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Abstract

Stochastic sampling algorithms, while an attractive alternative to exact algorithms in
very large Bayesian network models, have been observed to perform poorly in evidential
reasoning with extremely unlikely evidence. To address this problem, we propose an adap-
tive importance sampling algorithm, AIS-BN, that shows promising convergence rates
even under extreme conditions and seems to outperform the existing sampling algorithms
consistently. Three sources of this performance improvement are (1) two heuristics for
initialization of the importance function that are based on the theoretical properties of im-
portance sampling in finite-dimensional integrals and the structural advantages of Bayesian
networks, (2) a smooth learning method for the importance function, and (3) a dynamic
weighting function for combining samples from different stages of the algorithm.

We tested the performance of the AIS-BN algorithm along with two state of the art
general purpose sampling algorithms, likelihood weighting (Fung & Chang, 1989; Shachter
& Peot, 1989) and self-importance sampling (Shachter & Peot, 1989). We used in our
tests three large real Bayesian network models available to the scientific community: the
CPCS network (Pradhan et al., 1994), the PATHFINDER network (Heckerman, Horvitz,
& Nathwani, 1990), and the ANDES network (Conati, Gertner, VanLehn, & Druzdzel,
1997), with evidence as unlikely as 10~%!. While the AIS-BN algorithm always performed
better than the other two algorithms, in the majority of the test cases it achieved orders of
magnitude improvement in precision of the results. Improvement in speed given a desired
precision is even more dramatic, although we are unable to report numerical results here,
as the other algorithms almost never achieved the precision reached even by the first few
iterations of the AIS-BN algorithm.

1. Introduction

Bayesian networks (Pearl, 1988) are increasingly popular tools for modeling uncertainty in
intelligent systems. With practical models reaching the size of several hundreds of variables
(e.g., Pradhan et al., 1994; Conati et al., 1997), it becomes increasingly important to ad-
dress the problem of feasibility of probabilistic inference. Even though several ingenious
exact algorithms have been proposed, in very large models they all stumble on the theo-
retically demonstrated NP-hardness of inference (Cooper, 1990). The significance of this
result can be observed in practice — exact algorithms applied to large, densely connected
practical networks require either a prohibitive amount of memory or a prohibitive amount
of computation and are unable to complete. While approximating inference to any desired
precision has been shown to be NP-hard as well (Dagum & Luby, 1993), it is for very com-
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plex networks the only alternative that will produce any result at all. Furthermore, while
obtaining the result is crucial in all applications, precision guarantees may not be critical
for some types of problems and can be traded off against the speed of computation.

A prominent subclass of approximate algorithms is the family of stochastic sampling
algorithms (also called stochastic simulation or Monte Carlo algorithms). The precision
obtained by stochastic sampling generally increases with the number of samples generated
and is fairly unaffected by the network size. Execution time is fairly independent of the
topology of the network and is linear in the number of samples. Computation can be
interrupted at any time, yielding an anytime property of the algorithms, important in time-
critical applications.

While stochastic sampling performs very well in predictive inference, diagnostic reason-
ing, i.e., reasoning from observed evidence nodes to their ancestors in the network often
exhibits poor convergence. When the number of observations increases, especially if these
observations are unlikely a-priori, stochastic sampling often fails to converge to reason-
able estimates of the posterior probabilities. Although this problem has been known since
the very first sampling algorithm was proposed by Henrion (1988), little has been done
to address it effectively. Furthermore, various sampling algorithms proposed were tested
on simple and small networks, or networks with special topology, without the presence of
extremely unlikely evidence and the practical significance of this problem has been un-
derestimated. Given a typical number of samples used in real-time that are feasible on
today’s hardware, say 10% samples, the behavior of a stochastic sampling algorithm will be
drastically different for different size networks. While in a network consisting of 10 nodes
and a few observations, it may be possible to converge to exact probabilities, in very large
networks only a negligibly small fraction of the total sample space will be probed. One of
the practical Bayesian network models that we used in our tests, a subset of the CPCS
network (Pradhan et al., 1994), consists of 179 nodes. Its total sample space is larger than
1051, With 10° samples, we can sample only 107 fraction of the sample space.

We believe that it is crucial (1) to study the feasibility and convergence properties of
sampling algorithms on very large practical networks, and (2) to develop sampling algo-
rithms that will show good convergence under extreme, yet practical conditions, such as
evidential reasoning given extremely unlikely evidence. After all, small networks can be
updated using any of the existing exact algorithms — it is precisely the very large networks
where stochastic sampling can be most useful. As to the likelihood of evidence, we know
that stochastic sampling will generally perform well when it is high (Henrion, 1988). So, it
is important to look at those cases in which evidence is very unlikely. In this paper, we test
two existing state of the art stochastic sampling algorithms for Bayesian networks, likeli-
hood weighting (Fung & Chang, 1989; Shachter & Peot, 1989) and self-importance sampling
(Shachter & Peot, 1989), on a subset of the CPCS network with extremely unlikely evi-
dence. We show that they both exhibit similarly poor convergence rates. We propose a new
sampling algorithm, that we call the adaptive importance sampling for Bayesian networks
(AIS-BN), which is suitable for evidential reasoning in large multiply-connected Bayesian
networks. The AIS-BN algorithm is based on importance sampling, which is a widely
applied method for variance reduction in simulation that has also been applied in Baye-
sian networks (e.g., Shachter & Peot, 1989). We demonstrate empirically on three large
practical Bayesian network models that the AIS-BN algorithm consistently outperforms
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the other two algorithms. In the majority of the test cases, it achieved over two orders of
magnitude improvement in convergence. Improvement in speed given a desired precision
is even more dramatic, although we are unable to report numerical results here, as the
other algorithms never achieved the precision reached even by the first few iterations of
the AIS-BN algorithm. The main sources of improvement are: (1) two heuristics for the
initialization of the importance function that are based on the theoretical properties of im-
portance sampling in finite-dimensional integrals and the structural advantages of Bayesian
networks, (2) a smooth learning method for updating the importance function, and (3) a
dynamic weighting function for combining samples from different stages of the algorithm.
We study the value of the two heuristics used in the AIS-BN algorithm: (1) initialization
of the probability distributions of parents of evidence nodes to uniform distribution and
(2) adjusting very small probabilities in the conditional probability tables, and show that
they both play an important role in the AIS-BN algorithm but only a moderate role in the
existing algorithms.

The remainder of this paper is structured as follows. Section 2 first gives a general
introduction to importance sampling in the domain of finite-dimensional integrals, where it
was originally proposed. We show how importance sampling can be used to compute prob-
abilities in Bayesian networks and how it can draw additional benefits from the graphical
structure of the network. Then we develop a generalized sampling scheme that will aid us
in reviewing the previously proposed sampling algorithms and in describing the AIS-BN
algorithm. Section 3 describes the AIS-BN algorithm. We propose two heuristics for ini-
tialization of the importance function and discuss their theoretical foundations. We describe
a smooth learning method for the importance function and a dynamic weighting function
for combining samples from different stages of the algorithm. Section 4 describes the em-
pirical evaluation of the AIS-BN algorithm. Finally, Section 5 suggests several possible
improvements to the AIS-BN algorithm, possible applications of our learning scheme, and
directions for future work.

2. Importance Sampling Algorithms for Bayesian Networks

We feel that it is useful to go back to the theoretical roots of importance sampling in order
to be able to understand the source of speedup of the AIS-BN algorithm relative to the
existing state of the art importance sampling algorithms for Bayesian networks. We first
review the general idea of importance sampling in finite-dimensional integrals and how it
can reduce the sampling variance. We then discuss the application of importance sampling
to Bayesian networks. Readers interested in more details are directed to literature on
Monte Carlo methods in computation of finite integrals, such as the excellent exposition by
Rubinstein (1981) that we are essentially following in the first section.

2.1 Mathematical Foundations

Let g(X) be a function of m variables X = (X1, ..., X,;,) over a domain 2 C R™, such that
computing ¢g(X) for any X is feasible. Consider the problem of approximate computation
of the integral

I:/Qg(X)dX. (1)
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Importance sampling approaches this problem by writing the integral (1) as
9(X)
1= / — f(X)dX,
o f(X) )

where f(X), often referred to as the importance function, is a probability density function
over €. f(X) can be used in importance sampling if there exists an algorithm for generating
samples from f(X) and if the importance function is zero only when the original function
is zero, i.e., g(X) #0 = f(X) #0.

After we have independently sampled n points s1, So, ..., Sy, s; € €1, according to the
probability density function f(X), we can estimate the integral I by

n
2
i=1

-

g(si)
f(si) ®

S

and estimate the variance of I, by

A7\ 1 < Q(Si)_AQ
7= -:1(f(si) h) ®

7

It is straightforward to show that this estimator has the following properties:
1. BE(I,)=1
2. limy, oo I, = I
3. vn-(I, - 1) =% Normal((),ajzc(x)), where

oo = [ (459 1) 0 ax @

4. F (32(fn)) = 0%(Ip) = 0% x)/n

The variance of I, is proportional to JJ%(X) and inversely proportional to the number of

samples. To minimize the variance of fn, we can either increase the number of samples or
try to decrease U;(X)‘ With respect to the latter, Rubinstein (1981) reports the following
useful theorem and corollary.

