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ABSTRACT 

The desire to compute similarities or distances between business 

processes arises in numerous situations such as when comparing 

business processes with reference models or when integrating 

business processes. The objective of this paper is to develop an 

approach for measuring the distance between Business Processes 

Models (BPM) based on the behavior of the business process only 

while abstracting from any structural aspects of the actual model. 

Furthermore, the measure allows for assigning more weight to 

parts of a process which are executed more frequently and can 

thus be considered as more important. This is achieved by 

defining a probability distribution on the behavior allowing the 

computation of distance metrics from the field of statistics. 
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1. INTRODUCTION 
Business Process Models (BPMs) enable organizations in Public 

and Private Sector to get a transparent overview over the relevant 

extracts of their organization. BPMs are used to gain clarity about 

the logical sequence of activities in an organization. They are also 

applied to describe the resulting products and services, the 

required resources and data, as well as the involved organizational 

units. They are discussed in Information Systems (IS) literature as 

a tool to evaluate the overall performance of an organization [1] 

and to support business process reorganization and optimization 

by both capturing the as-is situation and designing the to-be 

process.  

The comparison of business processes with the help of a similarity 

measure is often an important component in approaches 

supporting business process management. Examples are the 

integration of business processes in scenarios of distributed 

modeling, the identification of similar processes in a huge set of 

company process models, e.g. to leverage synergy effects, or the 

benchmarking of processes between organizations [2]. 

Furthermore, it can be applied to control reorganization projects 

by comparing to-be and implemented as-is processes or in the 

context of process mining [3], where the actual behavior of a 

business process is compared with process models or certain 

business rules to check for process compliance [4].  

The contribution of this paper is to apply distance measure 

approaches from statistics on the field of business process 

management. Though a distance measure can be of use in many 

different contexts, an application scenario in which our approach 

is of particular interest is the comparison of designed to-be 

process models with their actual implementations to check for 

conformance. 

In our approach, we introduce a set of related distance measures 

for business processes. There are two basic characteristics 

underlying these distance measures. First, it aims at measuring the 

distance with respect to the behavioral aspects of the business 

processes. Aspects regarding the modeling language employed to 

represent the process and the constructs defining this behavior 

shall be excluded from consideration. This is especially applicable 

in situations where the information about processes is taken from 

log files, e.g. to check for conformance or compliance. Second, it 

takes into account the frequency of the observed behavior, i.e. the 

number of executions for activities. This allows weighing the 

important (more frequent) parts of the process stronger than the 

unimportant ones.  

These goals are achieved by taking a probabilistic perspective on 

the behavior of the process. All the different sequences of 

activities that may be observed are extracted from the process 

together with the corresponding probabilities. This delivers a 

probability distribution on these sequences. Then, using a well-

known distance measure from the field of statistics that is based 

on the so called Bhattacharyya coefficient, our notions of distance 

between business processes are defined and illustrated by 

examples. 

Often, measures of distance and similarity can be used 

interchangeably as high distance means low similarity. In our 

case, the distance will lie between zero and one, making the 
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question of whether we propose distance or similarity measures a 

matter of definition. Since the measure we use is often defined as 

a distance we stay with this convention. 

The remainder of this work proceeds as follows. Section two 

discusses different notions of similarity between business 

processes by providing an overview of the related work. Section 

three then introduces our behavioral representation of business 

processes and derives a probability distribution over its behavior. 

Following that, section four defines our distance measures and 

provides examples on how to compute them. Section five then 

illustrates the defined measures by applying them to an example. 

Finally, section six concludes and gives an outlook in future 

research. 

2. NOTIONS OF SIMILARITY - RELATED 

WORK 
The first problem arising in business process similarity calculation 

is matching of elements in different models. Usually, this is based 

on the labels assigned to the elements, which is why this problem 

is often referred to as label matching [5]. Due to the use of natural 

language in these labels, matching them is by no means a trivial 

task. Simple methods like computing the distances between 

strings can be employed here. A good overview on such methods 

is given in [6]. More advanced techniques employ for instance 

machine learning algorithms or lexical systems such as WordNet 

[7] to identify higher level relation between words used in the 

labels. A good survey on approaches to this problem can be found 

in [8]. In this work, we take the label matching as given. Any of 

the above mentioned methods could be combined with our 

approach.  

