

AISEC: an Artificial Immune System for E-mail Classification

Andrew Secker
Computing Laboratory

University of Kent
Canterbury, Kent

UK, CT2 7NF
 ads3@kent.ac.uk

Alex A. Freitas
Computing Laboratory

University of Kent
Canterbury, Kent

UK, CT2 7NF
 aaf@kent.ac.uk

Jon Timmis
Computing Laboratory

University of Kent
Canterbury, Kent

UK, CT2 7NF
jt6@kent.ac.uk

Abstract- With the increase in information on the
Internet, the strive to find more effective tools for
distinguishing between interesting and non-interesting
material is increasing. Drawing analogies from the
biological immune system, this paper presents an
immune-inspired algorithm called AISEC that is
capable of continuously classifying electronic mail as
interesting and non-interesting without the need for
re-training. Comparisons are drawn with a naïve
Bayesian classifier and it is shown that the proposed
system performs as well as the naïve Bayesian system
and has a great potential for augmentation.

1 Introduction
Web mining is an umbrella term used to describe three
quite different types of data mining, namely content
mining, usage mining and structure mining (Chakrabarti,
2003). Of these, we are concerned with web content
mining which is described by Linoff and Berry (2001) as
“the process of extracting useful information from the
text, images and other forms of content that make up the
pages” (p. 22). The mining of textual data is a common
web mining task, often for the purposes of information
retrieval. This type of mining is becoming increasingly
necessary as finding information on the Internet is almost
impossible without automated assistance. The ultimate
goal of our work is to further this area by the creation of
an immune inspired tool for mining interesting
information from the web (Liu, Ma & Yu, 2001). By
adopting an immune-inspired approach we believe the
final system will have the ability to dynamically determine
the interestingness of a document, where interestingness
may include an estimated measure of novelty or
surprisingness. The algorithm described in this paper,
named “AISEC” (Artificial Immune System for E-mail
Classification), is a step towards such a web content
mining system. AISEC is an Artificial Immune System
(AIS) capable of continuous learning for the purposes of
two-class classification and is illustrated here on the task
of electronic mail (e-mail) sorting. In the following pages
we briefly describe background immunology, web mining
and our motivations for combining the two. We then
describe AISEC in some detail and finally present results
on a test data set and compare these with a naïve Bayesian
classifier.

2 Background Immunology
For a comprehensive review of the biology and inspiration
behind artificial immune systems, the reader is direct
towards literature such as (Sompayrac, 1999) and
(deCastro & Timmis, 2002). We present below a greatly
simplified account of the immune principles pertinent to
the function of our algorithm.

The natural immune system is based around a set of
immune cells called lymphocytes comprised of B and T-
cells. It is the manipulation of populations of these by
various processes which give the system its dynamic
nature. On the surface of each lymphocyte is a receptor
and the binding of this receptor by chemical interactions
to patterns presented on antigens which may activate this
immune cell. A subset of the antigens are the pathogens,
which are biological agents capable of harming the host
(e.g. bacteria). Lymphocytes are created in the bone
marrow and the shape of the receptor is determined by the
use of gene libraries. These are libraries of genetic
information, parts of which are concatenated with others
in a semi-random fashion to code for a receptor shape
almost unique to each lymphocyte. The main role of a
lymphocyte in an AIS is encoding and storing a point in
the solution space or shape space (Perelson & Oster,
1979). The match between a receptor and an antigen may
not be exact and so when a binding takes place it does so
with a strength called an affinity. If this affinity is high, the
antigen is said to be within the lymphocyte’s recognition
region. As a lymphocyte may become activated by any
antigen within this region a single lymphocyte may match
a number of antigenic patterns, an important element of
the noise tolerant nature of the immune system. When this
binding takes place it stimulates an immune response from
the lymphocyte and the cell begins to clone and mutate.
The cloning takes place with a rate proportional to affinity
and mutation with a rate inversely proportional to affinity
in a process called clonal selection. During this process
strong selective pressures seek to maximise affinity with
the antigen, thus increasing the efficiency of the response.
Clonal selection constitutes the core of the immune
system’s adaptation mechanisms. This, however, is not the
whole story as a T-cell requires two signals to become
activated. Signal one is a binding via its receptor to an
antigenic pattern, the second signal is called co-
stimulation and is given by an antigen presenting cell as a
confirmation that the bound antigen really is pathogenic.

