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SUMMARY. Correlated response data are common in biomedical studies. Regression analysis based on the 
generalized estimating equations (GEE) is an increasingly important method for such data. However, there 
seem to be few model-selection criteria available in GEE. The well-known Akaike Information Criterion 
(AIC) cannot be directly applied since AIC is based on maximum likelihood estimation while GEE is 
nonlikelihood based. We propose a modification to AIC, where the likelihood is replaced by the quasi- 
likelihood and a proper adjustment is made for the penalty term. Its performance is investigated through 
simulation studies. For illustration, the method is applied to a real data set. 

KEY WORDS: Akaike Information Criterion; Generalized estimating equations; Generalized linear models; 
Model selection; Quasi-likelihood. 

1. Introduction generalized estimating equations (GEE), there is no likelihood 

Correlated response data arise often from biomedical stud- defined; thus, AIC cannot be directly used. On the other hand, 

ies. An example to be studied is the Wisconsin Epidemiologic the issue of model selection in GEE has been largely neglected. 

Study of Diabetic Retinopathy (WESDR) (Klein et al., 1984), The goal of this article is to propose an extension of AIC to 
where a binary response variable is the presence of diabetic GEE. It involves using the quasi-likelihood constructed from 
retinopathy in each of the two eyes from each participant in the estimating equations (Wedderburn, 1974). Since in gen- 
the study. Since the two observations on the two eyes from eral the GEE estimator has different asymptotic properties 
the same participant tend to be correlated, statistical analy- from those of the MLE, a modification to the penalty term in 
ses have to take proper account of this correlation. Since the the usual AIC is also necessary. 
publication of the seminal paper by Liang and Zeger (1986), This article is organized as follows. In Section 2, we first 
the generalized estimating equation (GEE) approach has be- briefly review the GEE and quasi-likelihood; then we propose 
come increasingly important in handling such correlated data. a modification to AIC in GEE. Simulation results are pre- 

Model selection is an important issue in almost any practi- sented in Section 3 to show its performance in selecting the 
cal data analysis. A common problem is variable selection in working correlation matrix and selecting covariates in GEE. 
regression: given a large group of covariates (including some Section 4 applies the method to the WESDR data, followed 
higher order terms), one needs to select a subset to be in- by a brief discussion. 
cluded in the regression model. In the WESDR, 13 potential 

2. AIC in GEE 
risk factors were collected, and we need to determine which 
of these factors are to be included. It is well known that, in 2.1 GEE 

observational studies such as the WESDR, excluding some Suppose we have a random sample of observations from 
important risk factors (i.e., confounders) may result in mis- n individuals. For each individual i, we have a vector of 
leading estimates of the effects of other risk factors. On the responses Yi = (xi,. . . ,Yi,? )' and corresponding covariates 
other hand, including all covariates may lead to a too complex Xi = (Xi1,. . . ,Xin2)',  where each y3 is a scalar and XiJ is a 
model with difficulty in interpretation and with less precise pvector. In general, the components of Y, are correlated but 
parameter estimates. Y, and Yk are independent for any i # k (conditional on the 

There is an extensive model-selection literature in statistics covariates). We use 2) = {(Yl,X i ) ,  . . . , (Y,, X,)) to denote 
(e.g., Miller, 1990, and references therein) but mainly for the the data at hand. To model the relation between the response 
classic linear regression with independent data. One powerful and covariates, one can use a regression model similar to the 
and widely used model-selection criterion is Akaike's Infor- generalized linear models, g(p,) = X,P, where pi = E(Y, 
mation Criterion (AIC) (Akaike, 1973). AIC is based on the Xi) ,  g is a specified link function, and P = (PI,. . . ,Pp)' is 
likelihood and asymptotic properties of the maximum like- a vector of unknown regression coefficients to be estimated. 
lihood estimator (MLE). Since no distribution is assumed in The GEE approach estimates P through solving the following 

1 
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estimating equations (Liang and Zeger, 1986) : 

where D, = D,(P) = dyz(P)/dP1 and V, is a working 
covariance matrix of Y,. V, can be expressed in terms of a 

With a 1 x p covariate x and a specified regression model 
E(y) = y = g-l(zp) and var(y) = $V(y), the quasi-likeli- 
hood can be written as a function of the regression coefficients 
P, i.e., &(PI4; (Y,2)) = Q ( g l  ( d l ,4;y). 

