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This paper presents a method for inviscid airfoil analysis and design optimization that
uses reduced order models to reduce the cost of computation. Strong emphasis is placed
on obtaining reasonably accurate solutions to the Euler equations with computational
costs which are far lower than those required by traditional Computational Fluid Dy-
namics (CFD) techniques. The design procedure presented here begins by computing a
series of flow solutions (snapshots) in which the design variables of interest are perturbed
using a Design of Experiments approach. Proper Orthogonal Decomposition (POD) is
then used to produce the optimal linear representation of these snapshots using a finite
series of basis functions or modes. These basis modes are then used to construct arbitrary
solutions to the Euler equations about modified airfoil geometries with very small com-
putational expense. The flow solution problem is reduced in this way to a non-linear least
squares fit problem with a small number of variables that can be solved efficiently. For
design purposes, a gradient-based optimization procedure is used with the information
supplied by the reduced order model. Results for both direct airfoil analysis and for an
inverse design optimization problem are presented. Observations regarding the useability

of this technique in a design environment are also discussed.

Nomenclature
a; generic coefficient of the j-th POD mode
E total energy (internal plus kinetic)
f,g Euler flux vectors
H total enthalpy
M number of modes used in approximation
p static pressure
R(z,x') autocorrelation function
R autocorrelation tensor, finite-volume residual
R autocorrelation matrix for method of snapshots
u  z-component of velocity
v y-component of velocity
u arbitrary function to be generated
x vector of independent variables
A Lagrange multiplier, an eigenvalue
1; coefficient of the ith mode in a function expan-
sion
Q?  domain of interest
p density
@/ (z) j-th POD basis mode
(-} averaging operator
|-l L*norm
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Introduction

ECENT efforts in the field of aerodynamic shape

optimization (ASO) have yielded remarkable im-
provements in our ability to design shapes with certain
types of optimal behavior. By leveraging concepts
from control theory, the computational cost of tra-
ditional gradient-based optimization schemes can be
substantially decreased via solution of an adjoint equa-
tion. This procedure effectively yields the gradient
with respect to an arbitrary number of design vari-
ables with the cost of a single flow and adjoint solu-
tion.'3 The adjoint procedure has undergone inten-
sive scrutiny during the last few years and has matured
to the point where both complex geometries and vis-
cous flows are starting to be treated with reasonable
confidence .46

In spite of these great contributions, the application
of the adjoint procedure has been limited to the com-
putations confined to the fields of aerodynamic and
structural design. The fundamental reason being that
the adjoint equations, boundary conditions, and gradi-
ent calculation formulae are cost function dependent,
and therefore need to be re-derived every time the cost
function changes. Moreover, it is not possible to treat
arbitrary forms of the cost function, thus limiting the
applicability of this procedure. Although a library of
adjoint formulations for some of the more relevant cost
functions of interest has been developed, the use of
this procedure in the midst of more realistic design en-
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vironments involving multiple disciplines and a large
number of design constraints has been somewhat lim-
ited. In order to make the results of direct ASO valid,
artificial constraints were imposed to include the ef-
fects of trade-offs with other disciplines. For example,
in the case of aerodynamic wing design, planform and
thickness constraints have often been imposed so that
structural weight, fuel volume, and takeoff/landing re-
quirements would not be adversely affected by changes
in the wing shape dictated by the ASO procedure.

However, the importance of using high-fidelity mod-
eling in the design of new aircraft configurations can-
not be underestimated.”® ASO methods have carved
a niche in the transonic aircraft design area, and the
focus of the attention must switch to the problem of
integrating additional disciplines at the same level of
fidelity. This objective poses fundamental challenges
to the organization of the design procedure; a new
paradigm of design must be generated to ensure that
our goal of developing a truly high-fidelity multidis-
ciplinary design environment can be attained. Work
is required in many areas: new reorganizations of the
design optimization process, development of software
integration environments, enhanced optimization tech-
niques, and novel low-cost, low-order approximations
to high fidelity models will be required to minimize
the formidable computational cost that this type of
approach will generate. In addition, creative thinking
in the area of computation of coupled sensitivities of
responses that involve the interaction between two or
more disciplines will be necessary.

