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Airway epithelial cells are the first line of defense against the constituents of the inhaled
air, which include allergens, pathogens, pollutants, and toxic compounds. The epithelium
not only prevents the penetration of these foreign substances into the interstitium, but
also senses their presence and informs the organism’s immune system of the impend-
ing assault. The epithelium accomplishes the latter through the release of inflammatory
cytokines and chemokines that recruit and activate innate immune cells at the site of
assault. These epithelial responses aim to eliminate the inhaled foreign substances and
minimize their detrimental effects to the organism. Quite frequently, however, the innate
immune responses of the epithelium to inhaled substances lead to chronic and high
level release of pro-inflammatory mediators that may mediate the lung pathology seen
in asthma. The interactions of airway epithelial cells with allergens will be discussed with
particular focus on interactions-mediated epithelial release of cytokines and chemokines
and their role in the immune response. As pollutants are other major constituents of inhaled
air, we will also discuss how pollutants may alter the responses of airway epithelial cells
to allergens.

Keywords: airway epithelium, proteinases, pollutants, airway inflammation, HDM allergens, cockroach allergens,
fungal allergens

INTRODUCTION
Allergic asthma is a complex disease that involves interactions
of genetic and environmental factors (1). Genetic factors predis-
pose to atopy, but the development of allergic sensitization is also
dependent on environmental factors with exposure to a partic-
ular allergen being one of the most important. When sensitized
individuals are exposed to the same allergen, they develop allergy
symptoms from target organs; these symptoms can be organ spe-
cific in conditions like allergic rhinitis and asthma, or generalized,
as in the case of anaphylaxis.

Aeroallergens are the major triggers for respiratory allergy (2),
although foods, drugs, and other allergens can also trigger dis-
ease. The major mode of entry of aeroallergens in the body is
through inhalation, although these allergens can also affect the
immune system following skin exposure. The airway epithelium
is the first line of defense against inhaled aeroallergens (3). The
epithelium acts as a structural barrier to prevent invasion of
inhaled particles carrying aeroallergens, but it is also the first
innate immune cell type that interacts with antigens and other
components of the inhaled particles. Studies on these interactions
support the idea that epithelial innate immune functions may be
instrumental for the development of an immune response through
pro-inflammatory mucosal responses, following interactions with
inhaled antigens and chemicals found in pathogens, allergens, and
pollutants.

The theme of the review will be the role of epithelium as innate
immune cells in allergic airway inflammation. Our discussion
will focus primarily on cytokines and chemokines released upon
interaction of the airway epithelium with major aeroallergens

and how these mediators shape the immune response toward the
inhaled allergen. We will also discuss the role of air pollutants in
modifying the results of these interactions.

AIRWAY EPITHELIUM: AN IMMUNOLOGICALLY ACTIVE
BARRIER
Airway epithelial cells express tight junction (TJ) proteins such
as occludin, claudin, and zonula occludens, which give epithelial
cell monolayers their barrier property. Apart from being a barrier,
the airway epithelium plays multiple roles, such as maintaining
airway surface liquid (ASL) levels, the mucociliary escalator, and
also epithelium restitution upon injury (4, 5). To fulfill these roles,
the airway epithelium is comprised of a number of specialized cell
types that work in harmony to maintain homeostasis in the air-
ways. The characteristics of the various epithelial cell types found
in the lungs and their specific roles are summarized in Table 1.

Identification of pattern recognition receptors (PRRs) (6) and
proteinase-activated receptors (PARs) (7) highlighted the potential
of airway epithelial cells to sense/interact with allergens. Fur-
ther secretion of immune mediators through activation of these
receptors gave new insight to airway epithelial cells being an
immunologically active innate immune cell. Similar to the air-
way epithelium, epithelium in other organs, such as gut (8, 9)
and skin (10, 11), play the same multiple roles in tissue home-
ostasis and in the development of immune responses to foreign
antigens.

Allergen–airway epithelium interactions and their effects on
epithelial properties as well as on the immune system will be
discussed below.
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Gandhi and Vliagoftis Airway epithelium in innate immunity

Table 1 | Different airway epithelial cell types and their characteristics.

Cell type Characteristics/functions

Bronchial

Epithelium

Basal cells

• Only cells that express hemidesmosomes, thus firmly attached to the basal membrane via integrins

• Self-renewal capacity

• Act as progenitor for goblet and ciliated cells

• Produce variety of bioactive molecules including cytokines

Columnar

ciliated cells

• Terminally differentiated cells that arise from either basal or goblet cells

• Possess cilia that clear mucus from the airways

Goblet cells

• Secrete mucus into the airways to trap foreign particles

• Self-renewal capacity

• Transdifferentiate into ciliated cells

Club cells

• Produce bronchiolar surfactant and specific antiproteinases, such as secretory leukocyte proteinase inhibitor

and other enzymes

• Progenitor for goblet and ciliated cells

Alveolar

Epithelium

Type I cells
• Very thin cells that cover 97% of alveolar place

• This thin structure is important as it allows easy gas exchange between alveoli and blood

