formulations in the literature, classified depend-
ing on the allowed maneuvers. Due to the nature of the problem, many of them model logical
constraints, for which binary variables are used. Here, we define common notation for these con-
straints for the sake of simplicity, which includes z-variables and big M . Of course, depending on
the formulation at hand, they acquire different meanings. We also simplify constraints indexing by
just considering pairs of aircraft as i, j ∈ A, thus omitting condition i < j for readability.

4.1. Speed regulation

Pallottino et al. (2002) suggest the use of binary variables to model their separation conditions
(6) via MP. As a result, a MILP formulation of CDR based on SC can be obtained, as the authors
indicate in their paper. Their decision variables are the increment or decrease of speeds q′i, where
vi = v̂i + q′i for each aircraft i ∈ A. Note that we use q′i here to differentiate these variables
from qi, which were defined in Section 2.1 as the speed change ratio, vi = qiv̂i. Following the
authors’ indications, we reconstruct their formulation, where the short-hands ϑ+

ij := βij + αij and

ϑ−ij := βij − αij are used for readability:

min
q′,z

∑
i∈A
− q′i (28a)

s.t. q′
i
≤ q′i ≤ q̄′i ∀i ∈ A(28b)

(v̂j + q′j) cos θj − (v̂i + q′i) cos θi ≤M(1− z1
ij) ∀i, j ∈ A(28c)

(v̂j + q′j)(sin θj − tanϑ+
ij cos θj)− (v̂i + q′i)(sin θi − tanϑ+

ij cos θi) ≤M(1− z1
ij) ∀i, j ∈ A(28d)

(v̂j + q′j) cos θj − (v̂i + q′i) cos θi ≤M(1− z2
ij) ∀i, j ∈ A(28e)

(v̂i + q′i)(sin θi − tanϑ−ij cos θi)− (v̂j + q′j)(sin θj − tanϑ−ij cos θj) ≤M(1− z2
ij) ∀i, j ∈ A(28f)

(v̂i + q′i) cos θi − (v̂j + q′j) cos θj ≤M(1− z3
ij) ∀i, j ∈ A(28g)

(v̂i + q′i)(sin θi − tanϑ+
ij cos θi)− (v̂j + q′j)(sin θj − tanϑ+

ij cos θj) ≤M(1− z3
ij) ∀i, j ∈ A(28h)

(v̂i + q′i) cos θi − (v̂j + q′j) cos θj ≤M(1− z4
ij) ∀i, j ∈ A(28i)

(v̂j + q′j)(sin θj − tanϑ−ij cos θj)− (v̂i + q′i)(sin θi − tanϑ−ij cos θi) ≤M(1− z4
ij) ∀i, j ∈ A(28j)

z1
ij + z2

ij + z3
ij + z4

ij ≥ 1 ∀i, j ∈ A(28k)

z1
ij , z

2
ij , z

3
ij , z

4
ij ∈ {0, 1} ∀i, j ∈ A.(28l)

The objective (28a) is to minimize the deceleration changes (i.e., negative values q′i). Constraints
(28b) state the bounds on continuous q′-variables. On the other hand, (28c)-(28j) model the
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disjunctive equation (6). They can be divided into two groups. Constraints (28c)-(28f) are a
linearization of (6) when the sign of the denominator vi cos θi − vj cos θj is positive (in this case at
least one variable z1

ij or z2
ij is one), while (28g)-(28j) model (6) otherwise (in this case z3

ij or z4
ij is

one). The constraints on these groups can be active, when the corresponding binary z-variable on
the right-hand side takes value 1, or inactive if it takes value 0. In the latter case, a large enough
value of M guarantees that the constraint does not modify the feasible region of the problem. Note
that the same M is used here in (28c)-(28j) for simplicity, but a different large enough constant can
be used in each constraint. On the other hand, (28k) ensure that at least one pair of the constraints
among (28c)-(28j) is active. Finally, constraints (28l) state the binarity of z-variables.

Alonso-Ayuso et al. (2010) extended (28) by considering additional aspects including altitude
level reallocation, trajectory recovery, and minimization of the number of maneuvers implemented
per aircraft.

Cafieri & Durand (2014) propose a MINLP based on separation condition (12), where speed
regulation is performed at different time instants. While other models consider speed to be regulated
at t = 0 and maintained afterward, Cafieri & Durand define two instants for each aircraft at
which they start/end flying with modified speed. The result is a more flexible but more complex
model, including products of continuous variables in the constraints. The objective function is to
minimize deviation from the nominal plan. We refer the interested reader to the original paper
since reproducing the formulation here would need a significant amount of additional notation.

Cafieri & Omheni (2017) present a MINLP, whose objective was to maximize the number of
non-conflicting pairs via speed regulation. The authors use the following variables for each pair of
aircraft i, j ∈ A:

ηij =

{
1, if i and j are separated

0, otherwise.