The Proper Orthogonal Decomposition (POD) ap-
pears to be an excellent match to our need for low-cost,
low-order approximations. Given a series of snapshots
of a system (aerodynamics alone or a more realis-
tic multi-disciplinary system) a simple algorithm pro-
duces a series of basis functions that are guaranteed to
be optimal for the description of the system snapshots
provided. However, the POD is nothing but a linear
basis of the space that is being described, and there-
fore, it is an approximation to this design space and
a certain amount of error will result when we use the
POD to describe systems that fall outside of the trust
region of the basis. Using the modes that form the
POD basis, the governing equations of the flow (the
Euler equations in our case) can be suitably projected
to produce a much smaller set of non-linear equations
that can be very efficiently solved using non-linear
least squares solution methodologies. The full par-
tial differential equations or their semi-discrete form
no longer need to be solved.

Our long-term objective is to develop the various
components of a truly high-fidelity multidisciplinary
design environment where aerodynamics, structures,
mission performance, and a realistic description of the
aircraft/spacecraft model are included. To facilitate
this goal, the work in this paper focuses on the low-

order approximation of inviscid aerodynamic models
for use in sample ASO problems. However, the in-
tent here is broader; we are aiming to understand
more clearly the ability of these low-order models to
play a role in our proposed design environment, and,
more importantly, to investigate the possibility of us-
ing low-order modeling to obtain coupled sensitivities
which are extremely costly to derive without any sort
of approximation. Additional numerical experiments
are still necessary to determine the range of capabili-
ties of these methods. Since POD-based reduced order
models admittedly can only accurately represent the
solution of problems that are similar to the infor-
mation provided in the form of snapshots, a certain
level of error is expected. However, they may find
their place in variable fidelity design models with a
multigrid-like structure where the coarser level infor-
mation can be extracted from these models, while the
finest levels are still provided by some of the high-
fidelity models described above.

The paper presents a detailed description of our use
of the POD approximation for purposes of both analy-
sis and design of inviscid airfoils. Several examples of
both subsonic and transonic flow analysis are shown
with the basis modes obtained from a variety of differ-
ent snapshots. The dependence of the quality of the
solution on the number of modes used in its represen-
tation is also shown. Finally, some preliminary results
of the application of this procedure to an airfoil inverse
design test case are presented. Conclusions from these
results are drawn and an outline of our current and
future research efforts in this area is given.

Proper Orthogonal Decomposition
(POD)

The POD procedure has been used in a wide range
of disciplines, including fluid mechanics, random vari-
ables, image processing, signal analysis, data com-
pression, process identification and control in chemical
engineering, and oceanography.'® In Ref.!! the use of
POD to construct reduced order models of synthetic
jet actuators for flow control is described. Flow sepa-
ration control experiments in which the control formu-
lation was based on reduced order models from POD
showed the low-order models to be quite effective. Re-
duced order modeling of the unsteady aerodynamic
and aeroelastic behavior of a transonic airfoil using
basis modes from POD is described in Ref.'?

The details of the POD procedure and its properties
have been well presented in Ref.!? A brief description
of the fundamental points is transcribed below. Need-
less to say, the analysis of the properties of the POD
can be lengthy and have already been the subject of
separate papers.

The POD is simply a procedure that provides an op-
timal linear basis for the reconstruction of multidimen-
sional data (such as the result of a partial differential
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equation) which allows a reduction in the order of the
system under consideration from very large numbers
(in the tens of millions for typical full-configuration
Navier-Stokes fluid flow calculations) to very small
ones (in the tens to hundreds). This order reduction
is accomplished using a set of modes, or a modal de-
composition, that will be explained below.

