
AirSim: High-Fidelity Visual and Physical
Simulation for Autonomous Vehicles

Shital Shah1, Debadeepta Dey2, Chris Lovett3, Ashish Kapoor4

Abstract Developing and testing algorithms for autonomous vehicles in real world

is an expensive and time consuming process. Also, in order to utilize recent advances

in machine intelligence and deep learning we need to collect a large amount of

annotated training data in a variety of conditions and environments. We present

a new simulator built on Unreal Engine that offers physically and visually realistic

simulations for both of these goals. Our simulator includes a physics engine that can

operate at a high frequency for real-time hardware-in-the-loop (HITL) simulations

with support for popular protocols (e.g. MavLink). The simulator is designed from

the ground up to be extensible to accommodate new types of vehicles, hardware

platforms and software protocols. In addition, the modular design enables various

components to be easily usable independently in other projects. We demonstrate

the simulator by first implementing a quadrotor as an autonomous vehicle and then

experimentally comparing the software components with real-world flights.

1 Introduction

Recently, paradigms such as reinforcement learning [12], learning-by-demonstration

[2] and transfer learning [25] are proving a natural means to train various robotics

systems. One of the key challenges with these techniques is the high sample com-

plexity - the amount of training data needed to learn useful behaviors is often pro-

hibitively high. This issue is further exacerbated by the fact that autonomous vehi-

cles are often unsafe and expensive to operate during the training phase. In order to

seamlessly operate in the real world the robot needs to transfer the learning it does

in simulation. Currently, this is a non-trivial task as simulated perception, environ-

ments and actuators are often simplistic and lack the richness or diversity of the

real world. For example, for robots that aim to use computer vision in outdoor en-

1, 2, 3, 4, Microsoft Research, Redmond, WA, USA e-mail: shitals,dedey,clovett,

akapoor@microsoft.com

1

ar
X

iv
:1

70
5.

05
06

5v
2

 [
cs

.R
O

]
 1

8
Ju

l 2
01

7

shitals, dedey, clovett, akapoor@microsoft.com
shitals, dedey, clovett, akapoor@microsoft.com

2 Shah, Dey, Lovett, and Kapoor

Fig. 1 A snapshot from AirSim shows an aerial vehicle flying in an urban environment. The inset

shows depth, object segmentation and front camera streams generated in real time.

vironments, it may be important to model real-world complex objects such as trees,

roads, lakes, electric poles and houses along with rendering that includes finer de-

tails such as soft shadows, specular reflections, diffused inter-reflections and so on.

Similarly, it is important to develop more accurate models of system dynamics so

that simulated behavior closely mimics the real-world.

AirSim is an open-source platform [21] that aims to narrow the gap between

simulation and reality in order to aid development of autonomous vehicles. The

platform seeks to positively influence development and testing of data-driven ma-

chine intelligence techniques such as reinforcement learning and deep learning. It is

inspired by several previous simulators (see related work), and one of our key goals

is to build a community to push the state-of-the-art towards this goal.

2 Related Work

While an exhaustive review of currently used simulators is beyond the scope of this

paper, we mention a few notable recent works that are closest to our setting and has

deeply influenced this work.

Gazebo [13] has been one the most popular simulation platforms for the research

work. It has a modular design that allows to use different physics engines, sensor

models and create 3D worlds. Gazebo goes beyond monolithic rigid body vehicles

and can be used to simulate more general robots with links-and-joints architecture

such as complex manipulator arms or biped robots. While Gazebo is fairly feature

rich it has been difficult to create large scale complex visually rich environments

AirSim: High-Fidelity Visual and Physical Simulation for Autonomous Vehicles 3

that are closer to the real world and it has lagged behind various advancements in

rendering techniques made by platforms such as Unreal engine or Unity.

Other notable efforts includes Hector [17] that primarily focuses on tight integra-

tion with popular middleware ROS and Gazebo. It offers wind tunnel tuned flight

dynamics, sensor models that includes bias drift using Gaussian Markov process and

software-in-loop using Orocos toolchain. However, Hector lacks support for popu-

lar hardware platforms such as Pixhawk and protocols such as MavLink. Because

of its tight dependency on ROS and Gazebo, it’s limited by richness of simulated

environments as noted previously.

