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Airy kernel with two sets of parameters in directed
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Abstract

We introduce a generalization of the extended Airy kernel with two
sets of real parameters. We show that this kernel arises in the edge
scaling limit of correlation kernels of determinantal processes related to
a directed percolation model and to an ensemble of random matrices.

1 Introduction and results

The Airy kernel is one of the most fundamental objects of Random Matrix
Theory. The determinantal random point process governed by the Airy ker-
nel describes the behavior of the largest eigenvalues of large Gaussian Her-
mitian random matrices (a.k.a. GUE — Gaussian Unitary Ensemble), see
[6], [10], [25], last passage time in directed percolation models in a quadrant
[17], asymptotics of the longest increasing subsequences of random permu-
tations [I], and it also appears in many other problems whose list is too long
to be included here.

The Airy kernel has a time-dependent version usually referred to as
the extended Airy kernel. Originally obtained in [24] via asymptotics of
a polynuclear growth model in 14+1 dimensions, the extended Airy kernel
arises in virtually every problem where the usual Airy kernel comes up, pro-
vided that the probability measure in question is equipped with a natural
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Markov dynamics that preserves the measure. In particular, it describes the
edge scaling limit of Dyson’s Brownian motion on GUE, the change in the
quadrant last passage time when the observation point moves [I8], and edge
behavior of large random partitions under the Plancherel dynamics related
to the longest increasing subsequences of random permutations [4]. The
Extended Airy kernel has also appeared in a much earlier note [19], and we
are very grateful to a referee for pointing this out.

In [2] it was demonstrated that the Airy kernel is not stable in the sense
that it can be naturally viewed as a point in a family of Airy-like kernels
indexed by a finite set of real numbers. In the context of GUE, those are
the (scaled) eigenvalues of a deterministic perturbation of finite rank, and in
the percolation context the parameters correspond to a few defective rows
or columns in the quadrant. For Wishart ensembles of random matrices, the
same family of kernels was later obtained in [7]. Time-dependent extensions
of kernels from this family appeared in the recent work [14] on asymptotics
of the totally asymmetric simple exclusion process (TASEP).

The main goal of this note is to introduce a new Airy-like time-dependent
correlation kernel with two sets of real parameters. We obtain it as a limit
of a directed percolation in a quadrant which has both defective rows and
columns. We also show that the “static” version of the kernel arises in the
edge scaling limit of a certain Wishart-like ensemble of random matrices.
We were unable to obtain the extended version via random matrices but we
do believe that it should be possible. Our kernel generalizes all the kernels
mentioned above.

Let us describe our results in more detail.

Consider a directed percolation model with exponential waiting times
defined as follows. Let my,...,mp, T1,..., 7, be fixed real numbers such that
mi+ 75 >0 forany 1 <i,5 < p. Let W = (Wjj)i=1,.p be a p x p array
of independent exponential random variables with E(W;;) = (m; + #;) L.
For any 1 < N < p, we consider the so-called last passage time in this
percolation model:

Y(N,p) :=max Wij, (1)
(ij)epr

where II is the set of up-right paths from (1,1) to (NN, p). The random vari-
able Y(N,p) has a natural interpretation in terms of queuing theory, due to
the result of [13]. This is the exit time of the pth customer in a series of N
files where the service times W;; depend on both the file and the customer.
This random variable also has an interpretation in terms of TASEP, which



is a model of interacting particles on Z. One starts with the initial config-
uration 79(i) = 1z_ (i), meaning that only the negative sites are occupied.
Then, if the site ¢ 4+ 1 is unoccupied, the particle at site ¢ jumps to site i 4 1
after a random waiting time. The waiting times are independent exponential
random variables whose parameters depend on the particle and the number
of jumps already performed by this particle. One can think of W;; as of the
waiting time of ¢th particle from the right performing the jump number j.

We first prove the following result.
Let X be a p x N random matrix with independent complex Gaussian
entries

XUNN<0, ! > @)

T+ ﬁ'j
Theorem 1. Let A\ be the largest eigenvalue of XNy Xy, Then, for any x,
P(Y(N,p) <z) =P\ < x).