Once the pathogen has been removed a small number of
clones with high affinities to the pathogen will live on to
provide memory of the event. The immunological details
of this process are under discussion, but this simple
explanation of immune memory is of use in the artificial
domain.

3 Text Mining and Web Mining
We consider the immune system particularly suitable
inspiration for a web content mining algorithm (as
described in the introduction) because of certain
properties inherent in most immune inspired algorithms.
Work in (deCastro & Timmis 2002) describes these
properties and many parallel the desirable features of a
web mining algorithm. Examples of these include:

1. Pattern recognition: The ability to recognize
patterns of data similar to training examples is a
common characteristic found in classification
tools and of use in the web mining domain.

2. Diversity: Like the immune system, the Internet
is diverse. It carries many different information
formats, from plain text e-mails to fully animated
web pages. Similarly the immune system is
capable of recognising and classifying a diverse
variety of invaders.

3. Dynamically changing coverage: The topology
and content of the web is always changing. A
system able to keep track and adapt to these
changes can be an important feature of a web
mining system.

4. Distributivity: The structure of the web consists
of countless servers linked to countless end
machines. The advantages of distributing a
system over these systems are many, not just for
fault tolerance but also for the possibility of
parallel processing.

5. Noise tolerance: The natural immune system is
tolerant towards noise. An AIS has the potential
to filter noisy data and uncover an underlying
concept.

6. Self-organization: Because of this little user
input may be required to initially define
parameters. These may automatically change to
suit user preferences and changing underlying
data.

This work is concerned with turning adaptive systems
towards web content mining. As the number of web pages
and other information on the web has grown, so has the
study of techniques for mining and manipulating this
information. The literature describes a vast array of
systems for web content mining but one of particular
interest is (Liu, Ma & Yu, 2001) as it has inspired our
ultimate goal to mine interesting information from the
Internet. As the scale of the Internet grows, more adaptive
systems must be realized to keep pace with the
accelerating change in web-based information. With such
an overwhelming quantity of data available on the Internet
users may suffer from information overload. Filters and

search tools are a must for almost any Internet user.
However, we believe in the future these tools will
endeavour to become more intelligent. At present a simple
keyword search on an Internet search engine may yield far
more pages than a user could ever cope with. We believe a
more intelligent, user-driven approach is needed such that
pages a user would consider surprising, novel or
unexpected are returned from a search. One further
advantage of this approach is that users would have
returned pages which are highly relevant to their search
but not necessarily contain any of the keywords originally
entered. Our ultimate goal is to mine interesting
information from the web as described above but based on
a current context. This context may take into account
previously learned user expectations and preferences.

A literature search revealed that the area of web
content mining using immune approaches are somewhat
unexplored. At the time of writing one significant
published investigation could be found (Twycross &
Cayzer, 2003). In this, the authors detail an immune
inspired concept learner turned towards the classification
of HTML pages taken from the Syskill and Webert Web
Page Ratings (Blake & Merz, 1998). The system appears
successful, achieving a higher predictive accuracy than a
Bayesian approach on most occasions. Nevertheless, it is a
“one-shot” learning technique as apposed to the
continuous learning system we describe here.

4 An AIS for E-mail Classification
Our chosen task is to distinguish between uninteresting e-
mail and e-mail which to the user is important or
interesting, based on previous experience. AISEC, is
designed for use in a continuous learning scenario where
the concept of what the user finds interesting will change
over time and so may the content of uninteresting e-mails.
An example of this is the use of the word “ca$h” where
the word “cash” was once used in advertisements. We
consider e-mail classification essentially a web content
mining task as defined in the introduction as the text
contained in the e-mail is used for the purposes of
classification and an e-mail is part of the Internet
environment. A further reason for this choice of testing
scenario was that the problem of receiving uninteresting or
junk e-mail is one faced by most who use e-mail on a day-
to-day basis. It is a well understood problem with a
number of references in the literature which propose
solutions. Of particular interest are (Segal & Kephart,
1999) and (Crawford, Kay, & McCreath, 2002) both of
which propose intelligent systems for sorting e-mail into
categories. It is important to note that we are not
proposing a “spam” (unsolicited bulk e-mail) filter. These
are highly specialized pieces of software specially written
for the task of removing mass-mail from a user’s inbox.
As described in (Graham, 2003), the rules of spam
filtering are somewhat different to the generic text-mining
task our algorithm is designed to investigate. For example,
a legitimate e-mail incorrectly classified and removed can
be disastrous. These are therefore written specially to
minimize the risk of such an occurrence.

