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Abstract

Steady potential flow about a thin wing, flying in air above a dynamic water surface, is
analysed in the asymptotic limit as the clearance-to-length ratio tends to zero. This leads
to a non-linear integral equation for the one-dimensional pressure distribution beneath
the wing, which is solved numerically. Results are compared with established "rigid-
ground" and "hydrostatic" theories. Short waves lead to complications, including non-
uniqueness, in some parameter ranges.

1. Introduction

Wings flying in close proximity to the ground, that is, in extreme ground effect,
have been studied by a number of authors, e.g. Tuck [5], [6], Strand, Royce and
Fujita [3], and Widnall and Barrows [11]. These authors have recognized that the
prevailing two-dimensional flow (steady or otherwise) becomes approximately
one-dimensional in the small gap between the wing and the (rigid) ground. A
common result is that the pressure in the gap varies as the negative inverse square
of the clearance. The constant of proportionality here is determined by applying
the Kutta, or smooth-detachment, condition at the trailing edge. Hence, if the
trailing edge is the closest point to the ground, positive lift results. In fact,
near-stagnation pressure is attainable in the gap, producing lift many times
greater than that experienced out of ground effect.

Recently, Tuck [8] has replaced the rigid ground plane by a free-surface of
water which deforms hydrostatically in response to the pressure in the gap. The
result is a cubic equation for the gap pressure, which is easily solved. Tuck
displays results at various values of the sole parameter, namely a Froude number
based on the trailing edge height. Features of the solution include increased lift
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328 I. H. Grundy [21

due to the static depression of the free-surface under the airfoil, and step
discontinuities (in general) in the pressure distribution and free-surface displace-
ment at the leading edge.

The effect of the hydrostatic assumption is to neglect the motion of the water
resulting from the disturbance. Some justification for this assumption follows
from Tuck [4]. Briefly, the air velocity is assumed large enough so that the
dynamic contribution to the pressure in the air is much greater than that in the
water. There is a delicate balance, however. The air/water density ratio must also
be small enough so that the disturbance to the water motion is negligible.

In this paper we take the view that the disturbance to the water motion,
although small, is not negligible. That is, we consider a true hydrodynamic model
for the free-surface. We proceed on the assumption that the slope of the
free-surface is small everywhere (except perhaps at the leading edge, where in
general, we expect a pressure jump). We are thus able to linearize the free-surface
boundary condition.

The free-surface displacement caused by a pressure distribution acting on a
uniform stream is well known in connection with linearized planing-surface
theory, and can be written as an integral of the pressure and a known kernel. See
Lamb [2], Wehausen and Laitone [10], and Tuck [7]. It is a simple matter then, to
combine the aerodynamic "channel-flow" and hydrodynamic " free-surface" con-
tributions to form a non-linear integral equation for the gap pressure. This
integral equation is not only parameterized by the Froude number based on
height, but also by a second Froude number, based on the airfoil length, which we
denote by FL.

We present a successful numerical scheme for the solution of this integral
equation, and display results for some simple airfoil shapes at various values of
the two Froude numbers. At moderate to high values of FL, that is, in the regime
in which we expect practical vehicles to operate, it is found that the pressure
distributions and lift coefficients approach those obtained over rigid ground.

We ask, "In what limit, if any, do the results of our hydrodynamic theory
approach those of the hydrostatic theory?". The obvious limit is that as FL tends
to zero, indicating a weakening of hydrodynamic effects. However, things are
complicated by the presence of short waves in the hydrodynamic model as FL

decreases. We can divide the various airfoil shapes into two categories, namely,
those whose pressure distribution in the hydrostatic theory is continuous, particu-
larly at the leading edge, and those whose pressure distribution is not. Those in
the first category produce short waves in the hydrodynamic theory, whose
amplitude also diminishes as FL tends to zero. Those in the second category
produce short waves which persist, as a direct result of the pressure jump, in the
low-FL limit. Thus the hydrostatic and hydrodynamic theories do not agree in any
limit for a wide range of airfoil shapes!
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131 Airfoils moving near a dynamic water surface 329

Or do they? One might argue that discontinuities in the pressure distribution
are not physically acceptable, and that the gap solution requires some matching to
a local leading edge expansion as, say, in Tuck and Bentwich [9]. Such smoothing
would then be critical, as we have seen above, to the formation of waves in the
\ov/-FL limit. At the same time, however, this smoothing would be effective in a
region of ever-decreasing size, tending to zero with FL. It might also be argued
that, as a result of the short waves, the linearization of the free-boundary
condition must fail in the low-FL limit. Indeed, some evidence for this is apparent
in the loss of numerical accuracy and the presence of multiple solutions (indicat-
ing unstable solutions?), in this limit.