A natural question is then to investigate the above connection as a pro-

cess. Consider a sequence of growing random matrices (Xj)r=1, ., where
Xk41 is obtained from Xj; by adding one column with random Gaussian
entries (with the appropriate variance). We can then consider the joint dis-
tribution of the largest eigenvalues of the random matrices X X/, 1 < k < p.
Simultaneously, one can consider the joint distribution of the random vari-
ables Y (k,p), 1 < k < p. Are these joint distributions the same? We cannot
establish that the equality actually holds, due to the fact that the compu-
tation of the joint eigenvalue distribution of the random matrices X3 X; is
not an easy task Nevertheless, we can study a determinantal point process
which occurs naturally in both models and obtain a new limiting correlation
kernel, which generalizes the extended Airy kernel.
Let Jy, Jo be given integers, and X = {x1,z2,...,z5}, Y ={y1,92,...,y5}
be given sets of real numbers satisfying x; > y; for any 1 < ¢ < J; and any
1 <j < J,. Let v and I" be the contours defined on Figure [I] below.

Denote by K a;(t1,x;t2,y) the extended Airy kernel

/ e ME82) Aj(y + N)Ai(z 4+ N)dA | if ¢ > to,

KAi(t17$;t27y) = 0 0 (3)
—/ e M=) Ay 4+ N Ai(z 4+ N)dX | if ) < to.

1 As was pointed out to us by Peter Forrester, the equality can be established in the
degenerate case when all 7; tend to the same constant using the techniques of [12], see
Appendix to [I1].
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Figure 1: The contours of the parameterized extended Airy kernel.

Definition 1. The extended Airy kernel with two sets of parameters is de-
fined by

1
Kaixy(ti, z;t2,y) :KAi(tlw'E?t%y)"‘W/yda/FdT

— - : J J
ey 73 /3—x0+0°%/3 <1—1[ to+7—x; 1—2[ bto—y — 1> s (4)

THla—o—t \;Ghto—xi StatT—y

i=1
where the two contours v and T' are chosen as on Figure [

Remark 1. For any fixed values of ¢; and t9, the kernel of Definition [I]
is a finite rank perturbation of the extended Airy kernel. Indeed, by a
straightforward computation, one finds that

KAi;va(tl,a;;tg,y) - KAi(tl,x;t27y)

1 Ji1+J2
= 92 Z /dO’/dT YT [3-w0t0? /3
( Z7T) ki4ko=1 ¥ I

(—=Dk2(1 +tg — 0 — 1)1 the—l

> > ; : :
= (o +t— ) [T (7 +t2 —yj,)

1<y <oy <J1 1K1 <o <Gy <2

(®)

Remark 2. One does not have to stop at considering finitely many pertur-
bation parameters. By taking limits with number of x;’s and y;’s going to



infinity, one arrives at the following kernel. Let {a;" }22, and {bF"}22, be four
sequences of nonnegative numbers such that Eioil(ali + b;t) < 00, and let
¢ be two positive numbers. Set

_ ctazte 2zt - (1+b+ )( —|—b_Z_1)
Pape(2) = € 1131 (1—a; 21 - a; 271 ’

(6)
Then the kernel

KAZ abc(t17$ t2, KAZ t17$ t27y)
7 32t 3 (@ (o 4 1)
do | dr = -1,
/ / TH+1ta—0—1 <q)a,b,c(7_ + tg) )
where the contours are chosen so that all points 1/ a;-" —t1 and a; —t; are
to the right of v, and all points —1/bf — t5 and —b; — to are to the left
of T', is readily seen to be a limit of kernels of Definition [Il Interestingly
enough, functions (@) also parameterize stationary extensions of the discrete
sine kernel, see [3]. They also appear as generating functions of totally

positive doubly infinite sequences [§], and as indecomposable characters of
the infinite-dimensional unitary group, see [22] and references therein.