In the current context, if the working independence model 
R = I is used, the working assumption is that the paired 
observations (Y,j ,Xi3) in 2) are independent. Hence, the 
quasi-likelihood based on V is working correlation matrix R = R(cv), V, = A ~ / ~ R ( ~ ) A ~ / ~ ,  

where A, is a diagonal matrix with elements var(Y,:,) = 

$V(p,:,), which is specified as a function of the mean yz3. The 
cv may be some unknown parameters involved in the working 
correlation structure, which can be estimated through the 
method of moments or another set of estimating equations. 

An attractive point of the GEE approach is that it yields 
a consistent estimator of p, b, even when the working 
correlation matrix R is misspecified (Liang and Zeger, 
1986). For instance, it is often convenient to use a working 
independence model where R = I .  Some other popular choices 
include compound symmetry (CS) (i.e., exchangeable) with 
Rz3 = p for any z # 3 or first-order autoregressive (AR-1) 

with Rt3 = where R,:, denotes the (z, j) th element of 
R. Due to its simplicity, the working independence model is 
attractive. Many studies have shown that b obtained under 
the independence model is relatively efficient (Zeger, 1988; 
McDonald, 1993), at least when the correlation between 
responses is not large. Another compelling reason for using 
the working independence model is in partly conditional 
modeling of means for longitudinal data (Pepe and Anderson, 
1994). However, for time-varying or cluster-specific covariates, 
Fitzmaurice (1995) showed that the resulting estimator from 
the independence model may be very inefficient; its efficiency 
may be as low as 60% compared with the estimator obtained 
by using the correct correlation structure. Hence, this poses a 
model-selection problem in selecting the working correlation 
structure. Of course, we may also need to decide which 
covariates are to be included in the regression model g(p,). 
Below we propose a quasi-likelihood-based model-selection 
criterion that can be applied to address the above issues. 

2.2 Quasz-Lzkelihood 

Now we need to briefly review the quasi-likelihood. For the 
moment, suppose we only have a scalar response variable, y. 
We first construct the quasi-likelihood function for the mean 
parameter y = E(y) (and dispersion parameter 4); then we 
will write it in terms of the regression parameter P. 

Based on the model specification E(y) = p and var(y) = 
$V(y), the (log) quasi-likelihood function is (McCullagh and 
Nelder, 1989, p. 325) 

For instance, with grouped binary data, y - B i n ( n , ~ )it 
is often specified that V(y) = p(1 - p ln ) ;  then (up to a 
constant) Q(P, 4 ; ~ )= L(p ,d ;y ) l4 ,  where L(p ,d ;y )  = Y X  
logjy/(n - y)] + n log(n - y) is the log likelihood for the 
binomial distribution. When 4 = 1, the quasi-likelihood 
Q reduces to L. However, 4 > 1 is extremely useful in 
modeling overdispersion that commonly occurs in practice. 
Some common examples of the quasi-likelihood are given in 
McCullagh and Nelder (1989, p. 326). 

It is easy to verify that the left-hand side of the GEE 
S(P;I,2)) in (1)is equivalent to dQ(P, 4;I,V)/dp.  Thus, the 
GEE (1) can be regarded as a quasi-likelihood score equation. 

However, if we use a more general working correlation ma- 
trix R, there is no guarantee that a corresponding quasi-likeli- 
hood exists unless certain conditions are satisfied (McCullagh 
and Nelder, 1989, p. 333-335). Furthermore, even if it exists, 
in general it is difficult to construct. How to construct a quasi- 
likelihood with a general working correlation matrix is beyond 
the scope of this article. The main goal of this article is to 
propose a criterion based on Q(,!?, 4;I,V) ,  the quasi-likelihood 
under the working independence model with an estimated P, 
using any general working correlation structure in GEE. 

2.3 AIC and a Modzficatzon to AIC in GEE 
We first briefly review the derivation of AIC, which will 
motivate our modification to AIC. A more rigorous and 
general discussion is available from Linhart and Zucchini 
(1986). For simplicity of notation, we first assume that the 
dispersion parameter 4 is known; hence, we can ignore it in 
the (quasi-)likelihood function. At the end of this section, we 
will discuss the situation when 4 is unknown. 