Similarly, RotorS [7] provides a modular framework to design Micro Aerial Ve-

hicles, and build algorithms for control and state estimation that can be tested in

simulator. It is possible to setup RotorS for HITL with Pixhawk. RotorS also uses

Gazebo as its platform, consequently limiting its perception related capabilities.

Finally, jMavSim [1] is easy to use simulator that was designed with a goal of

testing PX4 firmware and devices. It is therefore tightly coupled with PX4 simula-

tion APIs, uses albeit simpler sensor models and utilizes simple rendering engine

without any objects in the environment.

Apart from these, there have been many games like simulators and training ap-

plications, however, these are mostly commercial closed-source software with little

or no public information on models, accuracy of simulation or development APIs

for autonomous applications.

3 Architecture

Our simulator follows a modular design with an emphasis on extensibility. The

core components includes environment model, vehicle model, physics engine, sen-

sor models, rendering interface, public API layer and an interface layer for vehicle

firmware as depicted in Figure 2.

The typical setup for an autonomous aerial vehicle includes the flight controller

firmware such as PX4 [16], ROSFlight [10], Hackflight[15] etc. The flight controller

takes desired state and the sensor data as inputs, computes the estimate of current

state and outputs the actuator control signals to achieve the desired state. For exam-

ple, in case of quadrotors, user may specify desired pitch, roll and yaw angles as

desired state and the flight controller may use sensor data from accelerometer and

gyroscope to estimate the current angles and finally compute the motor signals to

achieve the desired angles.

During simulation, the simulator provides the sensor data from the simulated

world to the flight controller. The flight controller outputs the actuator signals which

is taken as input by the the vehicle model component of the simulator. The goal of

the vehicle model is to compute the forces and torques generated by the simulated

actuators. For example, in case of quadrotors, we compute the thrust and torques

produced by the propellers given the motor voltages. In addition, there may be forces

generated from drag, friction and gravity. These forces and torques are then taken

4 Shah, Dey, Lovett, and Kapoor

Fig. 2 The architecture of the system that depicts the core components and their interactions.

as inputs by the physics engine to compute the next kinematic state of bodies in the

simulated world. This kinematic state of bodies along with the environment models

for gravity, air density, air pressure, magnetic field and geographic location (GPS

coordinates) provides the ground truth for the simulated sensor models.

The desired state input to the flight controller can be set by human operator using

remote control or by a companion computer in the autonomous setting. The com-

panion computer may perform expensive higher level computations such as deter-

mining next desired waypoint, performing simultaneous localization and mapping

(SLAM), computing desired trajectory etc. The companion computer may have to

process large amount of data generated by the sensors such as vision cameras and

lidars which in turn requires that simulated environments have reasonable details.

This has been one of the challenging areas where we leverage recent advances in

rendering technologies implemented by platforms such as Unreal engine [11]. In

addition, we also utilize the underlying pipeline in the Unreal engine to detect col-

lisions. The companion computer interacts with the simulator via a set of APIs that

allows it to observe the sensor streams, vehicle state and send commands. These

APIs are designed such that it shields the companion computer from being aware

of whether its being run under simulation or in the real world. This is particularly

important so that one can develop and test algorithms in simulator and deploy to

real vehicle without having to make additional changes.

The AirSim code base is implemented as a plugin for the Unreal engine that can

be dropped in to any Unreal project. The Unreal engine platform offers an elaborate

marketplace with hundreds of pre-made detailed environments, many created using

photogrammetry techniques [18] to generate reasonably faithful reconstruction of

real-world scenes.

Next, we provide more details on the individual components of the simulator.

AirSim: High-Fidelity Visual and Physical Simulation for Autonomous Vehicles 5

Fig. 3 Vehicle model for the quadrotor. The four blue vertices experience the controls u1, ..u4,

which in turn results in the forces F1, ..,F4 and the torques τ1, ..,τ4.