Type II cells
• Produce pulmonary surfactants that are important for keeping alveolar space open and thus allow gas exchange

• Progenitor cells for alveolar epithelium

ALLERGEN–AIRWAY EPITHELIUM INTERACTIONS
The airway epithelium and allergen–epithelium interactions play
a pivotal role in airway immune responses. Allergen–airway inter-
actions start with the recognition of an allergen by receptors
present on the airway epithelium. These interactions result in
partial loss of epithelial integrity and/or release of inflamma-
tory mediators from epithelial cells. Inflammatory mediators can
activate the innate immune system at the same time that the
allergen can interact and activate dendritic cells (DCs) that are
present below the epithelial monolayer. The default response of
immune system to most of these interactions is the develop-
ment of immune tolerance, which means that subsequent inter-
actions of the organisms with the same allergen will not lead to
pathology. In certain individuals, however, the same interactions
can lead to the development of allergic sensitization. The exact
circumstances and factors responsible for the decision between
tolerance and allergic sensitization are not well understood. In
mouse experimental models, it has been shown that activation
of PRRs (12) or PAR-2 (13) can bias the system toward sen-
sitization. It is also known that inflammatory mediators pro-
duced by epithelial cells after interactions with allergens may bias
the immune response toward allergic sensitization through their
effects on allergen-DC-T cell interactions (3). A subsequent expo-
sure of an individual with an allergic sensitization to the same
allergen results in IgE-mediated activation of mast cells (14).
However, even in sensitized individuals, inflammatory mediators
released from epithelial cells following interactions with aller-
gens play an important role in recruiting inflammatory cells and
mediating allergic inflammation. Since the aim of the review is
to discuss the role of allergen–epithelium interactions and its
immune outcomes, we will focus on the epithelial responses that
play role in allergic sensitization, the first part of the process
described above, and allergic inflammation, the second part of
the process.

The airway epithelium–allergen interactions and the functional
consequences of these interactions are affected by the structural
and functional state of the epithelium at the time of these inter-
actions. For example, decreased TJ protein expression in atopic
asthmatics (15) could compromise the epithelial barrier function
(16) allowing allergen invasion. Moreover, there is evidence that
mucociliary clearance is not efficient in asthmatic airways (17, 18).
It is not clear whether this impairment is the result of environmen-
tal factors, including the effects of inhaled allergens, or driven by
genetics, but ineffective airway clearance may result in prolonged
presence of the allergens in the airways allowing them to have
protracted effects. In addition allergen can directly alter epithelial
properties, as will be discussed below.

In vitro, ex vivo, and in vivo systems have been used to study
the outcomes of direct allergen–epithelium interactions. In vitro
approaches have generated interesting results about epithelial
responses to allergens, but the biological relevance of these results
is questionable as these interactions happen under artificial con-
ditions and in the absence of other cells/factors, such as other
immune cells that may modulate the effects. Ex vivo and in vivo
approaches on the other hand suffer from the inability to deter-
mine that the effects seen are mediated by direct epithelium–
allergen interactions and are not due to the indirect effects of
other immune cells–allergens interactions on the airway epithe-
lium. However, the two approaches give complementary and very
important results and we will review them separately below.

In vitro research to understand allergen–epithelial interactions
has been carried out using both alveolar and bronchial airway
epithelial cells. A549 is the most utilized cell line to study inter-
actions with alveolar epithelium while various cell lines, such
as BEAS-2B, 16HBE14o-, Calu-3, NCI-H292, and primary air-
way epithelial cultures, from healthy and asthmatic patients, have
been used to study interactions with the bronchial epithelium. In
addition, both immersed cultures and air–liquid interface (ALI)
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cultures have been used in studies performed with bronchial
epithelial cells. ALI cultures mimic a physiological airway epithe-
lium and facilitate in vitro study of epithelial functions such as bar-
rier property, mucus secretion, and mucociliary escalator, which
is not possible with immersed cultures. ALI cultures also pro-
vide a unique opportunity to study cellular interactions between
epithelial cells and other immune cells by using co-culture sys-
tems. However, this variety of experimental settings and cells used
has generated often inconsistent and difficult-to-explain results.

In the following section, we will review studies focusing on
interactions of airway epithelial cells with some of the most com-
mon aeroallergens including house dust mite (HDM), cockroach,
fungal, and pollen allergens. A schematic of the mechanism of
these interactions and the biological effects of interactions are
shown in Figure 1. Allergens include proteins with very dif-
ferent structures and activities and can interact with epithelial
cells through a variety of mechanisms. In vitro studies have
shown the proteinase activity of allergens can alter epithelial
cell morphology and cause epithelial cell detachment (19, 20).
Moreover, proteinase activity of allergens has been implicated in
allergic sensitization and allergic inflammation in animal models
(21). In this review, we will classify the allergen–epithelial inter-
actions into proteinase-dependent and proteinase-independent
interactions.

