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This paper describes the results of a dynamic density (DD) human-in-the-loop simulation, as well as the DD model 
development activity designed to examine complexity measures. DD measures presented at the US/Europe ATM 2003 
Seminar were used in the analysis. This study differed from the previous in three main aspects.  First, the simulation 
included Reduced Vertical Separation Minima procedures. Second, the study focused on the Cleveland Air Route Traffic 
Control Center’s airspace where previous study results showed the weakest correlation. Third, the traffic was actively 
controlled during the simulation, whereas in the previous study, audio/video replays were shown. The results indicated that 
the DD metric performed better than the aircraft count, which is a current complexity measure. The new DD model 
performed better than the previous model for Cleveland Center. 
 
Significance: This research identifies airspace complexity factors which are critical to concepts such as airspace design 

and dynamic airspace configurations and controller workload balancing. 
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1. INTRODUCTION 
 
A number of factors affect air traffic controller workload. These factors include, but are not limited to, potential conflicts, 
number of hand-offs, heading and speed differences, aircraft proximity to each other and sector boundary, presence of 
weather, and number of aircraft..[1,2] In the US, the current air traffic management system uses the monitor alert parameter, a 
threshold based on aircraft count, to measure sector level capacity and air traffic controller workload. It is widely 
recognized, however, that aircraft count, and hence the monitor alert parameter, has significant shortcomings in its ability to 
accurately measure and predict sector level complexity..[3,4] 

The controller workload is a subjective attribute and is an effect of air traffic complexity. Both the US and Europe 
aviation communities have been very interested in developing quantifiable metric(s) for air traffic complexity, also known 
as dynamic density (DD). The term complexity, or dynamic density, is defined as the collective effect of all factors or 
variables that contribute to sector level air traffic control complexity or difficulty at any given time.[5] This study reports the 
results of a human-in-the-loop simulation exercise, contributing to the on-going complexity measures development and 
validation research. 
 
1.1 The Need for Dynamic Density 
One of the core elements involving future concepts, such as dynamic airspace configuration and advanced traffic flow 
management, is the ability to measure and predict complexity. In an operational setting, changes in traffic flows and 
airspace will be better managed strategically and tactically if an accurate measurement and prediction of complexity for a 
particular airspace is available, as well as higher levels of automation are proposed for future operations. Should automation 
degrade and the design calls for a human operator to manage the situation, the measures of complexity are crucial so that 
human workload limitations are not exceeded. 

Complexity measures could be used to determine the areas in which airspace design changes may be necessary. 
Airspace can be redesigned and examined to ensure that the complexity of the redesigned airspace is same or less than its 
previous level.  
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Often when researchers create scenarios for concept or procedural examinations, they need multiple scenarios of 
similar complexity but not the same scenarios to avoid learning effects. The complexity measures could be used as a 
yardstick to compare multiple scenarios.  

From the research perspective, the use of a DD metric in fast-time simulation models would provide a dynamic 
indicator of sector capacity and possibly workload.  Most current fast-time models use the Monitor Alert Parameter (MAP) 
as a sector capacity indicator.[6]  One problem with using the MAP values is that they are usually generated by the facility 
that controls the sector and are not always based on objective measures.[7] Although these values can be adjusted 
dynamically, there is no scientific basis for doing so. A more objective measure would be a DD metric based on the current 
traffic situation and not on a static MAP value. This would provide a better way to represent potential workload and the 
ability to dynamically reroute aircraft around saturated airspace. 