Theorem 1 The minimum of UJ%(X) is equal to

oHx) = (/Q fg(X)de)Q -

and occurs when X is distributed according to the following probability density function

l9(X)|

T30 = T X
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Corollary 1 If g(X) >0, then the optimal probability density function is

and O‘J%(X) =0.

Although in practice sampling from precisely f(X) = g(X)/I will occur rarely, we expect
that functions that are close enough to it can still reduce the variance effectively. Usually,
the closer the shape of the function f(X) is to the shape of the function ¢g(X), the smaller
is U]Qc(x). In high-dimensional integrals, selection of the importance function, f(X), is far
more critical than increasing the number of samples, since the former can dramatically
affect O'J%(X). It seems prudent to put more energy in choosing an importance function
whose shape is as close as possible to that of g(X) than to apply the brute force method of
increasing the number of samples.

It is worth noting here that if f(X) is uniform, importance sampling becomes a general
Monte Carlo sampling. Another noteworthy property of importance sampling that can be
derived from Equation 4 is that we should avoid f(X) < |g(X) —1- f(X)| in any part
of the domain of sampling, even if f(X) matches well g(X)/I in important regions. If
f(X) <« [g(X) = I f(X)], the variance can become very large or even infinite. We can
avoid this by adjusting f(X) to be larger in unimportant regions of the domain of X.

While in this section we discussed importance sampling for continuous variables, the
results stated are valid for discrete variables as well, in which case integration should be
substituted by summation.

2.2 A Generic Importance Sampling Algorithm for Bayesian Networks

In the following discussion, all random variables used are multiple-valued, discrete variables.
Capital letters, such as A, B, or C, denote random variables. Bold capital letters, such as
A, B, or C, denote sets of variables. Bold capital letter E will usually be used to denote
the set of evidence variables. Lower case letters a, b, ¢ denote particular instantiations
of variables A, B, and C respectively. Bold lower case letters, such as a, b, ¢, denote
particular instantiations of sets A, B, and C respectively. Bold lower case letter e, in
particular, will be used to denote the observations, i.e., instantiations of the set of evidence
variables E. Anc(A) denotes the set of ancestors of node A. Pa(A) denotes the set of
parents (direct ancestors) of node A. pa(A) denotes a particular instantiation of Pa(A). \
denotes set difference. Pa(A)|g_, denotes that we use the extended vertical bar to indicate
substitution of e for E in A.

We know that the joint probability distribution over all variables of a Bayesian net-
work model, Pr(X), is the product of the probability distributions over each of the nodes
conditional on their parents, i.e.,

Pr(X) = [ Pr(X;[Pa(X;)) . (5)
i=1
In order to calculate Pr(E = e), we need to sum over all Pr(X\E,E = e).
Pr(E=e)= ) Pr(X\E,E=e) (6)

X\E
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We can see that Equation 6 is almost identical to Equation 1 except that integration is
replaced by summation and the domain 2 is replaced by X\E. The theoretical results
derived for the importance sampling that we reviewed in the previous section can thus be
directly applied to computing probabilities in Bayesian networks.

While there has been previous work on importance sampling-based algorithms for Ba-
yesian networks, we will postpone the discussion of this work until the next section. Here
we will present a generic stochastic sampling algorithm that will help us in both reviewing
the prior work and in presenting our algorithm.

The posterior probability Pr(ale) can be obtained by first computing Pr(a, e) and Pr(e)
and then combining these based on the definition of conditional probability

Pr(ale) = w . (7)

In order to increase the accuracy of results of importance sampling in computing the pos-
terior probabilities over different network variables given evidence, we should in general use
different importance functions for Pr(a,e) and for Pr(e). Doing so increases the computa-
tion time only linearly while the gain in accuracy may be significant given that obtaining
a desired accuracy is exponential in nature. Very often, it is a common practice to use the
same importance function (usually for Pr(e)) to sample both probabilities. If the difference

—_

. Order the nodes according to their topological order.

2. Initialize importance function Pr’(X\E), the desired number of samples
m, the updating interval [, and the score arrays for every node.

3. k—0,T 10

4. for i — 1 tom do

5. if (i mod [ == 0) then
6. kE—Fk+1

=

Update importance function Pr®(X\E) based on T.
end if

8. s; « generate a sample according to Pr®(X\E)
9. T+—TU {Sz}

10.  Calculate Score(s;, Pr(X\E, e), Pr*(X\E)) and add it to the correspond-
ing entry of every score array according to the instantiated states.

end for

11. Normalize the score arrays for every node.

Figure 1: A generic importance sampling algorithm.

160



ADAPTIVE IMPORTANCE SAMPLING IN BAYESIAN NETWORKS

between the optimal importance functions for these two quantities is large, the perfor-
mance may deteriorate significantly. Although Pr(a,e) and Pr(e) are unbiased estimators
according to Property 1 (Section 2.1), f’\r(a|e) obtained by means of Equation 7 is not an
unbiased estimator. However, as the number of samples increases, the bias decreases and
can be ignored altogether when the sample size is large enough (Fishman, 1995).

Figure 1 presents a generic stochastic sampling algorithm that captures most of the
existing sampling algorithms. Without the loss of generality, we restrict ourselves in our
description to so-called forward sampling, i.e., generation of samples in the topological
order of the nodes in the network. The forward sampling order is accomplished by the
initialization performed in Step 1, where parents of each node are placed before the node
itself. In forward sampling, Step 8 of the algorithm, the actual generation of samples, works
as follows. (i) each evidence node is instantiated to its observed state and is further omitted
from sample generation; (ii) each root node is randomly instantiated to one of its possible
states, according to the importance prior probability of this node, which can be derived
from Pr¥(X\E); (iii) each node whose parents are instantiated is randomly instantiated to
one of its possible states, according to the importance conditional probability distribution
of this node given the values of the parents, which can also be derived from Pr*(X\E); (iv)
this procedure is followed until all nodes are instantiated. A complete instantiation s; of the
network based on this method is one sample of the joint importance probability distribution
Pr*(X\E) over all variables of the network. The scoring of Step 10 amounts to calculating
Pr(s;, e)/Pr¥(s;), as required by Equation 2. The ratio between the total score sum and the
number of samples is an unbiased estimator of Pr(e). In Step 10, if we also count the score
sum under the condition A = a, i.e., that some unobserved variables A have the values a,
the ratio between this score sum and the number of samples is an unbiased estimator of
Pr(a,e).

Most existing algorithms focus on the posterior probability distributions of individual
nodes. As we mentioned above, for the sake of efficiency they count the score sum corre-
sponding to Pr(A = a,e), A € X\E, and record it in an score array for node A. Each
entry of this array corresponds to a specified state of A. This method introduces additional
variance, as opposed to using the importance function derived from Pr* (X\E) to sample
Pr(A =a,e), A € X\E, directly.

2.3 Existing Importance Sampling Algorithms for Bayesian Networks

The main difference between various stochastic sampling algorithms is in how they process
Steps 2, 7, and 8 in the generic importance sampling algorithm of Figure 1.

Probabilistic logic sampling (Henrion, 1988) is the simplest and the first proposed sam-
pling algorithm for Bayesian networks. The importance function is initialized in Step 2 to
Pr(X) and never updated (Step 7 is null). Without evidence, Pr(X) is the optimal im-
portance function for the evidence set, which is empty anyway. It escapes most authors
that Pr(X) may be not the optimal importance function for Pr(A = a), A € X, when A
is not a root node. A mismatch between the optimal and the actually used importance
function may result in a large variance. The sampling process with evidence is the same
as without evidence except that in Step 10 we do not count the scores for those samples
that are inconsistent with the observed evidence, which amounts to discarding them. When
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the evidence is very unlikely, there is a large difference between Pr(X) and the optimal
importance function. Effectively, most samples are discarded and the performance of logic
sampling deteriorates badly.

Likelihood weighting (LW) (Fung & Chang, 1989; Shachter & Peot, 1989) enhances the
logic sampling in that it never discards samples. In likelihood weighting, the importance
function in Step 2 is

Pr(X\E) = [] Pr(zi|Pa(X;))
zige E=e

Likelihood weighting does not update the importance function in Step 7. Although likeli-
hood weighting is an improvement on logic sampling, its convergence rate can be still very
slow when there is large difference between the optimal importance function and Pr(X\E),
again especially in situations when evidence is very unlikely. Because of its simplicity, the
likelihood weighting algorithm has been the most commonly used simulation method for
Bayesian network inference. It often matches the performance of other, more sophisticated
schemes because it is simple and able to increase its precision by generating more samples
than other algorithms in the same amount of time.

