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Abstract

Until now, the enumeration of connected graphs has been dealt with by proba-
bilistic methods, by special combinatorial decompositions or by somewhat indirect
formal series manipulations. We show here that it is possible to make analytic sense
of the divergent series that expresses the generating function of connected graphs.
As a consequence, it becomes possible to derive analytically known enumeration
results using only first principles of combinatorial analysis and straight asymptotic
analysis—specifically, the saddle-point method. In this perspective, the enumera-
tion of connected graphs by excess (of number of edges over number of vertices)
derives from a simple saddle-point analysis. Furthermore, a refined analysis based
on coalescent saddle points yields complete asymptotic expansions for the number
of graphs of fixed excess, through an explicit connection with Airy functions.

Introduction

E. M. Wright, of Hardy and Wright fame, initiated the enumeration of labelled connected
graphs by number of vertices and edges in a well-known series of articles [34, 35, 36].
In particular, he discovered that the generating functions of graphs with a fixed excess
of number of edges over number of vertices has a rational expression in terms of the
tree function T (z). Wright’s approach is based on the fact that deletion of an edge in a
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connected graph leads to either one or two connected graphs with smaller excess. This
decomposition translates into a quadratic differential recurrence from which Wright was
able to deduce general structural results, especially as regards dominant asymptotics.

The problem of enumerating connected graphs by excess is obviously related to the
question of connectivity in random graphs and so, not unnaturally, it has also been ap-
proached repeatedly through the probabilistic method. It is for instance of special im-
portance in the emergence of the “giant component” under Erdős and Rényi’s model.
Bollobás’s book [4, Ch. 6] contains an account of various aspects of the question exam-
ined from the probabilistic angle. The “giant paper” on the “giant component” by Janson,
Knuth,  Luczak and Pittel [18] devotes some 25 pages to generating function evaluations
before going into the actual physics of the random graph phase transition. Finally, the
enumerative results valid asymptotically over the widest range of the parameters are those
of Bender, Canfield, and McKay in [3].

In contrast, our approach here is completely straightforward. It starts from the bi-
variate generating function of connected graphs

C(z, q) = log

(
1 +

∑
n≥1

(1 + q)n(n−1)/2 zn

n!

)
, (1)

that is viewed nowadays as a direct instance of the classical “exponential formula” of
combinatorial analysis; see for instance [14, 33]. (The formula was published by Riddel
and Uhlenbeck [26] in 1953.) We show that this series that strongly diverges for any
q > 0 can in fact be represented by an integral that gives it bona fide analytic meaning
for small q < 0. In a way, this amounts to assigning negative weights (or probabilities)
to edges, contrary to what is done commonly in probabilistic or enumerative treatments
of the question like [3, 4]. Then, standard methods of asymptotic analysis, especially the
saddle-point technique, apply. Thus, in a logical sense, the enumeration of graphs by
excess “only” requires the exponential formula and basic asymptotics. Together with the
article of Janson et al. [18], the present article is one of the very few approaches that treats
connectivity of graphs starting from first principles. As opposed to [18], our approach is
purely analytic and hopefully a little more transparent from a logical standpoint. It is
also a curious fact that asymptotic analysis is used here to establish an exact enumerative
result.

Our principal result is a purely analytic proof of a theorem, known from earlier works
of Wright1 [34] and of Janson et al. [18]. A main character throughout the article is the
“tree function” that is defined by

T (z) = zeT (z), T (z) =
∑
n≥1

nn−1 zn

n!
, (2)

and is otherwise known to enumerate rooted labelled trees. For any connected graph with

1Wright’s results were to some extent anticipated by Temperley [31] whose insightful short note of 1959
seems to rely partly on heuristic arguments.

the electronic journal of combinatorics 11 (2004), #R34 2



k edges and n vertices, the quantity k−n is always at least −1 and is called the excess2 of
the graph. Our goal is a characterization of the (exponential) generating functions (GFs)
of graphs of any fixed excess.

Theorem 1. (i) The generating function of unrooted trees (graphs with excess −1) is

W−1(z) = T (z) − 1

2
T 2(z). (3)

(ii) The GF of connected graphs with excess 0 (unicyclic graphs) is

W0(z) =
1

2
log

1

1 − T (z)
− 1

2
T (z) − 1

4
T 2(z). (4)

(iii) The GF of connected graphs with excess k ≥ 1 is a rational function of T (z): there
exist polynomials Ak, such that

Wk(z) =
Ak(T (z))

(1 − T (z))3k
. (5)

Part (i) is commonly attributed to Cayley and several of his contemporaries (see [18,
p. 240] for a discussion), while Part (ii) is due to Rényi; Equation (5) of Part (iii) is
Wright’s main result. Observe that Wright had to resort to an “external argument”
based on special multigraphs [34, Sec. 7] in order to obtain the rationality of the Wk(z)
in terms of T (z).

For completeness, we recall that the generating functions provided by Theorem 1 are
equivalent to explicit forms for the quantities3 Cn,n+` = n![zn]W`(z), as results from the
standard expansions,

1

1 − T (z)
= 1 +

∑
n≥1

nn zn

n!
, log

1

1 − T (z)
=
∑
n≥0

Qnnn−1 zn

n!
, (6)

where Qn is the Ramanujan Q-function (see [8, 19] and references therein):

Qn = 1 +
n − 1

n
+

(n − 1)(n − 2)

n2
+ · · · .

From either the explicit forms deriving from (6) or from the known expansion [21] of
the tree function at its dominant singularity exp(−1), namely,

T (z) = 1 −
√

2
√

1 − ez +
2

3
(1 − ez) − 11

36

√
2(1 − ez)3/2 + · · · , z → exp(−1),

the following holds.

2Our notion of excess is consistent with the one of Janson et al. [18, p. 240]. Our Wk coincide with
those of Wright [34, p. 318] and are equal to the Ĉk in the notations of [18].

3As usual, we denote by [zn]f(z) the nth coefficient in the series f(z).
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Corollary 1. The asymptotic form of the graph counts Cn,n+k = n![zn]Wk(z) for fixed
k ≥ 2 is

Ak(1)
√

π
(n

e

)n (n

2

) 3k−1
2

 1

Γ
(

3k
2

) +

A′
k(1)

Ak(1)
− k

Γ
(

3k−1
2

) √2

n
+ O

(
1

n

) , (7)

and more generally, lower order terms depend on the derivatives A
(j)
k (1).

The numerical coefficients Ak(1) are crucial to dominant asymptotics. They are ex-
pressed in terms of the Airy Ai function, which is another central character in our analysis.
This function is classically defined by [32]

Ai (z) =
1

2π

∫ ∞

−∞
ei(zt+t3/3)dt. (8)

It satisfies the linear differential equation y′′ − zy = 0, with limiting condition Ai (z) → 0
as z → +∞. Its asymptotic expansion at infinity is of a hypergeometric form given by [1,
Entry 10.4.59]

Ai (z) ∼ 1

2
π−1/2z−1/4e−ζ/3

∞∑
k=0

ck(−ζ)−k,

where ζ = 2z3/2 and

ck =
Γ(3k + 1

2
)

18kk!Γ(k + 1
2
)

=
(6k)!

(3k)!(2k)!32k25k
. (9)

Our analysis allows us to characterize the coefficients Ak(1), A′
k(1), . . . .

Theorem 2. (i) The generating series of the dominant coefficients Ak(1) is expressible
as a formal power series and as an asymptotic series,

∞∑
k=1

Ak(1)(−x)k = log

(
1 +

∞∑
k=1

ck(−x)k

)
∼ log

(
2
√

π(2x)−1/6e1/(3x) Ai
(
(2x)−2/3

))
, x → 0,

(10)

where the ck’s are defined by (9).