The POD has its roots in statistical analysis and has
appeared in multiple disciplines with various names.
Among others, the terms principal component analy-
sis, empirical eigenfunctions, Karhunen-Loéve decom-
position, and empirical orthogonal eigenfunctions have
been used in the literature to describe the same con-
cept. The nature of the POD is similar to the usual
Fourier decomposition that is taught at the freshman
calculus level and in multiple courses in approxima-
tion theory: a function of interest (i.e. the solution
of a partial differential equation in a large mesh) is
projected onto a set of basis functions (or modes) thus
providing a finite set of scalar coefficients that repre-
sent the function in question. The POD provides a
particular set of basis functions (or vectors in the fi-
nite dimensional sense) which are guaranteed to make
up the optimal linear basis for the description of an
ensemble of empirical (or numerical) observations of
finite size.

The key idea is that, if the behavior of the system
in question is such that a certain structure is present
in the response, one may only need a small number of
modes to represent the behavior of the overall system.
If the number of modes required is of order 100, while
the size of a typical mesh is of order 1, 000, 000 then the
description of the system of interest can be achieved
at a much reduced cost while suffering only a small
accuracy penalty.

We are then seeking finite dimensional representa-
tions of a function, u(x) in terms of a basis {p;(z)}72,
which allows an approximation to u to be constructed
as follows:

M
= a;5(). (1)

In order to construct this basis, assume that we have
an ensemble of N empirical (these will be the outcome
of several computational runs) solutions that we will
denote by {u*}. We would like to choose {g;(x)}52,
so that these basis functions describe the functions
in the ensemble {u*} better than any other linear
basis available. In order to formulate this problem
mathematically, let’s introduce the averaging opera-
tor, which is assumed to commute with the spatial
integral used in the inner product operation.

The mathematical statement of optimality is that
we should choose our basis functions so that they
maximize the averaged projection of our ensemble of

functions {u*} onto ¢. In other words,

(I(a, 0)%)

max ————-—, (2)
e el
where | - | denotes the modulus and || - || is the L?-norm
given by .
11l = (£ )=,

and the notation (-, -) simply expresses the inner prod-
uct of two functions over a pre-defined interval or
domain.

Note that the solution of (2) would yield the best
approximation to the ensemble of functions by a sin-
gle function . However, the functional in (2) can
have multiple local maxima, which would provide ad-
ditional basis functions for the decomposition in (1).
We, therefore, have a problem of calculus of variations
in which we would like to maximize (|(u, ¢)|?) subject
to the constraint that |[¢]|?> = 1. This is a constrained
optimization problem where the function to be maxi-
mized is given by:

el = {(w, 0)*) = Allel* - 1), (3)

where \ is a Lagrange multiplier. A necessary condi-
tion for an extremum of this cost function is that for
all variations ¢ 4 01,6 € R, the following expression
must hold:

%J[Sﬁ + 6¢]|s=0 = 0.

From Eq. 3 and for real functions u, ¢, and v, we have
that

3 T+ 0]15-0 = 20w 00, w)) — Mo, )] =0.

With some amount of algebra (shown in Ref'"), and
since the function v can be chosen arbitrarily, it can
be shown that the basis functions we are seeking must
satisfy:

/Q (u(eu(z)) (e )dz' = Ap(z). (4)

Therefore, the optimal POD basis that we were seeking
is composed of the eigenfunctions {¢;} of the integral
equation 4 above, whose kernel is the averaged auto-
correlation function (u(z)u(z’)) = R(z, ).

In the finite dimensional case that we encounter in
numerical computations, the ensemble of functions u*
become a group of N-dimensional vectors instead of
functions (or infinitely dimensional vectors), and the
autocorrelation function becomes the autocorrelation
tensor given by

R=(u®u).

Therefore, in finite-dimensional spaces, the integral
eigenvalue problem mentioned above becomes

Ry = Ap.
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Once the basis functions/vectors are computed from
this eigenvalue problem (under most situations, R is
guaranteed to have a complete set of eigenvectors), the
member functions/vectors of the ensemble u* can be
decomposed as follows:

u(@) = a; (x). (5)
j=1

The meaning of the corresponding eigenvalues in the
problem depends on the function that is being approx-
imated. For fluid flow problems, where the ensemble of
functions represents various snapshots of the density,
velocity, and pressure fields obtained via either exper-
iment or computation, the values of the eigenvalues of
the velocity modes, for example, represent twice the
average kinetic energy contained in each mode. There-
fore, an ordering of the eigenvectors according to the
magnitude of their correponding eigenvalue allows for
truncated models which contain the maximum amount
of energy.