The main result of this note is the proof that the kernel K 4;,xy arises
as a scaling limit of correlation kernels of the determinantal point processes
related to the directed percolation model in a quadrant, defined as follows.
Let 0 < t < 1 be a given real number and assume that there exist two
integers Ji, Jo, real numbers x;,1 < ¢ < Jy, y;,1 < j < Jop independent of p
such that:

Vit T
i = + 7
Vi+1l  apl/
Vi Yi
= — — , J=1,...,Js, w;=0,5> Jo.
J \/z + 1 apl/g ] 2 J ] 2
We consider the associated directed percolation model () and prove the
following result.
Set

1=1,...,J1; m=1,1> Jy;

(t(1 + )™

s =1+ 2 Y s, Yy =Y (pas,p) and aszp(1+\/a5)2.

Let also A% be the stochastic process whose finite dimensional distributions
are given by

PAF < &1y, AFY < &) = det(T — fR aix,y f)r2mmxmm)s



where f(tj,z) = ly>¢; and I'™ = {t1,...,t;,}. Here I'™ x R™ is equipped
with the product measure du ® d\ where dy is the counting measure and dA
denotes the Lebesgue measure.

Theorem 2. As p — oo,
p—1/3t1/6(1+\/£)4/3(}/s_0_8) _}Azxt’

in the sense of convergence of finite dimensional distributions.

The paper is organized as follows. In Sections 2 and B, we study the
directed percolation model and its connection to the random matrix model
defined in (Z). This connection is established using the Robinson-Schensted-
Knuth correspondence. In Section M, we study the correlation function of
the point process induced by the joint distribution of {Y (k, p)}i1<k<p. Last,
in Section [, we consider asymptotics of these correlation functions thus
obtaining the kernel of Definition [l

Acknowledgments. The first named author was partially supported by
the NSF grants DMS-0402047 and DMS-0707163. The second named author
was visiting UC Davis when this paper was written. She would like to thank
especially A. Soshnikov who allowed her to spend a great year at UC Davis
and encouraged this work.

The authors are also very grateful to Peter Forrester for a number of
valuable remarks.

2 Last passage time in percolation models with
exponential waiting times.

We start with some reminders. We denote a partition by A through-
out the paper. A partition is an infinite sequence of non-negative integers
(M, A2,y AN, .. .), where Ay > A9 > -+ > Ay > -+, with finitely many
nonzero entries. The Schur measure introduced in [2] is a measure on parti-
tions which assigns to a given partition A a weight as follows. Let aq,...,an
and by, ..., b, be given nonnegative real numbers. In what follows we assume
that a;b; < 1 for any 1, j.

Definition 2. The Schur measure with parameters a = (ai,...,ay) and
b = (bi,...,by) is a probability measure M on partitions assigning to a

partition \ the weight
1
M) = —sa(a)sr(b)- (7)
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Here Z is a constant, and sy denotes the Schur symmetric functions param-
eterized by \.

The normalizing constant Z is computed by the well-known Cauchy iden-
tity for Schur functions, which implies Z = H (1 —a;b;).
1<i<p,1<j<N

The Schur measure naturally occurs in some directed percolation models,
as we now recall. Let W = (wjj;)i<i<p,i<j<n be a p x N random matrix
with independent entries with the geometric distribution:

P(w;; = n) = (1 — a;bj)(a;b;)", for any n=0,1,2,.

One can associate to this random matrix the so-called last passage time in
a directed percolation model defined by

L(N,p) := max Z Wiy, (8)

Pell
(ij)eP

where II is the set of up-right paths from (0,0) to (p, N). This last passage
time can also be understood as the exit time of the Nth customer in a series
of p files with independent geometric waiting times of expectation depending
on both the files and customer.

The distribution of the random variable (8) can be conveniently ex-
pressed in terms of the Schur measure, as observed by K. Johansson in
[17], see also [1§]. He showed that

PL(N.p) <m) =2 3 sr(a)sa(h). )

This is a corollary of a more general fact that the Schur measure with pa-
rameters a and b is the image of the random integer valued matrix W under
the Robinson-Schensted-Knuth correspondence, see [17], [18].

We now turn to the description of a continuous version of the Schur mea-
sure. Another treatment of the same object can be found in Appendix A to
[12]. Set

/\

f,izl,...,p, and bj =1— L,j—l , N.