EPITHELIAL TIGHT JUNCTION DISRUPTION
Most of the direct effects of allergens on the immune system
require allergens to penetrate through the epithelium into deeper
tissues. The main mechanism by which allergens cross the epithe-
lial barrier is through the degradation of epithelial TJs. A HDM
allergen with cysteine proteinase activity can degrade the adhe-
sion protein occludin and allow allergens to penetrate through
the epithelial monolayer (22). Similarly, cysteine and serine pro-
teinases from pollen grains (23, 24) and fungi (25) can induce TJ
degradation.

In addition to direct degradation of TJ, HDM proteinases can
also have an indirect effect on TJ integrity. HDM proteinases
activate PAR-2 (26), a pro-inflammatory receptor on epithelium,
which in turn transactivates epidermal growth factor receptor
leading to E-cadherin destabilization and loss of epithelial bar-
rier integrity (27). Thus, although proteinases associated with
allergens or allergen particles are prime candidates to mediate TJ
degradation, this may not always be the case. Another study com-
paring various HDM extracts from different manufactures showed
that the extract with the lowest proteinase activity caused maxi-
mum barrier dysfunction (28). The study also showed that this
extract was the most potent inducer of inflammatory mediator
release indicating that these mediators could contribute to epithe-
lial barrier dysfunction. The idea was supported by the observation

FIGURE 1 | Allergen–epithelial interactions: effects on allergic
sensitization, and allergic airway inflammation. Aeroallergen
interactions with epithelium result in increased epithelial permeability,
which facilitates allergen entry and uptake by dendritic cells (DCs). The

mediators released by epithelium, upon allergen interactions, drive
DC-T cell interactions toward Th2 immune response. These mediators
also develop inflammation by recruiting inflammatory cells to the
airways.
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that cockroach allergens affect epithelial permeability indirectly
through the release of vascular endothelial growth factor (VEGF)
from epithelial cells (29). Chronic exposure to tumor necrosis
factor-α (TNF) also causes barrier dysfunction by disrupting TJs
(30). The observation that fungal allergens can induce TNF release
from airway epithelial cells (31) indicates that this may be another
indirect method utilized by allergens to increase airway epithelial
permeability.

Finally, TJ degradation by allergens may also be specific to
epithelium from asthmatics. For example, a study has shown that
epithelium from only asthmatic individuals and not from healthy
individuals was sensitive to fungal allergens-mediated increased
epithelial permeability (31). However, it is not clear whether
asthma-induced epigenetic changes make the airways of asthmatic
individuals sensitive to allergens or it is genetic defects in the
TJ proteins that make an individual more sensitive to allergen
penetration, sensitization, and asthma development.

EPITHELIAL RELEASE OF INFLAMMATORY MEDIATORS: CYTOKINES
AND CHEMOKINES
Allergens interact directly with airway epithelial cells and induce
the release of inflammatory mediators, including cytokines and
chemokines. In most cases, however, the exact type of epithelial
cell responsible for the release of mediators is not described. Many
of the studies discussed below utilize immersed cultures of airway
epithelial cells, which are comprised primarily of basal cells (32);
basal cells have been shown to express receptors that can be acti-
vated by allergens (6, 33). Thus, we speculate that basal cells may be
the main cell type releasing cytokines and chemokines in response
to aeroallergen stimulations, although other epithelial cell types
may also be involved. There is more information on the responses
of epithelial cells, from different anatomical locations, to inter-
actions with allergens and these will also be discussed below. We
also discuss interactions of allergens with alveolar epithelial cells.
Although allergen particles may not be able to reach the alveo-
lar space, individual allergenic proteins may bind to other smaller
particles [i.e., diesel exhaust particles (DEPs)] and reach this area.

House dust mite
House dust mite allergens induced the release of CCL20 from
human airway epithelial cells, while cockroach allergens do not
have the same effect (34); CCL20 release in this study was depen-
dent on the interaction of β-glucan from HDM with dectin-1 on
epithelial cells and independent of proteinase activity. β-glucan
from HDM also induced CCL20 release from human nasal epithe-
lial cells, but in this case through interactions with TLR-2 (35).
Even though HDM-induced CCL20 release from human airway
epithelial cells was proteinase-independent, in mouse models of
allergic airway inflammation CCL20 release from airway epithelial
cells was shown to be proteinase and PAR-2-dependent (36).

Der p2, an HDM allergen without proteinase activity, induced
cytokine release from the airway epithelium through TLR-2 (37)
and TLR-4 (38) activation. Der p2 is shown to induce reactive oxy-
gen species (ROS) and ROS-mediated nerve growth factor (NGF)
release from airway epithelium (39), and NGF was found to be
important for the development of asthma features (40). An in vivo
study, using a model of tissue specific TLR-4 knockout, showed

that HDM-mediated allergic inflammation was dependent on the
interaction between HDM and TLR-4 on airway structural cells
(41). However, in this model, HDM-induced IL-25 and thymic
stromal lymphopoietin (TSLP) were not TLR-4 dependent. IL-25
and TSLP are vital mediators for the development of allergic sen-
sitization and are released primarily by epithelial cells. Thus the
presence of these mediators, in the absence of epithelial TLR-4,
shows a requirement of other receptors on airway epithelial cells
for the development of inflammation.