Note, however, that even in the event in which only
a small number of modes is necessary to represent a
new function which is not a member of the original
ensemble, we still have to solve an eigenvalue prob-
lem of order equal to that of the original problem
(that is the size of the autocorrelation matrix). The
computational cost involved in this solution can be
ameliorated by using iterative techniques to find the
eigenvectors corresponding only to the largest eigen-
values with highest energy content. However, a more
elegant procedure is available that reduces the cost of
the solution of the eigenvalue problem to an essen-
tially trivial amount. This method has been named
the method of snapshots and is due to Sirovich.'?

Assume that the numerical simulation from which
we derive our ensemble of vectors is performed on
a grid with a large number N of points. Further-
more, assume that the ensemble of functions contains
n snapshots and is deemed to provide a reasonable de-
scription of the typical solutions to the system that
we are seeking. According to the derivations previ-
ously presented, we would have to solve an N x N
eigenvalue problem. It can be shown'® 13 that us-
ing the method of snapshots, the problem can be easily
reduced to an n X n eigenvalue/eigenvector problem,
which, under the premises of reduced order modeling
should be quite a bit more manageable.

Using the method of snapshots, the resulting ele-
ments of the modified autocorrelation matrix for each
of the density, velocity, and pressure fields is given by

1
Rij = M/ﬂui(a:,y)uj(x,y)dxdy (6)

where u; corresponds to the i-th snapshot of the so-
lution, 4,5 = 1,2,...,M, and M is the number of
snapshots provided. The integral simply represents the

inner product of two of the snapshots, ¢ and j, result-
ing in R, a non-negative definite, symmetric matrix
which therefore has non-negative eigenvalues and a
corresponding full set of orthogonal eigenvectors. The
eigenvectors of R are computed, as an intermediate
step, to determine the actual POD modes

Ra = Aa (7)

The POD basis functions can now be calculated as

M
@K:Zaz](uz(xvy) K:172a7M (8)
=1

where af is the ith element of eigenvector a corre-

sponding to the eigenvalue A\i. The resulting POD
modes are fully orthogonal, and are normalized to sim-
plify future operations:

(soKmK/)={ é

In the case of the Euler equations, the procedure is
repeated for each of the primitive variables (p, u, v,
p) that are needed to compute the conservative state
vector (p, pu, pv, pE) required in our Euler flow solver.
Once these basis modes have been obtained, we can, to
a certain degree of accuracy, expand the flow solution
about an arbitrary airfoil shape. For example, the
density field of these solutions will be expanded in the
form

K=K

M
p(z,y) =D 1o, (10)
i=1

where the subscripts indicate the fact that the coeffi-
cients of the expansion, 7,, are those particular to the
expansion of the density field.

After this quick outline of the POD procedure, the
first step in the POD process is the preparation of
an ensemble of snapshots from which a set of basis
modes will be derived. Because of the relationship be-
tween the snapshots and the resulting modes described
above, it is important to use snapshots that, as closely
as possible, resemble the solutions that we will try to
obtain. In this work, the snapshots are produced by
computing a series of flow solutions using FLO82, the
two-dimensional, cell-centered Euler solver of Jame-
son'4 for the analysis of arbitrary airfoil geometries.
The different solutions are obtained by perturbing a
baseline airfoil using a parameterization of its geome-
try and a design of experiments approach.

