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A B S T R A C T

Aircraft mass is a crucial piece of information for studies on aircraft performance, trajectory
prediction, and many other topics of aircraft traffic management. However, It is a common
challenge for researchers, as well as air traffic control, to access this proprietary information.
Previously, several studies have proposed methods to estimate aircraft weight based on specific
parts of the flight. Due to inaccurate input data or biased assumptions, this often leads to less
confident or inaccurate estimations. In this paper, combined with a fuel-flow model, different
aircraft initial masses are computed independently using the total energy model and reference
model at first. It then adopts a Bayesian approach that uses a prior probability of aircraft mass
based on empirical knowledge and computed aircraft initial masses to produce the maximum a
posteriori estimation. Variation in results caused by dependent factors such as prior, thrust and
wind are also studied. The method is validated using 50 test flights of a Cessna Citation II aircraft,
for which measurements of the true mass were available. The validation results show a mean
absolute error of 4.3% of the actual aircraft mass.

1. Introduction

Aircraft mass is a fundamental parameter for studies on aircraft performance and trajectory prediction. However, data concerning
the mass of almost all modern commercial flights are treated as confidential information by airliners, which poses a challenge for the
research community. Studies from Jackson et al. (1999) and Coppenbarger (1999) have shown that having inaccurate aircraft mass
estimations introduces a significant source of error, which affects ground based trajectory predictions. The study of Thipphavong
et al. (2012) implemented an adaptive aircraft weight algorithm to improve the accuracy of climbing predictions. Fricke et al. (2015)
illustrated the significant influence of aircraft mass on fuel burn during continuous descent operations.

Within the air traffic management research community, several methods have been developed to estimate aircraft mass based on
flight data, either from radar data or more recently from ADS-B data. In two separate studies, Alligier et al. (2013, 2015) developed a
least-squares method and a machine-learning method, which focused on the climb phase of aircraft. In a similar approach considering
climbing aircraft, Schultz et al. (2012) implemented an adaptive estimation method for mass and thrust approximation. More re-
cently, Sun et al. (2016) used ADS-B data from takeoff to estimate the initial mass of an aircraft with two different analytical methods.
On the operational side, a different approach has been proposed by Lee and Chatterji (2010), which tries to calculate the weight of an
aircraft based on an approximation of each individual weight component, i.e. aircraft empty weight, fuel weight, and payload weight.

For most of these studies, the focus was on a specific part of the flight (takeoff or climb). It is often not possible to produce a
reasonable estimate for individual flights. One can only infer the possible distribution of aircraft mass based on a great number of
flights. This is not only due to the variance in the data, but also due to uncertainties in aircraft configuration, something that is
suggested in all of these studies. To develop a method that can estimate the mass of any flight becomes the focus of this paper.
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In a preliminary study presented earlier by Sun et al. (2017a), the use of multiple mass estimations was identified as a potential
improvement for mass estimation, studying not just one specific flight phase, but a combination of all phases. This allows more
insight into aircraft mass to be inferred. In this paper, the mass estimation problem is considered as a single parameter Bayesian
inference problem (Gelman et al., 2014, p. 29), considering masses computed along the entire flight as ‘observations’. In addition to
multiple observations, prior knowledge on weight can be used to improve the estimation. For instance, aircraft will never operate
above their maximum takeoff weight or below their minimum operational weight. In practice, given an approximation of the number
of passengers, one can even further constrain the weight estimation range by making an estimate of the aircraft payload. These kinds
of prior knowledge can be very valuable for estimation of actual aircraft mass when applying Bayesian inference.

The remainder of this paper is structured as follows: first, this paper presents several existing methods to calculate aircraft mass
independently in each flight phase. Then, in Section three, a Bayesian inference approach is established to use these calculations as
independent measurements, combining a priori knowledge of initial aircraft mass probability distribution to produce a maximum a
posteriori estimation. The advantage of the Bayesian approach is that it takes into account prior probability distribution and physical
limitations of possible aircraft mass. It has the potential to produce an estimate for any given flight based on flight data with the
knowledge of aircraft type. Fig. 1 gives an illustration of this method.

Section four discusses the results for several aircraft types and parameter sensitivities. Section five uses a real flight dataset to
validate the Bayesian inference method. Finally, discussion and conclusions are presented in sections six and seven.

2. Individual aircraft mass estimates

This section describes five methods that can be used independently to compute aircraft mass at different flight phases. The total
energy model (TEM), shown in Eq. (1), is used in most of the methods. In addition, BADA3 aerodynamic coefficients are used to
calculate the thrust and drag in some of the phases when applicable (Nuic, 2014).
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Here, T and D are the thrust and drag of the aircraft, V a, , and Vz are the airspeed, acceleration, and vertical rate respectively.
C C C, ,D L d0, and Cdi are coefficients for drag, lift, zero lift drag, and lift-induced drag. ρ and S are the air density and the aircraft
reference wing surface. In addition, the forces acting on an airborne aircraft are also illustrated in Fig. 2.