In line with this argument, HDM has shown proteinase-
dependent release of IL-25 from bronchial epithelial cells (42).
Moreover, a study also demonstrated that the inflammatory prop-
erty of HDM was mainly dependent on the proteinase activ-
ity of HDM extract (19). Der p3 and Der p9, HDM allergens
with serine proteinase activity, induced chemotactic mediators
CCL11 and granulocyte macrophage colony-stimulating factor
(GM-CSF) release from alveolar cells through PAR-2 (43).

Cockroach allergens
Cockroach proteinases can also activate PAR-2 (44) and PAR-
2-mediated release of CXCL8 from human alveolar (45) and
bronchial epithelial cells (46) as well as CCL20 and GM-CSF
from mouse tracheal epithelial cells (36). Cockroach allergens can
also induce the release of IL-33 (47) and IL-25 (42) from human
bronchial epithelial cells, but the role of proteinases in this instance
is not clear.

These studies have primarily used HDM and cockroach whole
body extracts to study their interactions with epithelial cells. How-
ever, humans are exposed to HDM and cockroach frass in their
daily lives. It is true that majority of the allergens that are present
in frass are also found in whole body extract (48, 49), allowing
us to consider results from crude extracts. Antigen characteristics
and abundance may also vary to some degree between species (50,
51) and the composition of allergen extracts varies from manu-
facturer to manufacturer (28, 49). These differences make at times
the studies difficult to interpret and impossible to compare.

Fungal allergens
Alternaria alternata is the best studied fungal species for interac-
tions with epithelial cells. It has been shown to induce proteinase-
dependent IL-6 and CXCL8 release from alveolar (20) and
bronchial epithelial cells (52); cytokine release from bronchial
epithelial cells was shown to be PAR-2-mediated. Apart from these
mediators, A. alternata has also been shown to induce PAR-2-
mediated release of GM-CSF (52) and TSLP (53) from bronchial
epithelial cells, as well as release of IL-33 (47) and IL-25 (42).
Involvement of proteinases in the release of IL-33 and IL-25 is
not clear. Aspergillus fumigatus (54) and Cladosporium herbarum
(20) also induced proteinase-dependent release of IL-6 and CXCL8
from an alveolar cell line. Purified serine proteinase Pen c13 from
Penicillium citrinum showed to induce CXCL8 in alveolar cell
line and primary cells through PAR-1 and PAR-2 activation (55).
Similarly, another purified serine proteinase Pen ch13 from Penicil-
lium chrysogenum induced CXCL8, prostaglandin E2 (PGE2), and
transforming growth factor-β (TGFβ) from A549 and primary
human bronchial epithelial cells (25). Fungal extracts, similarly
with HDM and cockroach extracts, possess chitin and it has been
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shown that chitin can induce CCL2 from a mouse airway epithelial
cell line (56) but the effect of chitin on human airway epithelial
cells have not been studied.

As discussed, allergens from HDM, cockroaches, and fungi are
able to activate PAR-2 receptors, which are expressed through-
out the airways. In vitro PAR-2 activation has been shown to
release mediators from cells of different phenotypes, which are
present in the airways, for example, IL-25 (42) and PGE2 from
bronchial epithelial cells (7), matrix metallopeptidase 9 (MMP-9)
from small airway epithelial cells (57), and CCL2 from alveolar
epithelial cells (58).

Pollens
Pollen grains are complex structures containing proteins with
and without enzymatic activity. We saw in the previous section
that proteinases released from pollen grains can alter epithelial
integrity; however, pollen-mediated release of mediators has been
found to be proteinase-independent (19). Pollen extracts induced
release of IL-6, CXCL8, GM-CSF (19), and TGF-β (59) from airway
epithelial cells was independent of enzyme activity or lipopolysac-
charide (LPS). Pollens also induced IL-25 from bronchial epithelial
cells (42), but the mechanism of release is not known. Finally,
pollen grains contain NADPH oxidases, which increase intra-
cellular ROS in epithelial cells (60), and thus increase oxidative
stress.

A number of the studies discussed here have been carried out
with purified allergens and others with crude extracts that contain
a great number of different allergens. An in vitro study compared
inflammatory mediators induced by a purified grass pollen aller-
gen Phl p1 (61) and a crude grass pollen extract (GPE) (62) in
a human epithelial cell line. Both stimuli induced many com-
mon mediators; however, purified Phl p1 induced the release
of granulocyte-colony stimulating factor (G-CSF) while GPE
induced CCL3, CCL4, and CCL5. In addition to this differential
regulation, the most important difference was that the purified Phl
p1 upregulated CCL28 and downregulated TSLP, but the opposite
regulation was evident for GPE (63). The authors suggested that
the whole extract can have other inhibitory or stimulatory com-
ponents which could be crucial to overcome/maintain the disease
phenotype. This observation was supported by an in vivo study,
which showed that a purified HDM allergen induced mild late
asthmatic responses compared to complete allergen extracts that
induced severe responses (64). Thus, it is advisable to use whole
allergen extract for studies, which will mimic real life conditions.