(ii) For j ≥ 1, the generating series of the derivatives A
(j)
k (1) can be expressed in terms

of the Airy function. More precisely, let S(x) be the asymptotic expansion

S(x) = 1 +
95

288
x + · · · ∼ −2

x

(
1 + (2x)1/3 Ai′((2x)−2/3)

Ai((2x)−2/3)

)
, x → 0,

then, as formal power series, one as∑
k≥1

A
(j)
k (1)xk = A(j)(x, S(x)),

where A(j)(x, s) is a polynomial of degree j in s with coefficients that are polynomials in x
and x−1. These polynomials can be determined effectively from Equation (47) below. (See
Appendix II for a table.)
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The dominant coefficients Ak(1) are thus in essence the coefficients of the expansion

of log(Ai) at infinity. The coefficients A
(j)
k (1) intervene as subdominant terms in the ex-

pansion of Wk(z) and their knowledge provides a full asymptotic expansion extending (7).
Part (i), the form (10) of the driving coefficients Ak(1), is given explicitly by Janson

et al. in [18] where the authors built upon earlier results of the “Russian school”, most
notably Bagaev and Voblyi. In view of Corollary 1 and the accompanying remarks,
this form characterizes the dominant asymptotics of the number of graphs of some fixed
excess k. Part (ii) of Theorem 2 then provides a “correction series” that describes precisely
what goes on in successive subdominant asymptotic terms.

Wright had in fact obtained earlier a recursive determination of the Ak(1) but he
does not appear to have obtained the relation (10). We now know that the Wk(z) and
the Ak(1) intervene in a number of closely interrelated problems and a variant of the se-
quence {Ak(1)}, called the “Wright-Louchard-Takács sequence”, appears in [12]. Indeed,
the Wk(z) and the Ak(1) surface in such diverse problems as: parking and linear probing
hashing [12, 20], Brownian excursion area and area below Dyck path [10, 22], area below
the Poisson excursion [27], inversions in trees [13, 23], path length in trees of various
sorts [28, 29, 30], and naturally the enumeration of connected graphs [9, 18, 34, 35, 36].
See [12, 20] for a combinatorial perspective on the relationship between these problems.

The present article fits in a more global endeavour aimed at finding simple reasons
for the occurrence of the Airy function in so many problems of analytic combinatorics.
One good reason is the connection with coalescing saddles as exemplified by [2] in the
case of random maps that are random planar graphs of a specific type. We propose to
examine in future works the extent to which it can be applied to other graph models, to
uniform estimates, and to phase transitions that arise in hashing and random allocation
problems [12, 20].

Finally, statistical physics is lurking in the background. In a partly heuristic, but
insightful paper [31], Temperley developed formulæ that correspond to a primitive form
of Theorem 1. In [24], Monasson proposed to approach connectivity of the random graph
via the replica method. It would be of obvious interest to confront the rigourous approach
developed here with the powerful (but yet unrigourous) replica method. The present paper
may hopefully contribute to the debate.

Plan of the article. The article is entirely based on an integral representation for the
divergent series in (1). In other words, the generating function of graphs can be viewed
as the asymptotic expansion of a bona fide analytic object. This is described in Sec-
tion 1, where a combinatorial bijection due to Gessel and Wang is used to dispose of some
of the divergence issues. A straightforward application of the saddle-point method for
the asymptotics of integrals then yields Equations (3), (4) and (5) in Section 2. Con-
sequently, Wright’s representation (Part (iii) of Theorem 1) appears to coincide with a
standard saddle-point expansion. The dominant coefficients Ak(1) as well as their their
subdominant companions, A′

k(1), etc., are a bit more recondite. In Section 3, we show
that relevant information can be gathered by a method of coalescent saddle points, which
gives Theorem 2. Thus, it appears that very detailed formal expansions found by Janson
et al. [18] are in fact precisely double saddle-point expansions. The expressions obtained
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involve hypergeometric functions that are reducible to the Airy function.

1 Principles of an Analytic Approach

We discuss here the principles on which our proof of Theorem 1 is built. It is based on
assigning a complex-analytic meaning to strongly divergent series that express graphical
enumerations and to correlative series rearrangements. Accordingly, special attention is
required in distinguishing carefully between formal objects and their analytic counterparts.

1.1 Formal Expressions

In what follows, for K a field and z1, z2, . . . a finite collection of indeterminates, we let
K[[z1, z2, . . . ]] denote the ring of formal power series with indeterminates z1, z2, . . . and
coefficients in K.

Let Gn,k be the number of labelled graphs with n vertices and k edges and Cn,k the
number of those that are connected. The (formal) generating functions are defined as
objects of C[[z, q]] by

G(z, q) :=
∑
n,k

Gn,kq
k zn

n!
, C(z, q) :=

∑
n,k

Cn,kq
k zn

n!
.

A graph is determined by the selection of edges amongst all possible pairs of points,
implying the identity in C[[z, q]],

G(z, q) =
∑
n≥0

(1 + q)n(n−1)/2 zn

n!
. (11)

On the other hand, a graph is a set of connected components, which, by the classical
exponential formula, implies the relation G(z, q) = exp (C(z, q)) and consequently

C(z, q) = log (G(z, q))

= z + q
z2

2!
+ (3q2 + q3)

z3

3!
+ (16q3 + 15q4 + 6q5 + q6)

z4

4!
+ · · · , (12)

valid again in C[[z, q]].
Consider next the GF of connected graphs counted according to excess and to size. An

essential component of our approach is to record excess and do so by a negatively signed
variable. Then, in C[[z, q]] we have

Q(z, q) :=
∑
n,`

Cn,n+`(−q)`+1 zn

n!
= −qC(−z/q,−q)

= z +
z2

2!
+ (3 − q)

z3

3!
+ (16 − 15q + 6q2 − q3)

z4

4!
+ · · ·

= W−1(z) − qW0(z) + q2W1(z) − · · · ,
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where each W`(z) ∈ C[[z]] is by definition the generating function of connected graphs
with excess `:

W`(z) :=
∑

n

Cn,n+`
zn

n!
. (13)

For instance W−1(z) is the GF of unrooted trees, W0(z) the GF of unicyclic components,
and so on.

Now, the exponential formula (12) in conjunction with (11) permits us to express
Q(z, q) formally as

Q(z, q) = −q log

(∑
n≥0

(1 − q)n(n−1)/2 (−zq−1)n

n!

)
. (14)

In this formula, the right-hand side is to be taken as an element of C(q)[[z]] (that is, the
ring of formal power series in z, with coefficients that are rational functions in q) and the
reorganization of the series takes place in that domain, according to the formula

log(1 + u) =
u

1
− u2

2
+

u3

3
− · · · .

Massive algebraic cancellations in the coefficient field C(q) take place when the series is
reorganized and this seems to be the cause of many analytic hardships.

1.2 Integral Representations

The basic analytic representation derives from the following simple lemma that we state
in its bare-bones version.

Lemma 1. Let vn be a sequence with generating function V (z) =
∑

n vnzn satisfy-
ing

∑
n |vn| < ∞ and let w be a real number with w ∈ (0, 1). Then,

∑
n

wn2/2vn =
1√
2π

∫ +∞

−∞
V (eix

√
log w−1

)e−x2/2 dx. (15)

Proof. For finite sequences vn, the lemma directly results from the classical Fourier integral

e−t2/2 =
1√
2π

∫ +∞

−∞
eixte−x2/2 dx.

For infinite sequences, it results from interchange of summation and integration.

The importance of (15) for the analysis of q-series comes from the fact that the in-
tegral representation linearizes the quadratic forms present in the exponents. (See for
instance [11] for a combinatorial application to chord systems.)

The graph generating function G(z, q) specified by (11) and viewed as a function of
its two parameters z, q diverges wildly as soon as q is positive. However, it acquires a
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bona fide analytic meaning if it is considered as a series in z with q a fixed parameter,
provided |1 + q| < 1. In that case, it becomes an entire function of z. Given this,
we may legitimately expect Q(z, q) to make analytic sense when q is restricted to the
disk centred at +1 with radius 1. Precisely, we fix q as a real valued parameter such
that |1 − q| < 1, (i.e., 0 < q < 2) and consider the weighting π that assigns to a graph g
the weight π(g) := (−q)e(g)−|g| where e(g) is the number of edges and |g| is the number of
vertices of g. We introduce the two analytic objects

H(z, q) :=
∑

g graph

π(g)
z|g|

|g|!, Q(z, q) := −q
∑

g connected graph

π(g)
z|g|

|g|!.