With the complete flight trajectory based on the total energy model, mass can be computed at different phases as illustrated in
Fig. 3, where the subscripts TO, LOF, CL, DE, and APP represent takeoff, liftoff moment, climb, descent, and final approach,

Nomenclature

m aircraft mass (kg)
η thrust coefficient (–)
T total dynamic thrust (N)

∞T maximum static thrust (N)
D total drag force (N)
L aircraft lift force (N)

μ runway friction coefficient (–)
a aircraft acceleration (m/s2)
V true airspeed (m/s)
Vz vertical speed (m/s)
CD drag coefficient (–)
CL lift coefficient (–)
Cd0 zero lift drag coefficient (–)
Cdi induced drag coefficient (–)

Fig. 1. Flow chart of the estimation structure.
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respectively. A fuel flow model is used together with these estimates to generate independent ‘observations’ of the initial mass at
takeoff for further Bayesian inference.

In the rest of this paper, the term mass observation is used for initial masses that are computed at different stages of the flight in
combination with the fuel flow, as illustrated in Fig. 1. It is worth noting that these mass observations are not directly observed, but
calculated using the deterministic total energy equations. These values are independently calculated, which means that there is no
data overlap between the computed mass observations. The remainder of this section discusses how initial masses are computed
deterministically.

2.1. Taking off

While an aircraft is on the runway before liftoff, it only accelerates horizontally. Because it is still on the ground, ground friction
needs to be considered in addition to the aerodynamic drag. This ground friction is proportional to the normal force on the ground,
with a friction coefficient denoted by μ1. A common value is around 0.02 for concrete runways (Wetmore, 1937). Eq. (1) then can be
re-written as follows:

− − =T D D mag (2)

= −D μ W L( )g 1 (3)

Due to the fact that BADA (version 3) does not have an accurate thrust model for the ground phase at takeoff, thrust needs to be
computed with other models. Alternatively, the maximum takeoff thrust can be calculated from empirical data using a second-degree
polynomial model (Bartel and Young, 2008). This approach provides a fairly good approximation of thrust for two-shaft turbofan
engines. This simplified model can later be used during other phases of flight. The maximum takeoff thrust can be expressed as a
function of velocity:

= = + +∞T f V T c V c V( ) (1 )max 1 2
2 (4)

where ∞T is the maximum static thrust at sea level. Parameter c1 (negative value) and c2 (positive value) are coefficients obtained from
empirical data fitting that are dependent on the engine bypass ratio (Bartel and Young, 2008). During takeoff, the optimal lift
coefficient can be derived. Eq. (2) is rewritten as follows:

= + + = + + ⎛
⎝

− ⎞
⎠

+ = + − + +T D D ma ρV S C C C μ mg ρV SC ma ρV S C C C μ C μ mg ma1
2

( ) 1
2

1
2
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2

0
2

1
2 2

0
2

1 1 (5)

Fig. 2. Forces acting on an airborne aircraft (climb).

Fig. 3. Bayesian inference using multiple mass observations.
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For a given velocity V T, is minimum when CL satisfies the following equation (Mair and Edwards, 1965):

⎜ ⎟= ⎛
⎝

= ⎞
⎠

C
μ
K

dT
dC2

0L
L

1

(6)

When the requirement of minimum excess thrust is satisfied, aircraft can take off with reduced thrust. This has become common
practice for airliners to extend engine life and reduce costs. To accommodate this possibility in the model, a thrust coefficient η is
introduced that satisfies ⩽η 1. Combined with Eq. (6), Eq. (5) becomes:
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Let the left part of the equation be f m η( , )1 . The task is to find the optimal ̂m and ̂η that minimize the squared sum of f 1 of all
takeoff data samples. The solution can be found as follows, with constraints on m and η.

̂ ̂ ∑=
=

fm η m η, arg min ( , )
m η i

N

, 1
1
2

(8)

∈
∈

m c
η c

(0, )
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m
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where the η constraint represents the possible reduction of thrust during the takeoff and the range of m represents a very large mass
range. The coefficients cm and cη are user-defined boundary conditions. The quality of the optimization solution depends on the
accuracy of the velocity measurements and the number of data samples. It is possible that an optimal mass solution may not be found
and that the optimization, instead, converges to the condition boundaries. In this paper, a mass observation at the boundary conditions
(zero or m2 mtw) is considered as an impossible observation.

2.2. Liftoff and final approach

At each liftoff and final approach, optimal speeds are usually selected, which are correlated to the stall speed. Even though it is a
relatively weaker correlation at takeoff, both speeds can be used as indicators to infer aircraft mass.

This method first observes the aircraft liftoff speed (airspeed at which the aircraft first becomes airborne) and speed of final
approach. Then it infers the mass taking into account the relationship with stall speed at maximum takeoff or the landing weight
when it is available from the aircraft manufacturer. When these parameters are not available, BADA reference data are used.