Backward sampling (Fung & del Favero, 1994) changes Step 1 of our generic algorithm
and allows for generating samples from evidence nodes in the direction that is opposite to
the topological order of nodes in the network. In Step 2, backward sampling uses the likeli-
hood of some of the observed evidence and some instantiated nodes to calculate Pr’(X\E).
Although Fung and del Favero mentioned the possibility of dynamic node ordering, they
did not propose any scheme for updating the importance function in Step 7. Backward
sampling suffers from problems that are similar to those of likelihood weighting, i.e., a pos-
sible mismatch between its importance function and the optimal importance function can
lead to poor convergence.

Importance sampling (Shachter & Peot, 1989) is the same as our generic sampling algo-
rithm. Shachter and Peot introduced two variants of importance sampling: self-importance
(SIS) and heuristic importance. The importance function used in the first step of the
self-importance algorithm is

Pr'(X\E) = [] Pr(z:[Pa(X;))
zide E=e

This function is updated in Step 7. The algorithm tries to revise the conditional probability
tables (CPTs) periodically in order to make the sampling distribution gradually approach
the posterior distribution. Since the same data are used to update the importance function
and to compute the estimator, this process introduces bias in the estimator. Heuristic
importance first removes edges from the network until it becomes a polytree, and then
uses a modified version of the polytree algorithm (Pearl, 1986) to compute the likelihood
functions for each of the unobserved nodes. Pr%(X\E) is a combination of these likelihood
functions with Pr(X\E,e). In Step 7 heuristic importance does not update Pr¥(X\E). As
Shachter and Peot (1989) point out, this heuristic importance function can still lead to a
bad approximation of the optimal importance function. There exist also other algorithms
such as a combination of self-importance and heuristic importance (Shachter & Peot, 1989;
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Shwe & Cooper, 1991). Although some researchers suggested that this may be a promising
direction for the work on sampling algorithms, we have not seen any results that would
follow up on this.

A separate group of stochastic sampling methods is formed by so-called Markov Chain
Monte Carlo (MCMC) methods that are divided into Gibbs sampling, Metropolis sampling,
and Hybrid Monte Carlo sampling (Geman & Geman, 1984; Gilks, Richardson, & Spiegel-
halter, 1996; MacKay, 1998). Roughly speaking, these methods draw random samples from
an unknown target distribution f(X) by biasing the search for this distribution towards
higher probability regions. When applied to Bayesian networks (Pearl, 1987; Chavez &
Cooper, 1990) this approach determines the sampling distribution of a variable from its
previous sample given its Markov blanket (Pearl, 1988). This corresponds to updating
Pr*(X\E) when sampling every node. Pr¥(X\E) will converge to the optimal importance
function for Pr(e) if Pr’(X\E) satisfies some ergodic properties (York, 1992). Since the
convergence to the limiting distribution is very slow and calculating updates of the sam-
pling distribution is costly, these algorithms are not used in practice as often as the simple
likelihood weighting scheme.

There are also some other simulation algorithms, such as bounded variance algorithm
(Dagum & Luby, 1997) and the AA algorithm (Dagum et al., 1995), which are essentially
based on the LW algorithm and the Stopping-Rule Theorem (Dagum et al., 1995). Cano
et al. (1996) proposed another importance sampling algorithm that performed somewhat
better than LW in cases with extreme probability distributions, but, as the authors state, in
general cases it “produced similar results to the likelihood weighting algorithm.” Hernandez
et al. (1998) also applied importance sampling and reported a moderate improvement on
likelihood weighting.

2.4 Practical Performance of the Existing Sampling Algorithms

The largest network that has been tested using sampling algorithms is QMR-DT (Quick
Medical Reference — Decision Theoretic) (Shwe et al., 1991; Shwe & Cooper, 1991), which
contains 534 adult diseases and 4,040 findings, with 40,740 arcs depicting disease-to-finding
dependencies. The QMR-DT network belongs to a class of special bipartite networks
and its structure is often referred to as BN20 (Henrion, 1991), because of its two-layer
composition: disease nodes in the top layer and finding nodes in the bottom layer. Shwe
and colleagues used an algorithm combining self-importance and heuristic importance and
tested its convergence properties on the QMR-DT network. But since the heuristic method
iterative tabular Bayes (ITB) that makes use of a version of Bayes’ rule is designed for
the BN20O networks, it cannot be generalized to arbitrary networks. Although Shwe and
colleagues concluded that Markov blanket scoring and self-importance sampling significantly
improve the convergence rate in their model, we cannot extend this conclusion to general
networks. The computation of Markov blanket scoring is more complex in a general multi-
connected network than in a BN2O network. Also, the experiments conducted lacked a
gold-standard posterior probability distribution that could serve to judge the convergence
rate.

Pradhan and Dagum (1996) tested an efficient version of the LW algorithm — bounded
variance algorithm (Dagum & Luby, 1997) and the AA algorithm (Dagum et al., 1995) on
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a 146 node, multiply connected medical diagnostic Bayesian network. One limitation in
their tests is that the probability of evidence in the cases selected for testing was rather
high. Although over 10% of the cases had the probability of evidence on the order of
1078 or smaller, a simple calculation based on the reported mean px = 34.5 number of
evidence nodes, shows that the average probability of an observed state of an evidence node
conditional on its direct predecessors was on the order of (1078)1/345 ~ 0.59. Given that
their algorithm is essentially based on the LW algorithm, based on our tests we suspect
that the performance will deteriorate on cases where the evidence is very unlikely. Both
algorithms focus on the marginal probability of one hypothesis node. If there are many
queried nodes, the efficiency may deteriorate.

We have tested the algorithms discussed in Section 2.3 on several large networks. Our
experimental results show that in cases with very unlikely evidence, none of these algorithms
converges to reasonable estimates of the posterior probabilities within a reasonable amount
of time. The convergence becomes worse as the number of evidence nodes increases. Thus,
when using these algorithms in very large networks, we simply cannot trust the results. We
will present results of tests of the LW and SIS algorithms in more detail in Section 4.

3. AIS-BN: Adaptive Importance Sampling for Bayesian Networks

The main reason why the existing stochastic sampling algorithms converge so slowly is that
they fail to learn a good importance function during the sampling process and, effectively,
fail to reduce the sampling variance. When the importance function is optimal, such as
in probabilistic logic sampling without any evidence, each of the algorithms is capable
of converging to fairly good estimates of the posterior probabilities within relatively few
samples. For example, assuming that the posterior probabilities are not extreme (i.e., larger
than say 0.01), as few as 1,000 samples may be sufficient to obtain good estimates. In this
section, we present the adaptive importance sampling algorithm for Bayesian networks
(AIS-BN) that, as we will demonstrate in the next section, performs very well on most
tests. We will first describe the details of the algorithm and prove two theorems that are
useful in learning the optimal importance sampling function.

3.1 Basic Algorithm — AIS-BN

Compared with importance sampling used in normal finite-dimensional integrals, impor-
tance sampling used in Bayesian networks has several significant advantages. First, the
network joint probability distribution Pr(X) is decomposable and can be factored into
component parts. Second, the network has a clear structure, which represents many con-
ditional independence relationships. These properties are very helpful in estimating the
optimal importance function.

The basic AIS-BN algorithm is presented in Figure 2. The main differences between
the AIS-BN algorithm and the basic importance sampling algorithm in Figure 1 is that
we introduce a monotonically increasing weight function w® and two effective heuristic
initialization methods in Step 2. We also introduce a special learning component in Step 7
to let the updating process run more smoothly, avoiding oscillation of the parameters. The
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1. Order the nodes according to their topological order.

2. Initialize importance function Pr’(X\E) using some heuristic methods, ini-
tialize weight w?, set the desired number of samples m and the updating
interval [, initialize the score arrays for every node.

3. k 0, T ®7 WrScore < 0, Weym < 0
4. for i +— 1 tom do
5. if (¢ mod I == 0) then

6. k—k+1

=

Update the importance function Pr*(X\E) and w* based on T.
end if

8. s; < generate a sample according to Pr¥(X\E)
9. T—TU {SZ}

10. « Score (s;, Pr(X\E, e), Pr*(X\E), w")

WiScore
11. WT Score <~ WTScore T WiScore

(Optional: add wiscore to the corresponding entry of every score array)

12. Wsyum < Wsum + wk

end for

13. Output estimate of Pr(E) as wrscore/Wsum

(Optional: Normalize the score arrays for every node)

Figure 2: The adaptive importance sampling for Bayesian Networks (AIS-BN) algorithm.

score processing in Step 10 is

w;g _ kar(Sive)
wcore Prk (Sz)

Note that in this respect the algorithm in Figure 1 becomes a special case of AIS-BN
when w® = 1. The reason why we use w* is that we want to give different weights to
the sampling results obtained at different stages of the algorithm. As each stage updates
the importance function, they will all have different distance from the optimal importance
function. We recommend that w* o 1/6*, where 6* is the standard deviation estimated in
stage k using Equation 3. In order to keep w* monotonically increasing, if w¥ is smaller
than w*™ 1, we adjust its value to w*~!. This weighting scheme may introduce bias into

1. A similar weighting scheme based on variance was apparently developed independently by Ortiz and
Kaelbling (2000), who recommend the weight w"* o 1/(c*)?.
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the final result. Since the initial importance sampling functions are often inefficient and
introduce big variance into the results, we also recommend that w* = 0 in the first few
stages of the algorithm. We have designed this weighting scheme to reflect the fact that in
practice estimates with very small estimated variance are usually good estimates.

