
Research Article

Aircraft Gas Turbine Engine Health Monitoring System by Real
Flight Data

Mustagime Tülin Yildirim1 and Bülent Kurt 2

1Department of Aircraft Electrical and Electronics, Faculty of Aeronautics and Astronautics, Erciyes University,

38039 Kayseri, Turkey
2Aircraft Technology Program, Erzincan University, 24100 Erzincan, Turkey

Correspondence should be addressed to Bülent Kurt; bulentkrt@gmail.com

Received 3 July 2017; Revised 7 November 2017; Accepted 10 December 2017; Published 14 March 2018

Academic Editor: Angel Velazquez

Copyright © 2018 Mustagime Tülin Yildirim and Bülent Kurt. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

Modern condition monitoring-based methods are used to reduce maintenance costs, increase aircraft safety, and reduce fuel
consumption. In the literature, parameters such as engine fan speeds, vibration, oil pressure, oil temperature, exhaust gas
temperature (EGT), and fuel flow are used to determine performance deterioration in gas turbine engines. In this study, a new
model was developed to get information about the gas turbine engine’s condition. For this model, multiple regression analysis
was carried out to determine the effect of the flight parameters on the EGT parameter and the artificial neural network (ANN)
method was used in the identification of EGT parameter. At the end of the study, a network that predicts the EGT parameter
with the smallest margin of error has been developed. An interface for instant monitoring of the status of the aircraft engine has
been designed in MATLAB Simulink. Any performance degradation that may occur in the aircraft’s gas turbine engine can be
easily detected graphically or by the engine performance deterioration value. Also, it has been indicated that it could be a new
indicator that informs the pilots in the event of a fault in the sensor of the EGT parameter that they monitor while flying.

1. Introduction

Aircraft engines produce the power needed for aircraft. For
this reason, aircraft engines are very important for flight
safety [1]. Today’s complex and advanced technology sys-
tems require advanced and expensive maintenance strategies
[2]. Maintenance services are costly for airline companies.
For manufacturers, maintenance is a source of revenue.
According to Dennis and Kambil, though after-sales service
and parts sales constitute 25% of the manufacturer’s income,
it makes up 40–50% of company profits [3].

Because of the high cost of maintenance, gas turbine
engines must be operated within specified physical limits [4].
Today’s aircraft engines aremade safer by increasing thenum-
ber of control parameters and sensors [5]. The engines have a
complex mechanical system. Because aircraft engines operate
at high temperatures, high pressures, and high speeds, there
are lots of possibilities of various faults in the aircrafts [6].

Gas turbine engines show the effects of wear and tear over
time. A small fault during the flight does not prevent the
engine from running, but if this fault is not detected, it could
lead to a bigger fault. If these bigger faults cannot be prevented
in the aircraft, it can lead to high maintenance costs and
accidents.When aircrafts are taken for maintenance, the con-
dition of the gas turbine engine is investigated by various tests
andmeasurements [7]. Condition-basedmaintenance (CBM)
is being performed to provide effective and efficient mainte-
nance in today’s maintenance services. In the literature, there
are major developments in the CBM method with studies on
machine condition monitoring and fault diagnostics [8]. A
typical CBM program consists of three steps [9]:

(i) Data acquisition step

(ii) Data processing step

(iii) Maintenance decision-making step
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In a CBM program, we can group two important parts as
diagnostics and prognostics. With diagnostic monitoring,
malfunctions or abnormal conditions are detected when a
system or its subsystems are in operation [10]. With the
prognostics approach, the current state of the motor and
possible future failures can be predicted. The following diag-
nostic systems have been applied on an aircraft: the typical
diagnostic procedure consists of three steps: observation,
comparison, and diagnosis, which are shown in Figure 1 [11].

In the literature, advanced engine condition monitoring
methods can be classified as a model-based method (such
as equality equation, parameter prediction, gas path analysis,
nonlinear least square, and Kalman filter) and soft comput-
ing method (such as artificial neural networks, fuzzy logic,
rough sets, decision tree, and expert systems).