Furthermore, the concentrations of allergens used for in vitro
and/or in vivo studies may not be close to physiological concentra-
tions encountered by human airway epithelial cells in vivo. Since
biological responses are often dependent on the concentration of
a protein in addition to the affinity of the ligand for its receptors,
results seen in studies may not be similar with what would happen
in vivo in humans.

Synergy with other inflammatory mediators
An important question is why aeroallergens do not induce inflam-
mation in non-asthmatic individuals if they can directly activate
epithelial cells. One possibility is that the tissue microenvironment
where allergen–epithelial cell interactions take place influences the

final outcome of these interactions. Asthmatic airways, in contrast
to healthy airways, are characterized by the presence of chronic
allergic inflammation. The levels of Th2 inflammatory cytokines
such as IL-4 (65), IL-13 (66, 67), and fibrogenic mediators, such
as TGF-β (68), are increased in asthmatic airways. There is evi-
dence of synergy for HDM allergens with IL-4 and TGF-β to
induce release of the Th2 chemoattractant CCL17 from airway
epithelial cells (69). HDM also showed synergy with IL-4 and
IL-13 for induction of CXCL8 and GM-CSF release from air-
way epithelial cells (70). Interestingly, IL-4 also enhanced TSLP
release in response to A. alternata (53), while the Th1 cytokine
interferon gamma (IFNγ) inhibited TSLP induction. TSLP plays
an important role in allergic sensitization and thus this obser-
vation reflects the importance of the tissue microenvironment
in the development of immune response. Cockroach allergens
acted synergistically with TNF to induce PAR-2-mediated CXCL8
(71) and MMP-9 (72) release from airway epithelial cells. Finally,
PAR-2 activation has also shown synergy with IL-4 for TSLP
release (53) and with LPS for CXCL8 release and PAR-2 mRNA
expression (73).

In addition, cytokines released by epithelial cells after direct
activation by allergens may subsequently activate epithelial cells
to release other mediators. For example, direct interaction of
epithelial cells with allergens caused TSLP release (53), which
could in turn activate epithelial cells to release IL-13 (74). Fur-
ther, IL-13 acted on airway epithelium to induce periostin (75) and
CCL11 (76) release. It was also shown that HDM allergens induced
TLR4-mediated IL-1α release from human airway epithelial cells,
which acted in an autocrine manner to induce dendritic cell (DC)
chemoattractants IL-33 and GM-CSF from airway epithelial cells
(77). Inflammation could therefore be perpetuated by this “loop
effect”that allergens and cytokines/chemokines exert on the airway
epithelium.

Asthmatic vs. non-asthmatic airway epithelial cells
A second important question is whether there is a difference
in the allergen-induced response between asthmatic and healthy
airway epithelia. Attempts to address this question have used
cells isolated from the airways of asthmatic and non-asthmatic
individuals; these cells retain their characteristics after culture
in vitro (78). According to one study, untreated cells from HDM-
allergic patients showed higher basal expression for genes reg-
ulating cytokines, chemokines, and growth factors compared to
cells from non-allergic subjects (79). This upregulated expression
in the absence of stimulus could be because of asthma-induced
epigenetic changes in the epithelium, which could result in con-
stant increased amounts of mediator release. Other studies have
also shown that HDM allergen-mediated activation of airway
epithelial cells from asthmatic patients, and not from healthy indi-
viduals, release CCL20 (80) and transforming growth factor-α
(TGFα) (70), which can cause DC chemotaxis and cell prolif-
eration, respectively. The latter manuscript has also shown that
cells isolated from asthmatic individuals demonstrate a tendency
for increased release of CXCL8 and GM-CSF upon HDM stim-
ulation. These differences could be responsible for the altered
immune response to allergens seen in the airways of asthma
patients.
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Effect of epithelial phenotype
We have already discussed the phenotypic and functional hetero-
geneity of airway epithelial cells. This heterogeneity may explain
different epithelial responses to allergens depending on the part of
the airways where the interaction takes place. There is substantial
experimental evidence showing that cells from different compart-
ments of the airways may respond differently to allergens. The
HDM allergens Der p2 (81, 82) and Der f2 (82), which have no
proteinase activity, induced IL-6, CXCL8, G-CSF, GM-CSF, CCL2,
and CCL20 from bronchial epithelial cells, but not from alveo-
lar epithelial cells, while HDM allergens with proteinase activity
induced IL-6, CXCL8, and CCL2 release from alveolar epithelial
cells (19) and CCL2 release from bronchial epithelial cells (80), but
not from nasal epithelial cells (19). In addition,A. fumigatus (54) as
well as timothy grass and birch pollens (19) showed CCL2 release
from alveolar epithelial cells, but not from bronchial epithelial
cells. This information may indicate that in the case of inhalation
of multiple allergens, different allergens act on the upper and lower
airway epithelial cells causing release of a variety of inflammatory
mediators. Also receptors activated by allergens show heterogene-
ity in their pro-inflammatory responses. Small airway epithelial
cells demonstrated PAR-2-mediated CCL11 release (83), while
PAR-2-mediated activation of bronchial epithelial cells did not
induce the release of CCL11 (52, 84).