3.2 Modifying the Sampling Distribution in AIS-BN

Based on the theoretical considerations of Section 2.1, we know that the crucial element of
the algorithm is converging on a good approximation of the optimal importance function.
In what follows, we first give the optimal importance function for calculating Pr(E = e)
and then discuss how to use the structural advantages of Bayesian networks to approximate
this function. In the sequel, we will use the symbol p to denote the importance sampling
function and p* to denote the optimal importance sampling function.

Since Pr(X\E,E = e) > 0, from Corollary 1 we have

Pr(X\E,E = e)
Pr(E=¢e)

p(X\E) = = Pr(X|[E=e).

The following corollary captures this result.

Corollary 2 The optimal importance sampling function p*(X\E) for calculating Pr(E = e)
in Equation 6 is Pr(X|E =e).

Although we know the mathematical expression for the optimal importance sampling
function, it is difficult to obtain this function exactly. In our algorithm, we use the following
importance sampling function

n
p(X\E) = [[ Pr(Xi[Pa(X;), E) . (8)
i=1
This function partially considers the effect of all the evidence on every node during the
sampling process. When the network structure is the same as that of the network which
has absorbed the evidence, this function is the optimal importance sampling function. It
is easy to learn and, as our experimental results show, it is a good approximation to the
optimal importance sampling function. Theoretically, when the posterior structure of the
model changes drastically as the result of observed evidence, this importance sampling
function may perform poorly. We have tried to find practical networks where this would
happen, but to the day have not encountered a drastic example of this effect.

From Section 2.2, we know that the score sums corresponding to {z;, pa(X;),e} can
yield an unbiased estimator of Pr(xz;, pa(X;),e). According to the definition of conditional
probability, we can get an estimator of Pr’(x;|pa(X;),e). This can be achieved by main-
taining an updating table for every node, the structure of which mimicks the structure of
the CPT. Such tables allow us to decompose the above importance function into compo-
nents that can be learned individually. We will call these tables the importance conditional
probability tables (ICPT).

Definition 1 An importance conditional probability table (ICPT) of a node X is a table
of posterior probabilities Pr(X|Pa(X),E = e) conditional on the evidence and indexed by
its immediate predecessors, Pa(X).

166



ADAPTIVE IMPORTANCE SAMPLING IN BAYESIAN NETWORKS

The ICPT tables will be modified during the process of learning the importance function.
Now we will prove a useful theorem that will lead to considerable savings in the learning
process.

Theorem 2

X; € X, X; ¢ Anc(E) = Pr(X;|Pa(X;), E) = Pr(X;|Pa(X;)) . (9)

Proof: Suppose we have set the values of all the parents of node X; to pa(X;). Node Xj is
dependent on evidence E given pa(X;) only when X; is d-connecting with E given pa(X;)
(Pearl, 1988). According to the definition of d-connectivity, this happens only when there
exists a member of X;’s descendants that belongs to the set of evidence nodes E. In other
words X; ¢ Anc(E). O

Theorem 2 is very important for the AIS-BN algorithm. It states essentially that
the ICPT tables of those nodes that are not ancestors of the evidence nodes are equal to
the CPT tables throughout the learning process. We only need to learn the ICPT tables
for the ancestors of the evidence nodes. Very often this can lead to significant savings in
computation. If, for example, all evidence nodes are root nodes, we have our ICPT tables for
every node already and the AIS-BN algorithm becomes identical to the likelihood weighting
algorithm. Without evidence, the AIS-BN algorithm becomes identical to the probabilistic
logic sampling algorithm.

It is worth pointing out that for some X;, Pr(X;|P,(X;),E) (i.e., the ICPT table for
X;), can be easily calculated using exact methods. For example, when Xj is the only parent
of an evidence node E; and Ej; is the only child of X;, the posterior probability distribution
of X; is straightforward to compute exactly. Since the focus of the current paper is on

Input: Initialized importance function Pr’(X\E), learning rate (k).
Output: An estimated importance function Pr®(X\E).
for stage k +— 0 to S do

1. Sample [ points s’f, 512“ s e sf independently according to the current im-
portance function Pr*(X\E).

2. For every node X; such that X; € X\E and X; ¢ Anc(E) count score sums

corresponding to {z;, pa(X;), e} and estimate Pr’(z;|pa(X;), e) based on s¥,
k k
85, ..., S}

3. Update Pr*(X\E) according to the following formula:

Pritl(z|pa(X;), e) =
Pr¥ (z;lpa(X;), €) + (k) - (Pr'(z:[pa(X), e) — Pr*(zi[pa(Xi), e))

end for

Figure 3: The AIS-BN algorithm for learning the optimal importance function.
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sampling, the test results reported in this paper do not include this improvement of the
AIS-BN algorithm.

Figure 3 lists an algorithm that implements Step 7 of the basic AIS-BN algorithm listed
in Figure 2. When we estimate Pr’(z;|pa(X;),e), we only use the samples obtained at the
current stage. One reason for this is that the information obtained in previous stages has
been absorbed by Pr¥(X\E). The other reason is that in principle, each successive iteration
is more accurate than the previous one and the importance function is closer to the optimal
importance function. Thus, the samples generated by Pr**(X\E) are better than those
generated by Pr*(X\E). Pr'(X;|pa(X;),e) — Pr*(X;|pa(X;),e) corresponds to the vector
of first partial derivatives in the direction of the maximum decrease in the error. n(k) is
a positive function that determines the learning rate. When n(k) = 0 (lower bound), we
do not update our importance function. When n(k) = 1 (upper bound), at each stage we
discard the old function. The convergence speed is directly related to n(k). If it is small,
the convergence will be very slow due to the large number of updating steps needed to
reach a local minimum. On the other hand, if it is large, convergence rate will be initially
very fast, but the algorithm will eventually start to oscillate and thus may not reach a
minimum. There are many papers in the field of neural network learning that discuss how
to choose the learning rate and let estimated importance function converge quickly to the
destination function. Any method that can improve learning rate should be applicable to
this algorithm. Currently, we use the following function proposed by Ritter et al. (1991)

k/kmax
b) , (10)

o) =a(;

where a is the initial learning rate and b is the learning rate in the last step. This function
has been reported to perform well in neural network learning (Ritter et al., 1991).

3.3 Heuristic Initialization in AIS-BN

The dimensionality of the problem of Bayesian network inference is equal to the number of
variables in a network, which in the networks considered in this paper can be very high.
As a result, the learning space of the optimal importance function is very large. Choice of
the initial importance function Pr®(X\E) is an important factor affecting the learning —
an initial value of the importance function that is close to the optimal importance function
can greatly affect the speed of convergence. In this section, we present two heuristics that
help to achieve this goal.

Due to their explicit encoding of the structure of a decomposable joint probability distri-
bution, Bayesian networks offer computational advantages compared to finite-dimensional
integrals. A possible first approximation of the optimal importance function is the prior
probability distribution over the network variables, Pr(X). We propose an improvement on
this initialization. We know that the effect of evidence nodes on a node will be attenuated
as the path length of that node to evidence nodes is increased (Henrion, 1989) and the
most affected nodes are the direct ancestors of the evidence nodes. Initializing the ICPT
tables of the parents of the evidence nodes to uniform distributions in our experience im-
proves the convergence rate. Furthermore, the CPT tables of the parents of an evidence
node E may be not favorable to the observed state e if the probability of E = e without
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any condition is less than a small value, such as Pr(E = ¢e) < 1/(2-ng), where ng is the
number of outcomes of node E. Based on this observation, we change the CPT tables of
the parents of an evidence node F to uniform distributions in our experiment only when
Pr(EF =e) < 1/(2-ng), otherwise we leave them unchanged. This kind of initialization
involves the knowledge of Pr(E = e), the marginal probability without evidence. Proba-
bilistic logic sampling (Henrion, 1988) enhanced by Latin hypercube sampling (Cheng &
Druzdzel, 2000b) or quasi-Monte Carlo methods (Cheng & Druzdzel, 2000a) will produce a
very good estimate of Pr(E = e). This is an one-time effort that can be made at the model
building stage and is worth pursuing to any desired precision.