In the first phase of the study, some sample studies on
failure prediction in gas turbine engines have been men-
tioned. In the second phase, the main operating parameters
of the aircraft gas turbine engines and the importance of
the EGT parameter are discussed. In the third phase, multiple
regression analysis is performed between the EGT parameter
and the aircraft performance parameters using the SPSS pro-
gram. In the next phases, N1 speed, N2 speed, pitch, angle of
attack, roll, vertical acceleration, total air temperature, and
ground/air variables from aircraft performance parameters
are taken as input parameters to the artificial neural net-
works, and prediction of EGT parameters has been done in
MATLAB Simulink environment to monitor the condition
of an aircraft gas turbine engine.

2. Literature

There are many studies in the literature where different
methods are used to monitor the condition of gas turbine
engines used on airplanes. Zhang et al. predicted failure of
aircraft engines using nonlinear adaptive estimators [12],
Pourbabaee et al. predicted sensor failures in gas turbine
engines using multiple model-based methods [13], Zhao
et al. made a prediction of failure in the gas turbine engines
using fuzzy matrix and the principle of maximum member-
ship degree [14], Afghan et al. have designed an expert sys-
tem to detect faults for gas turbine combustion chambers
[15], and Zaidan et al. have made failure prediction in gas
turbine engines with Bayesian hierarchical models [8]. Lu
and his colleagues performed a turbofan engine status mon-
itoring with extended Kalman filter [16], Amozegar et al.
have made failure prediction in gas turbine engines using
dynamic neural network [17], Zhou et al. used the support
vector machine method to diagnose gas turbine engine fail-
ures [18], and Chacartegui et al. have worked on real-time
simulations of medium-sized gas turbines [19].

3. Main Operation Parameters of the Engine

There are many electronic indicators and systems that help
pilots on board during flight. The pilots monitor the indica-
tors, have knowledge of the current status of the aircraft sys-
tems, and carry out the flight. When the values appearing on
the indicators indicate that they are out of the normal

working range or that there is a malfunction in the systems,
the pilots are able to request help from the operation services
via the communication systems, or in cases where they are
not considered to be very serious, pilots record them in the
flight book and let them be added to the maintenance pro-
gram. Pilots must monitor the main operating parameters
while controlling the aircraft and making decisions. In
Figure 2, fan speed (N1 speed) and exhaust gas temperature
(EGT), the gas turbine engine’s main operating parameters,
are shown. The fan speed is usually used as a push indicator,
while the EGT is the parameter that allows the gas turbine
engine health to be monitored. In some engine models,
engine pressure ratio (EPR) and N2/N3 speed are used to
monitor thrust [5]. The importance of EGT parameter is
given below.

3.1. Exhaust Gas Temperature (EGT) and EGT Margin. The
EGT is the temperature of the gas turbine engine’s exhaust
in degrees and indicates the performance status of the gas
turbine engine’s design. High EGT values result in further
deterioration and wear in the engines. Table 1 shows which
failures and causes will lead to high EGT values in engines.

In addition, pilots should pay attention to the EGT value,
especially at takeoff, because exceeding the EGT limit may
cause damage to the gas turbine engine components or
reduce the service life of components. It is therefore impor-
tant to keep the EGT as low as possible [20]. At the maxi-
mum EGT temperature, the gas turbine engines can reach
at takeoff and has a certificate showing a red reference line.

An example is shown in Figure 3. The difference between
the highest EGT temperature reached during the takeoff and
the EGT determined by the red reference line is called EGT
margin (Figure 3) [21]. EGT margin is used to obtain infor-
mation about motor performance.

EGT margin deterioration is due largely to engine com-
ponents. Compressor fouling, seal leakage, increased tip
clearances, and airfoil erosion are among the deterioration
reasons. EGT margin deterioration on airplanes causes the
increase in engine thrust, the decrease in engine usage, the
decrease in average flight distance, and the difficulty of the
working environment. Figure 4 shows some sample faults
that may increase the EGT value.

The EGT margin value is a parameter that is controlled
by experts only when in maintenance at the takeoff and is
used to evaluate the condition of the gas turbine engine.
The more the difference between the max EGT value
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Figure 1: Typical diagnostic procedure [27].
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reached at takeoff and the EGT redline determined by the
manufacturer is, the better the performance of the gas turbine
engine. This assessment is valid only for takeoff not for other
flight stages.