According to the FAA Federal Aviation Regulations, at takeoff, the speed of an aircraft is at least 20% over the stall speed.
Assuming lift and weight are the same at liftoff, the following relation can be derived under certain assumptions:

= ⇒ = ⇒ ∝W L m g ρSC V m V1
2to to to L lof to lof

2 2
(9)

where the takeoff mass is proportional to the liftoff speed squared, under the assumptions of the same aircraft model and lift
configurations. Knowing reference weight and corresponding stall speed (VS), it is possible to calculate such a constant coefficient:
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Then at any given observed takeoff, the initial mass can be approximated using the following equation:

≈ ⎛

⎝
⎜

⎞

⎠
⎟m

m
V

V
1.2 ·to

ref lof

S ref lof
lof

,
2

, ,
2

2

(12)

A similar relationship can be obtained at landing. The approach speed empirically is around 30% over the stall speed. The landing
mass then can be approximated as follows:

≈ ⎛

⎝
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⎠
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2
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Such approaches are also briefly addressed in previously mentioned research by Fricke et al. (2015). When using ADS-B data, it is
common that there is a certain gap between the on-ground data and in-air data. Hence, the liftoff speed and approach speed can be
obtained using a interpolation method based on several data points during takeoff or landing. This method is described by Sun et al.
(2017b).
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2.3. Climb and descent phase

During the climb and descent phases, horizontal speed and climb/descent rate observations can be employed to estimate aircraft
mass. Assuming standard atmospheric conditions, the total energy model in Eq. (1) can be expanded at each time step as follows:

− = +T D V m a V m gV( )i i i i i i i zi (14)

= +m m mi i fuel0 , (15)

= =T ηT ηf h V( , )i max i i i, (16)

=D C ρ V S1
2i D i i

2
(17)

= =L m g γ C ρ V Scos( ) 1
2i i i L i i i,

2
(18)

= +C C C CD d di L i0 ,
2 (19)

Here, γ represents the flight-path angle. Maximum thrust profile Tmax is a function of pressure altitude and airspeed and η is an
assumed thrust coefficient for the entire climb or descent, describing the actual thrust setting as a percentage of maximum thrust.
Given all observed and known variables, the above equations can be rewritten into the following equation:
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Fuel consumption can be estimated according to Section 2.4, where the last remaining two unknown variables m0 and η are to be
found. This process is similar to the takeoff method but includes more parameters in the equation. Let the left side of Eq. (20) be
f m η( , )2 . The task is to find the optimal ̂m and ̂η that minimize the squared sum of f 2 of all N data samples. The mass is constrained
by the aircraft Operational Empty Weight and the Maximum Takeoff Weight, and thrust reduction is no larger than 20% of the
maximum thrust profile. The solution can be found as follows for climbing flights:
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2
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Although the total energy equation is the same for descent flights, their thrust profiles are different. In the above equations,
η T· max i, needs to be replaced with idle thrust or appropriated thrust setting in the case of powered descent. In this paper, unless
specified, idle thrust is assumed during descent.

Compared to the takeoff phase, climb and descent usually last for a significantly longer time, where a large number of data
samples can be gathered. Rather than using all data from the entire climb or descent for the calculation, these data can be split into
smaller segments which produce multiple mass observations. One way to split the data is according to the continuous climb/descent
segments and level flight segments. Another way to split the data is to produce equal-length data chunks. Finally, a combination of
both approaches may also apply. This practice is useful to generate larger numbers of mass observations. In this research, the first
approach to split the data based continuous climb or descent segments is recommended. This way, less operation maneuvers are
expected in each segments.

2.4. Fuel burn model

When considering an entire flight from takeoff to landing, aircraft mass varies as a function of fuel burn. For an aircraft that is
taking off or during initial climb, one can assume the mass is the same as initial mass. However, for mass that is derived from the rest
of the climb phase, the descent phase, and the final approach, the consumption of fuel need to be taken into account when inferring
the initial mass of the aircraft. This is illustrated in the general estimation flowchart (in Fig. 1). With a fuel burn model, the initial
mass of an aircraft can be computed as the sum of flow consumption and the mass computed at a given point of the flight.

Several studies have been conducted to estimate fuel burn. Methods have been proposed that are based on radar track data
(Chatterji, 2011), as well as a classification model from the Flight Data Recorder (Chati and Balakrishnan, 2016). Other fuel flow
calculation models obtained from empirical data can be found in BADA and the ICAO aircraft engine emission data-bank (ICAO,
2016). In the following sections, both ICAO and BADA models are introduced, while the ICAO model will be used in practice
considering its open accessibility.