In any case, it is clear that the \aw-FL limit requires more attention than the
scope of the present paper allows.

2. Problem formulation

We assume steady, two-dimensional, irrotational flow of an incompressible
fluid (e.g. air at low Mach number) of density pA, over a free surface of another
incompressible fluid (e.g. water) of density p w, relative to a thin airfoil of length
L, fixed between x* = 0 and x* = L. (See Figure 1.)

We let the lower surface of the airfoil be given by y* = h*(x*), the upper
surface by y* = h + *(x*), and the air-water interface by y* = T/*(X*). The airfoil
is always close to the plane y* = 0, (i.e. to the undisturbed free surface height at
infinity) and the disturbance to the uniform stream is comparable to a measure of

exterior

AIR

WATER

exterior

Figure 1. Sketch of flow geometry.
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h*(x*), say h0, the trailing edge height. That is,

V*,h*,h + * = O(h0). (2.1)

We assume h0 <s: L, thus introducing a small parameter

6 = ho/L. (2.2)

Our aim is to seek asymptotic expansions, as e -» 0, of <j>*(x*, y*), and
$*(x*, y*), the unsealed velocity potentials in the air and water respectively.

In each of the air and water regions we must solve Laplace's equation for the
velocity potential with appropriate boundary conditions. In the air we must solve

^ ^ 0, (2.3)
dx*2 dy*2

subject to the kinematic condition, that no fluid crosses the boundaries, TJ*, h*
and h + *. That is,

WMLZJH on , • - * . ( , . ) , (2.4)

on y* = h *(**) (2.5)

dy* dx* dx

9</>* 9<J>* dh +

! !

*

dy* dx* dx

and

^ = ̂ 1 M on ,* = ,*(,*). (2.6)
dy* 9x* 3x*

The flow must also approach a uniform stream at infinity, i.e.

<$>* -» Ux* asx*2 + y * 2 -• oo. (2.7)

In the water we must similarly solve

^ + ^ = 0, (2.8)
dx*2 dy*2

subject to

= — on y* = -q*(x*) (2.9)

9^* 9x* 9x*

and

4>* ^ Ux* asx*2 + ^*2 -^ oo. (2.10)
To determine the unknown shape of the free surface y* = TJ*(X*), one further

boundary condition, expressing continuity of pressure across the air-water inter-
face, is required. If we let pA(x*, y*) and pw(x*, y*) be the air and water
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(51 Airfoils moving near a dynamic water surface 331

pressures respectively, this equation is simply

where pA and p w are calculated from Bernoulli's equation for steady, incom-
pressible, irrotational flow.

Also associated with the flow around the airfoil, is a trailing vortex sheet or
wake, emanating from the trailing edge of the airfoil. We denote this wake by

y*=h*w{x*), x*>L. (2.12)

The kinematic condition

= (.2.13;

dy* dx* ox*

holds on the wake, as it does on the body. We can, if we wish, determine h * from

continuity of pressure across the wake, in much the same way as we determine 17*,

i.e.

For our purposes, however, it is sufficient to note that if we let x* -* L+, (2.14)
defines the Kutta condition at the trailing edge.

3. Asymptotic solution

We divide the flow region into five subregions as e -» 0. These, as shown in
Figure 1, are

(a) the exterior E: x* = O(L), y* = O(L)

(b) the gap G: x* = O(L), y* = O(h0), 0 < x* < L,

(c) the wake W: x* = O(L), y* = O(h0), x* > L,

(d) the bow B: x* = O(h0), y* = O(h0),

(e) the stern S: x* - L = O(h0), y* = O(h0).

It is clear from a formal asymptotic analysis of the exterior and wake, that the
flow there is a small perturbation of the incident uniform stream, i.e.