4. Method

In this study, by comparing the EGT value that should be at
the takeoff, cruise, and landing phase of the aircraft and the
EGT value obtained from the sensor, RMS value is obtained,
and this value displays the deterioration in performance. For
this purpose, multiple regression analysis (MRA) and artifi-
cial neural networks (ANN) have been chosen to predict
the EGT values obtained from real flight data. MATLAB pro-
gram for artificial intelligence analysis and SPSS Statistics 22
package program for statistical regression analysis were used.
In MRA and modeling with ANN, 12,935 samples were used.
70% for training, 15% for validation, and 15% for testing
were used from these samples. The data used for modeling
was recorded during the flight of the aircraft, and no changes
were made to the data. Training, validation, and test data
were randomly selected from the dataset. The same training,
validation, and test data were used in both analyses to evalu-
ate the comparison and modeling. The training, test, and val-
idation data statistical parameters used in the prediction of
EGT parameters are given in Tables 2–4, respectively.

4.1. Statistical Regression Analysis. In the regression, the goal
is to find relationships between the descriptive (independent)
variables and the described (dependent) variable. As y is a
dependent variable, x1, x2,…, xk are independent variables,
the method which expresses the causal relationship between
variables as a mathematical model is called a multiple linear
regression model [22]. In multivariable linear regression
analysis, the general formula of the regression equation that
gives the shape of the relationship between variables can be
expressed by

y = β0 + β1x1 + β2x2 +⋯ + βkxk + ε, 1

where y, x1, x2,… , xk represent the observable values and βj,
j = 0, 1,… , k, as the regression coefficients βk parameters as
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Figure 2: Main operation parameters of aircraft engines [20].

Table 1: Gas turbine engine failures and causes [28].
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Figure 4: Sample faults in aircraft engines.
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the expected change in y for the unit changes in xk’s and e
error. The model investigated for regression analysis in this
study is given in Table 5.

Where xi values are, respectively, N1 speed, N2 speed,
pitch, angle of attack, roll, vertical acceleration, total air tem-
perature, ground/air, and β0, β1, β2, β3, β4, β5, β6, β7, β8 are
unknown parameters. The investigation of whether the coef-
ficients of the regression model are significantly different is

carried out by the t-test. When the significance value (Sig.)
of the t-statistic is less than 0.05, the assumption is accepted
and it is concluded that the coefficients in the model are
meaningful. Sig. value is the value used with the purpose of
determining the existence of statistical significance and the
level of proof of the difference, if any. The level of significance
is usually taken as 0.05 and 0.01. A level of 5% significance
means a confidence interval of 95%, and a level of

Table 2: Training data range used in the prediction of EGT.

Statistics

N1 speed N2 speed Pitch
Angle of
attack

Roll
Vertical

acceleration
Total air

temperature
Ground/air

Exhaust gas
temperature

N

Valid 1005 1005 1005 1005 1005 1005 1005 1005 1005

Missing 0 0 0 0 0 0 0 0 0

Mean 60.9772139 81.6708458 2.112438 0.726965 −0.883582 0.995590 −3.034229 0.87 584.232836

Median 66.9000000 84.4000000 1.100000 −0.400000 −1.100000 0.994000 −3.300000 1.00 574.500000

Std. deviation 25.43270881 10.67348876 3.9393376 1.7996899 4.1258416 0.0465146 17.7587592 0.341 116.2669986

Range 75.60000 38.30000 22.9000 9.5000 51.7000 0.5470 84.8000 1 433.5000

Minimum 20.40000 59.00000 −3.2000 −1.8000 −21.8000 0.7750 −24.5000 0 432.5000

Maximum 96.00000 97.30000 19.7000 7.7000 29.9000 1.3220 60.3000 1 866.0000

Table 3: Test data range used in the prediction of EGT.

Statistics

N1 speed N2 speed Pitch
Angle of
attack

Roll
Vertical

acceleration
Total air

temperature
Ground/air

Exhaust gas
temperature

N

Valid 215 215 215 215 215 215 215 215 215

Missing 0 0 0 0 0 0 0 0 0

Mean 59.8427907 81.3158140 1.969767 0.838140 −1.316744 0.996465 −3.040000 0.90 576.039535

Median 61.9000000 83.1000000 1.100000 .000000 −1.100000 0.997000 −2.000000 1.00 572.000000

Std. deviation 25.30062671 10.45487550 3.9448260 1.9207515 3.5105979 0.0413821 17.1693103 0.304 115.2838515

Range 75.60000 37.80000 21.8000 9.9000 50.3000 0.3550 53.0000 1 427.5000

Minimum 20.40000 59.30000 −2.8000 −1.1000 −21.8000 0.8710 −24.5000 0 434.0000

Maximum 96.00000 97.10000 19.0000 8.8000 28.5000 1.2260 28.5000 1 861.5000

Table 4: Validation data range used in the prediction of EGT.