4.1 The “AISEC” Algorithm
AISEC seeks to classify unknown e-mail into one of two
classes based on previous experience. It does this by
manipulating the populations of two sets of artificial
immune cells. Each immune cell captures a number of
features and behaviours from natural B-cells and T-cells
but for simplicity we refer to these as B-cells throughout.
These two sets consist of a set of naïve (sometimes called
free) B-cells and a set of memory B-cells. Once the
algorithm has been trained each B-cell represents an
example of an uninteresting e-mail by containing words
from that e-mail’s subject and sender fields in its feature
vector. New e-mails to be classified are considered to be
antigens and so to classify an e-mail it is first processed
into the same format of feature vector as a B-cell and then
presented to all B-cells in the algorithm. If the affinity
between the antigen and any B-cell is higher than a
threshold, the B-cell is said to recognise the antigen and
thus classified as uninteresting. If this antigen is later
confirmed by a user to represent an uninteresting e-mail,
the B-cell which classified it as such is useful and is
rewarded by promotion to a long-lived memory B-cell
(assuming it was not already). At this time it is also
selected to reproduce by clonal selection. This constant
reproduction combined with appropriate cell death
mechanisms are features that afford our algorithm its
dynamic nature. The user feedback will be given
asynchronously to classification but on a regular basis. As
the algorithm is designed to address concept drift over
long periods, reasonable pauses in this feedback should
not cause an undue drop in classification accuracy.

During design a number of special considerations were
given to the specialist nature of the text mining problem.
The incorporation of these in the final algorithm served to
further distance our algorithm from other AIS. These
design decisions are discussed below:

Representation of one data class: In a web mining
context, the number of documents a user finds interesting
may be tiny compared with those a user finds
uninteresting. B-cells therefore represent only the
uninteresting e-mail class. A helpful and efficient
simplification and more akin to the way the natural system
works. Natural lymphocytes only encode possible
antigenic patterns, everything else is assumed harmless.

Gene libraries: Two libraries of words, one for subject
words and one for sender words are used. These contain
words known to have previously been used in
uninteresting e-mail. When a mutation is performed, a
word from this library replaces a word from a cell’s
feature vector. Mutating a word in any other way, by
replacing characters for example, would result in a
meaningless string in almost all cases.

Reproduction by cloning: A random generation of
feature vectors as described in (Hofmeyr & Forrest, 1999)
has been common but would be wholly inefficient in this
application domain for the same reasons as above.
Therefore all new cells entering the naïve cell set are
mutants of existing cells.

Co-stimulation: E-mail classified as junk is not
deleted but removed to a temporary store, interesting e-
mail is delivered to the user client in the normal way (and
so no longer accessible by the algorithm). B-cells must
have become stimulated to classify an e-mail as junk, and
therefore it is assumed the first stimulatory signal has
already occurred. Feedback from a user is then interpreted
to provide (or not provide) a co-stimulation signal. At a
time of the user’s convenience this store may be emptied.
It will be the actions of the user during this procedure that
will drive a number of dynamic processes. If an e-mail is
simply deleted from this store we assume the algorithm
has performed a correct classification as the user really
was not interested in that e-mail and so a co-stimulation
signal has occurred. The cell is rewarded by being allowed
to reproduce. If, on the other hand, the user does not
delete the e-mail the algorithm has performed a
misclassification, signal two does not occur and B-cells
are removed appropriately.

Two recognition regions: Around each B-cell is a
recognition region within which the affinity between this
cell and an antigen is above a threshold. It is within this
region an antigen may stimulate a lymphocyte. A single
region was found to be inefficient for both the triggering
of evolutionary processes and classification. A smaller
region, a classification region, was introduced for
classification only. In empirical studies the introduction of
this second region was shown to increase the classification
accuracy from around 80% to around 90% on a test set.