It must be finally mentioned that modifications to
the POD procedure described above and in Ref.!? can
be included to produce the optimal basis to represent
a set of function snapshots and their derivatives with
respect to a series of design parameters. The resulting
eigenvalue problem is similar to the one in Eq. (7) and
will be studied in the future with gradient information
provided by efficient adjoint-based methodologies.
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Flow Analysis Procedure

Traditional uses of POD expansions in fluid dynam-
ics have focused on the development of a series of
POD modes which are later used to project the full in-
compressible Navier-Stokes equations. This procedure
transforms a complicated non-linear partial differential
equation (the Navier-Stokes equations) into a number
(equal to the number of modes used) of non-linear or-
dinary differential equations that can be integrated in
time to describe the evolution of the fluid system. This
type of approach is currently being used to analyze
the behavior of turbulent flows with a small number
of modes.

In our case, however, we are not particularly inter-
ested in the time evolution of the flow solution at hand.
Our flow solutions are steady and, for airfoil analysis
and design purposes, the evolution parameters, rather
than time, will be identified with the coefficients of a
surface parameterization that allows us to change the
shape of the geometry of interest. In a nutshell, we are
seeking to use POD modes to describe the flow solu-
tions of arbitrary airfoil shapes using the information
contained in the POD modes, and the fact that the
resulting solution must satisfy, as closely as possible,
both the governing equations of the flow, and its wall
and far-field boundary conditions.

The approach we have chosen to take is based on
the well-known finite-volume procedure which is often
used to discretize the governing equations of the flow.
Let p, p, u, v, H, and F denote the pressure, density,
cartesian velocity components, total enthalpy, and to-
tal energy respectively. Consider an arbitrary control
volume 2 with boundary 0€2. The equations of motion
of the fluid can then be written in integral form as

%//w da:dy+7{ (fdy —gdzx) =0, (11)
Q N

where w is the vector of conserved flow variables

p
pU
pU
pE

and f, g are the Euler flux vectors

gu pv
pu® +p puv
f = =
puv 8 pv® +p
pull pvH

Also, for an ideal gas, the equation of state may be
written as

S ]

Applying Eq. 11 independently to each cell in the mesh
we obtain a set of ordinary differential equations of the

form

d

7 (Wi Vi) + R(wi;) =0, (12)
where Vj; is the volume of the 4, j cell and the residual
R(w;;) is obtained by evaluating the flux integral in
Eq. 11. In the steady state, the time derivative term
drops out and we are left with

R(W”) = 07

which already incorporates the wall and far-field
boundary conditions in the calcuation of the bound-
ary fluxes at the edges of the domain.

Since, using a POD expansion of the kind of Eq. 10,
both the primitive and conservative flow variables can
be considered to be functions of the expansion coef-
ficients, 7;, we can develop the residual of the Euler
equations into a local non-linear function of each and
every one of the expansion coefficients, 7;, for each of
the primitive fields of interest

R(p) =0, I=1,...,M. (13)

Notice the drastic reduction in the complexity of the
problem: from a total number of unknowns equal to
4 x N, where N is the number of nodes in the grid,
to 4 x M, where M is the number of modes used for
the expansion of each of the solution fields. This is
where the drastic complexity reduction derived from
POD can be seen. For a typical two-dimensional Eu-
ler calculation, 4 x 161 x 33 = 21,252 unknowns are
solved for, while for a calculation based on POD us-
ing 15 modes, the total number of unknowns is only
4 x 15 = 60. When this procedure is used in the
solution of three-dimensional flows, the reduction in
computational cost becomes compelling.

Given that an exact solution to Eq. 13 will typically
not be possible since we have drastically decreased the
number of free parameters in the problem, we have
chosen to define the following cost function

Ipop = ZRQ(Ul)a (14)
]

where the summation, [, is over all the cells in the
domain. Notice that the residuals for the four gov-
erning equations (continuity, momenta, and energy)
are weighed appropriately so that the residuals of any
equation are not given uneven weighting. This ap-
proach renders our problem well-posed and defines
the solution that, with a given series of modes, most
closely satisfies the equations of motion. The definition
of Ipop guarantees that both the governing equations
and the solid wall boundary conditions are satisfied in
the least-squares sense. Forcing terms that guarantee
compliance with the far-field boundary conditions for
this problem are added to the residual, but omitted
here for simplicity.
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The problem of finding the solution to our problem
has now been reduced to obtaining the least-squares
minimizer of Eq. 14 which can be done readily with
a variety of methods. For this work we have cho-
sen to use the method of Levenberg-Marquardt which
combines elements of both quasi-Newton and steepest
descent optimization procedures. Using this method,
typical solutions for problems involving 15 — 30 modes
can be found inexpensively in only a few iterations
(typically less then 10.)