It is quite clear that the distribution random variable Y,(N, p) := %L(N ,D)
should converge as L — oo to that of the last passage time in a percolation

a,-zl—



model with i.i.d. exponential random variables with expectations 1/(m;+1;).
Define Y (N,p) as in ([Il). Taking the limit L — oo in (@) and denoting
x; = A/ L, one readily obtains in the case where N = p that

1 A~
P¥(pp) <o) =77 v det (€77, _ det <e—’”%)
p,p

Hdﬂcl, (10)

where Z,, = det( - )p , and I = [0,z]. The probability measure
7-]

it ) =

defined by the density

,Jl

1 —m;xi\P — X p
% det (e J)i,jzl det (e J)@j:l (11)
is the continuous version of the Schur measure.

The case N < p can be handled via the limit transition b; — 0, j =
N +1,...,p, from the case N = p. The analog of (I0]) reads

PN <) = [ det (fiay)) ) yden ()"

Hdﬂcl, (12)

ZN7p N 2,7=1
with py
k J} % s k= 1, vy N,
" 2mi HJ 1(u— 7))
and the integration contour going around the poles 7y, ..., m,.

The expression det ( fi(ajj))?[j:l can be obtained as the limit of the Jacobi-
Trudi formula for sy(a); it is also the limit, up to a constant, of the ratio

—mxi\P
det( ! ])Zj 1
[1 (zi — z5)
N+1<i<j<p
as TN41,...,Tp converge to 0.

3 A random matrix model associated to the con-
tinuous version of the Schur measure.

The goal of this section is to prove Theorem [1I

Let Xy be a p x N random matrix as in (). Set then My = XnyXy.
Thus defined random matrix ensemble is a natural generalization of the
much studied complex Wishart ensemble. In what follows we call it the
generalized Wishart ensemble. We show that the probability distribution of
the largest eigenvalue of My has a density given by the right-hand side of

(@)



Let us first consider the case where p = N. Similarly to the case of the
ordinary Wishart ensemble, one sees that the generalized Wishart ensemble
is defined by the probability density with respect to Lebesgue measure L,
on the space of complex matrices of size p X p:

dP(X
d(L ») = consty exp {—TrS1 X, X, — TrS2 X X}, (13)
P
where S7 = diag(my,...,mp), So = diag(@1,...,7,), and const, is a positive

constant. Just as for complex Wishart ensembles with non identity covari-
ance matrix, the joint eigenvalue distribution of the generalized Wishart
ensembles can be explicitly computed.

Denote by 1 > 29 > --- > x, the ordered eigenvalues of the sample
covariance matrix X, X;. Note that these eigenvalues are also the squared
singular values of X,,. Let f(x1,...,z,) denote the density with respect
to Lebesgue measure of the joint eigenvalue distribution induced by the
generalized Wishart ensemble.

Proposition 1. One has

1 R P
T, ..., xp) = —— det (e7™%)P det (e_”ﬂk> .
[z ») Zpp ( )w:l J,k=1

Proof of Proposition Il Introduce the polar decomposition of the p x p
matrix X,: One has

X =UDV with U <€ U(p), D =diag(\/z1,...,/Tp), and V € U(p).

The joint eigenvalue distribution induced by the probability measure (I3))
can now be computed thanks to the celebrated Itzykson-Zuber-Harisch-
Chandra (IZHC) integral. We have

f(xl, - 7:L'p) = const - V(Z’)z/ e—TrS'lUDzU*dU/ e_TrS2VD2V*dV
U(p) U(p)

In the above expression, V(x) is the Vandermonde determinant: V(z) =
[ic; (@i — 2;). The IZHC formula yields

—m;xi \P
/ o~ TrSWUDAU* grr det (e ); O
U(p) V(x)V(m)

The proof that the largest eigenvalue of Xy X} has the same distribution
as the random variable Y (NN, p) can now be obtained from Proposition [l and
formulas of the previous section by the limit transition 7n41,...,T, — 00.

This finishes the proof of Theorem [I1 U




4 A continuous version of the Schur Process

In this section, we define a random point process which is a continuous
version of the Schur process introduced in [23]. We consider the probability
distribution on [[¢_, RZ_ with density w.r.t. Lebesgue measure given by

-1

1 o D b s E+1_ e\ k+l .