At the beginning of the time horizon, aircraft are assumed to be separated. Two cases are distin-
guished, namely whether aircraft trajectories are divergent or not. The formulation, which is based
on analytical separation conditions (12), reads

max
v,V,η,z

∑
i∈A

ηij

s.t. vi ≤ vi ≤ v̄i ∀i ∈ A (29a)

Vi = (vi cos θ̂i, vi sin θ̂i) ∀i ∈ A (29b)

Vij = Vi − Vj ∀i, j ∈ A (29c)

(2z1
ij − 1)(‖Vij‖2(d̂2

ij − d2)− 〈p̂ij , Vij〉2) ≥ 0 ∀i, j ∈ A (29d)

(2z2
ij − 1)〈p̂ij , Vij〉 ≥ 0 ∀i, j ∈ A (29e)

ηij ≥ z1
ij ∀i, j ∈ A (29f)

ηij ≥ z2
ij ∀i, j ∈ A (29g)

ηij ≤ z1
ij + z2

ij ∀i, j ∈ A (29h)

0 ≤ ηij ≤ 1 ∀i, j ∈ A (29i)

z1
ij , z

2
ij ∈ {0, 1} ∀i, j ∈ A.

Constraints (29a) limit velocity changes and (29b) and (29c) link scalar speeds to vectors of relative
velocity. Constraints (29d) and (29e) ensure aircraft separation. When z1

ij = 1, (29d) coincides
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with the right-hand side of disjunctive separation condition (12), and it ensures that i and j are
separated at least the safety distance d. When z2

ij = 1, (29e) stands for the left-hand side of (12),

i.e., tminij < 0, meaning that the trajectories of the aircraft are divergent. Due to the objective

function and constraints (29h), for each pair of aircraft i and j, at least one of the binaries z1
ij or

z2
ij will take value one if feasible. At the same time, (29h) guarantees that ηij is zero if both z1

ij and

z2
ij are. On the other hand, (29f) and (29g) enforce ηij to be one if either z1

ij or z2
ij are. Variables

ηij will take values 0/1 in the optimum, and that is why their binarity is relaxed in (29i).
Cafieri & D’Ambrosio (2018) propose a MINLP in a similar vein. Inspired by Cafieri & Durand

(2014), they draw on the same analytical separation conditions, but they reformulate the model
to isolate non-linearities in the same constraints. This is interesting for specific solving techniques,
such as the alternating heuristic they apply. Their reformulation reads

min
q,V,W,s,S,z

∑
i∈A

(qi − 1)2 (30a)

s.t. Vxij = V̂xiqi − V̂xjqj ; Vyij = V̂yiqi − V̂yjqj ∀i, j ∈ A (30b)

Wxij = V 2
xij ; Wyij = V 2

yij ∀i, j ∈ A (30c)

sij = x̂ijVxij + ŷijVyij ∀i, j ∈ A (30d)

Sij = s2
ij ∀i, j ∈ A (30e)

Xij = Wxij +Wyij ∀i, j ∈ A (30f)

sijzij ≤ sij ≤ s̄ij(1− zij) ∀i, j ∈ A (30g)

(d̂2
ij − d2)Xij − Sij ≥Mij(1− zij) ∀i, j ∈ A (30h)

zij ∈ {0, 1} ∀i, j ∈ A.

The objective (30a) is to minimize the changes made on speed. From constraints (30b)-(30f),
variables sij stand for the scalar product 〈p̂ij , Vij〉, while Xij represents the squared norm of the
relative vector of velocity, Vij . When zij = 1, (30h) guarantees aircraft separation; when zij = 0,
(30g) states that the trajectories have to be divergent. Therefore, in this case, all the pairs have to
be deconflicted: if this is not possible the problem becomes unfeasible.

Rey et al. (2014) present a MINLP to maximize the number of conflicts solved based on arrival
times control. This represents the first stage of their proposed equity-oriented conflict resolution
model, which is followed by two more, aimed at solving conflicts most fairly and reducing delay,
respectively. Time is considered a function of the scalar speed, which is indirectly regulated by the
model. Heading angle changes are not considered. Their MINLP is based on separation conditions
(23). Instead of non-convex function Γ(vi, vj , γij), they use a linear approximation first introduced
in their previous work, Rey et al. (2012). There, they define the following convex function

ϕij(r) :=
√
r2 − 2r cos γij + 1,

and noted that

Γ(vi, vj , γij) =
d

vi|sin γij |
ϕij(vi/vj) and Γ(vi, vj , γij) =

d

vj |sin γij |
ϕij(vj/vi).

Maximum values of ϕij(r) are achieved for the maximum and minimum values of r. Thus, the
authors defined

ϕ̄ij := max{ϕ(vi/v̄j), ϕ(v̄i/vj)}, ϕ̄ji := max{ϕ(vj/v̄i), ϕ(v̄j/vi)}
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(in the original paper only one value ϕ̄ij is defined, a formal typo also made in Rey et al. (2016)
that does not alter the final upper bound on Γ, Rey (2020)), which yield the following upper bounds
on Γ(vi, vj , γij):

d

vi|sin γij |
ϕ̄ij ,

d

vj |sin γij |
ϕ̄ji. (31)

The authors consider a path for each aircraft i ∈ A, denoted by P(i) and made of a sequence
of waypoints. Suppose that k is the crossing point between the trajectories of i, j ∈ A, that is,
P(i) = {. . . , k−i , k, . . .} and P(j) = {. . . , k−j , k, . . .}. If we denote by tki (resp. tkj ) the time instant

at which i (resp. j) traverses the crossing point k, and by tk
−
i (resp. tk

−
j ) the instant at which it

traverses the preceding waypoint, the following upper bound on Γ(vi, vj , γij) is obtained from (31):

Γ̄ij = min

{
(tki − tk

−
i )

dϕ̄ij

d(k, k−i )|sin γij |
, (tkj − tk

−
j )

dϕ̄ji

d(k, k−j )|sin γij |

}
.