This projection procedure dramatically reduces the
cost of flow calculation from having to solve a com-
plete set of hyperbolic partial differential equations
(Euler equations) to the solution of a small set of non-
linear equations. Using this reduced order model, a
gradient-based approach may be used for optimization
of an arbitrary cost function with respect to a variety
of design variables that can be used to parametrize
the changes in geometry of an airfoil. Possible de-
sign variables that can be used include camber and
thickness distributions, angle of attack, and series of
distributed Hicks-Henne bump functions for full aero-
dynamic shape optimization.

Results

In this paper, the POD methodology is used to eval-
uate the ability of reduced order models to accurately
represent the inviscid aerodynamics of arbitrary airfoil
shapes. In particular, we are interested in the ability
of POD-based models to provide solutions of sufficient
accurary that can be used to guide the design process,
even if occasional solutions of the full Euler equations
are necessary. The projection / flow solution technique
was then used with an inverse design procedure where
a pre-specified target pressure distribution is achieved
by variations in the airfoil surface geometry.

Flow Computations

For purposes of evaluating our projection algorithm,
the ability of the method to accurately compute flow
solutions was validated. Because any of the snapshots
used in constructing a set of modes can be ezxactly
represented by the modes, the projection algorithm
should be able to compute the exact solution for any
of the geometries represented in the snapshots.

We parameterize the airfoil surface with a series of
Hicks-Henne bump functions,'® which make smooth
changes in the geometry,

b(z) = {Sm[ﬂxlog(lﬂ)/log(tl)]}t2 0<z<1, (15)

where the maximum of the bump is located at x = t;
and the parameter to controls the width of the bump.
Airfoil geometries for the snapshots were computed by
taking two baseline airfoils (the RAE 2822 and NACA
1413) and adding 14 bump functions, 7 each on the
upper and lower surfaces. The bumps were distributed

evenly along the chord with an amplitude of 0.1% of
the chord. Flow solutions for the baseline airfoils, plus
28 flow solutions for each of the modified airfoils, were
computed using FLO82 and used to form the basis
modes for p, u, v, and p, each with a total of 30 modes.

Using the projection technique previously described,
the flow solution for the RAE 2822 airfoil was pro-
jected using the first n of these 30 modes, where n was
varied from 1 to 30, and the modes are numbered in
order of decreasing eigenvalue. In Fig. 1, the results
for pressure from the projected solution made using all
30 modes is shown. As expected, the exact solution for
the RAE 2822 airfoil is recovered. Also shown is the
convergence history of the lift and drag coefficients as
more modes are added to the computation. Note that
the lift coefficient quickly converges with relatively few
modes, while the drag coefficient requires significantly
more modes to reach the exact solution.

These results validate the projection technique, but
not the ability of POD based models to be used for de-
sign, since we have only reconstructed information we
already knew. For design we must be able to compute,
to a reasonable degree of accuracy, the flow solutions
for new geometries for which we have calculations for
similar geometries.

A set of basis modes was computed from a NACA
4412 airfoil by placing a total of 30 of the Hicks-Henne
bump functions with a maximum amplitude of 0.1%
of the chord over the upper and lower surfaces. The
results of projecting the flow solution for a NACA
3413 section, which has different maximum camber
and thickness ratios from the NACA 4412, are shown
in Fig. 2. Because the projected geometry was not in
the snapshots used to compute the modes, we can-
not expect to get an exact solution. However, the
pressure contours and surface pressure distributions
in Fig. 2 indicate the projected solution is quite good,
and certainly sufficient for our goal of guiding the de-
sign process. Again, the lift coefficient convergence
is quite rapid, while the drag coefficient takes signif-
icantly more modes. Note that nothing about POD
implies that using more of the modes that are avail-
able will result in a more accurate pressure distribution
at the surface of the airfoil. Additional modes will add
to the overall accuracy when the entire domain is con-
sidered, of which the airfoil is only a boundary.