7 det (6 WZSC?)' ' H det (6 *7Tk+1(1'j xl)> e ﬂlx%. (14)
P 1,5=1 k=1 1,j=1

Here we used the convention that x’]z 41 =0forany 1 <k <p-—1, and the
notation A
e—*fr(x—y) _ e—w(m—y)7 r >y,
0, otherwise.

The probability distribution (I4]) naturally arises here since the distribution
of maszl,m,p{a:? } is equal to the probability density function of Y (p, p) (see
Formula ([I0))).
Let C (resp. C’) be a contour encircling the {m;};=1,. p (vesp. {—7;}j=1,. p)
such that the two contours do not cross or contain each other. Set
U, s(u,v) = 1,51 L?ée“’(”_“) f[ ! dw
r,s\ Wy - trlstu<v 2 o o w —l-ﬁ'k .

The main result of this section is the following statement.

Theorem 3. The random point process on {1,...,p} x R defined by the
density (I4)) is determinantal, and its correlation kernel has the form

K(r,u;s,v)

1 WU—2zUu T ~ I
_ _,fdz e VTSRO St SRR
(2mi)? Jo o w—2z [[1_(w+ ) pabet ’

(15)

Let us briefly discuss the connection with the (discrete) Schur process. A
version of the Schur process has a natural interpretation in terms of the last
passage percolation model discussed in Section @l Let again W = W® be
the p x p matrix filled with geometrically distributed integers, and let W),
k < p, be the p x k matrix made of first & columns of . Denote by A(*) the
image of W %) under the Robinson-Schensted-Knuth correspondence. Then

10



the joint distribution of ()\(1), . )\(p)) is given by the Schur process: It has
the form

const - sy (a1, -, ap)Sx) -1 (bp)Sxy-1) a2 (bp—1) =+ Sy /2 (b1),

(16)
where the notation s,/ stands for the skew Schur function. Considering
the case where the a;’s and b;’s approach 1 (a; = 1 — m/L, b; = 1 —
7j/L and L — o0), we can then define the continuous limit of the Schur
process, which leads to (I4). In the context of the percolation model, the
probability distribution (I4]) can be understood as the joint distribution of
the random Young diagrams obtained by the RSK algorithm applied to
matrices filled with independent but not identically distributed exponential
random variables; the expectation of the (i, j)th entry is equal to (m;+7;) L.

Theorem [3] could be derived from a limiting argument for the correlation
kernel of the Schur process, but we prefer to give a self-contained random
matrix oriented proof of Theorem [B] below.

The probability distribution (I4]) can also be viewed in the random ma-
trix theory context of the previous section. For 1 < k < p, define X to
be the p x k£ matrix whose k columns are the first k£ columns of X,,. Then,
M}, = X3, X} is a p x p random matrix of rank k. We denote by xf, 1<i<k
its nonzero eigenvalues. The formula (I4]) provides a good candidate for the
joint distribution density of {z¥} in the sense that its projections to {:L'Z(k)}
with fixed k coincide with the densities of eigenvalues of M. Although we
were unable to verify that (I4]) is indeed the joint eigenvalue density for
(M, ..., M,), see the footnote on page 3 for a reference to a partial result.

Proof of Theorem [Bl We first consider an (algebraically simpler) aux-
iliary distribution and then use an appropriate limit transition to compute
the correlation functions associated to (I4)).

Instead of (I4]) let us consider the probability distribution defined as fol-
lows. Let 0 < Ty < Ty < --- < T,_1 < T, be positive numbers, and T = 7.
Define a probability distribution on (RE )P = {a:f }ri=1...p by the density

-1
1 i i\P L i g P i P
rdet (durah.al))]  TTdet (onn(ehaln))  det (dppmrlaoad,))
p YT =1

i,j=1 1,j=1
(17)

