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Airport Noise Simulation Using Neural Networks

Yingjie Yang∗, Chris Hinde∗∗ and David Gillingwater∗∗∗

Abstract— Aircraft noise is influenced by many complex
factors and it is difficult to devise an accurate mathematical
model to simulate it with respect to operations at an airport.
This paper presents an investigation in simulating airport
noise using artificial neural networks. The results show that
it is possible to establish a simple neural network model with
monitored data for a specific airport and specific aircraft under
local conditions.

I. INTRODUCTION

In airport operations, identifying and monitoring noise

disturbance caused by a specific aircraft movement

at a specific airport on a specific local community is

very important when considering financial penalties,

compensation claims and social costs [1], [2]. Aircraft

noise around an airport is influenced by many factors, such

as its geographical location and the location of aircraft

in 3-dimensional space, the power thrust of an aircraft’s

engines at any given moment, the number of engines on an

aircraft, its weight and speed, as well as wind speed and

direction, ambient air temperature and geographical features

around the point at which aircraft noise is being measured.

This list is not complete, and there are many more factors

that affect real airports. These differ also from airport to

airport, hence the relationships are very complex.

The standard methodologies available follow one of two

classes: (i) the ‘laboratory model’ - based on laboratory-type

experiments and standardized in-situ tests undertaken in

given conditions; or (ii) the ‘replication/simulation model’

- based primarily on in-situ test data. However, in practice

it is not feasible to monitor each impacted locality around

an airport and the interactions between the key factors are

too complicated to enable reliable mathematical models to

be developed. As a result, laboratory models are in fact

the dominant models in use. For instance, aircraft noise

calculations around airports are dominated by calibrated

parametric models based on standard condition tests and

aircraft engine manufacturers’ data, such as the US FAA

integrated noise model, the INM [3] . These standard models

are very useful in simulation analysis at a general level,

but they suffer from difficulties in incorporating specific

*Y. Yang is with the Centre for Computational Intelligence, Faculty
of Computing Sciences and Engineering, De Montfort University, The
Gateway, Leicester, LE1 9BH, UK yyang@dmu.ac.uk

**C. Hinde is with the Department of Computer Sciences,
Loughborough University, Loughborough, LE11 3TU, UK
C.J.Hinde@lboro.ac.uk

***D. Gillingwater is with the Transport Studies Group, Department of
Civil and Building Engineering, Loughborough University, Loughborough,
LE11 3TU, UK D.Gillingwater@lboro.ac.uk

local conditions; thus a location-specific model established

with data from that site is likely to yield more realistic

results although its generalizability is likely to be poor when

compared with the laboratory model.

A neural network excels at learning from data and does

not require the prior specification of a mathematical model.

This feature makes it an ideal candidate in environmental

analysis where a large amount of monitoring data exists

but where the interactive mechanisms are too complex or

little understood to specify an accurate mathematical model.

At those airports where awareness of the significance of

environmental impacts like aircraft noise is increasing, more

and more environmental data are monitored but collected

only from a very limited number of geographical locations.

These data can provide a basis for the application of neural

networks. However, there is no real world evidence so far in

the precision of neural networks in simulating noise levels

at airports, hence it is necessary to have real world case

studies to verify it. This paper investigates the applicability

of neural networks in simulating noise levels at airports,

based on a set of data from Manchester airport in the UK.

II. STRUCTURE OF NEURAL NETWORKS AND

SIGNIFICANCE ANALYSIS

One of the difficulties in establishing a neural network

(NN) is the determination of its structure. It is a common

understanding that only the simplest network structure can

give the best solution. Therefore, various network pruning

technologies have been developed [4]–[6]. However, one

of the key features in neural networks is that they perform

complicated analyses or mapping by means of a combination

of huge amounts of simple neurons [7]. The real biological

world does not necessarily rely on strict mathematics or

pruning technology to run their activities, but they do display

such an array of perfect functions that scientific method

may never be able to explain adequately. The ‘compound

eye’ of an insect [8] is just one of these amazing facts: in

addition to its ability to accommodate overlapping inputs,

it involves many other different mechanisms which makes

it impossible to simulate with only a simple structure. This

fact does not exclude the notion that simple overlapped

inputs may contribute to its powerful functionality.