2.4.1. BADA3 fuel flow model
The BADA3 calculation consists of three fuel flow modes, minimal (idle thrust at descent), cruise (cruise thrust), and nominal

(other flight phases). With the BADA model, fuel flow can be calculated based on the flight data. It produces a relatively higher-
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accuracy result with better trained models. Details of BADA fuel flow calculations can be found in the BADA user manual. In
summary, BADA computes the fuel flow as a function of aircraft speed and thrust during the taking off and climbing or a function of
altitude form cruising and idle descent. Different coefficient values are given for each aircraft type.

2.4.2. ICAO fuel flow model
The ICAO engine emission data-bank defines fuel flow under four different modes: takeoff, climb-out, approach, and idle, with

power settings at 100%, 85%, 30%, and 7% of engine maximum power respectively. It is important to note that all data are gathered
from static engine tests. Hence, the fuel flow measurements are biased compared to dynamic flight data.

In order to get the model closer to actual fuel consumption, based on the four points from the ICAO data bank, a quadratic fuel
flow profile is constructed describing the fuel flow as a function of the fraction between actual thrust T and maximum static thrust ∞T ,
denoted as ∊:

= ∊ + ∊ +m K K K̇ fuel 1
2

2 3 (22)

From the ICAO data bank, fuel flow data are fitted with a polynomial model for several engines. Fig. 4 shows the results of the
fitted model obtained from data from several engines and their corresponding aircraft types.

For a common two-shaft turbofan engine it is possible to simplify the thrust model using an empirical relation (Bartel and Young,
2008) between aircraft Mach number and pressure altitude (en-route flights), which can be calculated from the ADS-B data assuming
standard atmospheric conditions.

∊ = =
∞

T
T

f M H( , )1 (23)

Thus the actual fuel burn can be calculated as a function f2 of Mach number, altitude, and time obtained from the flight data.
Finally, the consumed fuel mass can be integrated throughout the flight at any given time τ :

∫=m f M H dt( , )fuel
τ

0 2 (24)

Because it is a model built on open data, the ICAO model is used in this paper. It is worth to mention that this model contains a certain
level of inaccuracy based on previous studies. Research on operational flight data and tests conducted by Zürich Airport (Fleuti and
Polymeris, 2004) have shown that there is a difference between the ICAO fuel flow model and operational fuel consumption. An
average of 38% of difference (less in operation in comparison to ICAO) in fuel consumption LTO (Landing and Takeoff) cycle is found
by this report. However, the difference of en-route flight fuel consumption is not studied, thus remains unknown from this literature.

With the polynomial fuel flow model based on ICAO data-bank proposed earlier, this paper no longer relies on the discrete four-
point measurements. The fuel consumption is now approximated more accurately as a continuous function in relation to the dynamic
thrust of the engine.

Once the total fuel burn can be computed at any give time according to (24), denote a computed mass mτ (in climb, descent, or
approach) at time τ , the initial mass ( ∗m ) becomes:

∫= + = +∗m m m m f M H dt( , )τ fuel τ
τ

0 2 (25)

3. Bayesian Inference

As shown in the last component of the estimation flowchart (Fig. 1), the final estimate is computed using Bayesian inference. The
Bayesian inference uses Bayes’ theorem (Bayes et al., 1763) to update a hypothesis probability based on evidence (or observation). In

Fig. 4. ICAO fuel flow interpolation.
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the case of estimating aircraft mass, it uses computed mass at each flight phase to update an initial belief. This belief is called prior in
Bayesian terms. The prior essentially describes the probability density function of a parameter before any observation is made.

To understand the process, first, let us assume n possible mass observations are obtained from different flight phases:

= …m m m m, , , n1 2 (26)

These observations are possible values of initial aircraft mass. However, due to errors in aircraft flight data and estimations, those
values can be very different from reality or even out of the physical boundaries. If, for simplicity, one assumes the observed aircraft
mass follows a normal distribution:

N∼m μ σ( , )2 (27)

where the μ parameter refers to the underlying real aircraft mass and σ2 is the variance of the observations.
The simplest unbiased estimate for μ is to compute the mean of m, which is topically known as Maximum Likelihood Estimate

(MLE). However this means the observations are used under the assumption that all values of μ are equally likely. In this case, the a
priori knowledge of aircraft is discarded.

The Bayesian inference method introduces a prior probability function for the parameters μ and σ2. The posterior probability
function mp μ σ( , | )2 is computed as the probability of μ based on observed measurements. The most likely value in the posterior
distribution function (the mode) is denoted as the Maximum a Posteriori Probability Estimate (MAP). The MAP can also be seen as a
regularization of the MLE, due to the additional information of prior knowledge introduced.

3.1. Normal prior with fixed variance

First, to deduce the simplest closed form of the posterior function, the fixed variance (a chosen σ2) assumption is used. Let the
prior probability function for μ be defined as follows:

N∼μ μ σ( , )0 0
2 (28)

Following the derivation in Sun et al. (2017a), the posterior probability distribution of μ satisfies the following normal dis-
tribution:

N
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2
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where n is the number of the measurements and m is the mean of all measurements. An example will be given in the next section.