In conclusion, interactions between aeroallergens and airway
epithelial cells are complex events that are influenced by a number
of factors as discussed above. A plethora of mediators are released
from airway epithelium as a result of these interactions. In the
subsequent sections, we will discuss the effects of these mediators
on different immune cells, and thus on the immune response.

ROLE OF RELEASED MEDIATORS IN SHAPING THE IMMUNE
RESPONSE
As we mentioned above, allergen–airway epithelial cell interac-
tions participate in both the development of allergic sensitization,
and in the development of allergic airway inflammation in sen-
sitized individuals. Here, we will describe the role of various
epithelial-derived mediators in these two processes.

ROLE IN ALLERGIC SENSITIZATION
Tight junction disruption induced by allergens, as has been dis-
cussed above, may facilitate antigen penetration and uptake by
DCs,an important first step toward allergic sensitization. However,
there is evidence regarding mechanisms, other than TJ disruption,
which aid allergen uptake by DCs (85, 86). Another crucial fac-
tor required for the development of allergic sensitization is the
presence of a favorable microenvironment for DCs. Allergen–
airway epithelium interaction results in release of mediators,which
provide a favorable environment that supports DC maturation,
activation, and also directs DCs interaction with CD4 T cells
toward Th2 phenotype, resulting in allergic sensitization and aller-
gic inflammation (87). Most of these studies were done with HDM
and cockroach allergens. However, these mechanisms could also
be applied to pollen and fungal allergens as they also activate TLR-
2, TLR-4, Dectin-1, and PAR-2 receptors that are important for
HDM and cockroach effects. Some of the studies showing this
effect will be reviewed here.

Allergen-mediated activation of PAR-2 on airway epithelial cells
could induce CCL2 release (58), while dectin-1 (34) and TLR-2
(35) activation resulted in the epithelial release of CCL20; CCL2
(88) and CCL20 (89) are chemoattractants for immature DCs.
This will result in the recruitment of the immature DCs to the air-
ways, facilitating the first step toward the allergic sensitization, i.e.,
allergen–DC interaction and allergen uptake by DCs. CCL2 has
been shown to play a role in the generation of Th2 responses in
mouse models of allergy (90) and also of airway hyper-reactivity
(91), a consequence of allergic sensitization. It is interesting that
bronchial lavage from allergic asthmatics showed increased CCL20
(80), which indicates that this mechanism may be also important
in vivo in humans.

Mediators released by the epithelium upon allergen interac-
tions, such as TSLP (92), IL-25, and IL-33 (93), act on DCs to
induce OX40L expression. This expression of OX40L on DCs is
vital for the development of T cells into the Th2 phenotype (94).
In mouse models, interaction of OX40L expressing DC with OX40
on T cells resulted in increased expression of IL-4 (95), which
induces T cell differentiation to Th2 cells. Recent evidence showed
the inability of DCs to induce Th2 responses in the absence of
GM-CSF, another epithelial-derived mediator (96), suggesting a
role of GM-CSF in the development of a DC phenotype that pro-
motes Th2 response. In addition to its role in the development of
antigen-specific Th2 cells, IL-33 may also play a more direct role in
the development of humoral immune responses to inhaled aeroal-
lergens, although the exact mechanism is not clear (97). Finally,
IL-33 may also have other pro-inflammatory effects in allergic air-
way inflammation by supporting eosinophil survival (98) and IL-4
and IL-13 release from basophils (99).

In conclusion, proteinase activity of allergens may facilitate
entry and uptake of allergens by DCs, while components, with and
without proteinase activity, induce a cytokine/chemokine milieu
that supports DCs maturation and polarizes their interactions
with T cells toward development of Th2 responses.

ROLE IN ALLERGIC AIRWAY INFLAMMATION
Interactions of allergens with the airway epithelium are the first
events that take place after allergen inhalation by an allergic indi-
vidual. The mediators released from these interactions play an
important role in the development of airway inflammation by
acting as chemotactic or survival factors for inflammatory cells.

As mentioned previously, CCL2 (88, 100) and CCL20 (89)
recruit monocytes or immature DCs to the site of inflammation.
DCs can also act as inflammatory cells and promote inflammation
in sensitized individuals (101). GM-CSF increases eosinophil sur-
vival (83), while CCL11 acts as chemoattractant for eosinophils to
the airway (102). Airway epithelial cells also release neurotrophins
under allergic inflammatory conditions that increase eosinophil
survival (103).

Allergens mediate release of TGF-β (59). TGF-β is increased
in the asthmatic airways and its release was further increased
after allergen challenge (68). TGF-β has been shown to induce
more extensive epithelial-mesenchymal transition (EMT) in vitro
in airway epithelial cells isolated from asthmatic individuals com-
pared to cells from healthy individuals (104). In addition, TGF-
β-treated, but not untreated, airway epithelial cells undergo EMT

Frontiers in Immunology | Molecular Innate Immunity April 2015 | Volume 6 | Article 147 | 6

http://www.frontiersin.org/Molecular_Innate_Immunity
http://www.frontiersin.org/Molecular_Innate_Immunity/archive
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upon HDM exposure in vitro (105). These observations raise the
possibility of differential effect of allergens on airways of asthmat-
ics vs. non-asthmatics but their significance has to be validated
in vivo. Moreover, TGF-β has found to be involved in airway
remodeling by inducing airway smooth muscle cell proliferation
and increased mucus production (106). Other released media-
tors from the airway epithelium, such as IL-25 (107) and TSLP
(108), are also involved in airway remodeling. Finally, a recent
human study showed that neutralizing TSLP not only prevents
the allergen-induced increase in exhaled nitric oxide and blood
and sputum eosinophils, but also decreases their levels in mild
allergic asthmatics (109).