Statistics

N1 speed N2 speed Pitch
Angle of
attack

Roll
Vertical

acceleration
Total air

temperature
Ground/air

Exhaust gas
temperature

N

Valid 215 215 215 215 215 215 215 215 215

Missing 0 0 0 0 0 0 0 0 0

Mean 59.6409302 80.8041860 1.791628 0.672093 −1.298140 1.000530 −4.323721 0.86 575.411628

Median 65.9000000 83.9000000 1.100000 −.400000 −1.400000 0.997000 −8.300000 1.00 572.000000

Std. deviation 25.67176527 10.77929528 3.6772253 1.7983021 4.4961766 0.0397756 17.7368312 0.347 108.3661869

Range 75.30000 37.80000 22.5000 7.1000 51.0000 0.4170 64.0000 1 421.5000

Minimum 20.60000 59.30000 −2.8000 −1.1000 −21.8000 0.8360 −24.0000 0 442.0000

Maximum 95.90000 97.10000 19.7000 6.0000 29.2000 1.2530 40.0000 1 863.5000
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significance of 1% means a confidence interval of 99%. The
general approach to the interpretation of the Sig. value is
given in Table 6 [23].

4.2. Artificial Neural Networks. ANN are nonlinear modali-
ties that are composed of artificial neurons connected with
each other and that contain an input set and a single output.
In ANN, there are many cells and many bonds between
inputs and outputs. ANN can be divided into several subclus-
ters. These small groups are called layers. The network is
formed by hierarchically connecting layers. In ANN, learning
takes place in two stages. In the first step, the random weight
values are taken and the net output is determined for the
sample shown to the network. The weights are regenerated
by feedback or forward feed according to the response suit-
ability. In the second step, the weight values are changed by
showing different samples to the network in order to find
the best weight value that the correct output can obtain.
There are different algorithms used in the learning process.
The backpropagation algorithm is the most common. In
the backpropagation algorithm, it tried to reduce backward
errors. The training algorithm specifies how to adapt the
learning rule to ANN according to the nature of the problem
at hand. The samples selected during training should be
selected from each region of the problem space to represent
the problem space. The input and corresponding output vec-
tor are used to train the network. The output obtained from
each iteration result is compared to the target, and network
training is continued with the weight renewal process or the
training is terminated depending on the given error. After
the weights, providing the best output data is determined
in artificial neural networks, the processes carried out to
evaluate the learning status of the network are defined as
testing the network. In this phase, the output is produced
by using the most suitable weight values determined after
the training by introducing not seen samples to the network.
This output reveals the learning success of the network. The
more successful the result, the better the training perfor-
mance of the network.

4.3. Measurement Accuracy of Prediction Models. The accu-
racy of a prediction model depends on how close the predic-
tion values are to the actual observation value. If the model is
successful in predicting actual values, the prediction error
will be relatively low. The methods used in this study were
analyzed by three different error performance methods. The
first of these is the R2 determination coefficient and can be
expressed by

R2 = 1 −
〠n

i=1
yi − xi

2

〠n
i=1

yi − y 2
, 2

where n is the number of observations, y is the actual values,
x is the predicted value, and y is the average actual value. The
other error analysis method is expressed by the mean abso-
lute percentage error (MAPE).

MAPE =
〠n

i=1
et /yt
n

100 % 3

In this formula, et = yt − xt , yt is the actual observation
value, xt the prediction value, n is number of observations
in the prediction period, and et is the prediction error in t
period. Another error analysis method is expressed by the
mean square error (MSE).

MSE =
1

n
〠
n

i=1

yi − xi
2, 4

where xi is the predicted value of the ith unit, and yi is the
actual value of the ith unit. The closer the predicted values
are to the actual values, the smaller the MSE becomes; the
further away from the actual values the greater the MSE
is. Root mean square error (RMSE) in (5) is a frequently
used measure of the differences between values (sample
values) predicted by a model or an estimator and the values
actually observed.