<t>* = Ux* + O(eL)

and

$* = Ux* + O(eL). (3.1)
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Looking back to the previous section, and in particular to equation (2.14), this
means that the flow must approach free stream conditions at the exit to the gap.

Within the gap, however, the flow is not a small perturbation of the uniform
stream, and this flow is of primary importance in estimating forces etc. on the
body. To obtain the correct equations to be satisfied in this region, we define the
following scaled independent variables

X = x*/L, Y = y*/h0, (3.2)

and dependent variables

4>(X,Y) = <j>*(x*,y*)/(UL), Q(X,Y) = <D*(x*, y*)/(UL),

" 0 " 0 " 0

We assume that the air-water density ratio, pA/pw, is small, specifically O{e), and
we define the corresponding scaled density ratio p by

pe = PA/PW, (3-4)

where p is an 0(1) quantity. It is convenient to define two Froude numbers,
namely

FL=(U2/(gL))l/2, (3.5)

which is the usual Froude number based on length, and a specially scaled Froude
number, namely

Fh = (U2pA/{pwgh0)) = /p~FL, (3-6)

which is based on the trailing edge height, and which appears in Tuck [8]. We
assume that both FL and FH are 0(1) quantities.

We expand the unknowns <j>, $ and TJ in powers of the small parameter e; thus

+ • • • , (3.7)

) + • • • , (3.8)

and

r , ( X ) = T J o ( * ) + « » , ( * ) + e 2 r , 2 ( X ) + •••. (3.9)

We then rewrite (2.3) to (2.12) in terms of the scaled variables.
Laplace's equation, in the air, becomes

" = 0, (3.10)
dx2 dY-

subject to
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[ 71 Airfoils moving near a dynamic water surface 333

and

ff-'HII -r-Hx). (3.12)
Conditions (2.5), (2.7) and (2.13) do not apply directly to the gap but can be
recovered by matching with regions (a), (c), (d) and (e) at a later stage if
necessary.

We now substitute our asymptotic expansions for <$> and TJ into (3.10) to (3.12).
Equations (3.10) and (3.11) are satisfied if

(3-13)

(3-14)

and

< t > 2 ( X , Y ) = < j > 2 ( X , 0 ) + Y ^ { v Q ( X ) j x } \ J ^
(3.15)

Equation (3.12) is then satisfied if

(*(*) - T,0(*)) J ^ o ( * ) = constant (3.16)

holds throughout the gap region, that is, if we have classical one-dimensional, or
channel, flow.

Similarly, Laplace's equation in the water becomes

0, (3.17)
dx2 ay2

subject to

Here, we note that in (3.11) and (3.18) we have made our linearized-free-surface
assumption. That is, the slope of Y = i) is assumed to be a quantity of O(e)
magnitude.

Substitution of (3.8) and (3.9) into (3.17) and (3.18) leads to

(3.19)

(3-20)

and

, Y ) = * 2 ( j r , o ) + y ^ ( i o ( * ) - b * o ( ) \ ^ 2

(3.21)
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This near-gap flow in the water can be matched immediately with the exterior
flow at a great depth.

To accomplish this we define a scaled outer variable

y = y*/L. (3.22)

We also need to define a scaled velocity potential for the exterior water region,
namely ¥ ( X, y). It is clear that ^ will have the asymptotic form

* ( * , y) = X + e%(X, y) + e2%(X, y) + ••• (3.23)

where ^(X, y) -» 0 as X2 + y2 -» oo, except that, in accordance with the usual
radiation condition, there may be a trailing sinusoidal wave on y = 0 as X -*
+ oo. Now ^ , and hence <ifl, satisfies the full Laplace equation, there being no
order e2 imbalance between the X and y derivative terms.