The function H is an entire function of z for q in the given range, since it is directly
related to G by H(z, q) = G(−z/q,−q). The exponential connection between H and Q,
namely Q = −q logH, holds. Observe also that Q is an analytic function of z for |z|
sufficiently small, since H(0, q) = 1.

Application of Lemma 1 now yields the following basic integral representation.

Lemma 2. The generating function of connected graphs counted by excess and weighted
with negative weights admits for q ∈ (0, 1) the integral representation

Q(z, q) = −q log

(
1√
2π

∫ +∞

−∞
exp

(
−x2

2
− z

(1 − q)−1/2

q
eixλ(q)

)
dx

)
, (16)

where

λ ≡ λ(q) :=

√
log

1

1 − q
=

√
q

(
1 +

1

4
q +

13

96
q2 + · · ·

)
.

This representation is central to our treatment.

Proof. Start from Equation (14), set w = 1 − q and apply Lemma 1. The restriction
to q ∈ (0, 1) ensures the well definedness of λ.

1.3 Interchange of Limits and Coefficient Operators

We will prove later, as a by-product of the analysis, that there exists a family W`(z) of
analytic functions each having radius of convergence e−1 such that the analytic Q(z, q)
satisfies when |z| < e−1 as q → 0+:

Q(z, q) ∼
q→0+

∑
`≥0

W`−1(z)(−q)`. (17)

This is to be understood in the usual sense of Poincaré [25], namely for |z| < e−1 and
every L,

Q(z, q) −
L∑

`=0

W`−1(z)(−q)` = O(qL+1), q → 0
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with the coefficient hidden in the O-notation possibly dependent on z. The W` found in
the process satisfy precisely the conditions of Theorem 1 and the following sections will
show how to establish (17) from first principles.

If granted the asymptotic expansion (17), the proof is complete once we establish that
W`(z) = W`(z). Now, the algebraic quantities W`(z) are such that, by definition,

n![zn]W`(z) = Cn,n+` = (−1)`+1[q`+1] (n![zn]Q(z, q)) ,

with Q(z, q) as specified by the formal relation (14), and [zn], [q`] representing here formal
coefficient extraction in C[[z, q]]. On the other hand, the analytic quantities W`(z) are
defined as

W`(z) = (−1)`+1[q`+1]Q(z, q),

where the notation [q`] means now extraction of the coefficient of q` in the asymptotic
expansion of Q(z, q) as a function of q with q → 0+. Thus, under the assumption (17),
Theorem 1 only depends on the validity of the interchange of coefficient operators:

[q`] ([zn]Q(z, q))
?
=[zn]

(
[q`]Q(z, q)

)
.

Naturally, the divergent character of the underlying series renders this interchange non-
obvious.

The basic ingredient is a lemma that grants conditionally such an interchange of limits
and coefficient operators.

Lemma 3 (Interchange of limits and coefficient operators). (i) Let sn(u) be poly-
nomials with nonnegative coefficients and assume that the series

S(z, u) =
∑
n≥0

sn(u)zn

converges for |z| < r (for some r > 0) and |u| < 1. Assume that there exists a function
f(z) =

∑
n fnzn analytic in |z| < r such that

lim
u→1−

S(z, u) = f(z) pointwise for any z, |z| < r.

Then for all n ≥ 0,

sn(1) ≡ lim
u→1−

[zn]S(z, u) = [zn] lim
u→1−

S(z, u) ≡ fn.

(ii) Additionally, assume that there exist functions g0(z) = f(z), g1(z), . . . analytic in
|z| < r such that for u → 1−, one has

S(z, u) ∼
u→1−

∞∑
k=0

(u − 1)kgk(z).

Then, all the derivatives of the polynomials sn at 1 are given by

dk

duk
sn(u)

∣∣∣∣
u=1

= k![zn]gk(z), k, n ≥ 0.
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Proof. (i) For any fixed u, write Su(z) = S(z, u) and consider the family of analytic
functions {Su(z)} (in the variable z) indexed by u that ranges between 0 and 1 while
tending to 1. Inside the disk |z| < r, the convergence Su(z) → f(z) as u → 1 is dominated
by f(|z|): for positive z, this results plainly from the positivity of the sn(u), and for
arbitrary z, from the triangular inequality. In particular, the convergence is dominated
by a constant M(r′) in an arbitrarily chosen sub-disk |z| ≤ r′ with 0 < r′ < r. By
a classical result of the theory of analytic functions, bounded pointwise convergence on
compact sets implies uniform convergence of Su(z) to f(z), together will all derivatives.
(See the discussion of normal families of functions in [15, Ch. 12] or [17, Ch. 15], especially
pp. 246–247.) By extraction of coefficients, assertion (i) follows.

(ii) The proof follows by induction on k. Assume that S(z, u) now satisfies the stronger
conditions of (ii) and that the conclusion is met up to k − 1. Set

T (z, u) =
1

(u − 1)k

(
S(z, u) −

k−1∑
i=0

gi(z)(u − 1)i

)
.

Then, by assumption, T (z, u) admits a shifted asymptotic expansion of the same type as
S(z, u), and in particular, it converges to the limit gk(z) as u → 1−. Moreover, one has

T (z, u) =
∑
n≥0

tn(u)zn with tn(u) =
1

(u − 1)k

(
sn(u) −

k−1∑
i=0

s(i)
n (1)

(u − 1)i

i!

)
,

where the tn(u) are polynomials in u. Now, if the sn(u) have nonnegative coefficients,
then so do the tn(u). This results directly from rewriting tn(u) as ∆ksn(u), where ∆ is
the difference operator

∆p(u) :=
p(u) − p(1)

u − 1
,

which preserves posivity of coefficients. Thus, part (i) of the statement applies to the
function T (z, u), giving

1

k!
s(k)

n (1) = lim
u→1

tn(u) = [zn]gk(z),

so that the conclusion is satisfied for k.

In summary, Lemma 3 asserts that, under suitable conditions,

[(u − 1)k] ([zn]Sana(z, u)) = [zn]
(
[(u − 1)k]Sasy(z, u)

)
.

There, the notations stress the fact that an object S(z, u) is taken either as an analytic
function Sana at (0, 0) or as the corresponding asymptotic expansion Sasy as u → 1. The
coefficient notations [(u − 1)k] are to be interpreted accordingly.
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1.4 Positivity of the Graphical Divergent Expansions

Finally, as we show now, the function Q(z, q) satisfies the conditions of Lemma 3. This
corresponds to a supplementary positivity property, itself established by a specific external
argument based on depth-first search traversal of graphs and inversions in trees [13].

Lemma 4. Assume that, pointwise for each z with |z| < e−1, and as q → 0+, the bivariate
generating function of connected graphs Q(z, q) satisfies an asymptotic expansion,

Q(z, q) ∼
q→0+

∑
`≥0

W`−1(z)(−q)`, |z| < e−1, (18)

for a sequence of functions W`(z). Then, for each `, the identity W`(z) = W`(z) holds,
where W`(z) is defined algebraically by (13).

Proof. Let Un,` denote the number of unrooted labelled trees with n vertices and ` inver-
sions4 and let

Un(u) :=
∑
`≥0

Un,`u
` and U(z, u) :=

∑
n≥0

Un(u)
zn

n!
,

be the corresponding generating functions. A tree with n vertices has at most
(

n−1
2

)
in-

versions so that the Un(u) are polynomials; the polynomials also have positive coefficients
given their combinatorial origin. Moreover U(z, u) is analytic for |z| < e−1 and |u| < 1
since the number of unrooted trees is a priori bounded from above by nn. (A tree is
specified by n daughter-to-mother links).

There is an elegant relation between inversions in unrooted trees and connected graphs
discovered by Ira Gessel and Da Lun Wang [13] who proved combinatorially the formal
power series relation U(z, 1+q) = Q(z,−q). At the level of coefficients, this relation reads

Un(1 + q) = −q
∑

g connected graph
|g|=n

π(g).