Cell death processes: To both counteract the increase
in population size brought about by reproduction and keep
the algorithm dynamic, cell death processes must be
implemented. A naïve B-cell has not proved itself useful
to the algorithm and as such is given a finite lifespan when
created, although it may lengthen its life by continually
recognizing new uninteresting e-mails. Memory B-cells
may also die, but these cells have proved their worth and it
can be hard for the algorithm to generate clones capable of
performing well. For this reason, unlike naïve B-cells,
memory cells are purged in a data driven manner. When a
new memory cell mc, is added to the memory cell set all
memory cells recognising mc have a stimulation counter
reduced. When this count reaches zero they are purged
from the algorithm. This dissuades the algorithm from
producing an overabundance of memory cells each
providing coverage over roughly the same area when a
single cell is quite sufficient.

4.2 The Algorithm in Detail
Before we begin, let us establish the following notational
conventions:

• Let BC refer to an initially empty set of naïve B-cells
• Let MC refer to an initially empty set of memory B-

cells
• Let Kt refer to the initial number of memory cells

generated during initialisation/training
• Let Kl refer to a constant which controls the rate of

cloning

• Let Km refer to a constant which controls the rate of
mutation

• Let Kc refer to the classification threshold
• Let Ka refer to the affinity threshold
• Let Ksb refer to the initial stimulation count for naïve

B-cells
• Let Ksm refer to the initial stimulation count for

memory B-cells

4.2.1 Representation
A B-cell receptor is represented as a two-part vector. One
part of the vector holds words contained in the subject
field of an e-mail, the second holds words contained in the
sender (and return address) fields. The actual words are
stored in the feature vector because once set this vector
will not require updating throughout the life of the cell.
This can be contrasted to the common practice of using a
vector containing binary values as the receptor, each
position in which represents the presence or absence of a
word known to the algorithm. As words are continually
being added and removed from our algorithm each cell’s
vector would have to be updated as appropriate when this
action occurs. The two sub-vectors are unordered and of
variable length. Each B-cell will also contain a stimulation
counter used for aging the cell. This is initialised to Ksb
on cell generation and reset to Ksm if the B-cell is later
added to MC.

B-cell vector = <subject,sender>
subject = <word 1,word 2,...,word n>
sender = <word 1,word 2,...,word m>

4.2.2 Affinity Measure
The affinity between two cells is a measure of the
proportion of one cell’s feature vector also present in the
other. It is used throughout the algorithm and is
guaranteed to return a value between 0 and 1. The
matching between words in a feature vector is case
insensitive but otherwise requires an exact character-wise
match. Given bc1 and bc2 are the cells we wish to
determine the affinity between, the procedure may be
outlined as follows:

PROCEDURE affinity (bc1, bc2)
IF(bc1 has a shorter feature vector
 than bc2)
bshort ← bc1, blong ← bc2

ELSE
bshort ← bc2, blong ← bc1

count ← the number of words in
 bshort present in blong
bs_len ← the length of bshort’s

 feature vector
RETURN count/bs_len

Pseudocode 1. Affinity

4.2.3 Algorithms and processes
The AISEC algorithm works over two distinct stages: a
training phase followed by a running phase. This running

phase is further divided into two tasks, that of classifying
new data and intercepting user feedback to drive
evolution. An overview of this algorithm is described by
Pseudocode 2.

PROGRAM aisec
train(training set)
wait until (an e-mail arrives or a

 user action is intercepted)
ag ← convert e-mail into antigen
IF(ag requires classification)
classify(ag)
IF(ag classified as uninteresting)
move ag into user accessible
 storage

ELSE
allow e-mail to pass through

IF(user has given feedback on ag)
update_population(ag)

Pseudocode 2. AISEC overview

We now detail training, classification and the updating
of the population based on user feedback in turn. During
the training stage the goal is to populate the gene libraries,
produce an initial set of memory cells from training
examples, and produce naïve B-cells based on mutated
training examples. As the B-cells in the AISEC algorithm
represent only one class the training set, here called TE,
contains only e-mails the user has explicitly selected as
uninteresting.