Suppose we have a candidate model Ml and the true 
model M* with log-likelihood functions L(P; V) and L(P*; V) ,  
respectively. Throughout, we assume that each model can be 
indexed by the parameter vector P. A well-known measure 
of separation between two models is given by the Kullback- 
Leibler information (Kullback and Leibler, 1951), also known 
as the cross entropy. The Kullback-Leibler information 
between M1 and M- is 

where the expectation Elv* is taken with respect to the 
true distribution of V (i.e., under model M*). From a set of 
candidate models M, in which each can be indexed by P, we 
would like to choose the model with the smallest Ao(P,p,). 
However, in practice, since both P and P* are unknown, 
we have to estimate Ao(P,P*).  AIC was motivated as an 
asymptotically unbiased estimator of Ehr, [no(b,P*)],where 
b is the maximum likelihood estimator (MLE) under any 
candidate model in JV and the expectation is taken over the 
random b. Akaike proposed using AIC as a model-selection 
criterion, i.e., 

AIC = -2L(b; V) + 2p, (4) 

where p is the dimension of p. Model selection is accomplished 
by selecting from M the one that minimizes AIC. 

Since GEE is nonlikelihood based, we do not have a likeli- 
hood function in this context. However, we may have a quasi- 
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likelihood. We propose replacing the likelihood L in (3) by 
the quasi-likelihood Q under the working independence model 
and define a new discrepancy as 

We assume that any quasi-likelihood model in M can 
be indexed by the parameter vector P and that P, is 
the corresponding parameter for the quasi-likelihood model 
induced by the true data-generating model M e .  For simplicity, 
with a slight abuse of notation, we suppress the dependence 
of A(p,  p,, I )  on the true model M-.  It is well known that 

and the latter is positive semidefinite. Under suitable 
conditions, one can exchange the order of the integration and 
differentiation. Then P* is a local minimizer of A(/?, P*,I )  
with regard to P. In other words, for any /3 in a neighborhood 
of p*,we have 

This implies that the discrepancy A(/?, P*,I) is well defined 
for all the models close to the true model. Though we cannot 
prove p, is in general a global minimizer of A(P,P*,I), 
in the common situation that the marginal quasi-likelihood 
Q(P; (XI ,  XzI)) is equal to the log likelihood L(P; (K3,Xz3)) ,  
it is straightforward to verify that then P+ is indeed 
a global minimizer of A@,/?*,  I )  due to the fact that 
EM, [L(P*; (Y,j,Xzj))I > EM, [L(P; (Y,j,xij))I for any P # 
p+ (cf., Lehmann, 1983, p. 409). 

Now suppose the GEE estimator /? = P(R) is obtained 
using any general working correlation structure R. Following 
the idea of deriving Proposition 2 of Linhart and Zucchini 
(1986, p. 241, which is for minimum discrepancy estimators), 
we can approximate End, [A@,P*,I)]as 

EM, P*,I)]- -~EAI*  1,V)1[ ~ ( b ;  
+ 2E~.r,[(b- ~ - ) ' s ( b ;I,V)] 
+ 2 trace(RI J), (7) 

where J = cov(b), which can be consistently estimated by 
the robust or sandwich covariance estimator, say, pT(Liang 
and Zeger, 1986). RI can also be consistently estimated by 
its empirical estimator flI = -d2&(/3; I,V)/d/3dp'Ia=j. Note 

that, for b = B(R), we have ~ ( b ;  	 0 but not necessarily R, 2)) = 
~ ( 6 ;I,V) = 0 unless R = I.By ignoring the second term that 
is difficult to estimate, we have an estimator of the right-hand 
side of (7), 

This is our proposed quasi-likelihood under the independence 
model criterion (QIC) for GEE. Our simulation results (see 
Section 3) show that ignoring the second term in (7) does not 
dramatically, but does somewhat, influence the performance 
of QIC(R) ,  and QIC(I)  is the best. Note that, if the working 
independence model is used in GEE, by the consistency of j, 

flI,  and v,. and that ~ ( b ;I,V) = 0, we know QIC( I )  is an 
asymptotically unbiased estimator of (7). Furthermore, fiI 
and fi are directly available from the model fitting results in 
many statistical packages, such as SAS and S-Plus. Hence, we 
recommend the routine use of QIC(I)  whenever possible. QIC 
can also be applied to select a working correlation structure 
in GEE: one needs to calculate the QIC for various candidate 
working correlation structures and then pick the one with the 
smallest QIC. Note that here the goal of selecting a working 
correlation structure is to estimate P more efficiently. 