Another serious problem related to sampling are extremely small probabilities. Suppose
there exists a root node with a state s that has the prior probability Pr(s) = 0.0001. Let
the posterior probability of this state given evidence be Pr(s|E) = 0.8. A simple calculation
shows that if we update the importance function every 1,000 samples, we can expect to
hit s only once every 10 updates. Thus s’s convergence rate will be very slow. We can
overcome this problem by setting a threshold § and replacing every probability p < 8 in the
network by 6.2 At the same time, we subtract (6 — p) from the largest probability in the
same conditional probability distribution. For example, the value of § = 10/l, where [ is
the updating interval, will allow us to sample 10 times more often in the first stage of the
algorithm. If this state turns out to be more likely (having a large weight), we can increase
its probability even more in order to converge to the correct answer faster. Considering
that we should avoid f(X) < |g(X) — I - f(X)| in an unimportant region as discussed in
Section 2.1, we need to make this threshold larger. We have found that the convergence
rate is quite sensitive to this threshold. Based on our empirical tests, we suggest to use
f = 0.04 in networks whose maximum number of outcomes per node does not exceed five.
A smaller threshold might lead to fast convergence in some cases but slow convergence in
others. If one threshold does not work, changing it in a specific network will usually improve
convergence rate.

3.4 Selection of Parameters

There are several tunable parameters in the AIS-BN algorithm. We base the choice of
these parameters on the Central Limit Theorem (CLT). According to CLT, if Z;, Zs, ...,
Z, are independent and identically distributed random variables with F(Z;) = uz and
Var(Z;) = 0%,i =1, ..., n, then Z = (Z;+...+Z,)/n is approximately normally distributed
when n is sufficiently large. Thus,

7* 1% 2 [e%e}
lim P(’ s JZ/\/ﬁ.t) — 7/ e 2y . (11)
n—oo Hz Hz \V2m Jt

Although this approximation holds when n approaches infinity, CLT is known to be very
robust and lead to excellent approximations even for small n. The formula of Equation 11
is an (g, §) Relative Approzimation, which is an estimate 7z of p that satisfies

I
2. This initialization heuristic was apparently developed independently by Ortiz and Kaelbling (2000).
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If § has been fixed,

Uz/\/’?l -1 0
— Pl Z
67” ,LLZ Z (2) Y
where ®7(z) = \/% I e~®*/2dx. Since in our sampling problem, p. (corresponding to

Pr(E) in Figure 2) has been fixed, setting e, to a smaller value amounts to letting oz/\/n
be smaller. So, we can adjust the parameters based on oz/y/n, which can be estimated
using Equation 3. It is also the theoretical intuition behind our recommendation w* o 1/G*
in Section 3.1. While we expect that this should work well in most networks, no guarantees
can be given here — there exist always some extreme cases in sampling algorithms in which
no good estimate of variance can be obtained.

3.5 A Generalization of AIS-BN: The Problem of Estimating Pr(ale)

A typical focus of systems based on Bayesian networks is the posterior probability of various
outcomes of individual variables given evidence, Pr(ale). This can be generalized to the
computation of the posterior probability of a particular instantiation of a set of variables
given evidence, i.e., Pr(A = ale). There are two methods that are capable of performing
this computation. The first method is very efficient at the expense of precision. The second
method is less efficient, but offers in general better convergence rates. Both methods are
based on Equation 7.

The first method reuses the samples generated to estimate Pr(e) in estimating Pr(a,e).
Estimation of Pr(a,e) amounts to counting the scored sum under the condition A = a.
The main advantage of this method is its efficiency — we can use the same set of samples
to estimate the posterior probability of any state of a subset of the network given evidence.
Its main disadvantage is that the variance of the estimated Pr(a, e) can be large, especially
when the numerical value of Pr(ale) is extreme. This method is the most widely used
approach in the existing stochastic sampling algorithms.

The second method, used much more rarely (e.g., Cano et al., 1996; Pradhan & Dagum,
1996; Dagum & Luby, 1997), calls for estimating Pr(e) and Pr(a,e) separately. After
estimating Pr(e), an additional call to the algorithm is made for each instantiation a of
the set of variables of interest A. Pr(a,e) is estimated by sampling the network with the
set of observations e extended by A = a. The main advantage of this method is that it
is much better at reducing variance than the first method. Its main disadvantage is the
computational cost associated with sampling for possibly many combinations of states of
nodes of interest.

Cano et al. (1996) suggested a modified version of the second method. Suppose that we
are interested in the posterior distribution Pr(a;|e) for all possible values a; of A, i = 1,
2, ..., k. We can estimate Pr(a;,e) for each i = 1, ..., k separately, and use the value
Zle Pr(a;,e) as an estimate for Pr(e). The assumption behind this approach is that the
estimate of Pr(e) will be very accurate because of the large sample from which it is drawn.
However, even if we can guarantee small variance in every Pr(a;, e), we cannot guarantee
that their sum will also have a small variance. So, in the AIS-BN algorithm we only use
the pure form of each of the methods. The algorithm listed in Figure 2 is based on the first
method when the optional computations in Steps 12 and 13 are performed. An algorithm
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corresponding to the second method skips the optional steps and calls the basic AIS-BN
algorithm twice to estimate Pr(e) and Pr(a, e) separately.

The first method is very attractive because of its simplicity and possible computational
efficiency. However, as we have shown in Section 2.2, the performance of a sampling algo-
rithm that uses just one set of samples (as in the first method above) to estimate Pr(ale)
will deteriorate if the difference between the optimal importance functions for Pr(a,e) and
Pr(e) is large. If the main focus of the computation is high accuracy of the posterior proba-
bility distribution of a small number of nodes, we strongly recommend to use the algorithm
based on the second method. Also, this algorithm can be easily used to estimate confidence
intervals of the solution.

4. Experimental Results

In this section, we first describe the experimental method used in our tests. Our tests focus
on the CPCS network, which is one of the largest and most realistic networks available
and for which we know precisely which nodes are observable. We were, therefore, able
to generate very realistic test cases. Since the AIS-BN algorithm uses two initialization
heuristics, we designed an experiment that studies the contribution of each of these two
heuristics to the performance of the algorithm. To probe the extent of AIS-BN algorithm’s
excellent performance, we test it on several real and large networks.

4.1 Experimental Method

We performed empirical tests comparing the AIS-BN algorithm to the likelihood weighting
(LW) and the self-importance sampling (SIS) algorithms. The two algorithms are basically
the state of the art general purpose belief updating algorithms. The AA (Dagum et al.,
1995) and the bounded variance (Dagum & Luby, 1997) algorithms, which were suggested
by a reviewer, are essentially enhanced special purpose versions of the basic LW algorithm.
Our implementation of the three algorithms relied on essentially the same code with separate
functions only when the algorithms differed. It is fair to assume, therefore, that the observed
differences are purely due to the theoretical differences among the algorithms and not due to
the efficiency of implementation. In order to make the comparison of the AIS-BN algorithm
to LW and SIS fair, we used the first method of computation (Section 3.5), i.e., one that
relies on single sampling rather than calling the basic AIS-BN algorithm twice.

We measured the accuracy of approximation achieved by the simulation in terms of the
Mean Square Error (MSE), i.e., square root of the sum of square differences between Pr/(z;;)
and Pr(z;;), the sampled and the exact marginal probabilities of state j (j = 1,2,...,n;)
of node 4, such that X; ¢ E. More precisely,

MSE:\Jl > i(Prl(fEij)_Pr(xij))Qa

n; X
ZXZ'EN\E ! X;EN\E j=1

where N is the set of all nodes, E is the set of evidence nodes, and n; is the number of
outcomes of node i. In all diagrams, the reported MSF is averaged over 10 runs. We used
the clustering algorithm (Lauritzen & Spiegelhalter, 1988) to compute the gold standard
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results for our comparisons of the mean square error. We performed all experiments on a
Pentium II, 333 MHz Windows computer.

While MSFE is not perfect, it is the simplest way of capturing error that lends itself to
further theoretical analysis. For example, it is possible to derive analytically the idealized
convergence rate in terms of MSF, which, in turn, can be used to judge the quality of the
algorithm. MSF has been used in virtually all previous tests of sampling algorithms, which
allows interested readers to tie the current results to the past studies. A reviewer offered
an interesting suggestion of using cross-entropy or some other technique that weights small
changes near zero much more strongly than the equivalent size change in the middle of
the [0, 1] interval. Such measure would penalize the algorithm for imprecisions of possibly
several orders of magnitude in very small probabilities. While this idea is interesting, we
are not aware of any theoretical reasons as to why this measure would make a difference in
comparisons between AIS-BN, LW and SIS algorithms. The MSE, as we mentioned above,
will allow us to compare the empirically determined convergence rate to the theoretically
derived ideal convergence rate. Theoretically, the MSE is inversely proportional to the
square root of the sample size.