RMSE =
1

n
〠
n

i=1

yi − xi
2 5

5. Results and Discussions

5.1. Determination of Effective Aircraft Performance
Parameters and Prediction by Multiple Regression Analysis.
Multiple regression analysis was performed to determine
the effect of independent variables on dependent variable
EGT parameter. When the significance value (Sig.) of t-statis-
tic is greater than 0.05 in multiple regression models, the
analysis is repeated by subtracting the meaningless variable
from the model. A new model has been derived by subtract-
ing meaningless variables from the data recorded during
flight of the aircraft. In the obtained model, N1 speed, N2
speed, pitch, angle of attack, roll, vertical acceleration, total
air temperature, and ground/air parameters were found to
be important parameters affecting EGT parameter
(Table 7). Here, EGT is a dependent variable, N1 speed, N2
speed, pitch, angle of attack, roll, vertical acceleration, total
air temperature, and ground/air are independent variables,

Table 5: Investigational model for the regression analysis.

Dependent variable (y) Independent variable (xi)

Exhaust gas temperature (EGT) = β0 + β1x1 + β2x2 + β3x3 + β4x4

+ β5x5 + β6x6 + β7x7 + β8x8

Table 6: The interpretation of the Sig. value [23].

Sig. value Meaning

0.01< Sig.≤ 0.05 The results are significant.

0.001≤ Sig.< 0.01 The results are highly significant.

Sig.< 0.001 The results are very highly significant.

0.05≤ Sig.< 0.10
The results are considered not

statistically significant.

Sig.> 0.10
A trend toward statistical

significance is sometimes noted.
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B is unregulated regression coefficient, beta is standardized
regression coefficient, Sig. is significance level, R is correla-
tion coefficient, and R2 is the determination coefficient.
According to Table 8, N1 speed, N2 speed, pitch, angle of

attack, roll, vertical acceleration, total air temperature, and
ground/air parameters are highly correlated with dependent
variable EGT parameter (R=0.969). Independent variables
explain 93.9% (adjusted R square = 0.939) of the total vari-
ance (change) in the dependent variable EGT (see Table 8).
According to the standardized regression coefficient (beta),
the relative importance of the independent variables over
the EGT parameter is N1 speed, total air temperature, pitch,
roll, angle of attack, vertical acceleration, ground/air, and N2
speed. When the t-test results on the significance of regres-
sion coefficients are examined, it is seen that N1 speed
parameter is the most important (significant) independent
variable on EGT. According to the results of regression
analysis, multiple regression equation’s mathematical model
for EGT prediction is expressed by

The analysis of the linear multiple regression model is
shown in Table 7. The fact that Sig. values of the parameters
used in this model are less than 0.01 means that it is a highly
significant model according to Table 6.

As a result of the correlation analysis, whether there is a
linear relationship and the degree of this relation if there is

any is calculated by a correlation coefficient, the correlation
coefficient takes values between −1 and +1. If there is a
positive correlation, the value of the variable y increases
as the value of the variable x increases, or the value of
the variable y tends to decrease as the value of the variable
x decreases. Negative correlation (negative relationship)

Table 8: Model summary.

Model summaryb

Model R R square Adjusted R square Std. error of the estimate
Change statistics

R square change F change df1 df2 Sig. F change

1 0.969a 0.940 0.939 28.6701942 0.940 1939.432 8 996 0.000
aPredictors: (constant), ground/air, vertical acceleration, pitch, roll, angle of attack, total air temperature, N2 speed, and N1 speed. bDependent variable: exhaust
gas temperature.

Table 9: The interpretation of The Pearson correlation coefficient
[29].

Correlation value Meaning

0.00–0.19 Very weak

0.20–0.39 Weak

0.40–0.59 Moderate

0.60–0.79 Strong

0.80–1.0 Very strong

Table 7: Multiple regression analysis results for EGT training data.

Model

Coefficientsa

Unstandardized
coefficients

Standardized coefficients
t Sig.

Correlations

B Std. error Beta Zero order Partial Part

1

(Constant) 854.361 32.679 26.144 0.000

N1 speed 7.279 0.261 1.592 27.924 0.000 0.718 0.663 0.217

N2 speed −7.605 0.529 −.698 −14.381 0.000 0.653 −0.415 −0.112

Pitch 8.654 0.553 0.293 15.651 0.000 0.874 0.444 0.122

Angle of attack 2.139 0.799 0.033 2.675 0.008 −0.003 0.084 0.021

Roll 1.592 0.238 0.056 6.687 0.000 −0.139 0.207 0.052

Vertical acceleration −72.026 20.637 −0.029 −3.490 0.001 −0.107 −0.110 −0.027

Total air temperature 3.418 0.146 0.522 23.377 0.000 0.003 0.595 0.182

Ground/air −33.776 5.793 −0.099 −5.831 0.000 0.007 −0.182 −0.045
aDependent variable: Exhaust gas temperature.