With d(·, ·) we denote the Euclidean distance. This upper bound is a linear function of the arrivals
times, which are the only variables in the definition of Γ̄ij . Rey et al. (2014) use binary variables
to represent effective separation between aircraft, an approach also adopted by Cafieri & Omheni
(2017). The definition changes slightly:

ηij =

{
1, if the conflict between i and j, with crossing trajectories, is solved

0, otherwise.

Using these variables, together with the arrival times to waypoints tki , for each aircraft i ∈ A and
waypoint k ∈ P(i), they proposed the following MINLP for the CDR:

max
t,η,Ω

∑
i,j∈A

ηij (32a)

s.t. tki ≤ tki ≤ t̄ki ∀i ∈ A, ∀k ∈ P(i) (32b)

Ωi,j = max{0, Γ̄ij − |tki − tkj |} ∀i, j ∈ A, ∀k ∈ P(i) ∩ P(j) (32c)

ηij ≤ 1− Ωi,j

M ∀i, j ∈ A (32d)

ηij ∈ {0, 1} ∀i, j ∈ A.

The objective, (32a), is to maximize the number of solved crossing conflicts. Bounds on speed
regulation are modeled in (32b) through linear transformation based on aircraft rectilinear motion.
Constraints (32c) ensure that Ωi,j = 0 if and only if the conflict between i and j is solved. Because
of (32d), if Ωi,j > 0, the binary variable ηij will take value zero (M has to be large enough so that
Ωi,j

M < 1). Otherwise, it will take value one due to the maximizing objective. Constraints (32c)
can be linearized by considering new binary variables and some additional constraints. For more
details on this linearization, see the Appendix in Rey et al. (2014).

Finally, Cerulli et al. (2020) interpret the CDR as a bilevel problem. Their formulation has a
lower level sub-problem for each pair of aircraft; optimal solutions of sub-problems correspond to
time instants at which aircraft are closest. The constraints involving the lower levels ensure that
the distance at this time instant is at least d for each pair of aircraft. The proposed model serves
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for more than two dimensions, but here we present it in two to maintain our notation:

min
q,t

∑
i∈A

(qi − 1)2

s.t. q
i
≤ qi ≤ q̄i ∀i ∈ A

min
tij∈[0,T ]

[
(x̂i − x̂j) + tij(qiV̂xi − qj V̂xj)

]2

+
[
(ŷi − ŷj) + tij(qiV̂yi − qj V̂yj)

]2
≥ d2 ∀i, j ∈ A.

4.2. Heading angle changes

The models presented in the previous section can be adapted to address CDR via HAC, for
instance, by modifying the decision variables. Indeed, to model HAC, Alonso-Ayuso et al. (2014)
use a very similar formulation to that proposed in Pallottino et al. (2002) based on SC. The resulting
formulation is a MINLP involving trigonometric functions of the variables, which are the heading
angle variations. Another example is Cafieri & Omheni (2017), where a two-step algorithm is
proposed for the CDR. In each step, a MP formulation is solved: first, speed is regulated with
model (29); then, if there are unsolved conflicts a HAC model is applied. The ideas behind the
formulation considering HAC are pretty similar to that of SC, and also involves trigonometric
formulas:

min
ω,V,tmin,z

∑
i∈A

ω2
i

s.t. ωi ≤ ωi ≤ ω̄i ∀i ∈ A

Vi = (v̂i cos(θ̂i + ωi), v̂i sin(θ̂i + ωi)) ∀i ∈ A

Vij = Vi − Vj ∀i, j ∈ A

zij(‖Vij‖2(d̂2
ij − d2)− 〈p̂ij , Vij〉2) ≥ 0 ∀i, j ∈ A

tminij =
−〈p̂ij ,Vij〉
‖Vij‖2 ∀i, j ∈ A

tminij (2zij − 1) ≥ 0 ∀i, j ∈ A

zij ∈ {0, 1} ∀i, j ∈ A.

Similarly, Cerulli et al. (2020) also propose a bilevel programming formulation via HAC, which
reads:

min
ω,t

∑
i∈A

ω2
i

s.t. ωi ≤ ωi ≤ ω̄i ∀i ∈ A

min
tij∈[0,T ]

[
(x̂i − x̂j) + tij(v̂i cos(θ̂i + ωi)− v̂j cos(θ̂j + ωj))

]2

+
[
(ŷi − ŷj) + tij(v̂i sin(θ̂i + ωi)− v̂j sin(θ̂j + ωj))

]2
≥ d2 ∀i, j ∈ A.

On the other hand, Pallottino et al. (2002) propose a completely different formulation for HAC.
However, it is only valid when all the aircraft fly at the same speed. The formulation, which is
not explicitly written in their paper, is based on equations (7), which are used for pairs of aircraft
with crossing trajectories, and another set of separation constraints, which the authors propose
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for non-crossing trajectories in the direction of motion (which might become crossing trajectories
due to heading angle changes). Here, for simplicity, we present a MILP based uniquely on (7),
which is enough to model CDR since these conditions are equivalent to (3), as shown in Section
3.1. The authors distinguish three cases in order to model (7), namely (i) (θi + θj +π)/2 ∈ [−π, π],
(ii) (θi + θj + π)/2 > π and (ii) (θi + θj + π)/2 < −π. The decision variables are the heading angle

deviations ωi for each i ∈ A, where θi = θ̂i + ωi. According to Pallottino et al., fourteen groups of
linear constraints and six groups of binary variables are used to model (7). Here, we reconstruct
the resulting formulation as follows:

min
ω,ν,z

∑
i∈A

νi (36a)

s.t. −νi ≤ ωi ≤ νi ∀i ∈ A (36b)