We match the "near-gap" and "exterior" regions by writing the inner expan-
sion in terms of the outer variables, and equating coefficients of e, obtaining

*„(*,()-) = * = * „ ( * ) , (3-24)

%(X,O-) = <t>1(X), (3.25)

and

^{X,O-)-±vo(X). (3.26)

As we shall see later, it is profitable to concentrate on a solution for ¥ instead of

We turn now to the pressure continuity condition on the free surface. Using
Bernoulli's equation, pA can be expressed in terms of <f>*- In unsealed form,

3*<

Similarly, p w is expressible in terms of 3> *, namely

„ - L „ * _ ! _ „ / v , » y i „ _i_ / ? 2 / • ! ^-7^

P/( + PASV + 7P-4 T T + 7 7 ^ / ' o + T P ^ • (3-27)

(3.28)
2Plv

where />0 is the ambient or atmospheric pressure at infinity.
Using (3.27) and (3.28) we equate pA and pw and write the result in terms of

non-dimensional variables, to obtain

(3.29)
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| 9 | Airfoils moving near a dynamic water surface 335

We now substitute our asymptotic expansions for (/>, 3> and 17 into (3.29) and
apply this boundary condition on 7 = TJO( X). Conditions up to and including
0(e 2 ) are satisfied already by

4 0 4 0 ( ) and $0=

The terms of O(e3) provide more interest, however, demanding that

be satisfied on Y = t\0{X).
We note that (3.30) without the last term on the right hand side, namely

is the boundary condition obtained in the hydrostatic theory of Tuck [8]. This
indicates that in certain circumstances, the hydrodynamic results may approach
those of the hydrostatic theory as FL -» 0.

Returning to (3.30), we are able to substitute (3.25) into this equation to obtain

^ (3.32)

where

P(X) = l-[-^<t>0(X)J. (3.33)

Differentiating once, and using (3.26), we obtain

\ (3.34)

The flow in the air is to leading order a uniform stream outside the gap, that is,
<J>0( X) = X, hence the right hand side of equation (3.34) is zero everywhere but in
the gap.

We now have a complete boundary value problem for tyu namely,

^ ^ 0 (3.35)
dX2 dy2

in the lower half plane, subject to

o < * < i , ( 3 .3 6 )

o, elsewhere,
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on y = 0, and

*!->() as * 2 + . y 2 - > oo, (3.37)

subject to the radiation condition as before.

4. Integral equation

The boundary value problem for tyr is well known from linearized planing-
surface theory, and can be solved easily for example by Fourier transform or
complex variable methods. (See Tuck [7], Lamb [2], Wehausen and Laitone [10].)

It follows from this purely hydrodynamic solution for 4^, that the free surface
displacement caused by the pressure distribution beneath the airfoil acting on the
water, is given by

Vo(X) = \FlfFif PU)K;[y(X- *)] d* (4.1)

where

y - \/Fl, (4.2)

and

/ ( « ) = C/(|w|)sinw - 5/(|«|)coswsgn« (4.4)

is the auxiliary function for the sine and cosine integrals, Abramowitz and Stegun
[1]. In contrast to the hydrostatic theory, r\0{X), as given by (4.1), is continuous,
even for step-function discontinuities in P( X).

Another expression linking the free surface displacement to the gap pressure
distribution is the "one-dimensional continuity" equation, (3.16), which follows
from aerodynamic considerations only. We rearrange (3.16), using (3.33), to
obtain

Vo(X) = h(X) - [1 - i»0(l)W(l - HX)) • (4-5)

The constant, 1 - TJO(1), is chosen so as to enforce the Kutta condition, P(l) = 0,
at the trailing edge.

Combining (4.1) and (4.5) by the elimination of TJO(^) gives the following
non-linear integral equation for P(X),

h(X) = [1 - r,0(l)]//(l - P(X)) + \F?/

(4.6)
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The integral on the right-hand side of (4.6) allows the formation of waves of
wavelength 2mF£. Any such waves become shorter and shorter as the Froude
number, FL, tends to zero; the question of whether or not their amplitude also
tends to zero in this limit is considered later. Note that the hydrostatic theory of
Tuck [8] has no such waves.

If we let FL tend to infinity, i.e. y -» 0, with Fh fixed, we can replace KQ(U) in
(4.6) by its leading order approximation, that is,

* o ( « ) ~ - — log | w | a s M - » 0 . (4.7)
77

It follows that TJ0 ~ O(ylogy) as y -» 0. That is, in this limit, the integral term
in (4.6) tends to zero and the pressure P(X) approaches that for a rigid ground
plane.