EGT = 854, 361 + 7, 279 N1 speed − 7, 605 N2 speed + 8, 654 Pitch + 2, 139 AOA + 1, 592 Roll

− 72, 026 Vertical acceleration + 3, 418 TAT − 33, 776 Ground/air
6
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means that if one of the variables increases, the value of the
other variable decreases.

When the values in Table 7 are interpreted according
to Table 9, it could be seen that there is a strong, positive,
and significant relationship between the pitch parameter
and the EGT parameter and that there is a strong positive
correlation between the N1 speed and N2 speed parameters
and the EGT parameter. It could also be seen that there is a
very weak, positive, and significant relationship between total
air temperature and ground/air parameters and EGT
parameters and that the angle of attack, roll, and vertical
acceleration seem to be very weak and negative and have a
significant relationship.

The fact that the Sig. value shown in Table 10
(Sig. = 0.000) is smaller than 0.001 indicates that the devel-
oped model is very highly significant. According to 6, EGT
parameter, training, test, and validation data are predicted
by multiple regression analysis. The error performance
values between the measured values and the predicted values
for the training, test, and validation stages are determined
according to 2, 3, 4, and 5. The comparison of EGT values
predicted by multiple regression analysis and EGT value
from the aircraft sensor at training, test, validation stage is
shown in Table 11.

5.2. Prediction with Artificial Neural Network. In the ANN
model; N1 speed, N2 speed, pitch, angle of attack, Roll,
vertical acceleration, total air temperature, and ground/air
are given as the input data to the network and EGT is
predicted as the output data. All the data have been pre-
sented to the network as it was received from the aircraft
without any change.

The limit values of the input and output parameters of
the ANN model are shown in Tables 2–4. 12,935 data
obtained from the flight of the aircraft were used in the
MATLAB program with “dividerand” command 70% of
which for training, 15% of which for testing, and 15% of
which for validation. The feed forward network type was
chosen as the artificial neural network model to be used in

practice. In the feed forward calculation, the most important
event is trying to predict the output values with the lowest
error margin. The model shown in Figure 5 is obtained by
changing the number of iterations and the number of neu-
rons in the hidden layer for the optimal network architecture
for predicting the EGT parameter with the experiments per-
formed. The best results of 11 different training functions to
predict the EGT parameter with the smallest error are shown
in Table 12. For experiments, a computer with Intel (R) Core
(TM) i5-4590 CPU @ 3.30GHz 4GB RAM was used.

When the results in Table 12 are compared against the
test MSE value, it is determined that the Levenberg-
Marquardt backpropagation function (trainlm) is the best
resultant. In Figures 6–8, it illustrates neural network regres-
sion plots for training, validation, and test. The correlation
coefficient of the EGT value from the aircraft sensor and the
predicted values of training, test, and validation phases are
higher (R> 0.99). In order to evaluate the performance of
the developed network, the error performance values between
measured values and predicted values for training, validation,
and test phases were determined according to 2, 3, 4, and 5
and the results are presented in Table 13. In addition, the net-
work characteristics developed are given in Table 14.

When the results are evaluated, determination coefficient
(R2> 0.99) could explain more than 99% of EGT parameter
at training, testing, and the validation stage with N1 speed,
N2 speed, pitch, angle of attack, roll, vertical acceleration,
total air temperature, ground/air parameters. The closer the
R2 parameter is to 1, the better the performance of the
network. Lewis has classified the models with a MAPE value
of less than 10% as “very good,” models between 10% and
20% as “good,” models between 20% and 50% as “accept-
able,” and models higher than 50% as “wrong and faulty”
[24, 25]. When we look at the MAPE values of the
enhanced network, it is suggested that the network is
predicated on high accuracy since MAPE is <1% during
the training, testing, and validation phases. It also indi-
cates that the smaller the RMSE parameter, the higher
the performance of the network.