ωi ≤ ωi ≤ ω̄i ∀i ∈ A (36c)

ωi + ωj ≤ π − θ̂i − θ̂j +M(1− z1
ij) ∀i, j ∈ A (36d)

−ωi − ωj ≤ −3π + θ̂i + θ̂j +M(1− z1
ij) ∀i, j ∈ A (36e)

ωi + ωj ≤ 2 tanϑ−ij − π − θ̂i − θ̂j +M(1− z1
ij) ∀i, j ∈ A (36f)

ωi + ωj ≤ π − θ̂i − θ̂j +M(1− z2
ij) ∀i, j ∈ A (36g)

−ωi − ωj ≤ −3π + θ̂i + θ̂j +M(1− z2
ij) ∀i, j ∈ A (36h)

−ωi − ωj ≤ −2 tanϑ+
ij + π + θ̂i + θ̂j +M(1− z2

ij) ∀i, j ∈ A (36i)

−ωi − ωj ≤ −π + θ̂i + θ̂j +M(1− z3
ij) ∀i, j ∈ A (36j)

ωi + ωj ≤ 2 tanϑ−ij + π − θ̂i − θ̂j +M(1− z3
ij) ∀i, j ∈ A (36k)

−ωi − ωj ≤ −π + θ̂i + θ̂j +M(1− z4
ij) ∀i, j ∈ A (36l)

−ωi − ωj ≤ −2 tanϑ+
ij − π + θ̂i + θ̂j +M(1− z4

ij) ∀i, j ∈ A (36m)

ωi + ωj ≤ −3π − θ̂i − θ̂j +M(1− z5
ij) ∀i, j ∈ A (36n)

ωi + ωj ≤ 2 tanϑ−ij − 3π − θ̂i − θ̂j +M(1− z5
ij) ∀i, j ∈ A (36o)

ωi + ωj ≤ −3π − θ̂i − θ̂j +M(1− z6
ij) ∀i, j ∈ A (36p)

−ωi − ωj ≤ −2 tanϑ+
ij + 3π + θ̂i + θ̂j +M(1− z6

ij) ∀i, j ∈ A (36q)

z1
ij + z2

ij + z3
ij + z4

ij + z5
ij + z6

ij ≥ 1 ∀i, j ∈ A (36r)

z1
ij , z

2
ij , z

3
ij , z

4
ij , z

5
ij , z

6
ij ∈ {0, 1} ∀i, j ∈ A.

The objective function (36a) is to minimize de 1-norm of the vector of heading angle deviations.
Indeed, due to (36b), νi = |ωi| for all i ∈ A in any optimal solution. The group of constraints
(36d)-(36i), ensure aircraft separation when (θi + θj + π)/2 ∈ [−π, π]; the group (36j)-(36m) is
active when (θi + θj + π)/2 > π, and impose condition (7) shifted in π units; finally, (36n)-(36q)
stand for (7) shifted in −π units when (θi + θj +π)/2 < −π. Finally, (36r) ensure that at least one
of the previous six groups of constraints is active.
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4.3. Speed and heading angle changes

Frazzoli et al. (2001) write the CDR as a quadratically constrained quadratic program. Their
decision variables represent the change made to nominal velocity vectors. That is, they are defined
as Ui such that Vi = V̂i + Ui for all i ∈ A. Consequently, their model implicitly allows both
speed and heading angle changes. They consider given preferred deviations, Ûi. The proposed MP
formulation reads:

min
U,W

∑
i∈A
‖Ûi − Ui‖2 (37a)

s.t. ‖V̂i + Ui‖ ≤ v̄ ∀i ∈ A (37b)

〈(V̂i+Ui),V̂i〉
‖V̂i‖

≥ v ∀i ∈ A (37c)

〈(V̂ij + Uij), p̂ij〉+Wij

√
d̂2
ij − d2 ≥ 0 ∀i, j ∈ A (37d)

‖V̂ij + Uij‖2 ≥W 2
ij ∀i, j ∈ A (37e)

Wij ≥ 0 ∀i, j ∈ A.

The objective function (37a) is to minimize the differences between the obtained deviations and the
preferred ones. Constraints (37b) and (37c) stand for maneuvers bounds. On the one hand, (37b)
ensure that the maximum speed is not exceeded. On the other hand, (37c) are a convex approxi-
mation to minimum speed constraints ‖V̂i + Ui‖ ≥ v. Indeed, observe that (37c) are equivalent to
‖V̂i + Ui‖ cos(∠(V̂i + Ui, V̂i)) ≥ v. Note that this also yields bounds on admissible heading angle
changes. Finally, (37d) and (37e) are equivalent to separation constraints (12).

Omer & Farges (2013) proposed a hybridization of nonlinear and mixed integer linear program-
ming to tackle the SHAC version of the CDR. Their models feature uniformly accelerated aircraft
motion, trajectory recovery, and obstacle avoidance. They first formulate the CDR as a Bolza prob-
lem, with continuous variables and infinitely many constraints in the domain of time. Then, time
discretization is considered to build two alternative formulations, namely a nonlinear program with
only continuous variables and a mixed integer linear program. The latter is a simplification of the
former in which: (i) a linear approximation of convex quadratic constraints on maneuvers bounds
is considered, and (ii) separation constraints (1) are approximated through disjunctive half-planes.
The authors propose to use the optimal solution of the MILP as starting point when solving the
NLP.