PROCEDURE train(TE)
FOREACH(te ∈ TE)
process e-mail into a B-cell
add subject words and sender words
 to appropriate library

remove Kt random elements from TE
 and insert into MC
FOREACH(mc ∈ MC)
mc’s stimulation count ← Ksm

FOREACH(te ∈ TE)
te’s stimulation count ← Ksb
FOREACH(mc ∈ MC)
IF(affinity(mc,te) > Ka)
clones ← clone_mutate(mc,te)
FOREACH(clo ∈ clones)
IF(affinity(clo,bc) >=
 affinity(mc,te))
BC ← BC ∪ {clo}

Pseudocode 3. Training

Now the algorithm has been trained it is available to
begin the classification of unknown e-mail and population
manipulation processes based on user feedback. During
this running phase the algorithm will wait for either a new
e-mail to enter the system and so be classified or an action
from the user indicating feedback. Upon receipt of either
of these the necessary procedure outlined below will
become invoked. To classify an e-mail, an antigen ag is

created in the same form as a B-cell, taking its feature
vector elements from the information in the e-mail. ag is
then assigned a class based on pseudocode 4.

PROCEDURE classify(ag)
FOREACH(bc ∈ (BC ∪ MC))
IF(affinity(ag,bc) > Kc)
classify ag as “uninteresting”
RETURN

classify ag as “interesting”
 RETURN

Pseudocode 4. Classification

To purge the algorithm of cells which may match
interesting e-mails, the AISEC algorithm uses the two
signal approach as described in section 2 of this paper. We
may assume that signal one has occurred, that is the
antigen generated from the classified e-mail has already
stimulated a B-cell to have been classified. Signal two
comes from the user in the form of interpreting the user’s
reaction to this e-mail. It is during this stage that useful
cells are stimulated and unstimulated cells are removed
from the algorithm. ag is the antigen (e-mail) on which
feedback has been given.

PROCEDURE update_population(ag)
IF(classification was correct)

 FOREACH(bc ∈ BC)
 IF(affinity(ag,bc) > Ka)
 increment bc’s stimulation count

bc_best ← element of BC with
highest affinity to ag

 BC ← BC ∪ clone_mutate(bc_best,ag)
 bc_best ← element of BC with
highest affinity to ag

 mc_best ← element of MC with
highest affinity to ag

IF(affinity(bc_Best,ag)>
 affinity(mc_best,ag))

 BC ← BC \{bc_best}
bc_best’s stimulation count ← Ksm

 MC ← MC ∪ {bc_best}
 FOREACH(mc ∈ MC)
 IF(affinity(bc_best,mc) > Ka)

decrement mc stimulation count
 add words from ag’s feature vector
 to gene libraries
ELSE

 FOREACH(bc ∈ (MC ∪ BC))
IF(affinity(bc,ag) > Ka)
remove all words in bc’s feature
 vector from gene libraries

 delete bc from system
FOREACH(bc ∈ BC)

 decrement bc’s stimulation count
 FOREACH(bc ∈ (MC ∪ BC))
 IF(bc’s stimulation count = 0)
 delete bc from system

Pseudocode 5. Update B-cell population

The process of cloning and mutation which has been
used throughout this section is detailed in pseudocode 6.
bc1 is the B-cell to be cloned based on its affinity with
bc2. Kl and Km are constants used to control the rate of
cloning and mutation. The symbol x denotes the “floor”
of x. That is, the greatest integer smaller than or equal to
the real-valued number x.

PROCEDURE clone_mutate(bc1,bc2)
aff ← affinity(bc1,bc2)
clones ← ∅
num_clones ← aff * Kl
num_mutate ← (1-aff) * bc’s feature
 vector length * Km
DO(num_clones)TIMES
bcx ← a copy of bc1

 DO(num_mutate)TIMES
p ← a random point in bcx’s
 feature vector
w ← a random word from the
 appropriate gene library
replace word in bcx’s feature
 vector at location p with w

bcx’s stimulation level ← Ksb
 clones ← clones ∪ {bcx}
RETURN clones

Pseudocode 6. Cloning and mutation

5 Results
To determine the relative performance of AISEC, it was
necessary to test it against another continuous learning
algorithm. The well-known naïve Bayesian classifier was
chosen as a suitable comparison algorithm, even though a
fundamental assumption of the Bayesian approach, that all
attributes are independent, is violated in this situation.
Mitchell (1997) states, “probabilistic approaches such as
the one described here [naïve Bayesian] are among the
most effective currently known to classify text documents”
(p. 180) and this technique remains very popular for
classification of e-mail even today (Graham, 2003). A
variation of naïve Bayesian was adapted to intercept user
input in the same way as AISEC. This was implemented
according to the equation taken from Mitchell (p. 177).