In essence, a connected graph may be considered as rooted at 1. From this root
node, a depth first search traversal (with a suitable ordering on successor nodes) gives
rise to a tree together with additional return edges that have to correspond to inversions.
Conversely, each inversion in a tree may or may not be “activated” depending on the
particular graph under consideration, and this fact is seen to be reflected by the relation
U(z, 1 + q) = Q(z,−q). (The negative argument −q in Q is there since we have adopted
a negative variable to mark excess.) As a consequence, we have the fundamental relation

Q(z, q) = U(z, 1 − q). (19)

4An inversion is a pair of vertices (i, j) such that 1 < i < j and j is on the branch from i to 1.
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By direct combinatorics, U(z, u) has positive coefficients at (0, 0) and is bivariate analytic
in |z| < e−1, |u| < 1. Now an asymptotic expansion as q → 0+,

Q(z, q) ∼
q→0+

∑
`≥0

W`−1(z)(−q)`,

can be recast via the relation (19) as an expansion of U(z, u) as u → 1−,

U(z, u) ∼
u→1−

∑
`≥0

W`−1(z)(u − 1)`.

Thus, thanks to this combinatorial bijection, we have reached a stage where the necessary
positivity condition for application of Lemma 3 holds. Part (i) of Lemma 3 gives us already
W−1(z) = W−1(z) through [zn]W−1(z) = [zn]W−1(z), this without any requirement other
than (18). More generally, the equality W`(z) = W`(z) follows from Part (ii) of Lemma 3
via the identities [zn]W`(z) = [zn]W`(z) valid for all n.

The discussion above allows us to identify Q and Q. Accordingly, we shall use the
notation Q in the rest of this article.

2 Single Saddle-Point Analysis

We now proceed with the estimation of Q(z, q) as q → 0+, starting from the integral
representation (16) of Lemma 2. As will appear shortly, the “tree function” T (z) of (2)
is essential in our developments, and we shall accordingly adopt t = T (z) as the main
parameter (so that z = te−t). In this section, the objective is to prove Wright’s expansion
(Theorem 1) by an analysis of the integral representation (16) when t is restricted to some
fixed interval (0, a) with a < 1. Precisely, the single saddle-point analysis of this section
is summarized by an expansion (30) of the form

−1

q
Q(z, q) +

1

q
W−1(z) − W0(z) ∼

∑
k≥1

Ak(t)

(
− q

(1 − t)3

)k

(q → 0+), (20)

where we have set t = T (z).
Our treatment relies on the saddle-point method. Recall that a saddle-point of a

function is a zero of its derivative. Locally, the geometry of the modulus of the function
resembles a saddle-point. Many integrals of analytic functions have an asymptotic form
which is governed by local expansions in the neighbourhood of saddle-points. See [7, 16, 25]
for introductions.

The analysis proceeds in four steps: first a modification of the integration contour in
the representation of Lemma 2 in order to obtain a saddle-point representation; second,
a standard change of variables in order to normalize the saddle-point integrand; third,
formal termwise integration; fourth, an analysis of the remainder of the expansion in order
to prove that the formal result is indeed an asymptotic expansion of the integral.
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2.1 Saddle-point representation

When q → 0+, the integrand in (16) oscillates more and more wildly, this because of the
term eixλ/q it contains. The tactics consist in disposing of the oscillation by shifting the
integration contour so as to cross a saddle point. First, we set xλ = w, which transforms
the integral into

Q(z, q) = −q log
1

λ
√

2π

∫ +∞

−∞
exp

(
− w2

2λ2
− z

(1 − q)−1/2

q
eiw

)
dw.

The integrand rewrites as

exp

(
−1

q

(
w2

2
+ zeiw

))
· exp

(
w2

2
(q−1 − λ−2) + zeiw 1 − (1 − q)−1/2

q

)
. (21)

In this product, the first factor captures the dominant part of the integrand, while the
second one acts as a small perturbation since it tends to a finite limit as q → 0+.

The saddle points ζ of the first factor are located at points ζ such that

d

dw

(
w2

2
+ zeiw

)
w=ζ

≡ ζ + izeiζ = 0. (22)

We recall first some basic facts concerning the function T (z) which is defined as the
solution analytic at 0 of T = zeT . On the boundary |z| = e−1 of its disk of convergence,
T (z) has a unique singularity z0 = e−1 and T (z0) = 1; moreover as z runs through the real
segment (0, e−1), T (z) increases from 0 to 1. We recognize in (22) the equation satisfied
by T (z), so that, as long as |z| < e−1, we can take t = T (z) and obtain a saddle point

ζ = −it = −iT (z).

In subsequent computations, t = T (z) is taken as the independent variable (rather than z
itself), and is restricted when the need arises to be a real quantity in (0, 1). (Analytic
continuation makes it possible to extend the domain of validity of end formulæ, if needed.)

The saddle-point method now suggests shifting the line of integration parallel to itself
so that it crosses the point ζ . This does not change the value of the integral by virtue of
Cauchy’s theorem and the fact that the integrand is small as <(w) → ±∞. Thus, using
t = T (z) as a parameter, setting w = u − it and replacing the integration contour on
(−∞, +∞) yields

Q(z, q) =

(
t − t2

2

)
+
(

1 − q

λ2

) t2

2
− q log

I

λ
√

2π
,

I :=

∫ +∞

−∞
exp

(
−1

q

(
u2

2
+ t(eiu − 1 − iu)

))
h(u) du

(23)

with

h(u) = exp

((
u2

2
− uit

)
(q−1 − λ−2) + teiu 1 − (1 − q)−1/2

q

)
. (24)

The new integral form (23) “explains” the rôle of the tree function in the problem. In
effect, it will turn out that the first term in (23) dominates as q → 0, so that it provides
the enumeration of unrooted trees, i.e., Part (i) of Theorem 1.
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Figure 1: The steepest descent line =(f(u)) = 0 for t = 0.9: general aspect (left) and
blow up near 0 (right).

2.2 Change of variable

First, we reduce the kernel of the saddle-point integral to standard quadratic form. The
corresponding change of variable is defined by the equation

y2 = f(u) where f(u) :=
u2

2
+ t(eiu − 1 − iu). (25)

We opt to perform the change of variable in such a way that y varies continuously on
the real line from −∞ to +∞. Given the geometry of f(u), this corresponds to tak-
ing the integral in (23) along the contour depicted in Figure 1—in fact a steepest de-
scent line5 connecting −∞ + it to +∞ + it. (It can be seen that this steepest descent
line is the curve y = t + W (−te−t sin(x)/x), where W is Lambert’s function, defined
by W (s) exp(W (s)) = s.) The value of the integral remains unaffected by virtue of
analyticity and Cauchy’s theorem.

The expression of the integral is changed into

I =

∫ +∞

−∞
e−y2/qH(y) dy, H(y) := h(u(y))

du

dy
. (26)

2.3 Term by term integration

The next step is to expand H as a power series in y and integrate termwise against the
Gaussian kernel exp(−y2/q). The validity of this process will be proved later. The net
result of this formal manipulation is to effect a linear transformation L on y-expansions:
odd powers of y disappear while even powers are transformed by

L(y2k) =
1√
π

∫ +∞

−∞
e−y2/qy2k dy =

1 · 3 · · · (2k − 1)

2k
qk+1/2.

5One of the ways of conducting the saddle-point analysis of
∫

e−f/q is to cross the saddle-point following
steepest descent lines, along which the imaginary part of f is constant, see [25, p. 136] and [7, chap. 5].
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In order to compute the series expansion of H , we examine the formulæ induced by
the change of variables. The quantity f(u)/u2 is an entire function of u, and

f(u) = (1 − t)
u2

2

(
1 +

2tu

1 − t

eiu − 1 − iu + u2/2

u3

)
.

The Taylor expansion of its square-root thus has the form

y(u) = (1 − t)1/2 u√
2

∑
k≥0

ak(t)

(
u

1 − t

)k

,

with a0(t) = 1 and ak(t) a polynomial of degree k in t. The choice of determination is
dictated by the direction in which the saddle-point is crossed.