Once a matching of elements is achieved, the computation of 

business process similarity can be done with respect to two 

different aspects. On the one hand, the focus can be laid on the 

actual graphs by which the business processes are represented. 

This is called the structural aspect of similarity. On the other 

hand, one can abstract from the particularities of the graphs and 

restrict the comparison to the interplay of the activities performed 

in the processes. This is called the behavioral aspect of similarity. 

Approaches on structural similarity naturally lead to the well-

known field of graph matching, which has a longstanding tradition 

in computer science [9]. An important concept in that research 

area is the edit distance of two graphs. It is defined as the cost of 

transforming one graph into the other by means of elementary 

change operations like inserting, substituting or deleting nodes. 

Applications of this concept to the area of business processes can 

be found for instance in [10, 11].  

However, not all approaches focusing on structural aspects use 

graph matching techniques. In [12], so called features are 

extracted from the business processes under consideration. Based 

on the arising feature space, a similarity metric is being derived. 

In [13] a similarity flooding algorithm is applied to match one 

process graph onto the other. 

One characteristic of these purely structural measures of similarity 

is that they can identify differences between models even if they 

describe exactly the same behavior, which may be wanted or 

unwanted depending on the context of use. Nevertheless, 

approaches using structurally inspired techniques can also address 

behavioral aspects. This can, for example, be achieved by building 

a graph of the process behavior in such a way that ideas from 

traditional graph matching like edit distances can then be applied 

to these representations [14, 15]. 

When viewing business processes – in contrast to the approaches 

described above – from an entirely behavioral point of view, one 

is interested in the sequences of activities that a particular 

business process allows. A widely known approach addressing 

this aspect is based on a causal footprint representation of the 

process behavior [16, 17]. This is a graph capturing the possible 

ordering relations, which means that it specifies which activities 

can follow on each other and which cannot. The similarity of two 

processes is then calculated by embedding the causal footprint 

into a vector space and computing the cosine of the angle between 

these vectors. A comparable representation of the process 

behavior is used in [18], where a matrix of so called transition 

adjacency relations is build. It contains one if a transition can be 

observed directly after the other and zero if not. The similarity of 

the behavior is then measured by the similarity of these matrices. 

Other approaches taking a behavioral view utilize another 

traditional field of computer science, namely automata theory [9]. 

In this area, automata are used to describe languages consisting of 

words over an alphabet of symbols. Applied to BPM, the behavior 

of a business process can be understood as a set of activity 

sequences. 

A fundamental concept to compare automata is that of 

bisimulation [19], which effectively means that, when two 

automata are bisimilar, their behavior cannot be distinguished by 

an external observer. Many different notions of bisimulation have 

been developed over time, but most of them deliver binary yes/no 

answers only. However, methods for computing the similarity of 

automata have also been developed that can be interpreted as 

fuzzy versions of bisimulation, measuring the degree to which the 

relation holds. See [20, 21] for examples as well as [22] for an 

application to workflow modeling. 

Instead of comparing the automata of languages, one can directly 

compare the languages themselves, i.e. the sets of possible words 

[23, 24]. This again involves a notion of edit distance, but this 

time between languages. In a very rigid case, the distance between 

two languages is defined as the lowest distance between any of 

their words. In the context of business processes, this would 

already result in 100% similarity if there is a single activity 

sequence shared by the models. To relax this, probabilities can be 

assigned to each of the words of a language, in which case the 

comparison can be based on all words of a language, weighted by 

their probabilities. 

The introduction of probabilities assigned to words is, in a sense, 

closely related to an approach of business process similarity 

calculation that is, in contrast to any other approach discussed so 

far, based on observed instances of business processes [25]. The 

aim of this method is to explicitly address frequent aspects of a 

business process stronger than infrequent ones. In contrast to our 

work, it computes two one-sided measures of similarity, called 

behavioral precision and recall. They measure how well the 

behavior of one process fits to the other and vice versa.  
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3. PROBABILITY-WEIGHTED LABELED 

TRANSITION SYSTEMS 
As a model of the business process behavior, we will use a labeled 

transition system [26] equipped with probabilities on the 

transitions. We will call the model a probability-weighted labeled 

transition system (PLTS). Any business process that is 

supplemented with probabilities on the paths between activities 

could be transformed into such a representation. The advantage of 

the PLTS is that the possible paths through the process and the 

probability of taking it can easily be seen. 