Based on this idea, a simple approach to making use

of overlapped or redundant inputs to improve the training

results of NN was put forward in [9], see Figure 1. This

method employs multiple input nodes for the same input
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parameter in the network structure and simulates their

influences in the compound eye of insects [10] by a random

initialisation of their connecting weights. Although this

network is equivalent to a conventional network convergence

is faster and more accurate [9].

Fig. 1. Redundant input NN and ordinary NN

Having established a neural network, it is necessary to

evaluate its performance. In addition to the usual methods of

verifying with data not in the training sets, we put forward

an approaches based on GRSE and GPRSE in [11].

Definition 1 (Global Relative Strength of Effect (GRSE)):

For a given sample set S = {s1, s2, s3, . . . , sj , . . . , sr},

where, sj = {X, Y }, X = {x1, x2, x3, . . . , xp},

Y = {y1, y2, y3, . . . , yq}, if there is a neural network

trained by BP algorithm with this set of samples, the

RSEki exists as

GRSEki = C
∑

jn

∑

jn−1

. . .
∑

j1

WjnkWjn−1jn

Wjn−2jn−1
Wjn−3jn−2

. . .Wij1

where C is a normalized constant which regulates the

maximum absolute value of GRSEki as 1.

Definition 2 (Global Potential RSE (GPRSE)): : For a
neural network trained using the BP algorithm and for a
given reference data set S = {s1, s2, s3, . . . , sj , . . . , sr},
where, sj = {X, Y }, X = {x1, x2, x3, . . . , xp}, Y =

{y1, y2, y3, . . . , yq}:

GP RSEki =

jn jn−1
. . . j1

|Wjnk||Wjn−1jn
| . . . |Wij1

|

i jn jn−1
. . . j1
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| . . . |Wij1
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where, W is a connected weight and e is the input value in

its corresponding node.

According to the value of GRSEki, we can assess how

much influence the input unit has on the output unit. The

more the weight is revised due to the input unit, the larger

the variance of the weights becomes linked to this input

unit. Because the original values of the weights are similar,

the larger are the absolute values of the weights, the more

the effect of the input unit will have on the output. So,

the GRSEki shows the global dominance of input on output.

GPRSE is a measure of the absolute value of every

weight and node value. The absolute influence of every

connection and node is thus accumulated. Hence, no matter

which factors are dominant, the contribution of every factor

will be incorporated within the calculation of GPRSE.

Compared with GRSE, the removal of the different signs

makes the GPRSE less sensitive to a small change of input,

thus it is a measure of the potential within a wider scope of

neighbourhood rather than a detailed trend at a specific point.

III. NOISE EVALUATION USING NEURAL NETWORKS

Noise disturbance at airports is currently the most

significant environmental problem, and most airports are

adopting noise models for their operational planning. As

aforementioned, most existing noise models are based on

some standard tuned data sets. For example, INM adopts

what are called NPD data sets as its foundation [12].

Normal NPD data consist of two or more noise curves [3].

A noise curve reflects the relationship between distance (D)

and noise levels (N) under specific engine power (P) (thrust

in pounds) and operational mode (departure or approach)

under standard conditions. However, these curves give only

measurements at the following distances: 200, 400, 630,

1000, 2000, 4000, 10000, 16000 and 25000 feet. Any noise

level between these measurements or between those given

thrusts has to be evaluated using mathematical models,

such as linear interpolation, logarithmic interpolation and

extrapolation. However, these mathematical models are

established against a standard measuring environment at a

specific site for the test. The geographical conditions and

environmental parameters at other airports may not be the

same as at the testing site, so models established in INM

may not give results as near to the real world measurement

as expected. To adjust those parameters in INM to suit the

local geographic and environmental condition at an airport is

complicated and difficult, and there are many mathematical

models involved into these processes to consider the

relationship between noise level and temperature, wind

speed and direction, and other acoustics factors. Due to the

complexity of the natural environment at an airport, these

models cannot fit every airport and are bound to produce

further errors and uncertainty. Therefore, a simple way of

establishing noise simulation at a local airport would be

a great help in airport noise simulation and operational

planning. Here, we adopt neural networks as the universal

models for adapting standard NPD curves to local conditions.
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A. Available data

Because of the significant impact of aircraft noise on

airport development, most large airports in the world

already monitor the noise levels in their vicinity. With the

incorporation of Manchester airport in our EPSRC-funded

research into a decision support system for sustainable

airport development, we collected a large set of monitored

noise records.