Omer (2015) develops a space-discretized model such as that in Vela et al. (2009b), Rey et al.
(2014), which are typically based on speed regulation, that allows both speed and heading angle
maneuvers. The author tries to model trajectories realistically by considering vectors of velocity
that are continuous with respect to time (instead of instantaneous maneuvers), and additional
bounds on acceleration and yaw rate. To model the problem, a conflict graph is used: nodes are
the origin and destination of aircraft plus the crossing points between trajectories, while edges
link consecutive nodes through which an aircraft is planned to fly. The author derives different
equations to account for the temporal and spatial shifts yielded by the different types of maneuvers.
To linearize some of the model equations, a discrete set of possible heading changes is considered.
The objective function takes into account both fuel consumption and time delay. Reproducing
the proposed MP formulation would need from more notation and formulas than those already
introduced, and is out of the scope of this survey. We refer the interested reader to the original
paper for more details.
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Alonso-Ayuso et al. (2016) present a MINLP in the same vein of (28), which is based on
separation conditions (6). The authors use speed and heading angle variations as decision variables;
trigonometric functions of the variables made their constraints highly nonlinear. Their model
addresses the more general scenario in which altitude level reallocation is allowed, and it includes
the SHAC variant as a particular case. Their multi-objective criterium considers the priorities
between the three mentioned types of maneuvers.

A different discrete optimization approach is presented by Lehouillier et al. (2017b), who also
propose the use of graphs as modeling tools. In this case, nodes stand for aircraft maneuvers,
while edges connect those that are conflict-free. The authors identify the CDR with a variant of
the minimum-weight maximum-clique problem. In doing so, they also propose a way of computing
maneuvers costs. To identify conflict-free maneuvers, they use a time discretization and evaluate
separation condition (1) either on the extremes of the considered time intervals or on the time
at which the aircraft are closest (which can be analytically obtained). One of the advantages of
the proposed framework is that it is valid for any choice of available maneuvers. The model is
generalized to handle uncertainties in Lehouillier et al. (2017a). The authors consider errors due
to wind, imprecision on aircraft speeds, and delay in the execution of maneuvers.

Rey & Hijazi (2017b) proposed a MINLP with the following variables:

δxi := qi cosωi ∀i ∈ A, (38)

δyi := qi sinωi ∀i ∈ A. (39)

These variables allow writting the constraints of their model in complex number notation. However,
the formulation we present here has been taken from their implementation available in GitHub (see
Rey & Hijazi 2017a). There, the following short-hands are used:

aij = ŷ2
ij − d2, bij = x̂2

ij − d2, cij = 2x̂ij ŷij .
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Their formulation for CDR via SHAC is:

min
δ,V,z

∑
i∈A

δ2
yi + (1− δxi)2 (40a)

s.t. Vxij = δxiv̂i cos θ̂i − δyiv̂i sin θ̂i − δxj v̂j cos θ̂j + δyj v̂j sin θ̂j ∀i, j ∈ A (40b)

Vyij = δyiv̂i cos θ̂i + δxiv̂i sin θ̂i − δyj v̂j cos θ̂j − δxj v̂j sin θ̂j ∀i, j ∈ A (40c)

−zijMij ≤ Vyij x̂ij − Vxij ŷij ≤ (1− zij)Mij ∀i, j ∈ A (40d)

2aijVxij − Vyij(cij −
√
c2
ij − 4aijbij) ≤ (1− zij)Mij ∀i, j ∈ A : x̂ij ≥ 0, ŷij < 0(40e)

−2bijVyij + Vxij(cij −
√
c2
ij − 4aijbij) ≤ zijMij ∀i, j ∈ A : x̂ij ≥ 0, ŷij < 0(40f)

−2aijVxij + Vyij(cij −
√
c2
ij − 4aijbij) ≤ (1− zij)Mij ∀i, j ∈ A : x̂ij < 0, ŷij ≥ 0(40g)

2bijVyij − Vxij(cij −
√
c2
ij − 4aijbij) ≤ zijMij ∀i, j ∈ A : x̂ij < 0, ŷij ≥ 0(40h)

2bijVyij − Vxij(cij −
√
c2
ij − 4aijbij) ≤ (1− zij)Mij ∀i, j ∈ A : x̂ij ≥ 0, ŷij ≥ 0(40i)

2aijVxij − Vyij(cij −
√
c2
ij − 4aijbij) ≤ zijMij ∀i, j ∈ A : x̂ij ≥ 0, ŷij ≥ 0(40j)

−2bijVyij + Vxij(cij −
√
c2
ij − 4aijbij) ≤ (1− zij)Mij ∀i, j ∈ A : x̂ij < 0, ŷij < 0(40k)

−2aijVxij + Vyij(cij −
√
c2
ij − 4aijbij) ≤ zijMij ∀i, j ∈ A : x̂ij < 0, ŷij < 0(40l)

v2 ≤ δ2
xi + δ2

yi ≤ v̄2 ∀i ∈ A (40m)

δxi tanω ≤ δyi ≤ δxi tan ω̄ ∀i ∈ A (40n)

zij ∈ {0, 1} ∀i, j ∈ A

The authors propose to minimize (40a) since each term in the summation is equal to q2
i −2qi cosωi+

1, which is minimal when qi = 1 and ωi = 0. Constraints (40b) and (40c) state the relation between
the vector of relative velocity and variables δ. On the other hand, (40d)-(40l) define the different
regions in the space (Vxij , Vyij) where aircraft separation is maintained, which were described at
the end of Section 3.2. Finally, (40m) impose speed regulation bounds, while (40n) establish the
limits on heading angle variations. Note that the inequalities of the left-hand side of (40m) define
non-convex constraints and that the formulation is linear except for the objective and the bounds
on the speed.