A probability-weighted labeled transition system shall be defined 

as the 6-tuple                      with 

 S being a finite set of states 

              being a finite set of transitions 

between states emitting an activity label     

   being a finite set of activity labels 

   being the unique initial state 

    being the set of final states which cannot be left by a 

transition 

           being a function assigning a positive 

probability to each of the transitions. 

The probability weighting function p is defined such that, for each 

state s, the sum of the probabilities of transitions leaving this state 

sums to one:                           
Here,       denotes the transition           . Given this 

definition of a PLTS, we can define a path of length     

through it, which shall be an n-tuple of transitions                                     with      . The path starts at 

the initial state, wanders through the PLTS and ends in one of the 

final states. 

A path of length n gives rise to a sequence of activity labels                having length n by reducing the path to the 

activity labels the transitions emit. The enumerated behavior can 

then be defined as the set          of all possible activity 

sequences:                                                                     

This means that the enumerated behavior of a PLTS consists of all 

the activity sequences that can arise from taking any path through 

the PLTS. Note that the set can be infinite in the case that the 

PLTS has loops. 

The probabilities      assigned to the transitions t induce an 

assignment of probabilities        to paths. It is defined as the 

product of all the probabilities of the transitions that belong to this 

path. 

                       
    

This assignment of probabilities actually induces a probability 

distribution over paths, as one can see from the following 

inductive argument. Assume the simplest PLTS is given, 

consisting of only the initial state   and a set of final states   . As 

the transitions are arbitrary, this PLTS can have any number of 

paths with length one. All these paths will leave   and enter one 

of the states   . Since the probabilities for all transitions leaving    must sum to one, they define a distribution over all possible 

paths. Now assume that, for any PLTS having paths of at most 

length n, a probability distribution over the paths is induced. 

Then, by adding transitions from the final states of this model to 

new states, any PLTS can be created that has a path length of    . All paths previously having length n and now having 

length     will be multiplied by the respective probability of an 

Figure 1: (a) defines a business process in BPMN notation, (b) represents the same process as a 

PLTS, (c) illustrates the corresponding distribution over activity sequences. 
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additional transition to a new state, which sum, for each of the 

final states of the model with maximum length n, to one. Thus, 

when summing over all the paths, the sum will again turn out to 

be one. 

Finally, given the probability distribution          over paths, we 

can define a probability distribution      over the set    of all 

possible activity sequences of any length. This is easily 

accomplished by assigning to each sequence   the sum of all 

probabilities of paths that emit exactly the activity symbols of this 

sequence:                                                     

Any other of the infinitely many paths in    is assigned zero 

probability. This distribution shall be the probabilistic behavior of 

a business process. 

As an example, consider the business process in figure 1 (a) and 

(b), giving rise to the distribution shown in figure 1 (c). 

4. MEASURES OF BEHAVIORAL 

SIMILARITY 

4.1 The Bhattacharyya Coefficient 
The main idea of our behavioral similarity measures will be to 

measure the difference of distributions over activity sequences as 

defined in the previous chapter. In statistics, there are numerous 

different notions of distance between distributions that may be 

used for this purpose [27]. In our case, two requirements need to 

be fulfilled. First, we do not want the distance to depend only on 

extreme values of the distributions such as the maximum distance 

between the probabilities of two corresponding activity sequences. 

Rather, all of the sequences shall be taken into account. Second, it 

must be possible to compare zero probability activity sequences 

since there will most certainly be sequences in one business 

process that are completely impossible in others. However, many 

popular distance measures on distributions, like the Kullback-

Leibler divergence or the    distance, do not handle such 

singularities. 

Having in mind these two requirements, the Bhattacharyya 

coefficient seems to be a reasonable choice [28]. It is a quantity 

that measures the similarity of two distributions, i.e. is assumes 

values between one and zero with one if the distributions are 

equal. The definition of the Bhattacharyya coefficient is as 

follows                   

with P and Q being the distributions to compare. While the 

summation here is over all of the infinitely many activity 

sequences of any length, the actual computation has to be done 

only for sequences to which a positive probability is assigned by 

both of the distributions, which is unproblematic if this set is 

finite. The case of infinite sets due to loops will be dealt with 

later. 