() ()∏
∈

=
i

ji
Vv

jNB vaPvPv
j

|argmax

Where the set V = {junk, not junk}, P(vj) is the

probability of mail belonging to class Vj and calculated
based on the frequency of occurrence of class Vj in the
training set. The term P(ai|vj) is the probability of the e-
mail containing word ai given the e-mail belongs to class
Vj. This probability is calculated using observed word
frequencies over the training data. In this modified
algorithm these observed word frequencies are updated
based on user input much as in AISEC. Consideration
must be given to words not yet encountered by the

algorithm yet contained in an e-mail requiring
classification. The probability of this unknown word
occurring in either class of e-mail cannot be taken as 0, as
the equation would resolve to 0. Instead, it is given a
probability of occurrence of 1/k where k is the total
number of words known to the system.

5.1 Experimental Setup
Experiments were performed with 2268 e-mails of which
742 (32.7%) were manually classified as uninteresting, the
remaining 1526 (67.3%) were assumed of some interest.
Due to the unsuitability of the few publicly accessible e-
mail datasets which are traditionally used for single shot
learning, unlike the continuous learning scenario discussed
throughout this paper, we were unable to test the
algorithm on a standard e-mail dataset. All e-mails used
were received between October 2002 and March 2003,
and importantly their temporal ordering was preserved.
Only the words contained in the subject and sender fields
of the e-mail were used, but the sender information also
included the return address, as these fields may differ. The
fields were tokenized using spaces and the characters “.”,
“,”, ”(“, “)”, “!”, “@”, “<“, “>“ as delimiters and each
token inserted into a separate element of the correct
feature vector. Simulated user feedback was given to both
algorithms after the classification of each e-mail.
Throughout the algorithm a single pseudo-random number
generator was used. This was an implementation of the
Mersenne Twister algorithm (Matsumoto & Nishimura,
1998) written in Java by Sean Luke (Luke, 2000). During
the reported runs of the AISEC algorithm, the same values
for all parameters were used. These values (shown in
Table 1) were arrived at by trial and error during initial
verification, and as a result tend to work well over this
dataset. A legal range for each parameter is also indicated.

Parameter Value Range
Kc (classification threshold) 0.2 0 - 1
Ka (affinity threshold) 0.5 0 - 1
Kl (clone constant) 7.0 >= 1
Km (mutation constant) 0.7 <= 1
Ksb (Naïve B-cell stimulation level) 125 > 0
Ksm (Memory cell stimulation level) 25 > 0
Kt (initial number of memory cells) 20 > 0

Table 1. Parameters

The naïve Bayesian algorithm was trained on the first
25 e-mails as both classes are required. In contrast the
AISEC algorithm was trained on the first 25 junk e-mails
only. The remainder were used as the continuous test set.

Unlike traditional single shot learning, where there is a
fixed test set, we address continuous learning where the
algorithm is continually receiving e-mails to be classified.
Each time a new e-mail is classified the algorithm can use
the result of this classification (the information about
whether or not the class assigned was correct) to update its
internal representation. This continuous learning scenario
calls for a slightly different measure of accuracy to that
which is normally applied. Conceptually, as there is no

fixed “test set” the algorithm keeps track of its
performance over the past 100 classification attempts. As
each e-mail is classified an average accuracy over these
previous attempts is reported. The final classification
accuracy is determined by taking the mean of these values.
As AISEC is non-deterministic the results presented in
Table 2 are the mean values for ten independent runs
using a different random seed each time. The value after
the “±” symbol represents the standard deviation. Since it
is deterministic, the result for the naïve Bayesian
algorithm has no standard deviation associated with it as
only a single run was performed.

5.2 Classification Accuracy

Algorithm
Classification
Accuracy Recall Precision

Bayesian 88.05% 67.76% 93.93%

AISEC 89.09% ±0.97 81.13 ±4.71 82.20% ±2.63
Table 2. Predictive accuracy for continuous learning task