A number of researchers have studied the topic of air traffic control complexity measurement (Mogford et al., 1995;[2] 
Laudeman et al., 1999;[8] Sridhar et al., 2000;[9] Chatterji & Sridhar, 2001;[3] Masolonis, 2003; [10] Flynn et al., 2006;[11] 
Manning & Pfleiderer, 2006.[12]). These efforts largely focused on identifying the quantifiable complexity variables, which 
were based on the factors that contribute controller workload, using simulation exercises and controller feedback. Their 
main findings included a number of complexity measures. They, however, were not validated using field data. Therefore, 
the largest field data collection and validation exercise for complexity measurement and prediction was conducted 1999-
2002 by the authors. Researchers collected over 6,400 complexity ratings from controllers and supervisors at four US en 
route facilities. The study included the review of seventy-two thirty-minute traffic samples from a total of thirty-six high 
and low sectors. The study included most of the previously identified complexity variables and some additional variables 
identified by the authors. Researchers conducted an extensive metric development and validation activity with this set of 
data, which was presented at the 5th USA/Europe ATM 2003 Research and Development (R&D) Seminar.[4] They found 
that the combination of multiple complexity variables developed by various researchers worked the best in representing the 
controller workload.  

 
1.2 Motivation for Current Study 
The motivation for the current study was threefold. First, the previous data collection and validation effort, which was 
reported at the 5th USA/Europe ATM2003 R&D Seminar, was performed prior to the implementation of Reduced Vertical 
Separation Minima (RVSM). Some argue that RVSM procedures may impact the complexity of operations as more 
altitudes are available for conflict resolution and for setting up traffic flows. Hence, it was thought that some complexity 
factors might change, therefore, the incorporation of RVSM procedures into a DD study seemed necessary. Second, the DD 
metric performed differently at different Air Route Traffic Control Centers (ARTCCs) in the previous study. It did not 
predict the complexity for Cleveland Center’s airspace as compared with the other centers’ airspace. Therefore, a specific 
focus on Cleveland airspace was warranted. And third, in the previous study, controllers and supervisors observed 
playbacks of traffic scenarios and provided complexity ratings. The researchers recognized the limitations of this approach 
and had always planned for another study where controllers would actively control traffic in a real-time simulation 
environment. In essence, this study could be considered a further validation of the initial study reported in ATM 2003 
Seminar. 

 
2. DESCRIPTION OF DD METRICS 
           
In 1999, the FAA William J. Hughes Technical Center (WJHTC), NASA Ames Research Center, and Metron Aviation 
formed a partnership to research DD. Each organization had its own ideas about what variables contributed to DD, although 
many similarities existed. The analysis therefore considered all of the proposed variables. A unified DD model (i.e., one 
containing variables from each organization) performed the best. 

For the present study, NASA and the FAA collaborated once again to evaluate the same candidate DD variables that 
were considered in the previous analysis. This time, however, they used data collected from en route air traffic controllers 
working live traffic in a simulated environment to establish a more accurate and representative DD model. 

A high level description of the proposed variables is provided in the following sections. For detailed formulas, 
computations, and descriptions of all the metrics, please refer to a review article by Kopardekar.[13] 

2.1 WJHTC Metric 
Table 1 lists the WJHTC DD variables. More detailed metric descriptions, rationales, and formulas are provided in 
Kopardekar.[4]                                                                 
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Table  1. WJHTC DD Variables 
 

AD1 Aircraft density 1 - number of aircraft divided by occupied 
volume of airspace 

AD2 Aircraft density 2 - number of aircraft divided by sector volume 

CRI Convergence recognition index – measure of the difficulty of 
detecting converging aircraft with shallow angles 

SCI Separation criticality index - proximity of conflicting aircraft 
with respect to their separation minima 

DOFI Degrees of freedom index – based on maneuver options in a 
conflict situation 

CTI1 Coordination taskload index 1 - based on aircraft distance from 
the sector boundary prior to hand-off 

CTI2 Coordination taskload index 2 - different formula based on the 
same principle as CTI1 

SV Sector volume 

AC Aircraft count 

 

2.2 NASA Metric 1 
The NASA-1 metric consisted of 16 variables, which are listed in Table 2. For details of the calculations, readers should 
refer to Chatterji.[3]                                            