3.1 Vehicle Model

AirSim provides an interface to define vehicle as a rigid body that may have arbitrary

number of actuators generating forces and torques. The vehicle model includes pa-

rameters such as mass, inertia, coefficients for linear and angular drag, coefficients

of friction and restitution which is used by the physics engine to compute rigid body

dynamics.

Formally, a vehicle is defined as a collection of K vertices placed at positions

{r1, ..,rk} and normals {n1, ..,nk}, each of which experience a unitless vehicle spe-

cific scaler control input {u1, ..,uk}. The forces and torques from these vertices are

assumed to be generated in the direction of their normals. However note that the

positions as well as normals are allowed to change during the simulation.

Figure 3 shows how a quadrotor can be depicted as a collection of four vertices.

The control input ui drives the rotational speed of the propellers located at the four

vertices. We compute the forces and torques produced by propellers using [4]:

Fi =CT ρω2
maxD4ui and τi =

1

2π
Cpowρω2

maxD5ui.

Here CT and Cpow are the thrust and the power coefficients respectively and are

based on the physical characteristics of the propeller, ρ is the air density, D is the

propeller’s diameter and ωmax is the max angular velocity in revolutions per minute.

By allowing the movements of these vertices during the flight it is possible to sim-

ulate the vehicles with capabilities such as Vertical Take-Off and Landing (VTOL)

and other recent quadrotors that change their configuration in flight.

The vehicle model abstract interface also provides a way to specify the cross

sectional area in body frame that in turn can be used by physics engine to compute

the linear and angular drag on the body.

6 Shah, Dey, Lovett, and Kapoor

3.2 Environment

The vehicle is exposed to various physical phenomena including gravity, air-density,

air pressure and magnetic field. While it is possible to produce computationally

expensive models of these phenomena that are very accurate, we focus our attention

to models that are accurate enough to allow a real-time operation with hardware-in-

the-loop. We describe these individual components of the environment below.

3.2.1 Gravity

While many models use a constant number to model the gravity, it varies in a com-

plex manner as demonstrated by models such as GRACE [23]. For most ground

based or low altitude vehicles these variations may not be important; however, it

is fairly inexpensive to incorporate a more accurate model. Formally, we approxi-

mate the gravitational acceleration g at height h by applying binomial theorem on

Newton’s law of gravity and neglecting the higher powers:

g = g0 ·
R2

e

(Re +h)2
≈ g0 ·

(

1−2
h

Re

)

.

Here Re is Earth’s radius and g0 is the gravitational constant measured at the surface.

3.2.2 Magnetic Field

Accurately modeling the magnetic field of a complex body such as Earth is a com-

putationally expensive task. The World Magnetic Model (WMM) model [6] by Na-

tional Oceanic and Atmospheric Administration (NOAA) is one of the best known

magnetic models of Earth. Unfortunately, the most recent model WMM2015 is

fairly complex and computationally expensive for real-time applications.

We implemented the tilted dipole model where we assume Earth as a perfect

dipole sphere [14, pp 27-30]. This ignores all but the first order terms to derive mag-

netic field estimate using the spherical geometry. This model allows us to simulate

variation of the magnetic field as we move in space as well as areas that are often

problematic such as polar regions. Given a geographic latitude θ , longitude φ and

altitude h (from surface of the earth), we first compute the magnetic co-latitude θm

using:

cosθm = cosθ cosθ 0 + sinθ sinθ 0 cos(φ −φ 0).

Where θ 0 and φ 0 denote the latitude and longitude of the true magnetic north pole.

Then, the total magnetic intensity |B| is computed as:

|B|= B0(
Re

Re +h
)3
√

1+3cos2 θm

AirSim: High-Fidelity Visual and Physical Simulation for Autonomous Vehicles 7

Here B0 is the mean value of the magnetic field at the magnetic equator on the

Earth’s surface, θm is the magnetic co-latitude and Re is the mean radius of the

Earth. Next, we determine the inclination α and declination β angles using:

tanα = 2cotθm and sinβ =

{

sin(φ −φ 0) cosθ 0

sinθm
, if cosθm > sinθ 0 sinθ

cos(φ −φ 0) cosθ 0

sinθm
, otherwise.