These data were monitored during the period 1998–2001,

and the largest volume were recorded for one aircraft type,

the Boeing B757: 10408 records from Kell House Farm.

The recorded data attributes include aircraft type, operation

mode, direct distance to the monitoring station, station

name, maximum noise level recorded and its recording time.

Considering the volume of the data, we show it by its noise

distribution against distance under departure or approach

operation in Figure 2 and 3.

Fig. 2. Noise distribution against distance for departing flights recorded at
Kell House Farm station

Fig. 3. Noise distribution against distance for approaching flights recorded
at Kell House Farm station

The monitored data in Figure 2 and 3 are scattered

around the same distances. Obviously, a general model

suitable to each airport is very difficult to establish for

such data set without knowing more information about

the flight speed, thrust, weight, trajectory, wind speed and

direction, terrain of the airport etc. Among these factors,

the weather conditions and geographical features of the

vicinity of an airport would not be as different as those

between two airports. The monitored data are measured

under local weather and geographical conditions, hence

their influence on the noise levels around the airport has

already been embedded into the measurements. A model

established from the monitored data is suitable only for the

airport where data are collected. Therefore, weather and

geographical conditions are not as significant as distance

and thrust for a local noise model, in which case, NPD

curves are accurate as long as the weather and geographical

conditions at a local airport match those conditions of

the standard test site. A critical disagreement between

INM model results and in-situ monitoring data comes

from the difference between their treatment of weather and

geographical conditions. Therefore, a local NPD curve could

be established considering the same relationships as INM:

the relationships between noise levels, operation modes,

distances and thrust. Other factors are not significant for the

observations in the vicinity of the same airport. The data in

Figure 2 and 3 have attributes for noise levels, distances and

operation mode. However, thrust is missing in the collected

data set. In actual fact, for the same distance at the airport

and observation location, there is more than one point in

both figures. This is mainly caused by their different thrust

measurements at that distance. Because of the automated

landing control deployed by an aircraft on final approach,

the thrust is often changed during the approach operation

and causes larger fluctuation of the points in Figure 3

than 2. It demonstrates that thrust is a significant factor

determining the monitored noise levels. Therefore, it is

essential to obtain thrust data for those monitored points

in Figure 2 and 3. However, thrust is not recorded in the

monitored data, and it is very difficult to obtain it due to

the large number of possible flight trajectories.

B. Reverse map thrust using neural networks and NPD data

We made an attempt to establish neural networks without

thrust data, but the result was not satisfactory. The result

was especially poor when a network trained using data from

one monitoring station was applied to the other station.

They were not better than an average estimation in most

cases. It proves again that thrust data is essential in the

noise evaluation at airports. Now that NPD curves provide

the relationships among noise levels, operation modes,

distances and thrust, it is possible to establish a model

to create a reverse map to find thrust from known noise

levels as well. Neural networks provide ideal tools in doing

this reverse mapping from the available standard NPD

curves. There will be differences between the actual thrust

and those measured in flights. However, it is possible to
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establish mathematical models to adjust an actual thrust

into a measured thrust. Compared with the adjustment of

noise for every concerned location involving a huge variety

of factors, it is much easier to adjust a single thrust from a

single aircraft engine.

Based on the aforementioned idea, we need to establish the

reverse map from known noise levels to their corresponding

thrusts. Before establishing the reverse map, we need to

evaluate the capacity of neural networks in mapping the NPD

curves. We adopt the data from the standard NPD database

in INM here. The NPD databases in INM contain a set of

NPD data for 224 aircraft types. There are four kinds of NPD

noise data:

• LAE A-weighted sound exposure level;

• LASmx Maximum A-weighted sound level with slow-

scale exponential time weighting;

• LEPN Effective tone-corrected perceived noise level;

• LPNTSmx Maximum tone-corrected perceived noise

level with slow-scale exponential time weighting.

Here, to match our monitored data, we adopt only

the maximum A-weighted sound level with slow-scale

exponential time weighting LASmx. The aim of this

experiment is to simulate NPD curves using neural networks

so as to obtain those missing thrust values in our data set.