11



where ¢ 1 (2, ) = e iz brri1(x,y) = e~ *r+1(y=2) and Gppt1(x, xiﬂrl) =
e % Set

Ui (xh,v) = B 0,1 (xh, 1)
R
s—2 s—1
<H Pk o1 (T, $k+1)> bs1s(zs1,0) [ ] das,
k=1 i=1
\I’hp—l—l(ua‘ri)-u) = .- Grr+1(U, Try1)
RE™"
p—1 _ p
< II ¢k,k+1(9€kal’k+1)> Sppri(@psal ) [T dai,
k=r+1 i=r+1
\Ilhs(u’z}) = 1T<s / ¢r,r+1(u7xT)
RST
s—2 s—1
< I1 ¢k7k+l(xka$k+l)) bs—1,5(xs-1,0) [ ] das.
k=r+1 1=
Lemma 1. For any 1 <14,57 <p and u,v > 0 we have
) 1 ewv 2 1
Ol (zh,v) = — j{ dw
0,8( 0> ) 270 w +Tz a1 w+ﬁ'k ’
. P 1
\IlT’yp-i-l(u?x;H-l) =e Y H ~
kri1 T T T
1 &5 1

“+00
A= Ol (2l u)T w, 75 )du = —
ij /0 0,5( 0, W)Yy py1(u, m5) T; + 7 fmo T T

1 3 5 1
\I,T’S(u’v) = lr<sluco % % ew(v u) H dw

w+ T
k=r+1 T

The integration contours are positively oriented loops that contain all poles
of the integrands.

The proof of Lemma [ consists of inductions on s for Was(xé,v), on
(p—r) for ¥, p11(u, ), ,), and on (s —r) for W,  (u,v). The formula for A;;
is proved by a straightforward residue computation.

Let us now apply the Eynard-Mehta theorem (see [9], [20], [26], [18], [5])
to compute the correlation functions of (I7). For 1 < r, s < p, denote

\IIZ:S(U7U) = 17‘<s/ ¢r,r+1(uv$?“)
R"

12



5—2 s—1
( 11 ¢k,k+1(wk,$k+1)> $s—1.5(xs-1,0) [ [ das-

k=r+1 i=r

Proposition 2. The random point process on {1,...,p} x Ry defined by
the measure (17) is determinantal, and its correlation kernel can be written
in the form

1 eWV—2zU
K ; = — d d
T(Tv us; s, U) (271'2)2 fél Z Ci w w— 2

[Ty (= + 1) 77 (w = m)(2 + T2)
oo LG myterz) ~ Yreme:08)

where the contour Ci encircles the mj,j = 1,...,p, the contour C{ encircles
the —7tj, =T}, for j =1,...,p, and the two contours do not cross or contain
each other.

Proof of Proposition The Eynard-Mehta theorem implies that the
random point process in question is determinantal, and that its correlation
kernel can be written as

p
Kr(r,u;s,v) = Z \IlT’yp-i-l(u? x;)+1)Ai_j1\I/(j]js (‘Téa v) — Wy s (u, v).
1,j=1

Using the formula for the determinant of the Cauchy matrix one explicitly

~! which together with the formula for \IJOT,s from Lemma [I]

computes A; i

yields
Krp(r,u;s,v) + U, s(u,v) =
p yY ~ p
- 1 _o(mi + 7) m; + T w — T
U, (w2l )=— ¢ WV k=2 - J dw,
; rpt( p+1) o7 [Tieo(w + 7%) ]131 w+Tj o T — T,

where the contour contains all poles of the integrand. A final residue com-
putation yields the integral expression (IS]). (]

We can now come back to the computation of correlation functions for
the probability distribution (I4]) and finish the proof of Theorem [Bl The
probability distribution (I4]) can be obtained from (I7) by taking the limit
T, > Tp—1 > --- > Ty — oo. The proof of Theorem [3lis now a straightfor-
ward corollary of Proposition 2 O

13



5 An extension of the Airy point process

In this section, we first consider the case where 7; = 0 and 7; = 1 for any
i =1,...,p. We then show that in this case, the suitably rescaled correlation
functions converge in the large-p-limit to those defined by the extended Airy
kernel. Then, to define a new extended Airy-type kernel with parameters,
we will allow a certain number of these parameters to depend on p and study
the rescaled correlation functions.