Finally, we can compute the horizontal field intensity (H), the latitudinal (X), the

longitudinal (Y) and the vertical field (Z) components of the magnetic field vector

as follows:

H = |B|cosα Z = |B|sinα X = H cosβ Y = H sinβ .

3.2.3 Air Pressure and Density

The relationship between the altitude and the pressure of the Earth’s atmosphere is

complicated due to the presence of many distinct layers, each with its own individual

properties. First we compute Standard Temperature T and Standard Pressure P using

1976 U.S. Standard Atmosphere model [22, eq 1.16, 1.17] for altitude below 51

kilometers and switch to the model in [3, Table 4] beyond that up to 86 km. Then,

the air density is ρ = P
R·T (where R is the specific gas constant.)

3.3 Physics Engine

The kinematic state of the body is expressed using 6 quantities: position, orientation,

linear velocity, linear acceleration, angular velocity and angular acceleration. The

goal of the physics engine is to compute the next kinematic state for each body given

the forces and torques acting on it. We strive for an efficient physics engine that can

run its update loop at high frequency (1000 Hz) which is desirable for enabling real-

time simulation scenarios such as high speed quadrotor control. Consequently, we

implement a physics engine that avoids the extra complexities of a generic engine

allowing us to tightly control the performance and make trade-offs that best meet

our requirements.

3.3.1 Linear and Angular drag

Since the vehicle moves in the presence of air, the linear and the angular drag has a

significant effect on the dynamics of the body. The simulator computes the magni-

tude |Fd | of the linear drag force on the body according to the drag equation [24]:

|Fd |=
1

2
ρ|v|2ClinA.

8 Shah, Dey, Lovett, and Kapoor

Here Clin is the linear air drag coefficient, A is the vehicle cross-section and ρ is the

air density. This drag force acts in the direction opposite to the velocity vector v

Computing the angular drag for arbitrary shape remains complex and compu-

tationally intensive task. Many existing physics engines use a small but often an

arbitrary damping constant as a substitute for computing actual angular drag. We

provide simple but better approximations to model the angular drag.

Consider an infinitesimal surface area ds in the extremity of the body experienc-

ing the angular velocity ω . As the linear velocity dv experienced by ds is given by

rds ×ω , we can now use the linear drag equation for ds [19, pp 160-161]:

|dF|=
1

2
ρ|rds ×ω|2Clinds, where direction of dF is −rds ×ω.

Now, the drag torque is computed by integrating over the entire surface: τd =
∫

S rds×
dF. To simplify the implementation, we approximate the body of the vehicle as set

of connected faces which further can be approximated as a rectangular box for the

purpose of evaluating the integral.

3.3.2 Accelerations

In addition to the drag forces and torques, we also need to consider the forces Fi and

the torques τi present on the vehicle at the vertex located at ri relative to center of

gravity (see section 3.1). We thus compute the net force and torque as:

Fnet = ∑
i

Fi +Fd and τnet = ∑
i

[τi + ri ×Fi]+ τd .

We obtain the linear acceleration by applying Newton’s second law and then adding

gravity vector to compute the net acceleration, a = Fnet/m+g. The angular acceler-

ation in body frame is given by Euler’s rotation equation: α = I−1 · (τnet − (ω × (I ·
ω))), where, I is the inertia tensor and ω is angular velocity, both in body frame.

3.3.3 Integration

We update the position pk+1 of the body at time k+1 by integrating the velocity and

the initial position p0. The first order integration algorithms such as Euler method

diverges quickly with unbounded error although very simple to implement. In our

implementation we use Velocity Verlet algorithm instead of Runge Kutta for its

computationally inexpensiveness and stability while still being second order method

[9]. Formally,

vk+1 = vk +
ak +ak+1

2
·dt pk+1 = pk +vk ·dt +

1

2
·ak ·dt2

AirSim: High-Fidelity Visual and Physical Simulation for Autonomous Vehicles 9

The angular velocity is updated in similar manner as linear velocity however updat-

ing orientation isn’t straight forward. One of the approach is to maintains the ori-

entation as a rotation matrix that is updated every time step. However this causes a

slow drift which must be corrected by orthonormalization at regular intervals which

is expensive. Alternative approach is to maintain rotations as much more efficient

quaternions which are also numerically stable and trivially normalizable. One of

the problem, however, is that the orientation quaternion is maintained in the world

frame while the angular velocity is maintained in the body frame in our framework.