For this experiment, we require the same aircraft type as

the one with the maximum number of available monitored

data records. Here, the aircraft determined by our monitored

data is the Boeing B757. Therefore, we adopt NPD data for

this aircraft only.

NPD data for each aircraft are very limited and we have

to make full use of available data. Here, the “leave-out-one

cross validation” method is adopted in the training of neural

networks. We adopt a compound input of 10 sets and set the

hidden layer node number as 6. The inputs are operational

mode (OP MODE), maximum noise level (Noise Level) and

distance; the output is thrust. After 30000 iterations using

“leave-out-one cross validation”, the errors are reduced to

less than 2.0E-4. The cross validation results show that

the maximum difference is less than 14%, and over 88%

of rows have differences less than 5%. Table I gives the

number of records with errors lower than the given error in

the first column (%) and their corresponding accuracy. The

result is also demonstrated in Figure 4.

These results demonstrate that the trained neural network

is a valid method to derive thrust from measured noise

levels. From the trained neural network, we can obtain the

GRSE and GPRSE as shown in Table II.

Distance plays the dominant role in determining thrust,

and noise has an important role too. Aircraft operations do

not seem to be very significant for thrust. These conclusions

agree with our data set: a longer distance and lower

noise level indicates less thrust from aircraft engines. The

TABLE I

MAPPING RESULTS OF THE REVERSE NEURAL NETWORK FROM NPD

DATA

Error

(%)

Lower error

records

Accuracy (%)

0 60 0.00

1 46 23.33

2 32 46.67

3 20 66.67

4 11 81.67

5 6 90.00

6 5 91.67

7 4 93.33

8 4 93.33

9 3 95.00

10 3 95.00

15 0 100.00

Fig. 4. Mapping results of the revers mapping neural network from NPD
data

operational mode determines if thrust is stable or not, but

it does not determine its values. According to our model

in evaluating trained neural networks [11], the network

obtained here is acceptable.

Using the trained neural networks, we obtained the

missing thrusts for the monitored data. As suggested by

GRSE, distance is the dominant factor of the thrust values,

so we demonstrate their distribution against distance in

Figure 5 and 6.

Data in Figure 5 and 6 demonstrate very high

correspondence to data in Figure 2 and 3. The noise

level values in Figure 2 and 3 show some linear patterns,

and these result in the curve patterns in Figure 5 and 6. For

the same noise level, thrust values increase with distance.

For the same distance, thrust increases with noise values and

jumps from one curve to the curve above it. Obviously, it is

the same as that has been revealed by GRSE and GPRSE.

It thus demonstrates the efficiency of GRSE and GPRSE.
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TABLE II

GRSE AND GPRSE FOR A NEURAL NETWORK ESTABLISHED FROM

NPD DATA OF B757

Factor GRSE GPRSE

Operation mode -0.02 0.03

Noise level 0.23 0.20

Distance 1.0 0.78

Fig. 5. Thrust distribution against distance for departing flights over Kell
House Farm station

Fig. 6. Thrust distribution against distance for approaching flights over
Kell House Farm station

C. Noise level prediction using neural networks

Having obtained the thrust data for each record, we

establish a neural network using the measured data at Kell

House Farm station. Similar to the NPD network, we adopt

the same input parameters: distance between an aircraft and

the monitoring station, operational mode of the aircraft and

its thrust. The output is the maximum noise level at the

monitoring station. For the sake of speed, we use 10 sets of

inputs again in the compound structure. We again use 10

sets of inputs as compound inputs and 8 hidden layer nodes.

TABLE III

NOISE LEVEL TESTING RESULT FOR KELL HOUSE FARM STATION

Difference

(dBA)

Records with

higher difference

Records with

lower difference

(%)

0 4208 0

0.05 3251 37.53

0.1 1879 63.89

0.5 160 96.92

1 65 98.75

1.5 18 99.65

2 9 99.82

3 3 99.94

5 1 99.98

There are 10408 records for the B757 at Kell House Farm

station. We separate the data into two different groups: each

record with an odd index number is held as training data,

and each row with an even index number is kept as testing

data. In this way, we have 5204 rows in both groups. After

5000 iterations, the error is reduced to less than 1.0e-4. The

testing results are shown in Table III and Figure 7.