A partial set of basis modes for pressure are shown
in Fig. 3. These are the first 8 modes (correspond-
ing to the 8 largest eigenvalues) computed from the
RAE 2822 and NACA 1413 airfoils, and used in the
computations shown in Fig. 1. The first mode looks
very much like the pressure contour itself, while sub-
sequent modes are concentrated at various locations
around the surface. It was mentioned that the errors
in Fig. 1 when not all 30 modes were used in the pro-
jection, particularly for the drag coefficient, were due
to the fact that the predominant error was located in
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in places with greater projected area in the drag direc-
tion. Notice that the modes beyond the first are highly
concentrated, with large magnitudes in a small area at
the airfoil surface with a significant projected area in
the drag direction, but are relatively flat elsewhere.
It is this characteristic of the modal decomposition,
which occurs when the snapshots represent changes in
geometry, that allows us to project changes in geome-
try.

At a Mach number of M = 0.50 the flows are shock
free and relatively linear. However, for transonic flow
the presence of shocks, and the fact that they move
slightly as the airfoil geometry is perturbed to create
the snapshots, may lead to difficulties in projecting a
solution. A set of 30 modes was computed by using
snapshots of the RAE 2822 and NACA 1413, as well
as the perturbed variations, at M = 0.75. The original
RAE 2822 airfoil was then projected, and the results
are shown in Fig. 4. Again, as expected, we recover the
exact solution by using all 30 modes. Also, we again
see quite rapid convergence for the lift coefficient, while
the drag coefficient converges more slowly. The fact
that the lift coefficient is almost exact with just a single
mode is a coincidence - note that the corresponding
drag coefficient shows a significant error.

The sensitivity of the lift and drag coefficients to
the number of modes utilized in the projection is an
important piece of information if these models are to
be used efficiently in design. For example, if one is
interested in a target lift coefficient, the results shown
indicate that relatively few of the modes can be used,
and one will still get a satisfactory solution. However,
if drag plays a role in the design criteria, such as drag
minimization or lift-to-drag ratio, more of the modes
will be needed to get a satisfactory projected solution.
Further investigation into the numbers of modes re-
quired for each of the individual flow quantities (p, u,
v, and p) may lead to even greater efficiencies for these
reduced order models.

Inverse Design

The ability of POD based design models to provide
gradients for design optimization was investigated by
performing an inverse design in which a target pressure
distribution was specified, and the geometry is mod-
ified to achieve such a distribution. To parameterize
the airfoil surface the same Hicks-Henne bumps previ-
ously described were used, where the amplitude of the
bumps are the design variables. An inverse design cost
function is defined as

Irp = /S(p—pT)QdSa (16)

where pr is the target or specified pressured distribu-
tion. Gradients of the cost function in Eq. 16 with
respect to the design variables were obtained by finite
differencing of the POD model.

A set of basis modes using the RAE 2822 and NACA
1413, and perturbed variations, with a total of 30
modes were used for the inverse design problem (the
same modes used for the projection results shown in
Fig. 1). The pressure distribution for the RAE 2822
airfoil was specified as the target. A parameteriza-
tion of the surface was made using a total of 10 bump
functions, 5 each on the upper and lower surface. The
starting shape for the design was produced by making
arbitrary changes to the RAE 2822 airfoil, as shown in
Fig. ba. The initial pressure distribution, computed
by projecting the initial geometry, is shown along with
the target pressure in Fig. 5b.

After one design iteration, the airfoil cross section
appears to have been changed in the wrong direction -
away from the known solution. However, the cost func-
tion has in fact been reduced. The second iteration
moves the lower surface towards the target geometry
again. At this point the pressure distribution is still
quite rough.