To update the orientation, we first compute the angle-axis pair (αdt ,u) where αdt is

the angle traversed around unit vector u. We can compute the angle αdt = |ω| · dt

and axis by u = ω/|ω|. This allows us to compute equivalent change in quaternion

qdt representing the change in orientation in time dt. As noted before, qdt is in body

frame while qk in world reference frame. The problem now remains that of adding

qdt to qk to obtain qk+1 which can be proven to given by relationship qk+1 = qk ·qdt .

3.3.4 Collisions

Unreal engine offers a rich collision detection system optimized for different classes

of collision meshes and we directly use this feature for our needs. We receive the im-

pact position, impact normal and penetration depth for each collision that occurred

during the render interval. Our physics engine uses this data to compute the collision

response with Coulomb friction to modify both linear and angular kinematics.[8]

3.4 Sensors

AirSim offers sensor models for accelerometer, gyroscope, barometer, magnetome-

ter and GPS. All our sensor models are implemented as C++ header-only library and

can be independently used outside of AirSim. Like other components, sensor mod-

els are expressed as abstract interfaces so it is easy to replace or add new sensors.

3.4.1 Barometer

To simulate barometer, we compute ground truth pressure using the detailed model

of atmosphere (sec 3.2.3) and model the drift in the pressure measurement over

time using Gaussian Markov process [20] for more realistic behavior in long flights.

Formally, if we denote the current bias factor as bk then the drift is modeled as:

bk+1 = w ·bk +(1−w) ·η ,where: w = e−
dt
τ and η ∼ N(0,s2).

Here τ , is the time constant for the process and set to 1 hour in our model. η is

a zero mean Gaussian noise with standard deviation that can be selected using the

10 Shah, Dey, Lovett, and Kapoor

data available in [5]. This pressure p is then added with white noise drawn from

zero mean Gaussian distribution with standard deviation set from datasheet of the

sensor (such as MEAS MS56112). Finally we convert the pressure to altitude using

barometric formula used by the sensor’s driver:

h =
T0

a

[

(

p

p0

)−(a·R
g)

−1

]

,

here T0 is the reference temperature (15 deg C), a =−6.5×10−3 is the temperature

gradient, g and R are the gravity and the specific gas constants, p0 is the current sea

level pressure and p is the measurement.

3.4.2 Gyroscope and Accelerometer

Gyroscope and accelerometers constitute the core of the inertial measurement unit

(IMU) [26]. We model these by adding white noise and bias drift over time to the

ground truth. For gyroscope, given the true angular velocity in body frame ω , we

compute the measurement ωout as,

ωout = ω +ηa +bt , where ηa ∼ N(0,ra) and

bt = bt−1 +ηb, where ηb ∼ N

(

0,b0

√

dt

ta

)

.

Here parameters ra, bias b0 and the time constant for bias drift ta can either be ob-

tained from Allan variance plots or from datasheets. Accelerometer output is com-

puted in the similar manner except that we must first subtract gravity from the true

linear acceleration in the world frame and then convert the result to the body frame

before we add bias drift and noise.

3.4.3 Magnetometer

We use the tilted dipole model for Earth’s magnetic field 3.2.2, given the geographic

coordinates to compute the components of the ground truth magnetic field in body

frame and add the white noise as specified in the datasheet.

3.4.4 Global Positioning System (GPS)

Our GPS model simulates latency (typically 200ms), slower update rates (typically

50 Hz) and horizontal and vertical position error estimate decay rates to simulate

gaining fix over time. The decay rate is modeled using first order low pass filter

individually parameterized for horizontal and vertical fix.

AirSim: High-Fidelity Visual and Physical Simulation for Autonomous Vehicles 11

3.5 Visual Rendering

Since advanced rendering and detailed environments have been a key requirement

for AirSim we chose Unreal Engine 4 (UE4) [11] as our rendering platform. UE4

offers several features that made it an attractive choice including it being an open

source and available on Linux, Windows as well as OSX. UE4 brings some of

the cutting edge graphics features such as physically based materials, photomet-

ric lights, planar reflections, ray traced distance field shadows, lit translucency etc.