Thus y(1 − t)−3/2 has a Taylor expansion in powers of u/(1− t) with coefficients that
are polynomials in t. Then by reversion of formal power series, the expansion of u(y) is
of the form

u(y) = (1 − t)
∑
k≥1

bk(t)
yk

(1 − t)3k/2
, (27)

with b1(t) =
√

2 and coefficients bk(t) that are again polynomial in t, and the expansion
has a positive radius of convergence. Composing expansions then yields

H(y) =

√
2 h(0)

(1 − t)1/2

(
1 +

∑
k≥1

ck(t, q)
yk

(1 − t)3k/2

)
, (28)

where the coefficients ck(t, q) are computable polynomials in t which are analytic with
respect to q for |q| < 1 as follows from the definition of h.

Formally applying the L transform to expansion (28) suggests the following divergent
asymptotic expansion for Q:

Q(z, q) ∼
(

t − t2

2

)
+
(

1 − q

λ2

) t2

2
− q

2
log

1

1 − t
− q

2
log

q

λ2

− t(1 − (1 − q)−1/2) − q log

(
1 +

∑
k≥1

c2k(t, q)
1 · 3 · · · (2k − 1)

2k

qk

(1 − t)3k

)
. (29)

The validity of this asymptotic expansion is proved in §2.4 below. In particular, the
dominant term of the integral I provides the enumeration of unicyclic graphs. Expansions
at any finite order with respect to q are legitimate and yield finite order expansions (for
q → 0+) of the bivariate generating function of connected graphs counted by size and
excess:

Q(z, q) ∼
q→0+

(
T (z) − T (z)2

2

)
−
(

1

2
log

1

1 − T (z)
− T (z)

2
− T 2(z)

4

)
q

+
∑
k≥2

Ak−1(T (z))

(1 − T (z))3k−3
(−q)k, (30)
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where the Ak’s are polynomials in T (z).
This gives the results of Cayley and Rényi, as announced in (3), (4), as well as Wright’s

result as stated in (5).
In addition, this derivation provides a mechanical way to determine the Wk(z) by a

simple process: (i) compute u(y) by Eq. (25) and (27); (ii) determine the compound
expansion (28); (iii) integrate termwise by (29) and conclude by expanding the logarithm
like in (30). Barely a dozen instructions in a computer algebra system are needed to
implement the algorithm. The computation yields in particular A1(t) = t4(6− t)/(24(1−
t)3); a table of the first ten Ak (as a function of θ = 1 − t) is given in the appendix.

2.4 Analysis

To complete the proof of Theorem 1, we now legitimate term by term integration, thereby
establishing that the right-hand side of (30) is an asymptotic expansion of Q for fixed real
t = T (z) in (0, 1). This is a variant of the classical Laplace method, where the ck’s depend
on q, see also [25, p. 376].

Define the function Hn(q, y) by (cf. (28))

H(y) =

√
2 h(0)

(1 − t)1/2

(
1 +

n−1∑
k=1

ck(t, q)yk

(1 − t)3k/2
+ Hn(q, y)

)
. (31)

For fixed n > 0, integration termwise of the inner polynomial in y yields the initial part of
the formal expansion of the integral I. To show that this process leads to an asymptotic
expansion of I when q → 0, it is sufficient to show that∫ ∞

−∞
e−y2/qHn(q, y) dy = O(q

n+1
2 ). (32)

Since H and the coefficients ck, k = 1, . . . , n−1 are analytic with respect to q for |q| <
1, so is Hn. Moreover, Hn is analytic with respect to y in some neighbourhood of 0
since H is. The bound (32) is obtained using different tools inside and outside the disc
of convergence of u defined by (25), whose radius we denote by R.

(a) Consider some r0 < R. For real y with |y| ≥ r0, we have

|h(u(y))| ≤ exp(Cy2)

where C does not depend on q, in view of the definition of h and the fact that |y| ∼√
2|u| for large y. From the change of variable (25), we also get for |y| → ∞∣∣∣∣du

dy

∣∣∣∣ =

∣∣∣∣ 2y

f ′(u)

∣∣∣∣ ∼ √
2|y|

so that by continuity there exists C ′ independent of q such that |H(y)| ≤ exp(C ′y2)
for |y| ≥ r0. Since H and Hn differ only by a polynomial, such a bound also
holds for Hn. Therefore the portion of the integral (32) corresponding to |y| ≥ r0

is O(exp(−r2
0/q)) when q → 0.
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(b) The bound for |y| ≤ r0 is obtained by first bounding the coefficients dk = ck/(1 −
t)3k/2 from (28) uniformly with respect to q and then using a simple argument of
majorizing series. Indeed, these coefficients are expressed by the Cauchy integral

dk =
1

2iπ

∮
F (q, y)

yk+1
dy,

where F is directly related to H and is an analytic function of q and y in |q| < 1
and |y| < R. A valid contour of integration is a circle of radius r0 + δ < R, on
which |F | is uniformly bounded with respect to q (for |q| < 1/2) by continuity.
This shows that dk ≤ C(r0 + δ)−k for some C that does not depend on q and k.
From there follows that |Hn(q, y)| is bounded by C ′r−n

0 |y|n for some C ′ that does
not depend on q.

From these two bounds, (32) follows, which concludes the proof of Theorem 1.

3 Coalescing Saddle Points and the Airy Connection

In this section, we construct the generating function of the constants Ak(1) that gives the
dominant asymptotics of the number of connected graphs of a fixed excess (Theorem 2,
Part (i) and Corollary 1). At the same time, we obtain an access to the successive
“correction series” (Theorem 2, Part (ii)).

The single saddle-point analysis of the previous section is summarized by expan-
sion (20) that we now recall verbatim

−1

q
Q(z, q) +

1

q
W−1(z) − W0(z) ∼

∑
k≥1

Ak(t)

(
− q

(1 − t)3

)k

(q → 0+), (33)

where t = T (z). Such an expansion holds for t in any closed subinterval of [0, 1), for
instance t ∈ [0, 3

4
]. However, the expression becomes obviously meaningless, should t

approach 1. Accordingly, the proof of (33) given in Section 2 gives access to successive
lower order terms of the polynomials Ak(t) near t = 0.

Our purpose is to capture the behaviour of the polynomials Ak(t) as t approaches 1.
This is achieved by the rescaling

α =
q

(1 − t)3
,

which turns the right-hand side of (33) into a generating series of the polynomials Ak(t).
In this section, this generating series is recovered as an asymptotic expansion as α tends
to 0. The coefficients in this asymptotic expansion will provide the desired information
on the Ak(t), since in the rescaled expansion it will be possible to let t tend to 1.

The salient new fact here is the need to take into account two saddle points that
coalesce as t → 1. The treatment offered here follows in the steps of the single saddle-
point analysis of Section 2, with a different change of variables:
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— an analysis of the location of dominant saddle points in §3.1;

— a cubic change of variables in order to normalize the saddle-point integrand (§3.2);

— formal termwise integration (§3.3);

— an analysis of the remainder of the expansion in order to prove that the formal
result is indeed an asymptotic expansion of the integral (§3.4);

— reorganization of the expansion, when t tends to 1 (§3.5).

3.1 Saddle points

The starting point is the integral representation (23):

I :=

∫ +∞

−∞
e−f(u)/qh(u) du, with f(u) =

u2

2
+ (1 − θ)

(
eiu − 1 − iu

)
. (34)

where we have simply set
θ = 1 − t ≡ 1 − T (z).

The quantity h preserves its former meaning from (24), but now with q = αθ3.
The main estimate of the previous section is of a form (33) that ceases to be valid

when θ approaches 0 (i.e., t → 1). One reason is that f(u) becomes locally cubic at θ = 0
instead of being quadratic when θ 6= 0. Solving f ′(u) = 0 for u 6= 0 in the neighbourhood
of the origin reveals a “shadow” saddle point ρ that is purely imaginary and satisfies the
expansion

ρ = −2iθ

(
1 +

1

3
θ +

2

9
θ2 +

22

135
θ3 + · · ·

)
. (35)

Non-uniformity arises precisely from the coalescence of the two nearby saddle points at 0
and ρ, as t → 1. By construction, f(0) = 0, while the value of f at the other saddle point
is

f(ρ) = −2

3
θ3 − 2

3
θ4 − 28

45
θ5 − · · · .