5. Numerical method

We divide the region under the body [0,1] into N subintervals

/ ^ ( S , - ! - 5 / ) ' j=l,2,-..,N, (5.1)

where So = 0 and SN = 1. In practice, a uniform grid is satisfactory. We let the
midpoint of Iy be

x
1 = -L-^l—-, ; = I , 2 , . . . , J V . (5.2)

We then approximate the unknown pressure distribution P(X) by assuming it to
be a step function, i.e.

P(X) = P(Xj) = PJ, Xel,, j = l,2,...,N. (5.3)

Similarly, we assume the known underbody shape h(X) acts through the mid-
points of Ij, i.e.

h{XJ) = hJ, Xeljt j=l,2,..-,N. (5.4)

We can then discretize (4.6) accordingly, to obtain

N

L A.JPJ, i = l , 2 , . . . , JV , (5.5)
7 = 1

where -qQ = TJO(1) and

AU = \Ft[K0\y{X, - S^)] - K0[y(X, - S,)]], V /, j . (5.6)
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We now solve the set of non-linear algebraic equations (5.5), using Newton
iterations. If TJ° is an initial guess for TJ0, and P° is an initial guess for /*,, we
obtain

i = Mo + c,P, + £ A,JPJ,

where

-1/2

and

(5.7)

(5.8)

(5.9)

(5.10)

Notice that we have N equations in N + 1 unknowns, TJ0, Plt P2,--, P^-
in t roduce our last equation, the Kutta condition, by assuming

P(X)~A(l - X)l/2 asX-*l, (5.11)

where A is a constant. This we apply at the points XN_l and XN to obtain

-XPN^ + PN = 0, (5.12)

where

\ = ( 1 - ^ ) 1 / 2 ( 1 - ^ _ 1 ) - 1 / 2 . (5.13)

In matrix form we now have

CP = D (5.14)

at each iteration, where

C =

Au + Cl

A2l

Am

0

An

A22 + c2

A

0

^ l A ' - l

^ 2 ^ - 1

•^NN-1

-X

A

A

ANN

2N

P = D =
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We now solve the linear system (5.14), using a standard matrix inversion
procedure, and iterate until a converged solution is obtained. Care must be taken
to ensure that the initial guesses P° and T)Q are sufficiently good. Poor guesses
can, after several iterations, produce values of P, greater than unity, for which
equations (5.8) to (5.10) fail to be meaningful. In particular, this problem occurs
at low values of the Froude number FL, where the character of the solution
changes rapidly with small changes in FL. By decreasing FL in small steps, and
using the converged solution at the previous FL value as an initial guess for the
solution at the next value, we can often avoid such problems.

Apart from these initial-guess problems, the matrix inversion is usually
straightforward, and convergence occurs quickly. Four or five iterations are
usually sufficient. Good results (accurate to three decimal places) are obtainable
with N = 50, except in the short wave (FL < 0.2) regime, where accuracy
gradually decreases with FL.

6. Numerical results

(a) Low Froude numbers
As mentioned previously, we are interested in the question of whether the

hydrodynamic results might agree with the hydrostatic theory in some limit.
Equation (3.30) suggests this may be possible by letting FL appoach zero, keeping
Fh fixed.

Our numerical evidence suggests, however, that the hydrostatic theory is
approached in the low-FL limit only for a certain class of airfoil, namely those for
which the hydrostatic theory predicts P(0) = 0, i.e. no pressure jump at the
leading edge. This type of airfoil necessarily has leading and trailing edge heights
equal.

On the other hand, the hydrostatic results do not appear to be recoverable for
those bodies having a pressure jump at the leading edge. A jump such as this
cannot be supported in the hydrodynamic theory without the formation of waves
that persist as FL tends to zero. The simplest example of an airfoil in this category
is the flat-plate at positive angle of attack.

We ran the program to solve (4.6) using as input

h(X) = 1 +a - aX (6.1)

for various values of FL and a, at a typical value of Fh, namely Fh = \/0.5 . An
output quantity of interest is the leading edge pressure P(0). Figure 2 shows the
behaviour of P(0) for the flat-plate, at various a, for low values of FL. The
hydrostatic and rigid-ground limits are shown, for each a, as crosses on the left
and right-hand sides respectively. Taking a typical example, namely a = 0.2, we
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P(0)

0.2 -

0.6

Figure 2. Leading edge pressure as a function of FL, at Fh = \/oJ, for the flat-plate at various
values of the angle of attack a.

observe that P(0) settles down to oscillate in the range 0.2 to 0.45 and shows no
tendency either to approach zero, or to approach the hydrostatic value P{0) = 0.41.
Figure 3 shows the behaviour of PCX) for several values of FL, at a = 0.2.