Figure 1 shows a screen-shot from AirSim which highlight near photo-realistic ren-

dering capabilities. Further, Unreal’s large online Marketplace has various pre-made

elaborate environments, many of which are created using photogrammetry tech-

niques.

4 Experiments

We perform experiments primarily to evaluate how close the flight characteristic of

a quadrotor flying in real-world is to that of a simulation of the same vehicle in

AirSim. We also evaluate some of our sensor models against the real-world sensors.

Hardware Platform: Real-world flights were performed with the Pixhawk v2 flight

controller mounted on a Flamewheel quadrotor frame, together with a Gigabyte

5500 Brix running Ubuntu 16.04. The sensor measurements were recorded on the

Pixhawk device itself. We configured the simulated quadrotor in AirSim using the

measured physical parameters and simulated sensor models configured using sensor

data sheets. The AirSim MavLinkTest application was used to perform repeatable

offboard control for both the real-world and the simulated flights.

Trajectory Evaluation: We fly the quadrotor in the simulator in two different pat-

terns: (1) trajectory in square shape with each side being 5m long (2) trajectory

in circle shape with radius being 10m long. We then use exact same commands to

fly the real vehicle. For both the simulation and the real-world flights, we collect

location of the vehicle in local NED coordinates along with timestamps.

Figure 4(c) and 4(d) shows the time series of locations in simulated flight and the

real flight. Here, the horizontal axis represents the time and the vertical axis repre-

sent the off-set in X and Y directions. We also compute the symmetric Hausdorff

distance between the real-world track and the track in simulation. We found that the

simulation and real-world tracks were fairly close both for the circle (Hausdorff dis-

tance between simulated and real-world: 1.47 m) as well as the square (Hausdorff

distance between simulated and real-world: 0.65 m).

We also present visual comparison for this experiment for the circle and the

square patterns in Figures 4(a) and 4(b) respectively. The simulated trajectory is

shown with a purple line while the real trajectory is shown with a red line. We

can observe that qualitatively the trajectories tracked by both the real-world and the

simulated vehicle are close. The small differences may have been caused by various

12 Shah, Dey, Lovett, and Kapoor

(a) Circle maneuver (b) Square maneuver

0 10 20 30 40 50
15
10

5
0
5

10
15

Simulated X (m)
Real X (m)

0 10 20 30 40 50
Time (seconds)

15
10

5
0
5

10
15

Simulated Y (m)
Real Y (m)

(c) Space-Time Plot for Circle

0 5 10 15 20 25 30 35 40
1
0
1
2
3
4
5
6

Simulated X (m)
Real X (m)

0 5 10 15 20 25 30 35 40
time (seconds)

1
0
1
2
3
4
5
6

Simulated Y (m)
Real Y (m)

(d) Space-Time Plot for Square

Fig. 4 Evaluating the differences between the simulated and the real-world flight. In top figures,

the purple and the red lines depict the track from simulation and the real-world flights respectively.

factors such as integration errors, vehicle model approximations and mild random

winds.

Sensor Models: Besides evaluating the entire simulation pipeline we also inves-

tigated individual component models, namely the barometer (MEAS MS5611-

01BA), the magnetometer (Honeywell HMC5883) and the IMU (InvenSense MPU

6000). Note that the simulated GPS model is currently simplistic, thus, we only fo-

cus on the three more complex sensor models. For each of the above sensors we use

the manufacture specified datasheets to set the parameters in the sensor models.

• IMU: We measured readings from the accelerometers and gyroscope as the

vehicle was stationary and flying. We observed that while the characteristics

were similar when the vehicle was stationary (gyro: simulated variance 2.47e−7

rad2/s2, real-world variance 6.71e−7 rad2/s2, accel.: simulated variance 1.78e−4

m2/s4, real-world variance 1.93e−4 m2/s4), the observed variance for an in-

flight vehicle was much higher than the simulated one (accel.: simulated 1.75e−3

m2/s4 vs. real-world 9.46 m2/s4). This is likely in real-world the airframe vi-

brates when the motors are running and that phenomenon is not yet modeled in

AirSim.