We make use of several expansions related to ρ, as well as the position of saddle points
other than 0 and ρ. A convenient expression for such quantities is provided through
the use of the indexed Lambert W function [6]. This function is solution of yey = z.
This is a simple variant of the equation (2) defining the tree function T (z) and one
has T (z) = −W(−z). The W function is multivalued and an index is used to distinguish
between different branches: the branch Wk is defined by

=Wk(z) ∈ [(2k − 1)π, (2k + 1)π], z → +∞.

Thus the series expansion of T (z) in (2) coincides with that of −W0(−z) near the origin,
while

ρ = i(W−1(−z) − W0(−z)) = i
(
t + W−1(−te−t)

)
= i
(
1 − θ + W−1((θ − 1)eθ−1)

)
.
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Figure 2: The landscapes of −<f(u) and −<P (v).

Of course, the Wj bear no relation to Wright’s generating functions Wk or Wk.
Figure 2 illustrates the landscape of f(u) (the next closest saddle points are two

symmetrical points σ and −σ̄, that are given by σ = i(1 − θ + W−2((θ − 1)eθ−1)).)

3.2 Change of variable

In order to estimate asymptotically the integral in (34), the classical method of coalescent
saddle-points due to Chester, Friedmann and Ursell (see in particular [25, p. 352–356]) is
used. Accordingly, we introduce the cubic change of variable

f(u) = P (v) where P (v) =
f(ρ)

θ3
(2v3 + 3θv2). (36)

The polynomial P is such that P ′ has two roots at 0 and −θ, P (0) = 0 and P (−θ) = f(ρ).
Thus P and f behave similarly in the neighbourhood of their two central saddle points,
and one expects the change of variable to be conformal in this neighbourhood. Indeed, as
illustrated by Figure 2, it is only when approaching the next saddle points σ and −σ̄ of
f that the two landscapes start to diverge qualitatively. Numerical experiments indicate
that the change of variables is one-to-one in the domain 0 < θ < 1 and |u| < |σ(0)| =
|1 + W−2(−e−1)| ≈ 7.748360311. However, in our proofs it will be sufficient to make use
of the following instantiation of the general purpose result of [5, Th. 1].

Lemma 5. There exists θ0 > 0 and ru > 0 such that the change of variable (36) is
one-to-one for (θ, u) in the domain |θ| < θ0, |u| < ru.

Since f does not possess any saddle point outside 0 on the real axis, the change
of variable is also one-to-one on the whole domain of integration. The new contour of
integration is obtained by following consistently the proper branch of the cubic (36): for
real u with large absolute value, f is positive; since f(ρ) < 0, this forces lim arg(v) =
±π/3; for small u, f(u) ∼ θu2/2 so that the contour is vertical in the neighbourhood
of v = 0; finally, v = −θ corresponding to u = ρ fixes the orientation on the contour. The
integral (34) thus admits the exact expression:

I = −
∫ eiπ/3∞

e−iπ/3∞
e−P (v)/qG(v) dv, G(v) = h(u(v))

du

dv
. (37)
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Figure 3: Circles and real axis in the u-plane (left) and their images in the v-plane (right)
for θ = 1/10.

Figure 3 displays the images of circles and of the real axis by the cubic change of vari-
able (36). Small crosses on the left correspond to the next saddle points σ and −σ, that
are mapped to cusps on the right in the v-plane.

3.3 Term by term integration

Like in the single saddle-point analysis, the second step after the previous changes of
variables consists in expanding H as a power series in v

G(v, α, θ) =
∑
k≥0

gk(α, θ)vk, (38)

and integrating termwise. The validity of the process is proved later. This formal manip-
ulation reduces to a linear transformation M on v-expansions defined by

M[φ] :=

∫ eiπ/3∞

e−iπ/3∞
e−P (v)/qφ(v) dv. (39)

The transformation involves the basic integrals

Rk(x) :=

∫ eiπ/3∞

e−iπ/3∞
ex−1(2v3+3v2)vk dv. (40)

Locally, a series expansion for the change of variables is obtained as in the previous
section by taking square roots and inverting power series. This yields

u = 2i

√−3f(ρ)

2θ3
v +

2
√

−3f(ρ)
2θ3

θ
− 3

f(ρ)

θ3
+ 3

f(ρ)

θ4

 v2

6
+ . . .

 . (41)
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Substituting this expansion in G(u, α, θ) yields (38) with first terms:

G(v) = 2ih(0)

√
−3f(ρ)

2θ3

(
1+

(
2

3θ
+

√
−3f(ρ)

2θ3
(
2

3
− 2

3θ
+ 2(θ − 1)(

1

λ2
− 1

q
√

1 − q
)))v + O(v2)

)
.

The net result of formally integrating this expansion termwise (i. e. applying the M

transform) is an asymptotic expansion of the fundamental integral I, namely

I ∼
α→0

−
∑
k≥0

gk(α, θ)θk+1Rk

(−θ3

f(ρ)
α

)
. (42)

That this expansion holds is justified in §3.4 below. This expansion must be viewed
as an asymptotic expansion with respect to α, with θ a parameter. Indeed, the coeffi-
cients gk(α, θ) have finite limits when α → 0, and we show next that the Rk(x) form an
asymptotic scale, since they behave essentially like xk/2 when x → 0.

The Airy Connection

The asymptotic expansion (42) involves the basic quantities Rk(x) of which the character
as x → 0 is needed.

It proves convenient to work with the exponential generating series of the Rk(x),
namely

R(z) :=
∑
k≥0

Rk(x)
zk

k!
=

∫ eiπ/3∞

e−iπ/3∞
ex−1(2v3+3v2)+zv dv.

This is to be compared to the classical integral representation of the Airy function,

Ai (y) =
1

2πi

∫ eiπ/3∞

e−iπ/3∞
ew3/3−yw dw.

From there, it is easily recognized that the generating series R(z) admits the following
expression:

R(z) = 2πi
(x

6

)1/3

exp

(
−z

2
+

1

2x
− 1

2x
(1 − 2

3
zx)3/2

)
e

2
3
y3/2

Ai (y) , (43)

where y = (1 − 2
3
zx)

(
3
4x

)2/3
.

In order to prove that the Rk form an asymptotic scale (as x → 0+), we now show

that Rk(x) grows like xbk+1
2

c+1/2. In the product above, the coefficient of zi in the expan-

sion of the first exponential is of order xb i+1
2

c: the argument of the exponential behaves
like −xz2/12 − x2z3/108 and the powers of this binomial dominate the coefficients of zi
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in the exponential. On the other hand, the function φ(y) := exp(2y3/2/3) Ai (y) has a
Taylor expansion of the form

φ(y) =
∑
j≥0

φ(j)(ζ)

j!

(
2xζz

3

)j

, (z → 0), ζ =

(
3

4x

)2/3

.

Now, using the classical asymptotic expansion of the Airy function, it follows that φ(u)
behaves like u−1/4 when u tends to +∞, and its jth derivative is of order u−j−1/4. There-
fore, when x → 0+, φ(j)(ζ) is of order x2j/3+1/6. Combining this with the factor (2xζ/3)j

shows that the coefficient of zj in this Taylor expansion is of order xj+1/6. It follows that
the coefficient Rk of zk in the product is dominated by the term coming from φ(0)(ζ) and
is asymptotic to

Rk(x) ∼
x→0+

i

√
π

3
ckx

bk+1
2

c+1/2, where c2k =
(−1)k(2k)!

12kk!
, c2k+1 =

(−1)k(2k + 3)!

36(k + 1)!12k
.

Also, we note that expanding the generating series (43) in Taylor series around z = 0
yields explicit analytic expressions for the integrals Rk in terms of the Airy function and
its derivative, for instance,

R(z) = πiζ−1/2e1/2x Ai (ζ)

(
1 −

(
1 +

Σ(ζ)

ζ1/2

)
z

2
+

(
1 +

Σ(ζ)

ζ1/2

)
z2

4

−
(

1

ζ3/2
+ 4 + 4

Σ(ζ)

ζ1/2

)
z3

48
+

(
2

ζ3/2
+ 4 + (

1

ζ2
+

4

ζ1/2
)Σ(ζ)

)
z4

192
+ O(z5)

)
,

where

ζ =

(
3

4x

)2/3

and Σ(y) =
Ai′(y)

Ai (y)
.