Table 2. NASA Metric 1 Variables 
 

C1 Number of aircraft 

C2 Number of climbing aircraft 

C3 Number of cruising aircraft 

C4 Number of descending aircraft 

C5 Horizontal proximity metric 1 

C6 Vertical proximity metric 1 

C7 Horizontal proximity measure 2 

C8 Vertical proximity measure 2 

C9 Horizontal proximity measure 3 

C10 Vertical proximity measure 3 

C11 Time-to-go to conflict measure 1 

C12 Time-to-go to conflict measure 2 

C13 Time-to-go to conflict measure 3 

C14 Variance of speed 

C15 Ratio of standard deviation of speed to average speed 

C16 Conflict resolution difficulty based on crossing angle 
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2.3 NASA Metric 2 
The NASA-2 metric consisted of 8 variables, which are listed in Table 3. Laudeman et al.[8] and Sridhar et al. describe these 
variables in detail.[9]                      

 
Table 3. NASA Metric 2 Variables 

 
N Traffic Density 

NH Number of aircraft with Heading Change greater than 15º 

NS Number of aircraft with Speed Change greater than 10 knots or 0.02 Mach 

NA Number of aircraft with Altitude Change greater than 750 feet 

S5 Number of aircraft with 3-D Euclidean distance between 0-5 nautical 
miles excluding violations 

S10 Number of aircraft with 3-D Euclidean distance between 5-10 nautical 
miles excluding violations 

S25 Number of aircraft with lateral distance between 0-25 nautical miles and 
vertical separation less than 2000/1000 feet above/below 29000 ft 

S40 Number of aircraft with lateral distance between 25-40 nautical miles and 
vertical separation less than 2000/1000 feet above/below 29000 ft 

S70 Number of aircraft with lateral distance between 40-70 nautical miles and 
vertical separation less than 2000/1000 feet above/below 29000 ft 

 

2.1 Metron Aviation Metric 
The Metron metric consisted of 10 variables, listed in Table 4. For further details, refer to Wyndemere.[14] 

 
Table 4. Metron Aviation Variables 

 
WACT Aircraft count within a sector 

WDEN  Aircraft count divided by the usable volume of sector airspace. 

WCLAP Number of aircraft with predicted separation less than a threshold value 
(e.g., 8 miles) at a particular time. 

WCONVANG  The angle of converge between aircraft in a conflict situation 

WCONFLICT 
NBRS  

Count of number of other aircraft in close proximity to a potential conflict 
situation (e.g., within 10 miles laterally and 2000 feet vertically). 

WCONF 
BOUND  

Count of predicted conflicts within a threshold distance of a sector 
boundary (e.g., 10 miles). 

WALC  Count of number of altitude changes above a threshold value with the 
sector. 

WHEADVAR  Count of number of bearing changes above a threshold value with the 
sector. 

WBPROX  Count of number of aircraft within a threshold distance of a sector 
boundary (e.g., 10 miles). 

WASP  The squared difference between the heading of each aircraft in a sector and 
the direction of the major axis of the sector, weighted by the sector aspect 
ratio. 

 

Table 5 lists 9 additional variables that were used in the study.  
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Table 4. Additional DD Metrics 
 

NUMHORIZ Number of aircraft with predicted horizontal separation under 8nm 

HDGVARI Variance of all aircraft headings in a sector 

AXISHDG Squared difference between heading of each aircraft in a sector and 
direction of major axis 

CONVCONF Average angle of convergence between aircraft in a conflict situation 

PROXCOUNT Number of aircraft in close proximity to a potential conflict situation 

CONFCOUNT Count of predicted conflicts within a threshold distance of a sector 
boundary 

ALTVAR Variance and mean of all aircraft altitudes in a sector 

NUMBNDY Number of aircraft within a threshold distance of a sector boundary 

ASPECT Major axis length divided by minor axis length of a sector 

 
3. METHOD 
 
The metrics developed by the FAA WJHTC / Titan Systems, NASA Ames Research Center, and Metron Aviation were 
evaluated in this study. This was the second validation exercise that examined all of the DD metrics using the same 
common data set to identify their applicability, strengths, and weaknesses.  

The DD research activities associated with the current study were performed in three steps. The first step was a data 
collection effort. It involved selecting traffic samples from actual facility operations, generating simulation scenarios and 
collecting subjective ratings from controllers on the complexity of those traffic samples in a simulated air traffic control 
environment.  