5.3. Modeling of the Engine Health Monitoring Program in
MATLAB Simulink Environment. In order for our system
to work instantly, we need to design an interface in the
MATLAB Simulink environment with the best ANN model
we have obtained as a result of the experiments. Figure 9
shows the structure of the ANNmodel modeled in MATLAB
Simulink environment.

Table 10: ANOVA results for EGT training.

ANOVAa

Model Sum of squares df Mean square F Sig.

1

Regression 12753394.90 8 1594174.363 1939.432 0.000b

Residual 818692.113 996 821.980

Total 13572087.02 1004
aDependent variable: exhaust gas temperature. bPredictors: (constant), ground/air, vertical acceleration, pitch, roll, angle of attack, total air temperature, N2
speed, and N1 speed.

Table 11: MRA error performance values.

MRA R2 RMSE MAPE % MAPE MSE

Train 0.939 28.67 0.039463 3.9463 821.98

Test 0.947038 26.468 0.038119 3.8119 700.6043

Validation 0.93702 27.131 0.036104 3.6104 736.1433
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Table 12: Comparison of the feedforward neural network training algorithms for their test MSE value.

Training algorithm Elapsed time (sec) Training R Validation R Test R Training MSE Test MSE

trainlm 4.203957 0.99767 0.99797 0.99719 62.8501 74.6465

traincgb 4.565835 0.99586 0.99299 0.99656 111.4932 91.2834

trains 10.047608 0.99561 0.99517 0.99653 118.4071 91.8717

trainrp 57.118179 0.99458 0.99297 0.9963 146.1263 97.9763

traincgp 3.699402 0.99401 0.99515 0.99501 161.8084 133.9647

trainscg 3.458904 0.99381 0.99084 0.99474 166.9843 139.1074

trainbfg 13.748363 0.99213 0.99176 0.99394 211.9474 160.1871

traincgf 7.667996 0.99179 0.99176 0.99395 222.3323 164.4613

trainoss 4.432661 0.99053 0.99197 0.99183 255.8224 215.3883

traingdx 3.614869 0.98838 0.98893 0.9893 312.1862 285.3237

traingda 4.008302 0.98312 0.98418 0.98733 459.2168 342.6505
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Figure 7: Neural network regression plots for validation.
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Figure 6: Neural network regression plots for training.
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Babbar et al. evaluated the difference between EGT tem-
perature and flight parameters of two symmetric engines at
various stages of the flight to examine the condition of the
aircraft [26]. By differential analysis, it is aimed to compare
EGT value obtained from ANN with real EGT value coming
from the sensor of the aircraft and to easily notice when there
is any problem. In this study, it is necessary to instantly com-
pare the values in order to evaluate the condition of the gas
turbine engine. In this analysis, EGT.1 was determined as
the actual EGT value from the sensor of aircraft and EGT.2
was determined as the parameter predicted by ANN. The
similarity scale used to determine the status of the gas turbine
engine is illustrated in

EGTdif f i = EGT 1 i − EGT 2 i 2 7

Using EGT differences of each value, 8 is used to calculate
the mean square root of the given flight phase.

RMSFlightmode =
1

n
〠
n

i=1

EGTdif f i 8

The RMS value is shown as THE aircraft’s performance
deterioration value in the interface program.

Differential analysis model needs to be modeled in
MATLAB Simulink environment. The interface designed
for the aircraft’s engine health monitoring in the MATLAB
Simulink environment is shown in Figure 10.

When the graph shown in Figure 11 is examined, the
values shown in the pink color represent the data obtained
from the sensor of the aircraft, the values shown in the yellow
color represent the EGT values predicted by the ANN, and
the values shown in green indicate the motor performance.

The limit determined for the alarm level is shown in red.
The alarm level assumed for this aircraft engine is EGT
margin value. In order to make a system monitoring, values
obtained from the system needs to be used. Two types of data
are used in the applications:

(1) Data gathered from normal and faulty operation
conditions.

(2) Data gathered only from monitoring of normal con-
ditions. Collecting faulty data from gas turbine
engines like systems are very difficult and expensive.
Due to aviation rules like EASA Part-M, aircrafts
with only a completed maintenance and with a
Certificate of Release to Service are allowed to fly.
An aircraft with a completed maintenance means a
collection of systems with a healthy operation. There-
fore, condition monitoring systems are constructed
only for normal flight data.