3.2. Normal distribution with unknown variance

When the variance is also to be assumed unknown, in order to obtain the closed-form solution, the conjugate prior distribution is a
four-parameter Normal-Gamma distribution. The likelihood of any mass mi is:

N∼m μ τ μ τ| , ( ,1/ )i (30)

where τ is the equal to σ1/ 2. The Normal-Gamma (NG) prior distribution for μ and τ is defined as follows:

N∼μ τ μ λ α β μ μ λ τ G τ α β, | , , , ( | ,1/( )) ( | , )0 0 0 0 0 0 0 0 (31)

where G α β(·| , ) is the Gamma distribution described by shape α and rate β. From all the observations m, the posterior distribution can
be calculated as follows, where the detailed derivation can be found in Murphy (2007):

∼

=

= +
= +

= + ∑ − +

+
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β β m m
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1 0
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1 0
1
2
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0 0
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0 0
0 (32)

The mean μ and τ of Normal-Gamma PDF are given by:

̂ ̂ =μ τ μ α
β

, ,1
1

1 (33)

3.3. Other types of distributions

In general cases, both the likelihood and priors are not necessarily normally distributed. Very often, a closed-form posterior
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distribution can therefore not be derived. This happens often when complicated models, unusual distributions, or high feature
dimensions are involved. There are still ways of computing the posterior numerically. As described by Gelman et al. (2014, Chapter
10), several approximation algorithms have been proposed, for example, numerical integration, distribution approximation, and
Bayesian sampling.

For this paper, the goal is to propose and initialize the use of prior knowledge in the computation of aircraft mass. Despite that
many of these Bayesian computing techniques are available, the currently proposed method uses the simplest form of prior described
earlier (Normal distributions with fixed variance). With the simple closed-form solution, the posterior can be computed fast.

4. Experiments and results

To examine and validate the Bayesian estimation approach, in total, several thousands of flights were gathered for two common
aircraft types (A320 and B738). These flights were carried out between the 10th and the 16th of October, 2016. Out of all the data,
the first 1500 complete trajectories for the experiment were selected. As an illustration, the great circle paths between the origins and
destinations of all flights are drawn in Fig. 5.

For each flight, multiple initial mass observations were computed at different flight phases using its respective method. After that,
the Bayesian mass inference was applied. In the following part, three experiments were carried out: mass estimation for a single
flight, distributions for mass estimated for all flights, and sensitivity studies. For the Bayesian inference, by default, the following
values are used:

=
=

=

μ
σ
σ

65,000 kg
10,000 kg

10,000 kg

0

0

(34)

4.1. Single flight demonstrations

The Bayesian inference of two flights is illustrated in Fig. 6. In the first plot, mass observations are computed at different flight
phases. These numbers correspond to the green dashed PDF in the second plot. The prior distribution is illustrated as the dotted blue
PDF on the right-hand side of the plot. The posterior is computed and illustrated by the solid red PDF.

4.2. Distributions for A320 and B737-800

Fig. 7 shows the results of the inference method applied to all A320 and B738 flights in the dataset. The first five sub-plots
illustrate the distribution of individual measurement results from methods that are applied at different flight phases, which are
takeoff, liftoff, climb, descent, and final approach. The last plot shows the final estimated initial masses using Bayesian inference.

By studying the results for these two different aircraft types, it is possible to conclude that at different flight phases, the initial
mass computed using deterministic methods contains large variances. Some of the results are outside of the boundaries of moew and
mmtw. The main causes are data inaccuracy, uncertainty in the thrust, and uncertainty in the airspeed. For liftoff and final approach
estimates, the margin of stall speed between the model and the actual setting may cause large inaccuracies (in the case of B737-800).
A more detailed discussion for these biases is addressed in the Section 6.3.

When looking at five distributions of the measurements and the final MAP estimates, it is evident that the MAP estimates have a

Fig. 5. All flights in the data set (A320 in green, B738 in blue). (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
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smaller variance than the individual estimates, and most of the initial estimates are within the boundaries of moew and mmtw.

4.3. Variation factors

In this section, the goal is to study how variations of different factors lead to changes in the estimation results, as well as the
degree of these differences. Follow-on experiments are performed on the A320 dataset that was used previously.

4.3.1. Prior
When applying Bayesian inference, an important factor is the prior. A stronger belief in the prior knowledge will increase the

confidence of the final estimation. However, these estimates can be biased towards the prior belief. To study this influence, the same
A320 dataset is treated with a set of different priors to produce different distributions of estimates. In Fig. 8, six combinations of
μ σ( , )0 0 are chosen to study this effect. The probability distribution functions that are biased towards low, medium, and high mass are
shown in red, black, and blue, respectively. Priors with high and low confidence are shown in solid and dashed lines, respectively.