Fig. 7. Noise prediction against data from Kell House Farm station

In Table III and Figure 7, the “difference” refers to the

difference between the measured noise level and the output

noise level from the trained neural network. The “records

with lower difference (%)” represent the percentage of

records with a noise level lower than the corresponding

difference. It is obvious that the percentage of records with

a lower difference is very high for differences over 0.5

dBA. It is therefore a very accurate representation of noise

levels at an airport. With the use of thrust, it is possible to

obtain a very high accuracy in the prediction of noise levels

at an airport.

It would be interesting to know if the NPD model is

sufficiently good in doing this. To test the capacity of a
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TABLE IV

NOISE LEVEL TESTING RESULT FOR KELL HOUSE FARM STATION USING

NPD NETWORK

Difference

(dBA)

Records with

higher difference

Records with

lower difference

(%)

0 5204 0

0.05 5008 3.77

0.1 4794 7.88

0.5 3129 39.87

1 1379 73.50

1.5 638 87.74

2 301 94.22

3 93 98.21

5 16 99.69

neural network trained from NPD data, we established a

similar model using NPD data. The structure of the network

is exactly the same as the network for Kell House Farm

station. Using the “leave one out” cross validation method,

we established the NPD neural network for noise level.

Applying this NPD neural network, we obtained test results

for the test data at Kell House Farm station as shown in

Table IV and Figure 8.

Fig. 8. Noise prediction against data from Kell House Farm station using
NPD network

Comparing Figure 7 and 8, it is clear that the neural

network trained with NPD data could only provide a

reasonable prediction (70%) when the difference is 1 dBA

or above, and its prediction is very poor for 0.5 dBA (40%).

However, the neural network trained with data measured at

Kell House station could provide much better results for

both data sets.

The poor results from the model trained with NPD data

are caused by differences between the geographical and

weather conditions of the standard measuring environment

at the NPD test site and the conditions pertaining at

TABLE V

GRSE AND GPRSE OF THE TRAINED NEURAL NETWORKS USING NPD

DATA AND KELL HOUSE FARM DATA

Input NPD Kell House Farm

GRSE GPRSE GRSE GPRSE

Operation mode -0.014 0.049 0.012 0.085

Distance -1 0.772 -0.064 0.1

Thrust 0.171 0.179 1 0.815

Manchester airport. This complex relationship is very

difficult to tune with INM, but relatively straightforward

using neural networks. The data are measured at Manchester

airport, so its values have already reflected the geographical

and weather conditions there. Although the trained model

is not applicable to other airports, it achieves a better

performance at the local airport.

The GRSE and GPRSE values of the two models trained

with NPD data and Kell House Farm data are shown in

Table V.

The data in Table V show that the dominant factor in the

NPD model is distance, but that this changes to thrust in the

model trained with Kell House Farm data. Whereas NPD

data are obtained under conditions at a test site where the

aircraft is being flown to meet aircraft cerification standards,

the monitored data come from various operations of aircraft

when they take off or land at an airport under different and

more complex weather conditions. Therefore, the frequency

of the change of their thrust is much higher than under

standard testing conditions. This means that the actual

noise level is more frequently influenced by thrust rather

than distance in real operational conditions. Therefore, the

model using NPD data is bound to give larger errors when

compared to real operations. It therefore provides evidence

that airports could reduce noise levels by improved aircraft

operation under similar geographical conditions.

IV. CONCLUSIONS

Based on our experiments of noise prediction at airports

using neural networks trained with in-situ data, it is clear that

neural networks can provide a convenient tool in adjusting

the standard NPD curves to local conditions and hence a

network trained with in-situ data can provide better pre-

dictions than models based on standard NPD curves alone.

Limited by data availability, we derived thrust data through

a reverse mapping neural network simulating standard NPD

curves. Such a methodology can be used to modify a standard

NPD curve to reflect better the relationships between thrust

and noise levels, and it can increase the accuracy of NPD

predictions in reality. Similar relationships exist between

derived thrust and in-situ noise data. The relative difference

between the standard NPD prediction and our neural network

prediction is at least the same as shown in this research.
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However, the superiority of neural networks over the standard

NPD model at a local airport is obvious.
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