Finally, Dias et al. (2020) adopt and extend (40) to derive non-convex MIP formulations for the
SHAC and to propose exact optimization approaches based on tightened convex relaxations. The
authors address an extended problem where flight level changes are considered as well.

5. Optimal solution computation

As we have seen, CDR is a complex task that, even after simplifications, requires nonlinear
equations and binary variables to be modeled as a mathematical program. Here, we try to give a
general picture of how far these models have gone when solving CDR instances. We do not aim
at comparing between different formulations or solving techniques. On the one hand, few bench-
marking instances have been shared across studies; on the other hand, computational resources
and configurations always vary. Instead of that, we discuss which types of CDR benchmarks have
appeared on existing literature, and we provide an idea of which are the limits of the different MP
approaches.
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(a) Circle with 10 aircraft (b) Circle, one quarter variant (c) Random circle with 10 aircraft

Figure 7: Circle instances

(a) Scenario types used by Omer (2015) (b) Five scenarios used by Cafieri & Durand (2014)

Figure 8: Grid/Rhomboidal instances

Figure 9: Random instance
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There are a few sets of instances that have been commonly used in previous works. They
correspond either to predefined scenarios or just to randomly generated configurations. Existing
benchmarks of the CDR problem in the literature include:

• Circle instances. Aircraft initial positions are arranged on a circumference of a given radius,
and they fly towards the center following the rectilinear trajectory given by the corresponding
diameter. The circle radius is usually 100 NM or 200 NM and nominal speed is typically
considered to be 400 NM/h for all aircraft. This scenario is widely known as the circle
problem, even though it has also been called roundabout, e.g. in Omer & Farges (2013) and
Omer (2015), and symmetric encounter pattern, see Frazzoli et al. (2001). Aircraft are usually
distributed on the circumference uniformly, as illustrated by Figure 7a. This is the case of the
instances considered by Rey et al. (2014, 2016), Cafieri & Rey (2017), Rey & Hijazi (2017b),
Dias et al. (2020). In other works, such as Cafieri & Durand (2014), Rey et al. (2016),
Cafieri & D’Ambrosio (2018), Cerulli et al. (2020), aircraft are distributed on a quarter of the
circumference and their trajectories can be slightly deviated (a random quantity between -5◦

and 5◦) from the center, see Figure 7b. Note that in the latter configuration frontal conflicts
are neglected.

• Random circle instances. The previous family gathers very unrealistic scenarios. To obtain
more realistic configurations, they have been modified by considering a random deviation
between -30◦ and 30◦ from diametrical trajectories. An example of a random circle instance
with 10 aircraft is given in Figure 7c. This kind of instance has been used in works such
as Rey et al. (2014, 2016), Cafieri & Rey (2017), Rey & Hijazi (2017b), Dias et al. (2020).
There are circle and random circle instances publicly available at the GitHub repository Rey
& Hijazi (2017a).

• Grid/Rhomboidal instances. In these scenarios, aircraft fly on rectilinear trajectories crossing
at different points. When the trajectories cross at right angles, the scenario is called a grid.
Sometimes, several aircraft are flying on a trail configuration, following each other on the same
stream. This is the case for instance in Frazzoli et al. (2001), Omer & Farges (2013), Omer
(2015), Dias et al. (2020), which include aircraft displayed on two or four streams in their
studies (see Figure 8a). Other times, each aircraft follows an independent trajectory, like in
the five scenarios depicted in Figure 8b. These were introduced as opposed to circle instances
in Cafieri & Durand (2014), and then used in Cafieri & D’Ambrosio (2018), Cerulli et al.
(2020). The figure shows rectilinear trajectories crossing at different points and corresponding
to different aircraft, ranging between 6 and 10.

• Random trajectory instances. In this case, both initial positions and aircraft velocity vectors
are randomly generated, see Frazzoli et al. (2001), Alonso-Ayuso et al. (2016), Cafieri &
Rey (2017). These benchmarks are designed to represent random configurations where some
aircraft may be diverging and/or initially violating the 5 NM separation standard. Figure 9
illustrates a random trajectory instance. The airspace is frequently considered to be a square,
with 100 NM on each side and aircraft flying at the same speed, 400 NM/h.

To give an idea of the state-of-the-art models’ performances on the above-mentioned instances,
we focus on the most recent approaches. Our exposition is organized based on the variant addressed
by the models, namely SC, HAC, or SHAC.