In Fig. 9, six different results from the same estimation configuration are displayed. On the left side are plots where low confident
priors (large σ0) with different μ0 are applied, On the right side, the results from high confident priors (low σ0) are shown.

Results are grouped by μ0, corresponding to the bias of the prior. On the left-hand side of the groups are distributions from lower
confidence priors (higher σ0, shown in blue), On the right-hand side of the groups are distributions with a higher confidence prior
(lower σ0, shown in orange).

From these plots, it is possible to see that with a weak prior, the estimates are less biased. They depend more on the observations
(i.e.: different initial mass calculated at different flight phases). They also, in turn, produce less confident results. For instance, all
three experiments end up with distributions with larger spreads. A good choice of a prior often requires some empirical knowledge
with regard to the flights.

4.3.2. Thrust
The level of correctness of aircraft mass estimations based on observed performance parameters is essentially dependent on

knowledge of thrust settings. As shown in Section 2, most of the mass computation methods along the flight path need to take into
account the thrust profile while estimating aircraft mass. In these methods, an optimization using the least squares method is

Fig. 6. Example of Bayesian inference, mass observations at different phase in the first plot corresponding to the green vertical lines in the second plot. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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implemented to find the best thrust setting and aircraft mass, which provides a minimal squared error. This approach has also been
proposed previously Alligier et al. (2013). This approach makes sense mathematically. However, without validation using measured
thrust data, it is not possible to conclude whether the thrust configuration obtained for the optimization is indeed the correct setting.

In order to study the influence of different thrust settings, based on the same dataset, two set of fixed minimum and maximum
thrust profiles are used to produce two different sets of mass estimates. For takeoff and climb, maximum thrust and a 30% reduced
thrust profile are used. While for descent, two thrust settings at 8% and 20% of maximum climbing thrust setting are used. In Fig. 10,

Fig. 7. Comparison of estimations at different flight phases, solid vertical lines refers to the operational empty mass and maximum takeoff mass.

Fig. 8. Different initial mass prior distribution (A320).
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results from such different settings are shown, where the distributions from all flights at different flight phases are compared.
It is apparent that during the takeoff (TO) and climb (CL), higher thrust settings lead to higher estimations of initial masses, and

this difference is quite significant. During the descent (DE) phase, such a tendency is not visible. However, the uncertainty of mass
estimated under high powered descent is much larger. Due the fact that thrust is not involved for estimates from liftoff (LOF) and final
approach (FA), these results remain the same. When comparing these two sets of distributions, the final MAP distributions display
considerable differences.

It is worth to emphasize that the mass observations obtained in this experiments are not the optimal solution in comparison with
the results from Fig. 7. All values are computed under a fixed thrust setting here. For the latter case, mass from the best mass/thrust
pair were selected. From this test, it is possible to conclude that thrust setting is a major factor that affects the mass estimation. The
link between mass and thrust should therefore not be neglected. Numerical differences (median of the distributions) are shown in
Table 1.

A comparison of the distributions under two thrust settings shows that the difference in MAP is smaller than the ones seen in the
previous mass observation methods. This is because under the prior assumption, measurements that are far away from a believable

Fig. 9. Variation in distributions of estimates due to different priors (A320).

Fig. 10. Sensitivity on thrust settings.

Table 1
Median of estimated mass (× 103 kg) under two thrust settings.

Phase Tmin Tmax mΔ

TO 60.7 83.9 23.2
LOF 56.1 56.1 –
CL 42.1 64.4 22.3
DE 56.4 45.0 −11.4
FA 68.7 68.7 –

MAP 58.1 63.7 14.6
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value are considered with lower probability. The large fluctuation caused by distinct thrust settings is reduced. Thus, more con-
vincing distributions are produced. It is positive to see that the bias still persist in the MAP results, confirming the final result
maintained the knowledge about thrust settings.

As it is common practice nowadays to apply de-rated thrust takeoff/climb to reduce engine wear, as well as minimum thrust
descent to save fuel, the min thrust profile used in this experiment is closer to reality. This can be reflected in the resulting dis-
tributions, where maximum thrust profile produced much less realistic results.

4.3.3. Airspeed
All estimation methods introduced in Section 2 require correct measurements of aircraft airspeed. However, data collected from

ground measurements (ADS-B or radar) only reveal the ground speed. Estimations can either assume the ground speed as airspeed or
integrate wind data to approximate the airspeed. Intuitively, this uncertainty in wind can affect the estimation results.

In the experiment dataset, meteorological data are integrated with ground speed to approximate the true airspeed of aircraft. The
Global Forecast System (GFS) re-analysis dataset is used to construct the wind field globally. Airspeeds of all trajectories are com-
puted as the difference between the ground speed and wind speed.

For each flight, two sets of initial masses are computed under ground speed condition and airspeed condition. Finally, the
difference in estimated mass is found and illustrated in Fig. 11. It can be seen that the estimation can vary up to five metric tons of
difference for the Airbus A320, which is around 6% of the maximum takeoff mass.