Allergen-induced epithelial release of MMP-9 has not been
reported; however, we have shown that activation of PAR-2, which
is a target of allergen-proteinases, causes MMP-9 release from air-
way epithelial cells (57). Increased presence of MMP-9 in sputum
has been observed in patients with severe asthma (110). The same
study showed that after allergen challenge, MMP-9 activity was sig-
nificantly increased in severe and mild asthmatics. MMP-9 could
be responsible for airway remodeling by degrading extra cellular
matrix (ECM).

As discussed, the activation of airway epithelial cells by aller-
gens also releases CXCL8 and IL-6 (19, 20, 45, 81). CXCL8 may
be a chemoattractant for eosinophils in allergic individuals (111),
but it may also contribute to the neutrophilia seen in the airways
in cases of acute asthma exacerbations or severe asthma (112).
IL-6 has been found to be upregulated in severe asthma (113),
but its role in asthma is uncertain as it possesses both pro- and
anti-inflammatory properties (114).

The majority of these mediators released by the epithelium are
also released by other immune cells in the airways. Thus, it would
be an overstatement to conclude that the epithelial cell is the sole
cell type responsible for the above mentioned responses. How-
ever, when HDM allergen-mediated epithelial NF-κB activation
was inhibited in vivo, allergen-mediated inflammatory mediator
release, inflammation, and remodeling was significantly reduced
(115). This observation depicts that the mediators release by
airway epithelium upon allergen-airway epithelium interactions
contribute significantly in the development of allergic sensitization
and allergic inflammation.

INTERACTIONS BETWEEN ALLERGENS AND POLLUTANTS
Pollutants are a major pro-inflammatory component of inhaled
air and constitute a major health concern (116, 117). Pollutants
are present in indoor and outdoor environments and can be
gaseous such as ozone and nitrogen dioxide or particulate mat-
ter such as DEPs and cigarette smoke (CS). Direct interactions
of these inhaled pollutants with airway epithelial cells have been
discussed quite extensively elsewhere (118–121). More interest-
ingly, the simultaneous presence of pollutants and aeroallergens
in the air results in complex interactions between the two. Pollu-
tants exert direct effects on aeroallergens but also alter the host
responses to inhaled aeroallergens.

POLLUTANT EFFECTS ON AEROALLERGENS
Indoor and outdoor airborne particles carry aeroallergens. HDM
and cockroach allergens are found in general on particles with a

median diameter of 10–30 µm (122), while cat and dog allergens
are found on particles with 5 µm mass median diameters (123,
124). Suspended particulate matter in homes can carry dog, pollen
(125), and cat allergens (126). DEPs, a major outdoor particulate
pollutant, have also been shown to bind pollen, dog, cat, and HDM
allergens (125, 127). Because of their very fine size, DEPs can facil-
itate penetration of these allergens into the lungs and therefore
increased numbers of pollution particles may increase the amount
of allergen interacting with the epithelium.

It has also been shown that DEPs can disrupt pollen parti-
cles causing release of allergenic sub-pollen particles. Interestingly,
detailed analysis of pollen obtained from areas with pollution
showed increased presence of allergenic proteins (128, 129), which
resulted in a higher allergenic property of the allergen (128).
This may be another mechanism by which pollution increase
allergen–epithelial interactions.

Finally, the effect of climate change and pollution on the aller-
genicity of pollen has been studied. Comparing recent and a
decade-old pollen extract, the authors showed that the allergenic
potency of the recent pollen extract was higher (130). It was fur-
ther shown that the recent pollen extract harvested from the urban
area had a higher allergenic potency than the recent pollen extract
from suburb. Recently, the same authors also demonstrated that
the recent pollen extract from an urban area, which has faced
the climate change and increased pollution, was more effective at
inducing transepithelial permeability and ROS production in the
cultured airway epithelial cells (131).

POLLUTANT EFFECTS ON AEROALLERGEN-INDUCED RESPONSES
The effects of various pollutants on the development of allergic
sensitization and allergic airway inflammation have been an area of
intense research in both animal and human systems. The first evi-
dence 30 years ago showed that inhalation of ozone (132, 133) and
DEPs (134) increase sensitization to inhaled allergens as measured
by the presence of antigen-specific IgE (132) and subsequently
resulted in increased anaphylactic sensitivity upon the allergen
challenge. Inhalation of suspended particulate matter along with
an allergen has shown to act as an adjuvant and increase IgE pro-
duction (135). Similarly, in a human study, DEPs, when inhaled
with allergen, promoted Th2 inflammation and allergen specific
IgE (136).