In practice, since 4 is unknown, we plug in 4,which 
is estimated from the largest model available. In variable 
selection, that means we estimate 4 based on the regression 
model including all covariates. This is similar to estimating 
the dispersion parameter in linear regression with Mallows' 
(1973) C,. A more general but also more difficult approach is 
to use the extended quasi-likelihood (McCullagh and Nelder, 
1989, p. 349), which we do not pursue here. 

2.4 Remarks 


When all modeling specifications in GEE are correct, 

and vT are asymptotically equivalent and t r ace ( f l I~ ,  ) % 


trace(1) = p. Then QIC reduces to AIC. In GEE with cor- 
related data, one may take QICu(R) - -~Q(,!?(R);I,2)) +2p 
as an approximation to QIC(R),  and thus QIC,(R) can be 
potentially useful in variable selection. However, it is easy to 
see that QIC,,(R) cannot be applied to select the working 
correlation matrix R. 

Our main motivation of defining the discrepancy 
A(p,p , ,  I )  using Q(P; I , V )  is the latter's simplicity and 
uniqueness. However, as suggested by one referee, it may be 
possible to define a more general discrepancy as A(P, P*, R) = 

EhI, [-2Q(P; R, V)]. But note that Q(P; R, V) may not be 
unique and in general can be calculated as a path-dependent 
line integral (McCullagh and Nelder, 1989, Section 9.3.2). 
Nevertheless, according to Theorem 1 of Hanfelt and Liang 
(1995; see also Li, 1993), A(P,P*, R) is still a well-defined 
discrepancy in the sense of (6) 

3. Simulations 
Simulation studies were conducted to investigate the 
performance of our proposed model-selection criterion QIC in 
selecting the working correlation structure and selecting the 
covariates in a marginal logistic regression model. SVe used 
the same true model as in Fitzmaurice (1995). The response 
variable YZt is binary and its ma~ginal mean is y,t, with 

log i t (y , t )=Po+Plx l , t+Pa( t -1 ) ,  	 t = 1 , 2 , 3 a n d  

z = 1,. . .  , n ,  

where the xl ,t are 1.i.d. Bernoulli, i.e., xl ,t = 0 or 1 
with probability 112 and Po = 0.25 = -PI = -Pa. The 
true correlation matrix is CS. We used a large correlation, 
p = 0.5, and moderate sample size, n = 50 or 100. The joint 
distribution of the Y, was simulated from Bahadur's (1961) 
representation (see Fitzmaurice, 1995, for more details). 

For each sample size, n = 50 or 100, our proposed method 
is most likely to correctly select the CS from the three given 
correlation structures (Table 1).Since the distribution form 
of the data is known, we can also compute the MLE and 
thus AIC. For comparison, we also attach the results of using 
AIC by assuming various correlation matrices. Unsurprisingly, 
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Table 1 
Frequency of the working correlation ma t r i x  selected by 

QIC versus AIC for the marginal logistic model from 1000 
independent replzcations. T h e  t rue  correlation ma t r i x  i s  CS. 

n = 50 n = 100 

Criterion Ind CS AR-1 Ind CS AR-1 

Q I c  138 678 184 140 721 139 
AIC 0 836 164 0 946 54 

AIC is more efficient than is QIC, probably for two reasons. 
First, the MLE of /3 is more efficient than the GEE estimator. 
Second, information on the true correlation structure is em- 
bedded in the likelihood function in AIC but not directly in 
the quasi-likelihood Q(P; I,V)in QIC. As mentioned earlier, 
the strength of QIC is that it is nonlikelihood based, whereas 
in practice the likelihood approach is often too restrictive with 
its strong distributional assumption for correlated categorical 
data. 

Now we consider variable selection with an expanded full 
model, 

where XI,,^, Po, D l ,  and p2 are as before, x3,it and x4,,t are 
i.i.d. uniform U(-1 , l )  and independent of xl , i t ,  and P3 = 
P4 = 0. For simplicity, we consider five nonnested candi- 
date models with various subsets of covariates included. The 
results of using QIC with different working correlation ma- 
trices are shown in Table 2. The performance of the three 
QICs with different working correlation matrices is close, but 
QIC(1nd) appears to be the best. This is probably related to 
the error introduced by ignoring the second term in (7) for 
QIC(CS) and QIC(AR-1). For comparison, we also list the re- 
sults of using AIC under the correct and incorrect correlation 
structures. Surprisingly, QIC(1nd) turns out to be comparable 
with AIC/CS. When the distributional assumptions are vio- 
lated, the performance of AIC deteriorates, as demonstrated 
by AIC/Ind and AIC/AR-1, which incorrectly assume the in- 
dependence and AR-1 correlation matrices, respectively. 