We observe that the finite amplitude of the generated waves, as their wave-
length shortens, prevents any approach to the hydrostatic limit.

Another striking feature of our output is that in some intervals of (low) FL, the
value of P(0) is not unique. That is, the interaction between the pressure
distribution and the shortening free-surface waves allows several different solu-
tions for P(X) to exist at a particular FL. For example, as shown in Figure 4, for
a = 0.2 and FL = 0.25, three distinct solutions exist, none of which appear to be
unreasonable. This multiple solution phenomenon may suggest the onset of
non-linear instability in the low-Ft domain, and it may indeed be that no stable
solutions are possible below a certain FL value.

In contrast to the flat-plate case, we are able to recover the hydrostatic results
for bodies such as the fore-and-aft symmetric parabolic plate

h{X)= 1 +4aX(l - X). (6.2)
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P C X )

0.6

0.4

0.2

n

0.2

Hydrostatic

i i i

A = 0.3

\

A

i

= 0.35

\

\

\ ' ^

i i i i
0.2 0.4 0.6

X
0.8 1.0

Figure 3. Pressure distribution for the Oat-plate, at a = 0.2 and Fh = v/63, for various low values
of F,.

Figure 5 shows P(0) in the low FL domain, for a = 0.2 and Fh = 0.9. It should be
noted here that the dashed portion of the curve is speculative, with justification
following from similar curves, not shown, at different values of Fh. As we might
expect from the above, the approach to this limit is complicated by multiplicity of
solutions below a certain value of FL, namely 0.33. The general trend, however,
seems to be that P(0) tends to zero as FL tends to zero, with any waves generated
diminishing in amplitude as well as wavelength. Figure 6 shows some low-7^
parabolic-plate pressure distributions for which these waves appear to be disap-
pearing.

(b) Higher values of FL

Figure 7 shows the lift coefficient CL, defined by

CL = f P{X)dX, (6.3)

for a range of values of FL, for the flat-plate at Fh = y/oJ and a = 0.2. Over this
range, the lift coefficient varies from over twice that predicted by the hydrostatic
theory to values, in some ranges, less than that predicted by the rigid-ground
theory.
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P(X)

I I I I I i I I I
-0.2 -

Figure 4. Three solutions for the flat-plate pressure distribution at a = 0.2, Fh = v^0.5 and
F, = 0.25.
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Figure 5. Leading edge pressure as a function of FL, for the parabolic-plate at a = 0.2 and
Fh = 0.9.
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Figure 6. Pressure distribution for the parabolic-plate, at a = 0.2 and Fh = 0 9, for vanous low
values of FL.
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Figure 7 Lift coefficient as a function of F, , for the flat-plate at a = 0 2 and Fh = y/o.5
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Figure 8. Pressure distribution for the flat-plate, at a = 0.2 and Fh = v/0~T, for various high values
of FL.
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Figure 9. Free-surface displacement for the flat-plate at a = 0.2 and Fh = \/0.5 , for F, = 0.3 and
1.0.
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We expect that practical vehicles would tend to operate in the moderate to high
FL regime, (FL > 0.5). For the flat-plate at these moderate to high FL values, we
observe that the lift coefficients obtained are below those predicted by the
rigid-ground theory. Thus the effect of the water is to decrease lift. However, for
sufficiently fast vehicles, e.g. FL > 2, our computed results (Figure 8) show that
lift is within 3% of that over rigid ground, and the pressure of the water can
effectively be ignored.

Finally, Figure 9 shows flat-plate free-surface shapes for FL = 0.3 and FL = 1.0,
compared to the hydrostatic result, at a = 0.2 and Fh = \/0.5 . Typically the
free-surface is always very close to the plane Y = 0 for high FL, as is demon-
strated by the FL = 1 curve. Near the low FL end of the spectrum, as we have
noted previously and observe here, waves of relatively large amplitude prevent
approach to the hydrostatic result.
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