The mechanisms of this priming/sensitization effect of pollu-
tants have been studied in detail. Interestingly, mice exposed to the
pollutant nitrogen dioxide prior to allergen exposure developed
TLR2, MyD88, and NF-kB dependent sensitization to the allergen,
resulting in Th2 inflammation and airway hyper-responsiveness
(137). Pollutants such as ozone (138) and nitrogen dioxide (139)
can induce maturation of CD11c+myeloid DC and increase anti-
gen uptake and antigen-presenting activity of DCs. DEPs and
ambient particulate matter upregulated TSLP in bronchial epithe-
lial cells (140) and DEP-induced TSLP can promote myeloid DCs
maturation (141) and increase OX40L expression (142), favoring
Th2 inflammation. These, and possibly others, are some of the
mechanisms of increased allergic sensitization in the presence of
pollutants.

The effects of pollutants on allergen-induced responses in sen-
sitized individuals have also been studied in vivo. Motorcycle
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exhaust particles (143) and DEPs (144, 145) can increase air-
way hyper-responsiveness to allergen and allergen-mediated early
and late inflammatory responses in different animal models of
allergy. Similarly human studies have shown that prior exposure
to pollutants such as ozone, nitric dioxide alone or in combination
with sulfur dioxide increased bronchial responsiveness to pollen
(146) and HDM allergens (147–149) and also amplified airway
inflammation (150, 151).

The in vivo studies discussed above, however, do not allow us to
identify the cells involved in pollutant–allergen interactions. The
airway epithelium would be expected to play a significant role in
these effects, especially since pollutants can directly activate airway
epithelial cells. Nitrogen dioxide increased epithelial permeability
and induced leukotriene C4 synthesis (152). Moreover, nitrogen
dioxide (153), DEPs (154), and ozone (155) induced CXCL8,
GM-CSF, and TNF from cultured airway epithelial cells. As was
shown for allergen–epithelial cell interactions, ozone and nitro-
gen oxide released more inflammatory mediators from epithe-
lial cells from asthmatics than those from healthy donors (156).
This observation indicates that pollutants induce a different pro-
inflammatory environment in the airways of asthmatics compared
to non-asthmatics.

Limited data exist regarding the effect of pollutants on allergen–
airway epithelium interactions. These studies have been per-
formed primarily with alveolar cell line A549; because of the
fine size of allergen-carrying pollutant particles, these particles
can reach to alveolar space and therefore may affect alveolar
epithelial cells. Studies have shown that exposure to submicron
particles and allergen individually or in combination induced
alterations in cellular morphology (increased microvilli), func-
tions (increased lysozyme and surfactant-producing multilamellar
bodies) (157), and metabolic activity (damage to mitochondria,
tonofilaments, and rough endoplasmic reticulum) in lung epithe-
lial cells (158). Sodium sulfite and HDM acted synergistically
for detachment of the cells (159), which could cause inflamma-
tion and decrease epithelial barrier integrity. Further, exposure of
these cells to the combination of pollen grain-Pb (160) and pollen
allergens-DEPs (161) caused significant increase in IL-5 mRNA
and Th2 cytokines release, respectively, from airway epithelial
cells.

In summary, apart from having inflammatory effects on their
own, pollutants can increase the concentration, exposure, and
allergenic property of aeroallergens. Thus, pollutants exert a prim-
ing effect on immune system for allergens and also increase
inflammatory responses to allergens.

Apart from these pollutants discussed so far, CS is a major
factor influencing allergic sensitization and asthma. Smoking is
a major source of indoor particles (162). Maternal smoking has
been shown to increase the risk of asthma development in chil-
dren (163). Using animal models, it has been shown that pas-
sive smoking acts as an adjuvant to increase allergen-mediated
allergic immune responses (164) and airway remodeling (165).
Effects of CS on airway epithelial cells are similar to other
pollutants, i.e., increased allergen-mediated epithelial permeabil-
ity and inflammatory properties, which have been reviewed in
detail (166, 167).

CONCLUSION
Current literature establishes the airway epithelium as an innate
immunity organ that senses inhaled allergens through an armory
of receptors, and initiates innate and adaptive immunity. This
potential has been established clearly through in vitro studies,
although more detailed in vivo studies are still needed to validate
these results.

Two approaches could improve our understanding regarding
the role of airway epithelium in allergic inflammation. In vitro
co-culture of epithelial cells grown in ALI with one or more of the
other immune cells that may play a role in allergic inflammation,
such as DCs and T cells, in the presence of particular allergens may
clarify the sequence of events leading to the development of allergic
airway inflammation. These studies should be coupled with in vivo
models utilizing airway epithelium-specific strains of knockout
mice. These studies should start with tissue-specific knockouts of
epithelial receptors interacting with allergens and continue with
similar knockout strains of signaling molecules. These studies may
reveal common links between major allergens for their interac-
tions with the airway epithelium and improve our understanding
of the basic mechanisms leading to allergen-specific sensitization
and inflammation.
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