Cafieri & Durand (2014) propose to solve their formulation for the SC problem with the global
solver Couenne or, alternatively, with a tailored heuristic algorithm. Their heuristic decomposes
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the SC problem into smaller sub-problems. The exact solutions of the sub-problems are then
combined to form a globally feasible but possibly sub-optimal solution to the original problem.
They could solve circle instances of the type depicted in Figure 7b with up to 10 aircraft in 759.40
seconds; and the grid and rhomboidal benchmarks depicted on Figure 8b in 3731.43 seconds at
most. A different heuristic for SC namely to solve the formulation (30), is proposed in Cafieri &
D’Ambrosio (2018). In this case, the authors propose a feasibility pump heuristic that builds two
sequences of solutions: ones that are feasible regarding nonlinear constraints, and others satisfying
the integrality conditions. The algorithm iterates until the two sequences converge to a feasible
solution of (30). The authors used the same benchmarks as Cafieri & Durand to test their heuristic.
CPU time is less than 640 seconds for circle instances and 200 seconds for non-circle ones.

Instead of minimizing deviation, there are other approaches based on SC that aim at minimizing
conflicts. This is the case of Rey et al. (2014) and Rey et al. (2016). The first test their equity-
oriented conflict resolution model on circle and random circle instances having up to 11 and 30
aircraft respectively. They use Cplex to solve the MP formulations at the three stages of their
model. Solving one stage took on average 35 seconds for the biggest circle instance and 25 seconds
for the random circle with 30 aircraft. On the other hand, Rey et al. (2016) propose two formulations
to maximize the conflicts solved and minimize total conflicts duration, which were solved using
Cplex. Tests on circle and random circle instances show that the performance of both formulations
is comparable, solving the circle instance of size 10 in less than 250.50 seconds and a random circle
with 30 aircraft in less than 42.9.

In the same vein, Cafieri & Rey (2017) propose several MINLP formulations to reduce the
number of conflicts via SC. They consider two models, one aiming at maximizing the number of
conflicts solved and another to identify the largest conflict-free set of aircraft. For each of them,
they present two formulations, which differ in whether diverging trajectories are considered or
not. Random trajectory instances are used to test the former, while random circle scenarios are
considered for the latter since they do not include diverging trajectories. When the objective is to
maximize the conflicts solved, they solve 7 out of 20 random circle instances of size 10 within a
time limit of 300 seconds, and 2 out of 20 when the size is incremented to 20 aircraft. For random
trajectory instances, they use formulation (29), which solves the 20 instances of 10 aircraft tested
in less than 5 seconds, and 9 out of 20 instances of size 20 within the time limit. In the case of
the model that maximizes the size of the conflict-free set, they solved 5 out of 20 random circle
instances of size 10 and 3 out of 20 with 20 aircraft, within the time limit. In this case, the authors
also propose a heuristic, which finds equally good or better solutions than Couenne, the solver
chosen to solve the MP formulations. In the case of random trajectory instances, they can solve
the 20 instances of size 10 tested in less than 33 seconds, while when size is increased to 20 aircraft
they can only solve 2 out of 20 instances within the time limit. For these instances, the heuristic
does not improve solution quality in general. Conversely, for 10 aircraft the optimal is found for
11 instances and for 20 aircraft the heuristic usually finds worse solutions, and only represents an
improvement in three cases, for which the MP cannot find a feasible solution.

Cafieri & Omheni (2017) propose a model to address both SC and HAC. Their procedure is
made of two steps: first formulation (29) is used as a preprocessing to adjust aircraft speeds; then,
the remaining conflicts are solved via HAC with formulation (34) and the speeds resulting from
the previous step. Both MP formulations are solved with Couenne. Cafieri & Omheni test their
model also on circle instances. They report CPU times of 2819.51 seconds at most for the circle
problem with 6 aircraft and 2561.98 seconds at most for random circle instances with 8 aircraft.

Omer (2015) used Gurobi to solved its space-discretized MILP, which models the CDR problem
with SHAC. He solved circle scenarios with 6 aircraft in 124.4 seconds on average; grid configurations
with 12 aircraft in 148.4 seconds on average; and rhomboidal scenarios with two crossing streams
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and 12 aircraft (see Figure 8a) in 142.2 seconds on average.
Alonso-Ayuso et al. (2016) propose three variants of a conflict resolution model based on SHAC.

To prioritize the different maneuvers, each variant uses a different criterion for multi-objective
optimization, namely lexicographic, compromise, and a mixture of minimizing the largest maneuver
and the compromise criterion. The models were solved using Minotaur and tested on circle and
random instances. For circle instances with up to 7 aircraft, the largest CPU times range from
452.63 to 2200.77 seconds depending on the multiobjective criteria used (pre-calculation of so-called
ideal values included). Similarly, for random trajectory instances up to 20 aircraft, the worst CPU
times range from 27.69 to 35.48 seconds.

Rey & Hijazi (2017b) propose an algorithm that solves different relaxations of their complex
number formulation (40) to obtain lower bounds and fix binary variables in (40) to obtain upper
bounds. The algorithm is tested on circle instances with up to 20 aircraft and random circle ones
having up to 40 aircraft. Circle instances with 4 to 10 aircraft are solved to global optimality within
73.36 seconds. In particular, instances with up to 7 aircraft are solved in less than a second. On the
other hand, circle instances with 11 to 17 aircraft are solved to local optimality within the time limit
of 300 seconds whereas feasible solutions for those of size 18, 19, and 20 needed 300 seconds more.
To evaluate the performance of their approach on random circle instances, the authors generate 100
instances for each scenario size, i.e. 10, 20, 30, and 40 aircraft. All instances of sizes 10 and 20 are
solved to global optimality in less than a second. For 30-aircraft instances, 83 are solved to global
optimality, 71 in 4.35 seconds on average and 12 in 35.58 seconds on average. The remaining 17
instances are solved to local optimality. In the case of 40 aircraft, only 17 instances can be solved
to optimality. The CPU time needed increases to 99.05 seconds on average for 16 of them. Local
optimal solutions are found for 75 instances in 261.6 seconds on average, while no solution is found
for the remaining 8.