Since there are several tunable parameters used in the AIS-BN algorithm, we list the
values of the parameters used in our test: [ = 2,500; w® = 0 for k¥ < 9 and w* = 1
otherwise. We stopped the updating process in Step 7 of Figure 2 after £k > 10. In other
words, we used only the samples collected in the last step of the algorithm. The learning
parameters used in our algorithm are kyax = 10, a = 0.4, and b = 0.14 (see Equation 10).
We used an empirically determined value of the threshold § = 0.04 (Section 3.3). We only
change the CPT tables of the parents of a special evidence node A to uniform distributions
when Pr(A = a) < 1/(2-n4). Some of the parameters are a matter of design decision
(e.g., the number of samples in our tests), others were chosen empirically. Although we
have found that these parameters may have different optimal values for different Bayesian
networks, we used the above values in all our tests of the AIS-BN algorithm described in
this paper. Since the same set of parameters led to spectacular improvement in accuracy
in all tested networks, it is fair to say that the superiority of the AIS-BN algorithm to the
other algorithms is not too sensitive to the values of the parameters.

For the SIS algorithm, w* = 1 by the design of the algorithm. We used [ = 2,500. The
updating function in Step 7 of Figure 1 is that of (Shwe et al., 1991; Cousins, Chen, &
Frisse, 1993):

Pr(z;|pa(X;)) + k- Prcurrent(xi|pa(Xi)’ e)

Prlffww(:cﬂpa(Xi),e) = 1+ k )

where Pr(z;|pa(X;)) is the original sampling distribution, f/’\rcurmnt(xi]pa(Xi),e) is an
equivalent of our ICPT tables estimator based on all currently available information, and
k is the updating step.

4.2 Results for the CPCS Network

The main network used in our tests is a subset of the CPCS (Computer-based Patient Case
Study) model (Pradhan et al., 1994), a large multiply-connected multi-layer network con-
sisting of 422 multi-valued nodes and covering a subset of the domain of internal medicine.
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Among the 422 nodes, 14 nodes describe diseases, 33 nodes describe history and risk fac-
tors, and the remaining 375 nodes describe various findings related to the diseases. The
CPCS network is among the largest real networks available to the research community at
the present time. The CPCS network contains many extreme probabilities, typically on
the order of 107, Our analysis is based on a subset of 179 nodes of the CPCS network,
created by Max Henrion and Malcolm Pradhan. We used this smaller version in order to
be able to compute the exact solution for the purpose of measuring approximation error in
the sampling algorithms.

The AIS-BN algorithm has some learning overhead. The following comparison of exe-
cution time vs. number of samples may give the reader an idea of this overhead. Updating
the CPCS network with 20 evidence nodes on our system takes the AIS-BN algorithm a
total of 8.4 seconds to learn. It generates subsequently 3,640 samples per second, while the
SIS algorithm generates 2,631 samples per second, and the LW algorithm generates 4,167
samples per second. In order to remain conservative towards the AIS-BN algorithm, in all
our experiments we fixed the execution time of the algorithms (our limit was 60 seconds)
rather than the number of samples. In the CPCS network with 20 evidence nodes, in 60
seconds, AIS-BN generates about 188,000 samples, SIS generates about 158,000 samples
and LW generates about 250,000 samples.
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Figure 4: The probability distribution of evidence Pr(E = e) in our experiments.

We generated a total of 75 test cases consisting of five sequences of 15 test cases each. We
ran each test case 10 times, each time with a different setting of the random number seed.
Fach sequence had a progressively higher number of evidence nodes: 15, 20, 25, 30, and
35 evidence nodes respectively. The evidence nodes were chosen randomly (equiprobable
sampling without replacement) from those nodes that described various plausible medical
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findings. Almost all of these nodes were leaf nodes in the network. We believe that this
constituted very realistic test cases for the algorithms. The distribution of the prior prob-
ability of evidence, Pr(E = e), across all test runs of our experiments is shown in Figure 4.
The least likely evidence was 5.54 x 10742, the most likely evidence was 1.37 x 1079, and
the median was 7 x 10724,
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Sampl e time (seconds)

Figure 5: A typical plot of convergence of the tested sampling algorithms in our experiments
— Mean Square Error as a function of the execution time for a subset of the
CPCS network with 20 evidence nodes chosen randomly among plausible medical
observations (Pr(E = e) = 3.33 x 10720 in this particular case) for the AIS-BN,
the SIS, and the LW algorithms. The curve for the AIS-BN algorithm is very
close to the horizontal axis.

Figures 5 and 6 show a typical plot of convergence of the tested sampling algorithms in
our experiments. The case illustrated involves updating the CPCS network with 20 evidence
nodes. We plot the MSE after the initial 15 seconds during which the algorithms start
converging. In particular, the learning step of the AIS-BN algorithm is usually completed
within the first 9 seconds. We ran the three algorithms in this case for 150 seconds rather
than the 60 seconds in the actual experiment in order to be able to observe a wider range of
convergence. The plot of the MSFE for the AIS-BN algorithm almost touches the X axis in
Figure 5. Figure 6 shows the same plot in a finer scale in order to show more detail in the
AIS-BN convergence curve. It is clear that the AIS-BN algorithm dramatically improves
the convergence rate. We can also see that the results of AIS-BN converge to exact results
very fast as the sampling time increases. In the case captured in Figures 5 and 6, a tenfold
increase in the sampling time (after subtracting the overhead for the AIS-BN algorithm, it

174



ADAPTIVE IMPORTANCE SAMPLING IN BAYESIAN NETWORKS

0.0025 +

—0— AIS-BN

0.0020 +

0.0015 +

0.0010 +

Mean Square Error

0.0005 +

0.0000 t t t t t t t t {
15 30 45 60 75 90 105 120 135 150
Sample time (seconds)

Figure 6: The lower part of the plot of Figure 5 showing the convergence of the AIS-BN
algorithm to correct posterior probabilities.

corresponds to a 21.5-fold increase in the number of samples) results in a 4.55-fold decrease
of the MSE (to MSE< 0.00048). The observed convergence of both SIS and LW algorithms
was poor. A tenfold increase in sampling time had practically no effect on accuracy. Please
note that this is a very typical case observed in our experiments.

Original CPT | Exact ICPT | Learned ICPT
“Absent” 0.99631 0.0037 0.015
“Mild” 0.00183 0.1560 0.164
“Moderate” 0.00093 0.1190 0.131
“Severe” 0.00093 0.7213 0.690

Table 1: A fragment of the conditional probability table of a node of the CPCS network
(node gasAcute, parents hepAcute=Mild and wbc TotTho=False) in Figure 6.

Figure 7 illustrates the ICPT learning process of the AIS-BN algorithm for the sample
case shown in Figure 6. The displayed conditional probabilities belong to the node gasAcute
which is a parent of two evidence nodes, difInfGasMuc and abdPaiEraMea. The node
gasAcute has four states: “absent,” “mild,” “moderate,” and “severe”, and two parents.
We randomly chose a combination of its parents’ states as our displayed configuration. The
original CPT for this configuration without evidence, the exact ICPT with evidence and
the learned ICPT with evidence are summarized numerically in Table 1. Figure 7 illustrates
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Figure 7: Convergence of the conditional probabilities during the example run of the AIS-
BN algorithm captured in Figure 6. The displayed fragment of the conditional
probability table belongs to node gasAcute which is a parent of one of the evidence
nodes.

that the learned importance conditional probabilities begin to converge to the exact results
stably after three updating steps. The learned probabilities in Step 10 are close to the
exact results. In this example, the difference between Pr(z;|pa(X;),e) and Pr(z;|pa(X;)) is
very large. Sampling from Pr(z;|pa(X;)) instead of Pr(x;|pa(X;),e) would introduce large
variance into our results.

AIS-BN | SIS LW
@ | 0.00082 | 0.110 | 0.148

o | 0.00022 | 0.076 | 0.093
min | 0.00049 | 0.0016 | 0.0031
median | 0.00078 | 0.105 | 0.154
max | 0.00184 | 0.316 | 0.343

Table 2: Summary of the simulation results for all of the 75 simulation cases on the CPCS
network. Figure 8 shows each of the 75 cases graphically.

Figure 8 shows the MSE for all 75 test cases in our experiments with the summary
statistics in Table 2. A paired one-tailed ¢-test resulted in statistically highly significant
differences between the AIS-BN and SIS algorithms (p < 3.1 x 1072°), and also between
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Figure 8: Performance of the AIS-BN, SIS, and LW algorithms: Mean Square Error for
each of the 75 individual test cases plotted against the probability of evidence.
The sampling time is 60 seconds.

the SIS and LW algorithms (p < 1.7 x 1078). As far as the magnitude of difference is
concerned, AIS-BN was significantly better than SIS. SIS was better than LW, but the
difference was small. The mean MSEs of SIS and LW algorithms were both greater than
0.1, which suggests that neither of these algorithms is suitable for large Bayesian networks.