3.4 Analysis

So far, we have developed the formal asymptotic expansion (42), by integrating termwise,
and without analytic justification. We now show that the series (42) is indeed asymptotic
to the integral I. The proof is similar to that of §2.4, but is technically more demanding
because of uniformity issues.

By Lemma 5, we know that the cubic change of variables (36) is one-to-one for |θ| < θ0

and either |u| < ru or u real. Set rv = max|u|=ru |v(u)| and α0 = θ−3
0 . We shall make use

of the following lemma.

Lemma 6. For |θ| < θ0, |α| < α0, |v| < rv, the function G(v, α, θ) is an analytic function
of its three arguments.

Proof. The change of variables is analytic and does not involve α. By definition, G(v, α, θ) =
h(u(v))du/dv. The expression of h shows that it is analytic in u, θ and q = αθ3 pro-
vided |q| < 1, which concludes the proof.
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We now define Gn(α, θ, v) as the remainder in expansion (38) (note the parallel
with (31)),

G(v) =

n−1∑
k=0

gk(α, θ)vk + vnGn(α, θ, v). (44)

The proof that (42) is asymptotic to I depends on the following lemma.

Lemma 7. Let θ be [0, θ0) and α > 0, then

In(α, θ) :=

∫ eiπ/3∞

e−iπ/3∞
e−P (v)/qvnGn(α, θ, v) dv = θnO(αn/2), (45)

where the O(.) error term is uniform with respect to θ.

Proof. As in the single saddle-point analysis, the proof of the bound on In is obtained
by bounding |Gn(α, θ, v)| in two different regions. The contour of integration is the
line =(P (v)) = 0. We deform this contour into one made of three pieces: a vertical
segment from −irv/2 to irv/2; arcs of the circle |v| = rv/2 from the endpoints of this
segment to the original contour (that we denote by ξ and ξ); the rest of this contour
to exp(±iπ/3)∞. In a “small v region” (comprising the first two pieces), we compute a
bound on the coefficients gk and then use a majorizing series argument. For larger v we
consider the behaviour of G(α, θ, v) when |v| is large but remains on the contour of (45).

(a) Large v region. For |v| ≥ rv/2, using the change of variables (36) and a reasoning
similar to that of Section 2.4, we get that |Gn(α, θ, v)| < exp(CP (v)), where C is a
positive constant. Injecting this bound into∫ +∞

ξ

e−P (v)/qGn(v) dv,

leads to a bound exp(−C ′ξ/αθ3) for the remaining part of the integral, which is
sufficient for this domain.

(b) Small v region. The coefficients gk are given by Cauchy’s formula

gk(α, θ) =
1

2iπ

∮
G(α, θ, v)

vk+1
dv,

where the contour is for instance a circle centered at the origin with radius r ≤ rv.
For |α| < α0 and θ < θ0, G being analytic is uniformly bounded and thus there is a
constant M such that |gk(α, θ)| ≤ M/rk. From there it follows that

|Gn(α, θ, v)| ≤ M
r−n+1

r − |v| , (46)

as long as |v| < r.
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On the vertical segment (−irv/2, irv/2), the integral In is, thanks to (46), bounded
by ∣∣∣∣∣2

∫ rv/2θ

−rv/2θ

e3 f(ρ)

αθ3 w2

θn+1wnMr−n
v dw

∣∣∣∣∣ ≤ 2Mr−n
v θn+1

(−αθ3

3f(ρ)

)n+1
2

Γ

(
n + 1

2

)
.

By conjugacy, it suffices to discuss the arc situated in the upper half-plane. There,
a direct computation leads to the bound

B =

∣∣∣∣∣
∫ π/2

θ0

exp

(
− f(ρ)

4αθ6
(r3

v cos(3φ) + 3θr2
v cos(2φ))

)(rv

2

)n+1

Mr−n
v dφ

∣∣∣∣∣ .
At this stage, we observe that the intersection of the circle |v| = rv/2 and the
curve =(P (v)) = 0 has an argument θ0 which is properly contained in the inter-
val (π/3, π/2). Consequently, the first cosine in B is negative, while second one is
bounded from above by −1/2. It follows that

B ≤ 2−nM exp

(
Kf(ρ)

αθ5

)
,

for some positive constant K.

As a consequence of the previous lemma, the coefficients gk(α, θ) in (38) are analytic
for |θ| < θ0 and |α| < α0. The uniform bound on In then legitimates expanding the
coefficients in (42) with respect to α and reorganizing the truncated series.

3.5 Final reorganizations

We now conclude the proof of Theorem 2 by showing how the asymptotic expansion can
be reorganized by collecting powers of θ.

In the previous section, the expansion (42) has been established. Since both the
coefficients gk and the scale functions Rk(−αθ3/f(ρ)) are analytic with respect to θ in the
neighbourhood of the origin, these quantities can be expanded as Taylor series in powers
of θ. The presence of the factor θk+1 implies that only a finite number of terms in (42)
contribute to each term of the expansion of I in powers of θ. Thus, we get:

I = 24/3e−1/2e
1
3α α1/3 Ai

(
(2α)−2/3

)×(
θ +

(
1

3α
− 1

2
+ 21/3α1/3 Ai′((2α)−2/3)

Ai ((2α)−2/3)
(

1

3α
− 7

6
)

)
θ2 + . . .

)
.

A simpler view of this expression is achieved by introducing

S :=
2F0

(
5
6
, 7
6−

∣∣∣−3α
2

)
2F0

(
1
6
, 5
6−

∣∣∣−3α
2

) = − 2

α

(
1 + (2α)1/3 Ai′((2α)−2/3)

Ai((2α)−2/3)

)
= 1 +

95

288
α + O(α2),
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where 2F0 is the classical hypergeometric series

2F0

(
a,b
−
∣∣∣z) =

∑
n≥0

(a)n(b)n

n!
zn, (λ)n := λ · · · (λ + n − 1).

Then, this expansion rewrites

I = 24/3e−1/2e
1
3α α1/3 Ai

(
(2α)−2/3

)(
θ +

(
2

3
+

(
−1

6
+

7

12
α

)
S

)
θ2

+

(
− 1

360

(105α2 − 54 α + 20) S

α
− 1

180

17 α − 10

α

)
θ3 + . . .

)
We know that Q(z, q) and I are related via

Q(z, q) ∼
(

t − t2

2

)
+

(
1 − αθ3

λ(αθ3)2

)
t2

2
− αθ3 log

(
I

λ(αθ3)
√

2π

)
. (47)

At this stage, it suffices to compose expansions in a routine way in order to obtain the
final expansion of Q(z, αθ3). This yields

Q(z, q) − (t − t2/2) +
(

1
2

log
1

1 − t
− t

2
− t2

4

)
q = −αθ3 ln

(
2F0

(
5
6
, 1
6−

∣∣∣−3α
2

))
− θ4

12
(2α + α(7α − 2)S)

+
θ5

360

(
5
4
α(7α − 2)2S2 + (245α2 − 94α + 20)S + 114α − 20

)
− θ6

20160

(
35
9

α(7α − 2)3S3 +
14
3

(7α − 2)(245α2 − 94α + 20)S2

+
56
9α

(2019α3 − 840α2 + 144α − 40)S − 56
9α

(733α3 − 854α2 + 164α − 40)
)

+ · · · ,

For j ≥ 0, the coefficient of θ3+j in this expansion is precisely the generating function
of the A

(j)
k (1). The first five generating functions are given in Appendix II. As a final

check, expanding the coefficient of θ4 in the above expansion of Q with respect to α, one
gets

−19

24
α2 +

65

48
α3 − 1945

384
α4 +

21295

768
α5 − 603965

3072
α6 +

10454075

6144
α7 + O

(
α8
)
,

from which it is easy to recognize the coefficients of θ2 in the polynomials Ak of Appendix I,
that were previously obtained by the single saddle-point expansion.
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[29] Takács, L. Conditional limit theorems for branching processes. Journal of Applied
Mathematics and Stochastic Analysis 4, 4 (1991), 263–292.
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Appendix I: Polynomials Ak for k = 1, . . . , 10

The numerator polynomials of the generating function (5) of connected graphs with ex-
cess k. In this list, θ = 1 − t.