At the end of the third iteration, the cross section is
moving out toward the target solution, the aft camber
at the trailing edge is more pronounced and the pres-
sure distribution has smoothed out significantly. The
cost function after three design iterations has been re-
duced by a factor of five from the initial design.

After four design iterations (Fig. 6a-b), the design
is quite close to the target in terms of geometry and
pressure. Almost an order of magnitude decrease in
the cost function has been achieved from the previous
iteration, and almost two orders of magnitude from
the initial design.

In subsequent iterations, the cross section in the aft
portion of the airfoil is actually moving away from the
true solution as the pressure distribution is smoothed
out. The final design at iteration 40 shows the pressure
distribution was matched fairly well, although there
appear to be difficulties in resolving the pressure dis-
tribution near the trailing edge. The overall reduction
in the inverse design cost function was approximately
two orders of magnitude.

The use of reduced order models introduces errors
into the calculation of the gradients used in the in-
verse design. Despite the errors that will inevitably
exist, as long as sensitivities and gradients are gener-
ally correct, a significant advantage has been obtained
in inexpensively obtaining their values. However, the
more accurate we can compute gradients while remain-
ing within the context of reduced order models, the
better the final solution will reflect the true solution.
When using finite differencing, there is a compromise
between taking a small enough step to obtain more
accurate gradients and taking a large enough step to
be captured by the model. Therefore, a partial or
fully analytical derivative based on the models pre-
sented here, or by supplementing the function models
with models of the derivatives with respect to design
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parameters as computed from adjoint methodologies,
could significantly increase the usability of these types
of reduced order models for design.

Although this problem was setup so that the ex-
act solution of the inverse design problem could be
respresented exactly by the modes used, a true design
process would not have the benefit of such a priori
knowledge of the outcome. However, a coupled opti-
mizer could be used to refine the POD based model
by adding additional snapshots, which would come
from flow solutions that might be computed during
the optimization itself, to refine the model as the de-
sign evolved. In this case, arbitrary initial conditions
and target pressure distributions could be treated.

Conclusions

The theory of POD based models and their appli-
cation to projecting arbitrary airfoils from snapshots
of other similar airfoils was presented. The cost of
computation of a flow solution is reduced from that of
solving a set of partial differential equations to the so-
lution of a coupled set of non-linear equations for the
steady flows in this work. The number of unknowns
to be solved for was reduced by approximately three
orders of magnitude for a typical two-dimensional in-
viscid flow calculation. A simple solution method
based on a combination of quasi-Newton and steep-
est descents was used to compute approximate steady
solutions for arbitrary airfoil geometries.

An inverse design problem in which a target pressure
distribution is specified and the corresponding airfoil
shape is modified to produce that distribution was per-
formed using information only from a reduced order
model. Although this reduced order model based de-
sign did not attain the exact solution, it moved quite
close to the target solution in only a few design steps.
Although this method may require more function eval-
uations than the adjoint method, it potentially offers
advantages in robustness, handling of constraints, and
can be used for coupled sensitivity analysis of systems
where multiple disciplines interact.

Future work will address means to accelerate the
projection solution process, perhaps by the same
multigrid techniques used to speed convergence in
higher fidelity flow solutions. Also, the selection of
snapshots to form the best set of modes as possible
- in terms of the accuracy of solutions computed us-
ing them, as well as for possible re-use in other design
work - needs to be addressed. Further integration of
the design optimization routine with the POD method
will allow arbitrary design problems to be posed, with
no prior knowledge of the solution, and allow the POD
model to evolve during the design process.

Ultimately, this work will be extended to 3-D aero-
dynamic flows, both invsicid Euler flows and the full
Navier-Stokes equations. By then applying POD to
other disciplines, such as structures, mission perfor-

mance, and ultimately the entire system, a truly mul-
tidisciplinary design environment can exist with an
acceptable computational cost and at a higher level
of fidelity than is currently possible.
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