5. Validation with Cessna Citation flight data

As previously pointed out in the introduction section, information regarding aircraft mass from airliners are rarely available to
ATM research. As a result, validations in mass estimation studies are often limited. Even when mass information would be provided
by an airline, its usefulness would be limited, as this information is often computed by the Flight Management System, rather than
measured. For practical reasons, airliners do not weigh cargo and passengers before taking off. Because of this, the “true mass” data
may have some level of uncertainty. A better alternative would be to perform specific flight tests, where there is more control over
aircraft mass, and where true mass can be measured.

5.1. Validation dataset

The current paper used data from a set of student demonstration flights with a Cessna Citation II laboratory aircraft, to validate
the proposed method. A total of 50 flights were carried out in a period of three weeks in March 2017. For each flight, the initial mass
is computed as the sum of measured passenger weight, fuel weight, and aircraft basic empty weight. During the flight, a large number
of flight parameters (such as fuel flow) are recorded. The average duration of the flights is approximately 80min.

The demonstration flights were flown four times a day, where the aircraft was refueled between every two flights. Fig. 12 shows
how the initial mass varied from flight to flight. As the number of passengers was almost always the same, most of this initial mass
variation is caused by the refueling schedule. Fig. 12 also shows that all flights were taking off at a weight close to the maximum
takeoff weight (indicated by the top solid line). It should be noted that for some of the flights (number 2, 6, 14, 27, 37, and 49), the
initial fuel mass was not recorded in the flight data sheet. The amount of fuel on these flights was therefore interpolated for these
flights. These data point are marked distinctly in the figure.

5.2. Results and analysis

Fig. 13 illustrates the result of Bayesian estimation applied on all flights. The difference between true mass and estimated mass is

Fig. 11. Difference in estimation caused by wind.
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shown for each individual flight. The mean absolute error (MAE) is 4.3% of the total true mass, while all estimates are within 12% of
MAE, with prior parameters of μ0 =6000 kg and σ0 =500 kg.

To assess the effect of the choice of prior, six different priors are tested with the same data, see Fig. 14. Here, the plots on the right-
hand side represent the distribution from different priors. Within the distribution, the scattered points are all estimated mass values.
It can be seen that as expected, with the true mass as comparison, the prior that yields the best result is the one biased towards the

Fig. 12. Aircraft initial mass for all flight.

Fig. 13. Bayesian estimation for all flights (prior parameters: μ0 =6000 kg, σ0 =500 kg).

Fig. 14. Prior test in relation with the true mass data. Green horizontal lines refer to moew and mmtow . σ0 grouped by different colors. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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true mass and with a high level of belief. The prior yielding the worst result is the one with a high level of belief but biased towards
the wrong values. On the other hand, selecting a weak prior (larger σ0, lower level of belief), reduces the influence of bias but
increases the estimation uncertainty.

6. Discussion

This paper presents a set of principles, methods, and validations for Bayesian inference of aircraft mass. From the Bayesian
inference point of view, the choice of prior distribution is very important. On the other hand, related factors such as wind and thrust
can influence the accuracy of mass observations, which can propagate to the final estimations. These factors and their limitations are
addressed in this section.

6.1. Priors in Bayesian inference

The Bayesian inference approach is based on the conditional probability theory where a certain prior (or “belief”) of the para-
meter is known. This leads the estimate to be biased to what the“belief” is. There are two ways to improve the final estimate: more
measurements or a better prior when measurements are few.

Because the number of mass observations is low, constructing a better prior is important. In practice, other than the minimum and
maximum allowed weight, one can construct the prior based on direct or indirect indicators such as historical data, occupancy, and
fuel reserves. For example, for short-haul flights from low-cost airlines, a highly-biased prior towards the maximum takeoff mass can
be used. One can also look at traveler statistics to construct the priors according to seasons. In the cases where the types of flight are
uncertain, based on our experiments, the recommendation is to select a μ0 around 80% of the maximum takeoff mass, and a σ0 that is
around 25% of the mass difference between the maximum and empty mass.

Normally distributed priors are assumed in this paper. The Normal distribution assumption is based on results of previous studies
(Alligier et al., 2013, 2014). Furthermore, it serves the purpose of simplifying the computation. Nonetheless, a more informative prior
with a skewed distribution can be used, depending on the level of confidence. The fixed variance reduces the computation and
simplifies the closed-form solution. However, this is also a minor limitation that future researches would overcome. In other cases of
unusual prior distribution, one can still compute the posterior using numerical methods.

6.2. Mass observations and dealing with partial trajectories

For Bayesian inference, the more mass observations are available, the better the quality of the result tends to be. In order to obtain
more observations, the long duration of climb and descent can be better utilized. Most of the previous studies tend to consider the
climb phase as an entire section for their estimation process. However, the climb and descent phases can be segmented further to
create multiple measurements at different flight levels or at several continuous climb/descent segments. The same method in Eq. (21)
can be applied to obtain more observations to include in the Bayesian inference process.