The Bhattacharyya coefficient has a straight forward geometric 

interpretation [29]. Consider a space over   having a dimension 

for each of the possibly observable activity sequences     . 
Also assume that there are two distributions P and Q over these 

activity sequences, assigning probabilities                     and                     to all the 

activity sequences. Note that the probabilities are allowed to be 

zero. Here,              shall be the set of sequences to which 

at least one distribution assigns a positive probability. Within the 

space, one can interpret the vectors                          and                          as representations of the 

distributions. Since the vectors contain the square roots of the 

probabilities and the distributions sum up to one, the vectors will 

always lie on the unit hypersphere. The Bhattacharyya coefficient 

can now be interpreted as the cosine of the angle between the two 

vectors corresponding to the distributions. 

For cases in which only two different possible activity sequences 

are observable, a graphical representation like the one in figure 2 

can be given. Here, two distributions P and Q over two activity 

sequences ABC and ACB respectively are given, as illustrated 

figure 2 (a). Then, a space having one dimension for each of the 

activity sequences is given in figure 2 (b) and the relevant part of 

the unit circle is drawn. As it can be seen, the vectors             and             lie on that circle. The 

Bhattacharyya coefficient then calculates to be roughly     , 

which is the cosine of the angle          between the vectors. 

Bearing in mind this geometrical interpretation, one can reason 

easily about extreme cases. If two distributions are identical, they 

will be assigned to exactly the same point, making the angle 

between them be equal to zero. Thus, the Bhattacharyya 

Figure 2: (a) defines two distributions over activity 

sequences, (b) represents the Bhattacharyya coefficient as 

the angle between the distributions projected onto a circle. 
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coefficient will be equal to         , expressing the intuition 

that the distributions are      similar. Contrary, when the one 

distribution distributes its probability mass on only those activity 

sequences the other distributions assigns zero probability to, the 

two vectors will be perpendicular to each other and the coefficient 

calculates to             , expressing that the distributions are 

entirely different. 

Based on the Bhattacharyya coefficient, a distance measure on 

distributions could be defined as                    [30]. It 

follows from the properties of the Bhattacharyya coefficient that 

this distance satisfies several desirable properties. Those are: 

                        non-negativity 

                             symmetry 

                           identity 

for any choice of distributions P and Q. However, there is a fourth 

property this quantity does not satisfy which can be of advantage 

in various applications. This property is: 

                                   triangle inequality 

for any choice of distributions P,Q and R. A distance measure 

fulfilling the triangle inequality is called a distance metric [31]. 

The important difference of such a metric as compared to non-

metric quantities is that it allows sorting the entities being 

compared by it in a consistent way. When entities are compared 

by a non-metric distance measure, one could pick an arbitrary 

reference entity, compare it to all other entities and then sort the 

entities for instance with increasing distance to the reference 

entity. The problem is that, for a different reference entity, a new 

sorting has to be computed separately, whereas a distance metric 

allows embedding the entities in a metric space in such a way that 

the distance of entities in that space is consistent for any arbitrary 

reference point. This allows, for example, the use of powerful 

search algorithms [32]. 

Consider for instance the artificial example given in figure 3. For 

an arbitrary non-metric measure used to sort the distributions in 

figure 3 (a), a different sorting has to be created for each of the 

two reference distributions P and Q. In particular, one can only 

reason about relations of distributions to the reference 

distribution. Knowing the distance of P to R and P to T implies 

nothing about the distance of R to T. It could happen that the total 

distance of P to T is actually higher than the sum of the distances 

of P to R and R to T, which is counterintuitive. In figure 3 (b), a 

distance metric was used such that the distributions can be 

embedded into a two-dimensional space. In that case it is easy to 

see that the distance of P to T cannot be bigger than the sum of the 

distances P to R and R to T, which is due to the triangle 

inequation. 

Luckily, a small modification to the Bhattacharyya coefficient 

gives rise to a quantity satisfying the triangle inequality [33]. We 

define                    
to be the Bhattacharyya distance metric on distributions. 

4.2 Strict Match Distance Measures 
In this section, we will define our first two distance measures on 

business process. We name them the strict match measures since 

they treat any activity sequences arising from the business 

processes as being completely different when only a single 

discrepancy is found. For instance, the sequences ABC and ACB 

are treated as being different and the sequences ABC and CBA 

are treated as being equally different. No distinction based on the 

similarity of the sequences is made. 