5.1 The simple case 7; =0 and m; = 1 for any i: the extended
Airy kernel.

The extended Airy kernel is an extension of the well-known Airy kernel;
it occurs for example as the limiting correlation kernel for the process of
largest eigenvalues of Dyson’s Brownian Motion on Hermitian matrices.
Lemmas 2 and 3 proved in this section are also a part of Proposition 5
of [11].
Let Ki(t1,x;t2,y) be the extended Airy kernel defined in (B]). Here we
show that, when suitably rescaled, the asymptotics of the correlation kernel

ePwv—pzu
Ky(r,u;s,v) = }{dz%dw
2772 C / -z

Hal B [T ). 10

which is a rescaled version of (IH]), is given by the extended Airy kernel.
Due to the choice of the 7;’s, and 7;’s, one can write that

f(p(r,u; s,v) 1 = Kp(r,u; s,v) + p¥, s(pu, pv)
= p dz | dweP Fos(W)=Fur(2) 1 :
(2im)? Je, e P

where Fyr(2) =uz +In(z —1) = Z1Inz.
Let 0 < t < 1 be some given real number independent of p. Let also 1, to
be given. In the following, we set

r= [tp +p2/3Mt1} = s1p, (20)

2/3 2VE(1 + V1)?

s = [tp +p tz] i= S9p, (21)

4/3
e Y o N i~ A C)

14



Here [z] stands for the integral part of x € R.

We first consider the case where s < r. Set ' := {te*?7/3 t ¢ Ry} to
be a contour oriented from bottom to top and v := {te*™/3 t € R, } to be
oriented from top to bottom.

Lemma 2. With the above rescaling, for s < r and zy := #\tﬂ we have

lim — P (Fur(20)=Fu,s(20) »(r,u;8,0)

P00 p2/3
3
eytz—mtl—k%(t?—t%) ) , eyt/_%_ms/JrL
= — ds dt ; ;
(2m) ~ r t—s" +ty— 11

_ put2—ati+5(t3—13) /OO e~ M=) Ai(y 4+ N) Ai(x + N)dA.
0

Proof of Lemma 2l It is convenient to define u, = (1 + \/5)2 and v, =
(1 + /52)?. The reason for the above rescaling ([20)-(22) is that

Fur(z) = Fur(2)(1+0(1))
= (Uoz +In(z — 1) —s1Inz)(1 4+ 0o(1)) := fs,(2)(1 + o(1)),

where the function fs, (z) has a degenerate critical point at

NG

Ze = —Y—— ~ 294+ O(p~ /3.

1
1+ /s,

In particular, one has that:

B 4
FL () = I (20) = 0, and f7(z0) = %

To obtain the leading term in the asymptotic expansion of K, we define

the following contours. Using the notation w, = %, set

Cip={z+ §etmB 0 < ¢ < 5,), Cr1={we+ tet?m/3 0 <t <6},

where d, > 0 and §; > 0 are constants that will be determined in the sequel.
These contours are completed as follows. Set 6, = arg(z. 4+ 6,¢'™/?) (resp.
01 = arg(w. + 8,2/ 3)), where arg denotes the argument of a complex
number. Set

C1,2 = {|wc + 5162i7r/3|ei0791 é 0 S 2T — 91]}7

15



Figure 2: The two contours C; and C}

Cro = {1+ |2+ 6,63 —1]e? 10| < 6,}.

The constant J, is also large enough so that the z-contour encircles all the

m;’s (even in the case where some of them differ from 1). It can then be
checked that

23? fso(w +ﬂ) __32(14‘\/5)(32—3(1_\/5)_’_2\/5)
ds 52 \We 1+ /sy B 2(s2 + 5 + 1)(s2 — sy/53 + 52)

for any s > 0 provided /s3 > 5 —V/96/2. If \/55 <5 —1/96/2, we set 6; to
be the smallest positive root of the polynomial X% — X (1 — /53) + 2,/55.
Otherwise §; is arbitrarily large. Similarly

seim/3 )> _ 214 /s1)(s* + s(1 — \/51) + 2¢/51)

<0

> 0,
1+ /sy 2(s?2 — s+ 1)(s2 4+ sy/51 + 51)

for any s > 0. We also have that if |0] is bounded

0
AL <f81(zc +

s o 83| supq £ (w)] gt
'pfsz <wc + m) _pfsz(wc) - fs(z)(wc)g S pl/;’ é Cpl/g‘

Here w = w,. + # lies in a compact subset 2 of C\ {0, 1}.