The second step involved the programming of all the candidate DD variables into the Target Generation Facility (TGF) 
Data Reduction and Analysis Tool, located at the WJHTC and the generation of DD output/values based on the simulation 
data. 

The third step focused on data analysis and development of an optimal DD metric that included a comparison of the 
DD output to the complexity ratings and a regression analysis to determine the significant DD metric variables. 

 
3.1 Step 1 – Complexity Rating Data Collection 
3.1.1 Participants 
During the first step of the DD study, researchers collected System Analysis Recording (SAR) data from Cleveland 
ARTCC to generate the simulation scenarios. This data source differed from the original study, which used the Enhanced 
Traffic Management System (ETMS) as the data source.  

For the human-in-the-loop simulation, six Certified Professional Controllers (CPCs) and one Operations Supervisor 
from Cleveland ARTCC served as participants. The CPCs had, on average, eighteen years experience controlling traffic at 
many facilities, and approximately twelve years experience controlling traffic at Cleveland ARTCC. Fourteen simulation 
pilots and four ghost controllers also participated in the simulation. 

 
3.1.2 Scenarios 
Researchers gathered operational traffic data from three sectors in three areas at Cleveland ARTCC to develop traffic 
scenarios for the simulation data collection. Table 6 details the sector characteristics, including whether the sector was high 
or low, and its Monitor Alert Parameter (MAP), or aircraft count threshold. 

 
Table 5. Simulated Cleveland ARTCC Sectors 

 
Sector Name Area High/ Low MAP Value 

04 Mansfield 8 Low 20 
48 Ravenna 4 High 14 
66 Bellaire 6 High 14 
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Four traffic scenarios, approximately 75-minutes in length, were developed from the SAR data. Additional traffic was 
added to the scenarios to ensure levels were 1) high enough to capture a range of complexity and 2) busy across sectors 
(i.e., not too concentrated in one sector over another). A fifth scenario was also developed that contained off-nominal 
routing due to weather. 

 
3.1.3 Laboratory and Equipment 
The simulation was conducted in the high fidelity Display System Replacement (DSR) Laboratory at the WJHTC. Ten 
display positions, all equipped with the User Request Evaluation Tool (URET) version 23AC, were utilized during the 
study (6 test positions, 4 ghost controller positions). The controllers used Voice Switch Communication System (VSCS). 
The ghost controllers provided hand-offs to and from the surrounding sectors.  

Workload Assessment Keypads (WAKs) were installed at each test position as a means of recording complexity ratings 
during the simulation scenarios. WAKs are electronic keypads containing numerical scales. Participants are prompted to 
press a button corresponding to workload by buttons that illuminate and an aural tone that activates at specified intervals. 

3.1.4 Procedure 
Four traffic scenarios were each shown twice during the simulation. The weather scenario was shown only once. CPCs 
rotated between Radar and Data positions. Controller teams were assigned to sectors in which they were familiar. The 
CPCs individually provided complexity ratings at 5-minute intervals for each simulation run, including one training run, via 
the WAKs. They rated complexity on a scale from 1 to 7 where 1 is very low, 4 is moderate, and 7 is very high.  
3.2 Step 2 – DD Metric Coding into DRAT 
Programmers from the TGF Group at the WJHTC coded the DD variables (provided in Tables 1-5) into the Data Reduction 
and Analysis Tool (DRAT), which is a JAVA based post-processing simulation data analysis tool. Trajectories and sector 
geometries used in the human-in-the-loop (HITL) real-time simulation were input into the DRAT software. The DRAT 
then calculated each DD variables at five minute intervals. During the HITL real-time simulation, controller workload 
ratings were also collected every five minutes.  

 
3.3Step 3 – Data Analysis & Model Development 
For the data analysis and model development portion of the DD study, researchers performed regression analyses of the 
complexity rating data and DD output to establish weights and significance for the different DD variables. The data set 
consisted of nine 75-minute runs, resulting in 693 ratings. Some runs resulted in one more rating than other runs depending 
on the exact time the run concluded. All variables were considered collectively since results from the first study showed 
that a unified DD metric (i.e., variables across organizations) performed the best. The results of the analysis are discussed in 
the following sections.  
 