The graph in Figure 9 shows the MSF ratio between the AIS-BN and SIS algorithms.
We can see that the percentage of the cases whose ratio was greater than 100 (two orders
of magnitude improvement!) is 60%. In other words, we obtained two orders of magnitude
improvement in MSFE in more than half of the cases. In 80% cases, the ratio was greater
than 50. The smallest ratio in our experiments was 2.67, which happened when posterior
probabilities were dominated by the prior probabilities. In that case, even though the LW
and SIS algorithms converged very fast, their MSE was still far larger than that of AIS-BN.

Our next experiment aimed at showing how close the AIS-BN algorithm can approach
the best possible sampling results. If we know the optimal importance sampling function,
the convergence of the AIS-BN algorithm should be the same as that of forward sampling
without evidence. In other words, the results of the probabilistic logic sampling algorithm
without evidence approach the limit of how well stochastic sampling can perform. We ran
the logic sampling algorithm on the CPCS network without evidence mimicking the test
runs of the AIS-BN algorithm, i.e., 5 blocks of 15 runs, each repeated 10 times with a
different random number seed. The number of samples generated was equal to the average
number of samples generated by the AIS-BN algorithm for each series of 15 test runs.
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Figure 9: The ratio of MSE between SIS and AIS-BN versus percentage.

We obtained the average MSE p = 0.00057, with ¢ = 0.000025, min = 0.00052, and
max = 0.00065. The best results should be around this range. From Table 2, we can
see that the minimum MSFE for the AIS-BN algorithm was 0.00049, within the range of
the optimal result. The mean MSFE in AIS-BN is 0.00082, not too far from the optimal
results. The standard deviation, o, is significantly larger in the AIS-BN algorithm, but
this is understandable given that the process of learning the optimal importance function is
heuristic in nature. It is not difficult to understand that there exist a difference between the
ATIS-BN results and the optimal results. First, the AIS-BN algorithm in our tests updated
the sampling distribution only 10 times, which may be too few times to let it converge
to the optimal importance distribution. Second, even if the algorithm has converged to
the optimal importance distribution, the sampling algorithm will still let the parameter
oscillate around this distribution and there will be always small differences between the two
distributions.

Figure 10 shows the convergence rate for all tested cases for a four-fold increase in
sampling time (between 15 and 60 seconds). We adjusted the convergence ratio of the
AIS-BN algorithm by dividing it by a constant. According to Equation 3, the theoretically
expected convergence ratio for a four-fold increase in the number of samples should be
around two. There are about 96% cases among the AIS-BN runs whose ratio lays in
the interval (1.75, 2.25], in a sharp contrast to 11% and 13% cases in the SIS and LW
algorithms. The ratios of the remaining 4% cases in AIS-BN lay in the interval [2.25, 2.5].
In the SIS and LW algorithms, the percentage of cases whose ratio were smaller than 1.5
was 71% and 77% respectively. Less than 1.5 means that the number of samples was too
small to estimate variance and the results cannot be trusted. The ratio greater than 2.25
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Figure 10: The distribution of the convergence ratio of the AIS-BN, SIS, and LW algo-
rithms when the number of samples increases four times.

means possibly that 60 seconds was long enough to estimate the variance, but 15 seconds
was too short.

4.3 The Role of AIS-BN Heuristics in Performance Improvement

From the above experimental results we can see that the AIS-BN algorithm can improve
the sampling performance significantly. Our next series of tests focused on studying the role
of the two AIS-BN initialization heuristics. The first is initializing the ICPT tables of the
parents of evidence to uniform distributions, denoted by U. The second is adjusting small
probabilities, denoted by S. We denote AIS-BN without any heuristic initialization method
to be the AIS algorithm. AIS+ U+S equals AIS-BN. We compared the following versions
of the algorithms: SIS, AIS, SIS+ U, AIS+ U, SIS+S, AIS+S, SIS+ U+S, AIS+U+S. All
algorithms with SIS used the same number of samples as SIS. All algorithms with AIS used
the same number of samples as AIS-BN. We tested these algorithms on the same 75 test
cases used in the previous experiment. Figure 11 shows the MSFE for each of the sampling
algorithms with the summary statistics in Table 3. Even though the AIS algorithm is better
than the SIS algorithm, the difference is not as large as in case of the AIS+ U, AIS+S, and
AIS-BN algorithms. It seems that heuristic initialization methods help much. The results
for the SIS+, SIS+ U, SIS+ U+ S algorithms suggest that although heuristic initialization
methods can improve performance, they alone cannot improve too much. It is fair to say
that significant performance improvement in the AIS-BN algorithm is coming from the
combination of AIS with heuristic methods, not any method alone. It is not difficult to

179



CHENG & DRUZDZEL

understand that, as only with good heuristic initialization methods is it possible to let the
learning process quickly exit oscillation areas. Although both S and U methods alone can
improve the performance, the improvement is moderate compared to the combination of
the two.

*21 0.110
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S 008 0.075
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g ~-:0.060
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s 0.04 -
0.02 1 e
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Different Algorithms

Figure 11: A comparison of different algorithms in the CPCS network. Each bar is based
on 75 test cases. The dotted bar shows the MSE for the SIS algorithm while
the gray bar shows the MSFE for the AIS algorithm.

SIS AIS SIS+U | AIS+U | SIS+S | AIS+S | SIS+U+S | AIS-BN

@ | 0.110 0.060 0.050 | 0.0084 0.075 0.0015 0.050 0.00082

o | 0.076 0.049 0.052 0.025 0.074 0.0016 0.059 0.00022

min | 0.0016 | 0.00074 | 0.0011 | 0.00058 | 0.00072 | 0.00056 | 0.00086 0.00049
median | 0.105 0.045 0.031 | 0.0014 0.052 | 0.00087 0.028 0.00078
max | 0.316 0.207 0.212 0.208 0.279 0.0085 0.265 0.0018

Table 3: Summary of the simulation results for different algorithms in the CPCS network.

4.4 Results for Other Networks

In order to make sure that the AIS-BN algorithm performs well in general, we tested it on

two other large networks.
The first network that we used in our tests is the PATHFINDER network (Heckerman
et al., 1990), which is the core element of an expert system that assists surgical pathologists
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with the diagnosis of lymph-node diseases. There are two versions of this network. We used
the larger version, consisting of 135 nodes. In contrast to the CPCS network, PATHFINDER
contains many conditional probabilities that are equal to 1, which reflects deterministic
relationships in certain settings. To make the sampling challenging, we randomly selected
20 evidence nodes from among the leaf nodes. Each of these was an observable node (David
Heckerman, personal communication). We verified in each case that the probability of so
selected evidence was not equal to zero.

We fixed the execution time of the algorithms to be 60 seconds. The learning overhead
for the AIS-BN algorithm in the PATHFINDER network was about 3.5 seconds. In 60
seconds, AIS-BN generated about 366,000 samples, SIS generated about 250,000 samples
and LW generated about 2,700,000 samples. The reason why LW could generate more than
10 times as many samples as SIS within the same amount of time is that the LW algorithm
terminates sample generation at a very early stage in many samples, when the weight of a
sample becomes zero. This is a result of determinism in the probability tables, mentioned
above. We will see that LW benefits greatly from generating more samples. The other
parameters used in AIS-BN were the same as those used in the CPCS network.

We tested 20 cases, each with randomly selected 20 evidence nodes. The reported MSFE
for each case was averaged over 10 runs. Some of the runs of the SIS and LW algorithms did
not manage to generate any effective samples (the weight score sum was equal to zero). SIS
had only 75% effective runs and LW had only 89% effective runs, which means that in some
runs SIS and LW were unable to yield any information about the posterior distributions.
In all those cases, we discarded the run and only averaged over the effective runs. All
runs in the AIS-BN algorithm were effective. We report our experimental results with the
summary statistics in Table 4. From these data, we can see that the AIS-BN algorithm
is still significantly better than the SIS and LW algorithms. Since the LW algorithm can
generate more than ten times the number of samples than the SIS algorithm, its performance
is better than that of the SIS algorithm.

AIS-BN SIS LW
| 0.00050 0.166 0.089
o | 0.00037 0.107 0.0707
min | 0.00025 | 0.00116 | 0.00080
median | 0.00037 0.184 0.0866
max | 0.0017 0.467 0.294
effective runs 200 150 178

Table 4: Summary of the simulation results for all of the 20 simulation cases on the
PATHFINDER network.

The second network that we tested was one of the ANDES networks (Conati et al.,
1997). ANDES is an intelligent tutoring system for classical Newtonian physics that is
being developed by a team of researchers at the Learning Research and Development Center
at the University of Pittsburgh and researchers at the United States Naval Academy. The
student model in ANDES uses a Bayesian network to do long—term knowledge assessment,
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plan recognition, and prediction of students’ actions during problem solving. We selected
the largest ANDES network that was available to us, consisting of 223 nodes.