In summary, current approaches limits are around 20 aircraft for the circle instances and 40
for the random circle ones, whereas it is not clear for non-circle ones. Regarding circle instances,
optimal solutions are known up to 10 aircraft, while instances from 11 to 20 aircraft remain open
and only local optima are known. In the case of the random circle, 100 instances of each size 10 and
20 are solved to optimality. The scenario becomes more challenging with the increase of aircraft.
With 30, most of the instances can be solved in less than one minute, whereas with 40 we need
more than 4 minutes to obtain a local solution in most cases. Finally, non-circle instances have not
been so extensively used for testing. We know that random trajectory instances of 20 aircraft can
be solved in less than one minute. On the other hand, specific grid and rhomboidal configurations
of Figure 8 with up to 12 aircraft have been solved in 3.3 minutes at most.

6. Future research directions

Even though CDR optimization methods emerged to answer a need from a real application,
many of the key features for obtaining operationally-useful solutions have not been still addressed.
The methods described herein rely on simplifying assumptions that include co-planar motion, rec-
tilinear trajectories, and perfect information. This limits their interest to the academic context
rather than real ATC, which requires more flexible assumptions.

One of the features that should be improved is aircraft motion. Rectilinear trajectory assump-
tion might hold often at cruising level, but also excludes other particular scenarios. Similarly,
co-planarity does not apply in many cases: most challenging CDR instances often involve aircraft
converging in both the vertical and horizontal dimensions. Also, aircraft position has been treated
as perfect information, while it is uncertain. Future developments should allow for curving and
accelerating trajectories under uncertainty due to track falloff or sensor errors. Also linked to

31



uncertainty, weather conditions such as wind should not be excluded from models. Considering
these external conditions sums an extra degree of complexity to models, which have to deal with a
random component and provide robust solutions.

Regarding maneuvering, oversimplifications are also a significant shortcoming of current studies.
First, maneuvers are frequently assumed to be performed at the beginning of the time horizon. This
does not answer a real operational need and constitutes an important limitation of the feasible set
of solutions. Modeling of trajectory recovery is another aspect that is still unsatisfying. Trajectory
recovery responds to the operational concept of 4D contract, according to which trajectories must
satisfy certain time and space requirements on a sequence of 4D points. After conflicts are avoided,
aircraft must return to their original trajectories as soon as possible. Current models either rely on
time discretization to address recovery at the end of the time horizon, or add penalizing terms in
the objective for space and time shifts with respect to the nominal plan. However, time-discretized
models require a granularity that is prohibitive in terms of performance, while penalizing terms
do not effectively address the problem. Recovery is indeed not trivial since trajectories must be
tracked for potential conflicts during this phase as well. At the same time, recovery implies the
introduction of “breaking points” in the trajectories, which are usually assumed to be straight as
was already discussed. This evidences the flaws of current assumptions, which are too tight to
handle situations that constantly occur in the real world.

Finally, automation of traffic control in emerging domains such as urban air mobility and
autonomous vehicles is certainly a promising future research direction. In these envisioned air
transportation concepts, innovative aircraft could safely and efficiently transport passengers and
goods within and around dense urban areas. The current concept of operations deems automated
traffic management systems to be backed by human-in-the-loop supervision. Integration of such
urban air mobility operations in existing ATM systems is one of the hot topics of today’s aviation.
Conflict detection and resolution must consider here additional elements, such as obstacle avoidance,
specific vehicle profiles, vertical climbing, noise impact, stricter time constraints, and aircraft power
limitations.

7. Concluding remarks

This review evidences that Mathematical Programming has a lot to say in the development of
decision support tools for ATM, and, in particular, for aircraft deconfliction. However, after several
decades of effort, current approaches still suffer from important limitations when it comes to their
real application.

One of the contributions of this analysis is the derivation of the aircraft pairwise separation con-
ditions, for which we show the links and equivalency across six different equations. The separation
conditions, which are most naturally modeled as non-convex quadratic mathematical constraints,
are key for CDR formulations. Their direct application gives nonlinear non-convex models, while
alternatives include simplifications that affect model reliability and/or disjunctive mathematical
constraints. The modeling choice for aircraft separation conditions makes a significant difference
between approaches. Thus, showing the mathematical relationships among the alternative separa-
tion conditions in the literature can bring new light to the problem. On the other hand, we revisit
CDR mathematical formulations across the last few decades, providing a cohesive discussion on
the different approaches. A proposal of taxonomy has been presented to compare them, which
includes the type of separation condition as one of the classifying features. The analysis made on
several MP approaches illustrates the variety of modeling choices and how they affect the resulting
formulations. We hope it can inspire new proposals from the field in near future. Regarding solu-
tion computation, state-of-the-art approaches can solve hard symmetric instances in a few seconds,
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although the number of aircraft is still limited to several dozens.
Future approaches, other than meeting computational requirements due to the online nature of

the problem, would need to consider a larger set of features than those of the models discussed here.
These include, among others, the ability to handle uncertainty, accurate modeling of objectives such
as energy consumption, robustness of the solution against failure, and integration with weather
conditions. On the other hand, a larger variety of reference benchmark sets is needed, which
includes synthetic and realistic instances, to validate and compare approaches.
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