To complete the proof one needs to verify that on remaining parts of the
contours the integrand becomes exponentially small as p gets large. If we
set w := |w, + 01e*™/3|e? | and using the fact that v, = |w, — 1|72, one can
check that

R (gphalw) = =300) (v - 2 ) <0
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if 6 € [f1,7]. It is an easy computation to check the remaining parts of the
contours, and we omit it.

If we assume that t1,t5,z,y lie in a compact set of R, then the above
estimates imply that

e It is enough to integrate over a neighborhood of radius p—1/3p!/12—¢€ of
the critical points.

e Inside such a neighborhood the Taylor expansion holds.

Writing out this expansion explicitly yields Lemma 21 O

In the case s > r we cannot make the integration contours go through
their corresponding critical points so that they do not intersect. We then
modify the contours in a neighborhood of width p~'/3 of z, and w, so that
the w—contour remains on the left of the z—contour. This does not modify
the saddle point argument. We just need to consider the function W, ,
separately, which is done below.

Due to the rescaling of the correlation kernel, in the case where r < s, we
need to consider the asymptotics of

O p(Fur(20)=Foys(20)) P 7{ epw(v—u) 4w
p2/3 2mi J,, ws—r’

where 7, is a contour encircling the pole w = 0.

Lemma 3. For s > r, using the scaling (20)-(22) one has

) « o .
lim ——ePFurGo)=PRus(z) j¢ (1 yy: 5 0)
p—>oop2/3 pATy T

(t3—13)

0
= —evlzmahit / e~ M) Ay + X) Ai(z + N)dA.

Proof of Lemma [B Setting 3 = 2v/#(1 + v/t)?/«, one has

O {pFur(0)~pFus(0)} _P_ j(,{ epw(v—u) 40
p?/3 2mi )., wsT

{pz/?, (1+\ﬂ)§i(t2—tl)w}

ex
_ O {pPur(a0)-pFus(z0)} P ]é dw
23 omi J,

2
X exp {p1/3 <_4Z)/2 (t2 — ) w + aly — x)w + 0(1)> }

wBP? 3 (ta—t1)+0(1)
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Consider

14Vt
Vit

It is not hard to see that the critical point of this function is wg = zg = 14?/{

and F"(z) = B(t2 — t1)z5 2. A contour which satisfies the saddle point
analysis requirement can be chosen as follows: v, = v U771 where v =
{20 +it, |t] < 20} U {ze"™/*19) 0 < 0 < 3m/4}.

F(w) :ﬂ(tg —tl) w—ﬂ(tg —tl)lnw.

We obtain
. o P _.) dw
Jim 278 <P {pFur(20) — PFms(ZO)}% 7{0 el H)F
t2—t2
I < (y_ﬂf)_ﬁ(t%/z )) 3 d/
= Q—m \/W / P " (20) T
/ (y—a:)s—tz—t2
exp
\/ tg—tl V2(t2 —t1)
{ (y — x + 12 — 12)2 }
= ——— exp .
47T(t2 —t1) to — 11
Proposition 2.3 of [I8] completes the proof. O

5.2 Extended Airy kernel with two sets of parameters

We now consider the case where some of the m;’s (resp. 7;’s) differ from 1
(resp. 0). This allows us to obtain a new extended Airy type kernel with
two sets of parameters and prove Theorem 2.

We assume that (7) holds true and that all the x;’s and y;’s lie in a fixed
compact set of R. We also assume that x; —y; > 0 for any i, j, so that the
joint distribution (I4)) is well defined.

Theorem 4. With the above rescaling, one has

& oPFur(20)—pFus : -

where the integration contours v and I' are chosen as in Figure [

Remark 3. Theorem [ readily implies Theorem 21

18



Proof of Theorem [4t The proof relies on the same saddle point analysis
of the correlation kernel as in the previous section. In the expression (19)

we replace
p

zZ — T

w =z [y (w+ ) 22

by
N J; +7 J -
[T gyia (2 + i) ﬁ wom (1 <Hk2%1 e It = - 1)
[TRe gy i1 (w0 + 7%) g AT\ w2 w—z

and observe that the second summand has no singularity at z = w. This
allows us to use the same contour deformation as in the previous section,
which directly leads to the result. O
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