• Barometer: We raised the sensor periodically between two fixed heights: ground

level and then elevated to 178 cm (both in simulation and real-world). Figure 5(a)

shows both the measurements (green is simulated, blue is real-world) and we ob-

AirSim: High-Fidelity Visual and Physical Simulation for Autonomous Vehicles 13

0 50 100 150 200
Time (seconds)

1011.8

1012.0

1012.2

1012.4

1012.6

1012.8

1013.0

Real Pressure (mbar)
Simulated Pressure (mbar)

(a) Barometer

0 10 20 30 40 50 60 70 80
0.3

0.2

0.1

0.0

0.1

0.2

0.3
Real x-axis (Gauss)
Simulated x-axis (Gauss)

0 10 20 30 40 50 60 70 80
Time (seconds)

0.3

0.2

0.1

0.0

0.1

0.2

0.3
Real y-axis (Gauss)
Simulated y-axis (Gauss)

(b) Magnetometer

Fig. 5 Figure 5(a) and 5(b) show that barometer and the magnetometer characteristics in simula-

tion closely resemble that of the real world.

serve that the signals have similar characteristics. Note that the offset between the

simulated and the real-world pressure is due the difference in absolute pressure

in the real-world and the one in the simulation. There is also a small increase in

the middle due to a temperature increase, which wasn’t simulated. Overall, the

characteristics of the simulated sensor matches well to the real sensor.

• Magnetometer: We placed the vehicle on the ground and then rotated it by 90◦

four times. Figure 5(b) shows the real-world and the simulated measurements

and highlight that they are very similar in characteristic.

5 Conclusion and Future Work

AirSim offers hi-fidelity physical and visual simulation that allows to generate large

quantity of training data cheaply for building machine learning models. AirSim API

design allows developing algorithms against simulator and then deploy them with-

out change on real vehicles. The core components of AirSim including physics en-

gine, vehicle models, environment models and sensor models are designed to be

independently usable with minimal dependencies outside of AirSim and are eas-

ily extensible. AirSim is inspired by the goal of developing reinforcement learning

algorithms for the autonomous agents that can operate in the real world.

The task of mimicking the real-world in real-time simulation is a challenging

endeavor. There are a number of things that can be improved. Currently we do not

simulate richer collision response or advanced ground interaction models which

may be possible in future by implementing our physics engine interface for NVIDIA

PhysX and utilizing features such as physics sub-stepping. Also we do not simulate

various oddities in camera sensors except those directly available in Unreal engine.

We plan to add advanced noise models and lens models in future. The degradation

of GPS signal due to obstacles is not simulated yet which we plan to add using

ray tracing methods. We also plan to add more advanced wind effects and thermal

14 Shah, Dey, Lovett, and Kapoor

simulations for fixed wing vehicles. Our extensibility APIs have been designed with

above future work in mind and can also be used to realize other vehicle types.

References

1. Babushkin, A.: Jmavsim. https://pixhawk.org/dev/hil/jmavsim
2. Bagnell, J.A.: An invitation to imitation. Tech. rep., CMU ROBOTICS INST (2015)
3. Braeunig, R.: Atmospheric models. http://www.braeunig.us/space/atmmodel.

htm (2014)
4. Brandt, J., Deters, R., Ananda, G., Selig, M.: Uiuc propeller database, university of illinois at

urbana-champaign. http://m-selig.ae.illinois.edu/props/propDB.html (2015)
5. Burch D., B.T.: Mariner’s Pressure Atlas: Worldwide Mean Sea Level Pressures and Standard

Deviations for Weather Analysis. Starpath School of Navigation (2014)
6. Chulliat, A., Macmillan, S., Alken, P., Beggan, C., Nair, M., Hamilton, B., Woods, A., Ridley,

V., Maus, S., Thomson, A.: The us/uk world magnetic model for 2015-2020 (2015). DOI