It is worth noting that each flight in the dataset of this paper contains the complete flight trajectory data that starts before takeoff
and lasts until landing is completed. It may include some missed segments during trans-oceanic cruise where no data is available. The
completeness of trajectory data is required to be able to use all different mass calculation methods at each flight phase. However, such
a condition is not required in order to arrive at a set of estimates. A partial trajectory can be used in the same way, where the number
of measurements is simply reduced.

6.3. Uncertainties

As discussed previously for Fig. 7, there can be a certain level of variation in the resulting distribution for each individual method.
This is expected due to the uncertainty in data, as well as the flight procedures.

Since the mass is tightly linked to the thrust in the total energy model, the uncertainty in thrust will always exists in aircraft mass
estimations. This can result a difference between the actual mass and mass computed under maximum thrust profile assumption. On
the other hand, using the total energy model, with observed aircraft kinematic states and calculated drag, there are multiple possible
thrust and mass combinations. That is, both higher and lower thrust-mass combinations may satisfy the equation at the same time
(with different levels of error).

This possibility of the varying thrust is fairly common for aircraft to perform reduced thrust takeoff and climb. Several estimation
methods used in this paper require knowledge of the ratio of reduced thrust. That is the rational for using the least squares opti-
mization method in Eq. (21). It tries to find the best combination of thrust setting and mass. This approach is similar to previous
research by Alligier et al. (2013). In addition, the effect of thrust settings was studied in this paper where difference in mass
estimation is found under fixed maximum and minimum thrust profile.

Compared to takeoff and climb, the situation is more complicated in descent. Aircraft trajectories are subjected to more proce-
dures from air traffic controllers. Additionally, different types of continuous descent approaches may be used. Thus, the thrust
settings can substantially vary among flights. Optimization according to Eq. (21) may not yield the best thrust-mass setting to
resemble reality. This effect can be seen in Fig. 10 in the descent phase. One possible solution is to reduce the thrust setting range
towards idle thrust (per this paper), but doing so may cause those higher-powered descents to suffer a biased result. To over come this
drawback, a separate estimation that determine the type of descent can be implemented before the estimation.
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Another factor affecting the estimation results is the data quality. With more uncertainties in the aircraft states (position, airspeed,
vertical rate), the higher noise returns in the computed mass observations. Such fundamental variance can be improved with better
quality data (radar data, wind information, or FMS data). However, this variance will always exist in the estimation. To advance the
inference using Bayesian methods, investigation in a better error model can be an interesting direction for future studies.

7. Conclusions

In this paper, a new Bayesian inference process for estimating aircraft initial mass was proposed. The core idea of the maximum a
posteriori probability (MAP) estimation in Bayesian statistics is to derive estimates by combining mass observations with prior
information. The prior is represented as a probability distribution, and the MAP estimate is obtained from the posterior probability
distribution. The other major focus of this paper that is presented at the start of the method section is the calculation of multiple
initial masses. These are independently computed using data from different flight phases and deterministic methods.

Compared to the deterministic least-squares method presented in previous studies, the extra layer of Bayesian inference that is
built on top of different mass observations can ensure improved estimations. This is due to the fact that such a calculation includes the
prior knowledge of aircraft mass distribution. This paper tested different hypotheses for the selection of priors, and their influence on
the estimation results. It was found that thrust setting and wind can act as important factors that influence the mass estimation.

During initial mass calculations, a simplified fuel burn model was constructed based on the open ICAO emission data bank. For
this paper, it provided a means to calculate the total fuel burn at the time when a mass is computed. Under such conditions, it is thus
possible to derive the initial mass from this computed mass. This fuel burn model can also be applied in other studies, since the input
data is based solely on aircraft surveillance data such as ADS-B or radar data.

To validate the proposed estimation process, data from a set of 50 flights carried out by a Cessna Citation II aircraft was used. True
initial masses of these flights were recorded for these flights in the data set. The estimation under a well-defined prior distribution
yields a mean absolute error of 4.3% with respect to the true aircraft mass among all flights.

In this paper the Bayesian inference was applied on the level of mass observations. It requires long observation of the flight
trajectory and is best suited for post process. It makes the analysis of aircraft performance based on historical data more accurate.
However, this extended observation of flight trajectory requirement also poses the major limitation of the method for real-time
estimation, where only a small portion of the data may be collected by a single ADS-B receiver. To overcome this limitation, another
further step would be integrating the Bayesian estimation to the aircraft performance equations. Under such circumstances, accuracy
and prediction time can expected to be improved. At the same time, reduction of wind uncertainty and a better understanding of the
thrust settings would also improve this method and bring better estimation results in the future.
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