4. RESULTS 
 
4.1 DD Metrics Development 
The regression analysis results, reported as R2 values, are shown in Table 7.  
 

Table 6. Regression Results (R2 values) for Cleveland ARTCC 
 

 Models Low Altitude Sectors High Altitude 
Sectors 

All Sectors 

Current Study DD model 0.64 0.74 0.69 
AC Count based model 0.50 0.44 0.46 

Study Reported in 2003 Old DD model 0.40 0.37 0.32 
AC Count based model 0.10 0.05 0.13 

 
Note: R2 is a coefficient of determination and higher its value, the higher the variance in complexity ratings explained 

by the model. The maximum value of R2 is 1.0. 
 
The results indicated the following: 

 Both new and old DD metrics represented complexity better than currently used aircraft count. 
 The new DD metric more accurately represented complexity ratings for Cleveland ARTCC than the DD 

metric from the previous study as represented by higher R2 values.  
 The aircraft count based model of the current study had a higher R2 than the aircraft count based model in the 

previous study. This could be because of differences in the data quality (i.e., SAR vs. ETSM) and, or, 
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controllers were actively participating in the simulation rather than observers. This implies that the quality of 
complexity measurement improves with higher accuracy of data. 
 

The regression equation output for the DD metric is presented in Table 8. The table shows the significant variables and 
their corresponding weights (estimates), t-values, and p-values. The chosen level of significance was 0.05. 
Initially, fifty-two variables were entered into a stepwise regression, which eliminated insignificant variables (p > .05). In 
addition, some predictors were excluded due to multicollinearity which occurs when high intercorrelations exist among the 
variables. [15] These cases were indicated by high Variance Inflation Factor (VIF) values (VIF > 10), and corresponded to 
the following variables: C1, WCLAP, WDEN, and AD2. Overall, 35 variables were excluded from the model. 

 
Table 7. Regression Equation Output 

 

Term Description Estimate 
Std 

Error 
t Ratio Prob>|t| 

Intercept  1.2035908 0.233088 5.16 <.0001 
AC Aircraft count 0.3157462 0.025022 12.62 <.0001 

AD1 
Number of aircraft/occupied volume of 
airspace 

14.131972 4.977504 2.84 0.0047 

SCI 
Proximity of conflicting aircraft with respect to 
their separation minima 

-0.007039 0.002824 -2.49 0.0129 

SV Sector volume -0.000267 4.18E-05 -6.39 <.0001 
C2 Number of climbing aircraft -0.517344 0.136599 -3.79 0.0002 

C9 Horizontal proximity measure 3 -2.575776 0.59082 -4.36 <.0001 

C11 Time-to-go to conflict measure 1 -1.550238 0.464715 -3.34 0.0009 

C15 
Ratio of standard deviation of speed to average 
speed 

-1.901624 0.458784 -4.14 <.0001 

C16 
Conflict resolution difficulty based on crossing 
angle 

3.6584241 1.490403 2.45 0.0144 

S5 
Number of aircraft with 3-D Euclidean distance 
between 0-5 nautical miles excluding 
violations 

-0.406443 0.115448 -3.52 0.0005 

S10 
Number of aircraft with 3-D Euclidean distance 
between 5-10 nautical miles excluding 
violations 

-0.151261 0.060155 -2.51 0.0122 

WCONVANG 
The angle of converge between aircraft in a 
conflict situation 

0.6512409 0.125299 5.2 <.0001 

WBPROX 
Count of number of aircraft within a threshold 
distance of a sector boundary 

-1.27544 0.561373 -2.27 0.0234 

WASP 

Squared difference between the heading of 
each aircraft in a sector and the direction of the 
major axis of the sector, weighted by the sector 
aspect ratio. 