Table 2 summarises the results over the continuous test
set. Precision is the percentage of messages classified as
uninteresting really are uninteresting, and recall is the
percentage of uninteresting messages classified as
uninteresting. AISEC shows a better balance between
these two measures. The naïve Bayesian classifier
achieves a higher precision at the expense of recall. This
demonstrates the naïve Bayesian classifier blocks fewer
uninteresting messages, but the ones it does clock are
more likely to be uninteresting and is due to a Bayesian
classifier’s bias towards assigning the majority class to an
example. Even though, overall, AISEC yielded the slightly
higher accuracy we do not claim it classifies with higher
accuracy in general. Instead we believe it is reasonable to
conclude that our algorithm performs with accuracy
comparable to that of the naïve Bayesian algorithm but
with somewhat different dynamics. The line chart Figure 1
details the predictive accuracy after the classification of
each mail. This uses the accuracy measure described
above and details the results for the test set from 100
classification attempts onwards. It can be seen that both
algorithms are closely matched in general but there are
certain areas where the changing data causes them to
behave differently. Of interest are the areas 1,000 to 1,250
and 1,900 to 2,100 e-mails classified. In both situations
AISEC exhibits an increase in accuracy while there is a
decrease in accuracy from the naïve Bayesian algorithm.
One explanation of this could be that AISEC is faster to
react to sudden changes. Consider for example a word that
has been very common among uninteresting e-mail.
AISEC will represent this detail as the presence of this
word in a number of B-cells. The Bayesian algorithm will
represent this as a high frequency of occurrence in this
uninteresting class compared to the other class. Consider
now this word begins to be used in interesting e-mail. The
AISEC algorithm will react quickly by deleting any cells
containing this word that would result in a
misclassification. By contrast the Bayesian algorithm will

75%

77%

79%

81%

83%

85%

87%

89%

91%

93%

95%

97%

99%

100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 2100 2200

Number of e-mails classified

C
la

ss
if

ic
at

io
n

 A
cc

u
ra

cy

AISEC

Bayesian

Figure 1. Change in classification accuracy by e-mails classified

0

50

100

150

200

250

300

350

400

450

100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 2100 2200

Number of E-mails classified

N
u

m
b

er
 o

f
B

-c
el

ls

Naïve B-cells

Memory B-Cells

Figure 2. Change in B-cell population sizes by e-mails classified

react by only incrementing the frequency count of this
word in the interesting class by one. Given the word has
been common in uninteresting e-mail for some time the
frequency of occurrence in this class will still be large
compared with frequency of occurrence in the interesting
class thus resulting in a negligible effect on the differences
between the calculated final class probabilities. Only after
this word has been used a number of times in confirmed
interesting e-mail the differences in the usage frequencies
may even out and the difference in the probabilities of this
word being used in either class significantly decrease.

Experiments were also undertaken to investigate the
hypothesis that AISEC would track concept drift. This was
done by presenting the test data in a random order. The

ordering was changed for each of ten runs. Results showed
that the mean accuracy of AISEC was broadly the same as
before at 88.4% while the mean accuracy of the Bayesian
classifier reduced to 85.1%. This small difference in mean
accuracies suggests AISEC is either not tracking drifting
concepts as expected, or drifting concepts are not present
in the test data. Even so, the tests did suggest AISEC is
more robust than the Bayesian classifier. The accuracy of
the Bayesian algorithm differed from 80% to 88% while
the accuracy of AISEC stayed within ±1.3% of the mean.

5.3 Change in B-cell Population Size

Figure 2 describes the variation in size of the naïve and
memory B-cell populations during the run of the

algorithm. As expected there are many more naïve B-cells
compared with memory cells. The number of cells in the
naïve B-cell population, after an initial rapid growth
period, appears fairly stable. There is an increase over the
duration of the testing (348 naïve cells at 519 e-mails
compared with a final value of 366 cells), but this is small
relative to the size of the population. All changes appear
steady but it is impossible to tell if the slight increase in
numbers is due to the nature of the data rather than an
underlying problem with the algorithm. On the basis of
these results we are content that the process of naïve cell
death after a given number of user signals is an effective
control mechanism. Similarly, the memory B-cell
population size is too acting broadly as hoped. There is no
rapid change in the size of this cell set, as would be the
case if many of its elements were subject to deletion at
once. This would be evidence that the algorithm had failed
in the placing of many memory cells. The memory cell
population size is increasing over time, but at a decreasing
rate. From this evidence it is impossible to tell if the
algorithm will reach a state where the creation of new
memory cells is exactly balanced by cell death, but as the
population size appears to be levelling off as the number
of classification attempts increases, we are again satisfied
that this strategy is working as expected.