We can now define the strict match distance of two business 

processes     and     by calculating the Bhattacharyya distance 

metric between the distributions on activity sequences       and       of those two processes to be                                                  
This distance metric should be used whenever small discrepancies 

between rather similar processes shall be measured. The order in 

which the activities are performed should be critical for the 

processes as differences in this order are strongly penalized by 

this distance metric. 

As an example, consider the two business processes in figure 4 

given as PLTSs. They only have two activity sequences, namely 

ABCE and ACBE in common. All other activity sequences have 

probability zero in one of the processes. Furthermore, the 

probability of the sequence ACBE being observed in the first 

process differs from that of the second. The Bhattacharyya 

coefficient computes to                       . Thus, the 

above defined distance metric in this example is equal to             . 

For some applications, one might not be interested into the 

behavioral distance with regard to the entire behavior of two 

processes but rather with regard to the overlaps that exist between 

the two. In the example of figure 4, the first process contains 

activity D, while the second does not, and the second contains 

activity F which is not found in the first process. In such cases, the 

distance measure can be computed in a slightly different way. 

Any transition emitting a symbol that is specific to only one the 

processes is then switched to a “silent mode” which means that it 
still belongs to the path but its symbol does not appear in the 

Figure 3: (a) represents two orderings of distributions with 

respect to a non-metric distance measure (b) represents an 

embedding of distributions into a space with respect to a 

metric distance measure. 
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activity sequences anymore. This ensures that all activity 

sequences only contain activities common to both processes. 

We define the rigid distance of the overlap of two business 

processes     and     as                                                

where     and     are the activity sequences observed when the 

activities unique to either of the processes are silent. 

Figure 5 illustrates this concept using the previous example. The 

grey shaded transition symbols D and F denote that these 

transitions are currently silent. Thus, the activity sequences ABDE 

and ADBE both merge to the single sequence ABE and the 

sequence ACFE reduces to ACE. The Bhattacharyya coefficient 

in this example is equal to                                 giving a distance of             . 

4.3 Fuzzy Match Distance Measures 
The following section is devoted to more relaxed measures of 

distance. The main difference from the strict match ones is that we 

will abstain from the assumption that all activity sequences having 

small differences are already treated as completely different. 

Rather, we will use the similarity of these sequences to identify 

them with each other, thereby introducing new notions of distance 

being more appropriate for application scenarios in which small 

differences in the order of the activities or the exclusion of some 

of the activities of a sequence should result in small distances of 

the behavior. 

To derive these measures, consider again the example of figure 4. 

Both processes have two activity sequences ABCE and ACBE in 

common. Since we can directly identify them with each other, not 

special treatment is necessary. The activity sequences ABDE and 

ADBE however are unique to the first process, but we are now 

interested in whether we can associate them with similar 

sequences of the other process.  

In general, we can quantify our belief that a particular activity 

sequence being unique to one business process belongs to any 

sequence of the other process by calculating any kind of string 

similarity between the sequences. Usually, these string similarities 

are based on calculating the minimum number of elementary 

operations required for transforming one string into the other and 

summing up the costs of all the operations [6]. The basic 

operations vary among the algorithms, but possible operations are 

 Insertions: Insert one symbol into the string 

 Deletions: Remove one symbol from the string 

 Substitutions: Replace one symbol with another 

 Transpositions: Swap two symbols with each other 

In the remainder of this work, we will use the popular Levenshtein 

distance to compute a similarity of two activity sequences, which 

uses insertions, deletions and substitutions. However, other 

choices might be suitable as well. For instance, the Damerau-

Levenshtein distance [34], adding transpositions to the set of 

operations, could be used with the effect that variations in the 

order of activities would result in less cost. The activity sequence 

ABC requires two substitutions to be transformed into the 

sequence ACB, but only one transposition. 

To transform the Levenshtein distance          of two activity 

sequences    and    into a similarity measure, we simply 

normalize the distance by the maximum distance that could be 

observed between the sequences, which is                with      and      being the lengths of the sequences. Thus, we define 

the sequence similarity to be                                     
This definition results, for the example of the sequence ABDE, in 

a similarity of      compared to the sequence ABFE and     

compared to ACFE.  