0.0260912 0.002441 10.69 <.0001 

NUMHORIZ 
Number of aircraft with predicted horizontal 
separation under 8nm 

0.44 63046 0.081356 5.49 <.0001 

HDGVARI Variance of all aircraft headings in a sector 0.0039505 0.001197 3.3 0.001 

AXISHDG 
Squared difference between heading of each 
aircraft in a sector and direction of major axis 

-3.01E-07 8.56E-08 -3.52 0.0005 

 
The resulting DD model consisted of seventeen variables and accounted for 69% of the variability in the data. 

Measures of aircraft count and airspace structure were the most significant factors in the model (highest t-values). 
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One of the motivators of this study was to identify the impact of RVSM on complexity since previous studies were 
conducted before RVSM was operational. It appears that the RVSM may have impacted the variable termed AD1 (Number 
of Aircraft/Occupied by Volume of Airspace). In the 2003 study, this variable was not significant. It is plausible that due to 
RVSM, the aircraft density was higher since higher altitude options are available in the same volume of airspace. 

 
4.2 DD Metrics Testing 
4.2.1 Results for Instantaneous DD Model 
A performance assessment was conducted using the complete set of data. Figure 1 shows that the DD model followed the 
complexity ratings better than a model based only on aircraft count. Additionally, the R2 value was higher for the DD model 
than the aircraft count based model.  

Note: Aircraft Count Model: Rating = .5964075 + 0.3910888*Sector Count, R2 = 0.46; DD Model: Rating = DD 
equation, R2 = 0.69. 
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Figure 1. Performance of DD Metric 
 
Table 9 shows the difference between the output of the DD model and the actual complexity ratings. About 94% of the 

data points were within a 1 unit difference from the actual complexity ratings and about 50% of the data points matched the 
ratings exactly. Less than 10% of the differences were greater than 2 units. 

 
Table 8. Difference between DD and Complexity Ratings 

 
Value Percent Cumulative Percent 

-4 0 0 
-3 0 0 
-2 1.88 1.88 
-1 25.97 27.42 
0 49.49 78.21 
1 18.61 95.81 
2 3.32 99.27 
3 0.29 99.56 
4 0.43 99.99 

Total 100  
 

 
Figure 2 shows that the mean absolute difference (MAD) between complexity values derived by the DD model and the 
actual complexity ratings was the lowest when the complexity ratings were closer to 2. The MAD generally increased as the 
complexity ratings increased. One possible explanation for this is that the data used to build the DD model contained a 
higher percentage of low complexity ratings and a much smaller percentage of high ratings. 
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Figure 2. Mean Absolute Difference for Different Complexity Ratings 
 
4.3 Comparison with European Complexity Factors 
Flynn et al.[11] indicated that controllers reported that a mix of climbing and descending aircraft, several traffic flows 
conversing at the same point, traffic bunching, a high number of aircraft and multiple crossing points in the sector were 
critical complexity factors for Brussels and Hanover sectors. Majumdar et al.[16] reported that the number of aircraft 
changing altitudes, speed differences, the number of aircraft, the number of surrounding sectors and intersection points 
contribute to airspace complexity in Europe.  

Many complexity factors discovered in the current NASA/FAA study are similar to those that were found in the 
European studies. To the extent in which a comparison is possible, the European results appear to be consistent with current 
findings where sector count, fraction of climbing and descending aircraft, and proximity of conflicting aircraft with respect 
to their separation minima and horizontal proximity were identified as significant complexity factors. 
 
5. OVERALL CONCLUSIONS AND RECOMMENDATIONS 
 
 The DD metric performed better than aircraft count, which is the basis of the presently used complexity gauge. 
 In comparison with the previous study, the results show an improved accuracy in the DD model. This could be due 

to a better source of data (i.e., SAR vs. ETMS), additional significant complexity variables that were not used 
previously (e.g., HDGVARI, AXISHDG, NUMHORIZ), or the ratings based on controller’s direct interaction with 
the traffic rather than observation of replay.  

 The model can be further developed and tested with techniques such as neural networks, genetic algorithms, and 
non-linear regression.  

 Complexity changes with increased levels of automation and the prediction of complexity need to be explored. 
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