6 Conclusion
As a first step towards an artificial immune system for
web mining we have described a novel immune inspired
algorithm for classification of e-mail. We have shown that
an immune inspired algorithm written with text mining as
its primary goal may yield a classification accuracy
comparable to a Bayesian approach in this continuous
learning scenario. The results presented were encouraging
but there are still a number of options available to
optimize such a system. An increase in accuracy may be
achieved by a change in the data stored in the B-cell’s
feature vector such as a measure of the relative importance
of words using a term frequency/inverse document
frequency approach. An improvement in accuracy may
also be made by the use of body text from the e-mail or
perhaps the use of training data to optimise the
algorithm’s parameters before classification begins. We
certainly consider the affinity function used rather
simplistic and highlight an improved affinity function,
possibly in conjunction with one of the suggestions above
as an area for great improvement. A longer-term project
would be to hybrid this algorithm with a more traditional
information retrieval technique such as a rule-based
system or concept learner.

 We have described some adjustments which could
improve the function of this algorithm, however as
described, we have some longer term goals. We feel the
AISEC algorithm has shown an immune-inspired
algorithm can perform text-based classification with an
accuracy comparable with a naïve Bayesian approach. We
now wish to forward this research with a more complex
system. The ultimate goal of this work is to develop a web
mining system to return web pages based on a measure of

interestingness. The AISEC algorithm is step in that
direction and it is hoped that continued investigation will
lead us further towards this goal.

References
Blake, C. L., & Merz, C. J. (1998). UCI Repository of

machine learning databases. Retrieved 20 May 2003,
2003, from http://www.ics.uci.edu/~mlearn/
MLRepository.html

Chakrabarti, S. (2003). Mining the web (Discovering
Knowledge from Hypertext Data): Morgan
Kaufmann.

Crawford, E., Kay, J., & McCreath, E. (2002). IEMS - The
Intelligent Email Sorter. In Proc. of the Nineteenth
International Conference on Machine Learning
(ICML 2002), Sydney, Australia.

deCastro, L. N., & Timmis, J. (2002). Artificial Immune
Systems: A New Computational Intelligence
Approach: Springer.

Graham, P. (2003). A Plan for Spam. Retrieved 23 April,
2003, from http://www.paulgraham.com/spam.html

Hofmeyr, S., & Forrest, S. (1999). Immunity by Design:
An Artificial Immune System. In Proc. of the Genetic
and Evolutionary Computation Conference (GECCO
1999), San Francisco, USA.

Linoff, G. S., & Berry, M. J. A. (2001). Mining the web
(Transforming Customer Data into Customer Value):
Wiley.

Liu, B., Ma, Y., & Yu, P. S. (2001). Discovering
unexpected information from your competitors' web
sites. In Proc. of the Seventh International Conference
on Knowledge Discovery and Data Mining (KDD
2001), San Francisco, USA.

Luke, S. (2000). The Mersenne Twister in Java. Retrieved
20 May 2003, from
http://www.cs.umd.edu/users/seanl/gp/

Matsumoto, M., & Nishimura, T. (1998). Mersenne
Twister: A 623-dimensionally equidistributed uniform
pseudorandom number generator. ACM Trans. on
Modeling and Computer Simulation, 8(1), 3-30.

Mitchell, T. M. (1997). Bayesian Learning. In C. L. Liu &
A. B. Tucker (Eds.), Machine Learning (pp. 154-
200): McGraw-Hill.

Perelson, A. S., & Oster, G. F. (1979). Theoretical studies
of clonal selection: minimal antibody repertoire size
and reliability of self-non-self discrimination. Journal
of Theoretical Biology, 81(4), 645-670.

Segal, R. B., & Kephart., J. O. (1999). MailCat: An
Intelligent Assistant for Organizing E-Mail. Third
International Conference on Autonomous Agents.

Sompayrac, L. (1999). How the Immune System Works:
Blackwell Science.

Twycross, J., & Cayzer, S. (2003). An Immune-based
Approach to Document Classification. In Proc. of the
International Conference on Intelligent Information
Processing and Web Mining 2003, Zakopane, Poland.

	Introduction
	Background Immunology
	Text Mining and Web Mining
	An AIS for E-mail Classification
	The “AISEC” Algorithm
	The Algorithm in Detail
	Representation
	Affinity Measure
	Algorithms and processes

	Results
	Experimental Setup
	Classification Accuracy
	Change in B-cell Population Size

	Conclusion
	References