The idea of creating the associations among the unique sequences 

is very simple. First, the similarity of each pair of unique activity 

sequences is computed where the first sequences stems from one 

process and the second sequence from the other. Second, 

associations R between activity sequences are created in a greedy 

way, creating an association between those sequences having the 

highest similarity. In the example, the first association to be 

created is the one between sequences ABDE of the first process 

and ABFE of the second process, leaving the association between 

ADBE and ACFE as the only possibility for the second 

association. This procedure is illustrated in figure 6. 

In the general case, we will end up with the following relation: 

Figure 4: (a) and (b) represent two business processes as 

PLTSs, (c) and (d) represent the corresponding 

distributions over activity sequences. 
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where      and      denote the sets of unique activity sequences in 

the first and second process respectively. The condition ensures 

that no activity sequence is mapped to more than one other 

sequence. 

The relation enables us to define a modified version of the 

Bhattacharyya coefficient which computes the similarity of the 

distributions according to the created associations but correcting 

for the dissimilarities of the associated sequences. It shall be                                                      

where    denotes the set of activity sequences common to both 

processes. 

It is then easy to define the fuzzy match distance metrics based on 

this modified Bhattacharyya coefficient, the first of which is:                                                  
For the example, the Bhattacharyya coefficient computes to                                                  , which gives a fuzzy distance of             . 

In a fashion similar to the previous section, we can also define a 

fuzzy match distance metric that removes all activities unique to 

one of the processes from the activity sequences. The associations 

are then created based on this already reduced distribution over 

sequences. For the sake of completeness, we define it to be                                                   
In our example, no difference can be observed compared to the 

rigid case. This is due to the fact that there is only one unique 

sequence, namely ACE in the first process. As there is no other 

sequence to assign it to, the relation remains empty and    assumes 

the same value as  , resulting in equal distances. 

4.4 Distances in Presence of Loops 
Although the distance measures presented in this paper are 

defined for the case that there are infinitely many activity 

sequences that can possibly be observed, the actual computation 

will be infeasible in such cases. This problem arises in all business 

processes having loops, as for example in the process represented 

in figure 7 in which the sequence BD may be executed arbitrarily 

often.  

While this is a well-known problem of all approaches to similarity 

measurement that rest upon activity sequences, our current setting 

allows circumventing this problem. Since any decision on 

entering or not entering a loop is weighted by a certain 

probability, sequences with more loop iterations tend to become 

more and more unlikely. In the example of figure 7, the 

probability of the sequence having one iteration of the loop still 

Figure 5: (a) and (b) represent two business processes as 

PLTSs, (c) and (d) represent the corresponding 

distributions over activity sequences where activities unique 

to one of the processes are silent. 

Figure 6: similarities of unique activity sequences, with dominant relations being highlighted. 
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amounts for     , while for three iterations it is already down to       . Since unlikely sequences are of low relevance for the 

value of the Bhattacharyya coefficient, the remedy to the problem 

is to just truncate the sum when a certain amount of probability 

mass is covered. 

To formalize this, we first need to define the truncation level t. It 

shall be the amount of probability mass we require to use in the 

computation of the Bhattacharyya coefficient. Thus, it should 

assume a value close to one. The set of activity sequences 

required to fulfill this level shall be named   . Thus, the 

approximated Bhattacharyya coefficient is                             
In the worst case, the error term comprises only one missing 

activity sequence    to which both processes assign probability    . Hence, the error is bounded by t:                                          
Now let      be the true distance to compute and       be the 

truncated approximation. Then we get                                                                           
This upper bound on the deviation of true and truncated distance 

is maximal for cases in which    is maximal. As    is bounded 

above by  , the upper bound on the deviation is:                                        

How the upper bound on the deviation develops with respect to 

the approximated Bhattacharyya coefficient can be seen in figure 

7 (c), where the example of a truncation level        is 

illustrated. As one can see, for the maximum Bhattacharyya 

coefficient         , the deviation is maximal. After that, it 

rapidly decays due to the square root used in computing the 

distance. 

5. APPLICATION EXAMPLE 
To further illustrate the definitions we have made in the previous 

chapter, consider the rather simple set of business processes 

shown in figure 8 (a). It contains the processes P3 to P8 in form of 

PLTSs. Processes P1 and P2 shall be the ones already known from 

the last chapter. They can be seen in figure 4 (a) and (b) 

respectively. We now want to analyze this set of processes to 

investigate how the similarity measures perform on this example. 