In contrast to the previous two networks, the depth of the ANDES network was sig-
nificantly larger and so was its connectivity. There were only 22 leaf nodes. It is quite
predictable that this kind of networks will pose difficulties to learning. We selected 20
evidence nodes randomly from the potential evidence nodes and tested 20 cases. All pa-
rameters were the same as those used in the CPCS network. We fixed the execution time
of the algorithms to be 60 seconds. The learning overhead for the AIS-BN algorithm in
the ANDES network was 13.4 seconds. In 60 seconds, AIS-BN generated about 114,000
samples, SIS generated about 98,000 samples and LW generated about 180,000 samples.
In this network, LW still can generate almost two times the number of samples generated
by the SIS algorithm.

We report our experimental results with the summary statistics in Table 5. The results
show that also in the ANDES network the ATS-BN algorithm was significantly better than
the SIS and LW algorithms. Since LW generated almost two times the number of samples
that were generated by the SIS algorithm, its performance was better than that of the SIS
algorithm.

AIS-BN | SIS Lw
@ | 0.0059 | 0.0628 | 0.0404
o | 0.0049 0.102 | 0.0539
min | 0.0023 | 0.0028 | 0.0028
median | 0.0045 | 0.0190 | 0.0198
max | 0.0237 0.321 | 0.221

Table 5: Summary of the simulation results for all of the 20 simulation cases on the ANDES
network.

While the AIS-BN algorithm is on the average an order of magnitude more precise
than the other two algorithms, the performance improvement is smaller than in the other
two networks. The reason why the performance improvement of the AIS-BN algorithm
over the SIS and LW algorithms in the ANDES network is smaller compared to that in
the CPCS and PATHFINDER networks is that: (1) The ANDES network used in our tests
was apparently not challenging enough for sampling algorithms in general. In the ANDES
network, SIS and LW also can perform well in some cases. The minimum MSFE of SIS and
LW in our tested cases is almost the same as that of AIS-BN. (2) The number of samples
generated by AIS-BN in this network is significantly smaller than that in the previous
two networks and AIS-BN needs more time to learn. Although increasing the number of
samples will improve the performance of all three algorithms, it improves the performance
of AIS-BN more since the convergence ratio of the AIS-BN algorithm is usually larger than
that of SIS and LW (see Figure 10). (3) The parameters that we used in this network were
tuned for the CPCS network. (4) The large depth and fewer leaf nodes of the ANDES
network pose some difficulties to learning.
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5. Discussion

There is a fundamental trade-off in the AIS-BN algorithm between the time spent on
learning the importance function and the time spent on sampling. Our current approach,
which we believe to be reasonable, is to stop learning at the point when the importance
function is good enough. In our experiments we stopped learning after 10 iterations.

There are several ways of improving the initialization of the conditional probability
tables at the outset of the AIS-BN algorithm. In the current version of the algorithm, we
initialize the ICPT table of every parent N of an evidence node E (N € Pa(E), E € E)
to the uniform distribution when Pr(E =€) < 1/(2-ng). This can be improved further.
We can extend the initialization to those nodes that are severely affected by the evidence.
They can be identified by examining the network structure and local CPTs.

We can view the learning process of the AIS-BN algorithm as a network rebuilding
process. The algorithm constructs a new network whose structure is the same as the original
network (except that we delete the evidence nodes and corresponding arcs). The constructed
network models the joint probability distribution p(X\E) in Equation 8, which approaches
the optimal importance function. We use the learned p’ to approximate this distribution.
If p’ approximates Pr(X|E) accurately enough, we can use this new network to solve other
approximate tasks, such as the problem of computing the Maximum A-Posterior assignment
(MAP) (Pearl, 1988), finding k& most likely scenarios (Seroussi & Golmard, 1994), etc. A
large advantage of this approach is that we can solve each of these problems as if the network
had no evidence nodes.

We know that Markov blanket scoring can improve convergence rates in some sampling
algorithms (Shwe & Cooper, 1991). It may also be applied to the AIS-BN algorithm to
improve its convergence rate. According to Property 4 (§§ction 2.1), any technique that can
reduce the variance U%’r © will reduce the variance of Pr(e) and correspondingly improve

the sampling performance. Since the variance of stratified sampling (Rubinstein, 1981) is
never much worse than that of random sampling, and can be much better, it can improve the
convergence rate. We expect some other variance reduction methods in statistics, such as:
(i) the expected value of a random variable; (i) antithetic variants correlations (stratified
sampling, Latin hypercube sampling, etc.); and (4ii) systematic sampling, will also improve
the sampling performance.

Current learning algorithm used a simple approach. Some heuristic learning methods,
such as adjusting learning rates according to changes of the error (Jacobs, 1988), should
also be applicable to our algorithm. There are several tunable parameters in the AIS-BN
algorithm. Finding the optimal values of these parameters for any given network is another
interesting research topic.

It is worth observing that the plots presented in Figure 8 are fairly flat. In other words,
in our tests the convergence of the sampling algorithms did not depend too strongly on the
probability of evidence. This seems to contradict the common belief that forward sampling
schemes suffer from unlikely evidence. AIS-BN for one shows a fairly flat plot. The
convergence of the SIS and LW algorithms seems to decrease slightly with unlikely evidence.
It is possible that all three algorithms will perform much worse when the probability of
evidence drops below some threshold value, which our tests failed to approach. Until this
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relationship has been studied carefully, we conjecture that the probability of evidence is not
a good measure of difficulty of approximate inference.

Given that the problem of approximating probabilistic inference is NP-hard, there exist
networks that will be challenging for any algorithm and we have no doubt that even the
AIS-BN algorithm will perform poorly on them. To the day, we have not found such
networks. There is one characteristic of networks that may be challenging to the AIS-BN
algorithm. In general, when the number of parameters that need to be learned by the AIS-
BN algorithm increases, its performance will deteriorate. Nodes with many parents, for
example, are challenging to the AIS-BN learning algorithm, as it has to update the ICPT
tables under all combinations of the parent nodes. It is possible that conditional probability
distributions with causal independence properties, such as Noisy-OR, distributions (Pearl,
1988; Henrion, 1989; Diez, 1993; Srinivas, 1993; Heckerman & Breese, 1994), common in
very large practical networks, can be treated differently and lead to considerable savings in
the learning time.

One direction of testing approximate algorithms, suggested to us by a reviewer, is to use
very large networks for which exact solution cannot be computed at all. In this case, one
can try to infer from the difference in variance at various stages of the algorithm whether
it is converging or not. This is a very interesting idea that is worth exploring, especially
when combined with theoretical work on stopping criteria in the line of the work of Dagum
and Luby (1997).

6. Conclusion

Computational complexity remains a major problem in application of probability theory
and decision theory in knowledge-based systems. It is important to develop schemes that
improve the performance of updating algorithms — even though the theoretically demon-
strated worst case will remain NP-hard, many practical cases may become tractable.

In this paper, we studied importance sampling in Bayesian networks. After reviewing
the most important theoretical results related to importance sampling in finite-dimensional
integrals, we proposed a new algorithm for importance sampling in Bayesian networks that
we call adaptive importance sampling (AIS-BN). While the process of learning the optimal
importance function for the AIS-BN algorithm is computationally intractable, based on the
theory of importance sampling in finite-dimensional integrals we proposed several heuristics
that seem to work very well in practice. We proposed heuristic methods for initializing the
importance function that we have shown to accelerate the learning process, a smooth learn-
ing method for updating importance function using the structural advantages of Bayesian
networks, and a dynamic weighting function for combining samples from different stages
of the algorithm. All these methods help the AIS-BN algorithm to get fairly accurate
estimates of the posterior probabilities in a limited time. Of the two applied heuristics,
adjustment of small probabilities, seems to lead to the largest improvement in performance,
although the largest decrease in MSF is achieved by a combination of the two heuristics
with the AIS-BN algorithm.

The AIS-BN algorithm can lead to a dramatic improvement in the convergence rates in
large Bayesian networks with evidence compared to the existing state of the art algorithms.
We compared the performance of the AIS-BN algorithm to the performance of likelihood
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weighting and self-importance sampling on a large practical model, the CPCS network,
with evidence as unlikely as 5.54 x 10742 and typically 7 x 1.0724. In our experiments, we
observed that the AIS-BN algorithm was always better than likelihood weighting and self-
importance sampling and in over 60% of the cases it reached over two orders of magnitude
improvement in accuracy. Tests performed on the other two networks, PATHFINDER and
ANDES, yielded similar results.

Although there may exist other approximate algorithms that will prove superior to AIS-
BN in networks with special structure or distribution, the AIS-BN algorithm is simple
and robust for general evidential reasoning problems in large multiply-connected Bayesian
networks.
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