Since we used data from a real aircraft, only normal oper-
ation data is in hand. It is apparent from simulation results
that instantaneous performance of the gas turbine engine
can be monitored from takeoff to landing. In this study, we
compare EGT values one from instant prediction we did
and another gathered from the EGT sensor of the aircraft.
Even though there exists a difference in between, this is
evaluated as an abnormal situation.

In Figure 12, a fault detection example is shown. Gas
turbine engines are composed of various components. A fail-
ure on a single or multiple components will result in a perfor-
mance defection in those engines. Corrosion, oxidation,
damaged bearings, high blade clearance, damaged or burned
turbine blade and vanes, damaged combustors, damaged fuel
nozzles, and broken rotor discs and blades are some of
the failures that lead to performance degradation. Perfor-
mance degradation will result a change in EGT value. This
study is not supposed to determine where and why a failure
has occurred. Exceeding EGT margin (+100°C) is consid-
ered as an abnormal situation. In this study, it is shown
that the performance of the aircraft can be monitored from
takeoff to landing.

Pilots follow various parameters during operation of the
aircraft. EGT parameter is one controlled during the takeoff.
Engine manufacturers determine maximum EGT thresholds
during a takeoff. If the pilot does not track EGT, there is no a
secondary system that generates warnings. If the engine
exceeds the maximum allowed EGT values, it will experience
serious failures with high probability. The system developed
in this study will warn the pilot in case he misses the EGT
value from the engine and warning display system.
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Figure 8: Neural network regression plots for test.

Table 13: ANN error performance values (fsor trainlm).

ANN R2 MAPE % MAPE RMSE

Train 0.99534601 0.00917102 0.917102 7.927808

Test 0.99435716 0.002224188 0.2224188 8.639823

Validation 0.99594228 0.001924502 0.192450201 6.886876
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Table 14: Details of the neural model.

Network parameters Details

Architecture 8 inputs, 1 outputs, and 4 hidden layers with 11, 8, 4, and 3 neurons in each layer (11-8-4-3)

Set

Training subset: 70% randomly selected recorded data (9045 patterns)

Validation subset: 15% randomly selected recorded data (1935 patterns)

Test subset: 15% randomly selected recorded data (1935 patterns)

Activation For hidden layers: tangent sigmoid tangent

Function For output layer: linear

Training algorithm Levenberg-Marquardt

Performance function criteria Minimum MSE

Stopping Validation stop

Criteria (Training is stopped when the validation error starts increasing)

Layer 1

Layer 2

Layer 3

Layer 4

Layer 5

Process output 1 Outputa{4}

a{3}

a{2}

a{1}

a{4}

a{3}

a{2}

a{1}Input Process input 1

Figure 9: Modelling of the developed ANN model in MATLAB Simulink environment.
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Figure 10: Aircraft gas turbine engine health monitoring models.
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6. Conclusions

In this study, we aimed to develop a predictive model of the
EGT parameter using statistical and artificial intelligence
methods from the actual data recorded from the takeoff to
the landing of an aircraft. Statistical multiple regression anal-
ysis and artificial neural networks were used in the prediction
model and the method that gave the lowest error perfor-
mance was tried to be determined. The R2, MAPE, and RMSE
values between the measured values and the predicted values
for the training, validation, and test data of the EGT param-
eter are presented in Tables 11 and 13. When we look at the
test-stage determination coefficient and error rates between
the EGT values from the aircraft’s sensor and the predicted
EGT data, it is seen that the best end result is obtained by
ANN. With the interface we developed in MATLAB Simu-
link, a model has been developed to instantly monitor the
flight status of the aircraft.

In this study, it has been shown that any deterioration of
performance can be easily detected by predicting the EGT
parameter at the takeoff, cruise, and landing phases of the air-
craft. Also, even if there is no fault in the aircraft’s engine, a
fault in the EGT sensor can jeopardize flight safety. It is
thought that the pilot can fly safely with the predicted EGT
value in the developed interface.

Abbreviations

ANN: Artificial neural network
AOA: Angle of attack

CBM: Condition-based maintenance
EGT: Exhaust gas temperature
EHM: Engine health monitoring
FOD: Foreign object damage
MAPE: Mean absolute percentage error
MRA: Multiple regression analysis
MSE: Mean square error
R2: R squared
RMSE: Root mean square error
TAT: Total air temperature.
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