First, we take a look at the processes themselves to get a broad 

overview of their characteristics. All of them define activity 

sequences over the activities A,B,C,D,E,F,G,H, and I, but not all 

of them include the entire set of activities. Two of the eight 

processes, namely P3 and P6, define infinite sequences since they 

contain loops. Therefore, an approximate similarity calculation 

will be necessary. We used a truncation level of           for 

all our calculations in this section, giving a maximum deviation 

from the true distance equal to 0.01. 

One directly sees from figure 8 (a) that some processes seem to be 

very similar. For instance, processes P7 and P8 look identical on 

the first sight. A closer look, however, reveals that the left branch 

is much more likely to be taken in P7 than in P8 and vice versa. 

Also the models P5 and P6 seem to be quite similar, as the only 

difference between P6 as compared to P5 are the two additional 

loops. Also model P4 defines behavior that is very similar to P5 

and even P6. Process P3 on the other hand does not have much in 

common with the other processes in the set. 

We now want to use the distance metrics to derive and visualize 

the thoughts we have just made. For the first analysis we choose 

the metric                  
 for comparison and compute a complete 

distance matrix for the set of business processes. This information 

on how close the processes are can then be used to represent this 

distance graphically. The result of this computation is shown in 

figure 8 (b). It represents the business processes as points in a 

two-dimensional space. All the points are fitted into this space 

such that distances between them reflect the distances of the 

processes they represent. The technique we have used to create 

this picture is called Multidimensional Scaling (MDS). From this 

picture, one can easily see groups of similar processes being close 

to each other. The groups we would suggest based on the picture 

are indicated by dashed circles around the points.  

Another analysis that can be performed on the models is to cluster 

them with respect to their distance. For this experiment, we have 

chosen the metric                  . We then applied an agglomerative 

clustering algorithm to the distance matrix computed from that 

metric to find possible clusters of processes. The dendrogram 

visualizing the results can be seen in figure 8 (c). When compared 

to the results of the MDS analysis, one can see that, although a 

simpler metric was used that does not identify similar activity 

sequences with each other, the result is rather similar. The same 

groups are suggested to the analyst. 

Figure 7: (a) represents business process as PLTS having a 

loop, (b) represents the corresponding infinite distribution, 

(c) is a graph of the maximal error of a distance at 

truncation level 0.96. 

672



6. CONCLUSION AND OUTLOOK 
In this paper we presented a set of distance measures for business 

processes having the following distinct properties: 

 Behavioral: The emphasis lies upon the behavior of the 

business process in form of the possible activity 

sequences the processes allow. No structural aspects are 

considered. The approach abstracts from the modeling 

language used to represent to process. 

 Probabilistic: The measures explicitly incorporate the 

probabilities observing certain behavior and weights 

more probable behavior stronger. 

 Approximate: The incorporation of probabilities allows 

approximating the distance of processes having 

infinitely many possible activity sequences. 

 Customizable: Various different notions of distance 

measures are proposed ranging from very strong to 

more relaxed versions. 

 Metric: The distance measures can be interpreted as 

metric distances, making them suitable for algorithms 

exploiting such structures. 

The approach builds on the idea that business process behavior is 

not only defined by the possible activity sequences being 

compliant with a process model but also by the frequencies with 

which these activity sequences occur in the real world. It is, 

however, not restricted to cases in which explicit annotations on 

decision probabilities are given since it may be valid to make 

certain assumptions. For instance, one could assume that any 

branching of the control flow is equally likely, which would 

reduce our metrics to quantities very similar to other approaches 

in the literature. 

Furthermore, one does not even have to assume the existence of 

an explicit process model to calculate distances. In many cases, 

process-aware information systems like ERP or CRM systems 

provide event logs documenting the past behavior of a possibly 

unknown process [35]. Clearly, such event logs can be used to 

approximate a distribution over activity sequences that can be 

used in a distance calculation. 

In the future, we plan to intensively evaluate the metrics we have 

proposed, especially with respect to the conformance with human 

judgment. Several studies in literature evaluated similarity 

measures by experimentally counterchecking them with human 

opinions on similarity [16, 17, 35]. 
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