10.7289/V5TB14V7
7. Furrer, F., Burri, M., Achtelik, M., Siegwart, R.: Rotorsa modular gazebo mav simulator

framework. In: Robot Operating System (ROS), pp. 595–625. Springer (2016)
8. Hecker, C.: Physics, part 3: Collision response. Game Developer Magazine (1997)
9. Herman, R.: A first course in differential equations for scientists and engineers. http://

people.uncw.edu/hermanr/mat361/ODEBook/ (2017)
10. Jackson, J., Ellingson, G., McLain, T.: Rosflight: A lightweight, inexpensive mav research and

development tool. In: ICUAS, pp. 758–762 (2016). DOI 10.1109/ICUAS.2016.7502584
11. Karis, B., Games, E.: Real shading in unreal engine 4. In: Proc. Physically Based Shading

Theory Practice (2013)
12. Kober, J., Bagnell, J.A., Peters, J.: Reinforcement learning in robotics: A survey. Int. J. Rob.

Res. 32(11), 1238–1274 (2013). DOI 10.1177/0278364913495721
13. Koenig, N., Howard, A.: Design and use paradigms for gazebo, an open-source multi-robot

simulator. In: IROS (2004)
14. Lanza, R., Meloni, A.: The Earth’s Magnetism: An Introduction for Geologists. Springer

Science & Business Media (2006)
15. Levy, S.: Hackflight: Simple quadcopter flight control firmware and simulator for c++ hackers.

https://github.com/simondlevy/hackflight

16. Meier, L., Tanskanen, P., Fraundorfer, F., Pollefeys, M.: Pixhawk: A system for autonomous

flight using onboard computer vision. In: ICRA, pp. 2992–2997. IEEE (2011)
17. Meyer, J., Sendobry, A., Kohlbrecher, S., Klingauf, U., Von Stryk, O.: Comprehensive simu-

lation of quadrotor uavs using ros and gazebo. In: SIMPAR, pp. 400–411. Springer (2012)
18. Moore, H.: Creating assets for the open world demo (2015)
19. Nakayama, Y., Boucher, R.: Introduction to fluid mechanics. Butterworth-Heinemann (1998)
20. Sabatini, A.M., Genovese, V.: A stochastic approach to noise modeling for barometric altime-

ters. Sensors (Basel, Switzerland) 13(11), 15,692–15,707 (2013)
21. Shah, S., Dey, D., Lovett, C., Kapoor, A.: Airsim open source platform at github. https:

//github.com/Microsoft/AirSim (2017)
22. Stull, R.: Practical Meteorology: An Algebra-based Survey of Atmospheric Science. Univer-

sity of British Columbia (2015)
23. Tapley, B., Ries, J., Bettadpur, S., Chambers, D., Cheng, M., Condi, F., Poole, S.: The ggm03

mean earth gravity model from grace. In: American Geophysical Union, G42A-03 (2007)
24. Taylor, J.: Classical mechanics. University Science Books (2005)
25. Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning. Journal of Big Data

3(1), 9 (2016). DOI 10.1186/s40537-016-0043-6
26. Woodman, O.J.: An introduction to inertial navigation. Tech. Rep. UCAM-CL-TR-696, Uni-

versity of Cambridge, Computer Laboratory (2007)

https://pixhawk.org/dev/hil/jmavsim
http://www.braeunig.us/space/atmmodel.htm
http://www.braeunig.us/space/atmmodel.htm
http://people.uncw.edu/hermanr/mat361/ODEBook/
http://people.uncw.edu/hermanr/mat361/ODEBook/
https://github.com/simondlevy/hackflight
https://github.com/Microsoft/AirSim
https://github.com/Microsoft/AirSim

	AirSim: High-Fidelity Visual and Physical Simulation for Autonomous Vehicles
	Shital Shah1, Debadeepta Dey2, Chris Lovett3, Ashish Kapoor4
	1 Introduction
	2 Related Work
	3 Architecture
	3.1 Vehicle Model
	3.2 Environment
	3.3 Physics Engine
	3.4 Sensors
	3.5 Visual Rendering

	4 Experiments
	5 Conclusion and Future Work
	References