A1 =
1

24
(5 − 19θ + 26θ

2 − 14θ
3

+ θ
4

+ θ
5
)

A2 =
1

48
(15 − 65θ + 108θ

2 − 87θ
3

+ 42θ
4 − 23θ

5
+ 12θ

6 − θ
7 − θ

8
)

A3 =
1

5760
(5525 − 29175θ + 63530θ

2 − 74560θ
3

+ 53574θ
4 − 27378θ

5
+ 11504θ

6 − 4020θ
7

+ 1725θ
8 − 879θ

9
+ 78θ

10
+ 76θ

11
)

A4 =
1

11520
(50850 − 319425θ + 861685θ

2 − 1315525θ
3

+ 1277185θ
4 − 860612θ

5
+ 441526θ

6 − 185786θ
7

+ 66964θ
8 − 21977θ

9
+ 6577θ

10 − 2481θ
11

+ 1241θ
12 − 114θ

13 − 108θ
14

)

A5 =
1

2903040
(78269625 − 570746925θ + 1833592950θ

2 − 3431917090θ
3

+ 4195202095θ
4 − 3596232423θ

5

+ 2302080676θ
6 − 1170871408θ

7
+ 497513283θ

8 − 183003459θ
9

+ 60117702θ
10 − 18042570θ

11
+ 5147401θ

12

− 1399153θ
13

+ 485184θ
14 − 239044θ

15
+ 22444θ

16
+ 20712θ

17
)

A6 =
1

5806080
(1189944000 − 9879100875θ + 36778793625θ

2 − 81347450975θ
3

+ 119775583445θ
4

− 125345458455θ
5

+ 98004064025θ
6 − 59998295119θ

7
+ 30081596601θ

8 − 12822495201θ
9

+ 4781320559θ
10

− 1596163521θ
11

+ 486019607θ
12 − 137459453θ

13
+ 36687651θ

14 − 9532229θ
15

+ 2421571θ
16 − 789888θ

17

+ 384252θ
18 − 36620θ

19 − 33000θ
20

)

A7 =
1

1393459200
(2596113838125 − 24170114626875θ + 102231888554250θ

2 − 260579462293500θ
3

+ 448535321698800θ
4 − 555432907362200θ

5
+ 517094266858960θ

6 − 375780963592520θ
7

+ 221036998846510θ
8 − 108918282356690θ

9
+ 46304642945044θ

10 − 17387855835152θ
11

+ 5877848600212θ
12 − 1816618125644θ

13
+ 520243088240θ

14 − 139724911768θ
15

+ 35649056429θ
16 − 8752126699θ

17
+ 2123687858θ

18 − 512578900θ
19

+ 159451124θ
20

− 76725412θ
21

+ 7390832θ
22

+ 6518976θ
23

)

A8 =
1

2786918400
(54927280170000 − 566627819428125θ + 2682469240439625θ

2 − 7736682221312625θ
3

+ 15238229702347575θ
4 − 21815658385237150θ

5
+ 23657372605415500θ

6 − 20072748261651120θ
7

+ 13725312699724360θ
8 − 7784907830887710θ

9
+ 3764527022899598θ

10 − 1589720169572030θ
11

+ 597998092660338θ
12 − 203661747185296θ

13
+ 63643856216676θ

14 − 18455949085100θ
15

+ 5015433541748θ
16 − 1288875268621θ

17
+ 316012419057θ

18 − 74683452857θ
19

+ 17206812911θ
20 − 3959710266θ

21
+ 917625928θ

22 − 274699196θ
23

+ 130927516θ
24

− 12712784θ
25 − 10997952θ

26
)

A9 =
1

367873228800
(87498905321953125 − 990501375405898125θ + 5187178735947573750θ

2

− 16693940022758286750θ
3

+ 37021429415280358125θ
4 − 60197430084916965225θ

5

+ 74688975720920291500θ
6 − 72835276973437848100θ

7
+ 57252153087954369930θ

8

− 37153888621452377830θ
9

+ 20381147835157710700θ
10 − 9665915767049820828θ

11

+ 4043679024080409186θ
12 − 1517882214148180122θ

13
+ 518572009562370720θ

14

− 163168251434890064θ
15

+ 47757902695290545θ
16 − 13114366898840337θ

17

+ 3404211749910806θ
18 − 841141673492318θ

19
+ 199188193535793θ

20

− 45532047855261θ
21

+ 10135109982756θ
22 − 2220037214076θ

23

+ 489502157056θ
24 − 109704211804θ

25
+ 31805022744θ

26 − 15031625080θ
27

+ 1468402912θ
28

+ 1248166272θ
29

)

A10 =
1

735746457600
(2372826356485200000 − 29240694600135046875θ + 167803910854979293125θ

2

− 596004415629137274375θ
3

+ 1469539466407887769125θ
4 − 2676363324274425757125θ

5

+ 3744445956169018359875θ
6 − 4139027045511795939425θ

7
+ 3697418806011442209775θ

8

− 2724220669452656462110θ
9

+ 1688684964920190890730θ
10 − 898195109034394895790θ

11

+ 417751651753405264878θ
12 − 172839123005311083618θ

13
+ 64566413831667099198θ

14

− 22054839636256849378θ
15

+ 6962544618355201150θ
16 − 2049840971510161799θ

17

+ 567169799383305641θ
18 − 148477226527006515θ

19
+ 36996091151806065θ

20

− 8822528635761777θ
21

+ 2024358244419159θ
22 − 449400090479373θ

23
+ 97119395301731θ

24

− 20593013110736θ
25

+ 4327327990744θ
26 − 920836701928θ

27
+ 200624726700θ

28

− 56593505304θ
29

+ 26545885944θ
30 − 2605385952θ

31 − 2179301760θ
32

).
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Appendix II: Polynomials A(j) for j = 1, . . . , 5

The generating functions
∑

k A
(j)
k xk providing the correction terms in formula (7) are

given by the polynomials A(j)(x, v) evaluated at

v = S(x) = −2

x

(
1 + (2x)1/3 Ai′((2x)−2/3)

Ai((2x)−2/3)

)
.

A(1)
=

1

12
(2x + x(7x − 2)v)

A(2)
=

1

1440

“
5x(−2 + 7x)

2
v
2

+ (980x
2

+ 80 − 376x)v − 80 + 456x
”

A(3)
=

−1

25920x

“
5x

2
(−2 + 7x)

3
v
3

+ 6(−2 + 7x)(245x
2

+ 20 − 94x)v
2
x+

(−320 + 16152x
3 − 6720x

2
+ 1152x)v + 320 − 5864x

3
+ 6832x

2 − 1312x
”

A(4)
=

1

43545600x2

“
525x

3
(−2 + 7x)

4
v
4

+ 840(245x
2

+ 20 − 94x)(−2 + 7x)
2
v
3
x
2

+ 56(2800 − 22640x + 462735x
4 − 336540x

3
+ 109668x

2
)v

2
x

+ (−62720x − 12969216x
3

+ 27938400x
4

+ 2989952x
2

+ 89600 − 9632880x
5
)v

+8786688x
3 − 19265760x

4
+ 17920x − 1811712x

2 − 89600
”

A(5)
=

−1

130636800x3

“
105x

4
(−2 + 7x)

5
v
5

+ 210(245x
2

+ 20 − 94x)(−2 + 7x)
3
v
4
x
3

+ 28(−2 + 7x)(321405x
4 − 237360x

3
+ 82788x

2 − 16960x + 2000)v
3

x
2

− 4(−232960x + 33600 + 20242740x
4

+ 1524992x
2 − 7258616x

3 − 27277500x
5

+ 4214385x
6
)v

2
x

+ (10940288x
3 − 107520x + 94748736x

5 − 2745344x
2 − 42289728x

4 − 35840 − 67430160x
6
)v

+35840 + 1589504x
2

+ 23671872x
4 − 6668160x

3
+ 197120x − 56486304x

5
”

.

the electronic journal of combinatorics 11 (2004), #R34 30