We also did simulation studies to investigate the QICs per- 
formance in selecting the working correlation matrix in mod- 
eling a partly conditional mean for longitudinal data (Pepe 
and Anderson, 1994) and in variable selection for correlated 

overdispersed (grouped) binary data. The results (not shown 
here) also appeared to be promising. 

4. An Example 
We apply the method to the WESDR (Klein et al., 1984). 
The study goal was to determine the risk factors for diabetic 
retinopathy. The binary response is the presence of diabetic 
retinopathy in each of two eyes from each of 720 individuals 
in the study. There are 13 potential risk factors. As shown 
in Barnhart and Williamson (1998), a univariate analysis was 
conducted to investigate the marginal association between the 
response variable and each risk factor. It was found that eight 
of them are marginally associated with the response variable. 
Barnhart and Williamson included only four risk factors, i.e., 
duration of diabetes (years), glycosylated hemoglobin level, 
diastolic blood pressure, and body mass index, plus the two 
quadratic terms of duration of diabetes and body mass index 
in their final model. Now we consider adding all or some of 
the four removed covariates (i.e., intraocular pressure, systolic 
blood pressure, pulse rate, and proteinuria) into Barnhart and 
Williamson's model. Hence, we have 16 candidate models. 
Note that these models cannot be ordered as a nested se-
quence, and one advantage of using a flexible model-selection 
criterion such as QIC is its ability to compare nonnested mod- 
els. Due to the nature of the possible correlation between the 
two observations on the two eyes from the same participant, 
GEE is used to fit the marginal logistic regression model and 
QIC is applied to do model selection, all under the work- 
ing independence model. The selected top four models, along 
with the full model (ranked 8) and Barnhart and Williamson's 
model (ranked lo) ,  are listed in Table 3. The p-values associ- 
ated with GEE estimates are also presented. According to the 
QIC values, the top four models are very close but different 
from Barnhart and Williamson's model in that proteinuria is 
included in the former four models. From Table 3, we can see 
that proteinuria is an important (and statistically significant) 
risk factor, and adding intraocular pressure or systolic blood 
pressure into the model may also improve its performance. 

5. Discussion 
For likelihood-based methods, there are many well-studied 
model-selection criteria, such as AIC. But for nonlikelihood- 
based methods, such as GEE, there is a lack of literature 
on model selection. In this article, we have proposed a new 
criterion QIC that works for GEE. The QIC involves using 

Table 2 
Frequency of the set of variables selected by QIC versus AIC for the marginal logistic model f rom 1000 independent 

replications. T h e  t rue  model has { X I ,  X Z ) ,  and AIC/CS i s  calculated correctly using the CS correlation matrix.  

n = 50 n = 100 

Criterion X I  XI,^ ~ 1 , ~ 2 , ~ 3 , ~ 4  x i , x2  X I , X ~  ~ 1 ~ ~ 2 ~ x 31 ~ ~ 2 ~ ~~ 1 , ~ 2  ~ 1 , ~ 2 , ~ 3  X I  ~ 
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Table 3 

QIC and robust p-values for each covariate i n  the top four models and the other two models with the W E S D R  data 

Covariate 	 1 2 

Intraocular pressure 
Systolic blood pressure 
Pulse rate 
Proteinuria 
Duration of diabetes 
Glycosylated hemoglobin 
Diastolic blood pressure 
Body mass index 
(Duration of d i a b e t e ~ ) ~  
(Body mass index)2 

QIC(1nd) 

the quasi-likelihood constructed under the working indepen- 
dence model and the naive and robust covariance estimates of 
estimated regression coefficients. Although using other more 
general quasi-likelihood seems possible, we choose to use the 
quasi-likelihood under the working independence model due 
to its simplicity. However, QIC allows one to use any gen- 
eral working correlation structure to estimate the parameters 
in GEE. In simulation studies, we found that the QIC works 
well in variable selection and selecting the working correlation 
matrix. We were particularly impressed with the performance 
of QIC(1) in variable selection. Further applications warrant 
future studies. 

The author thanks Dr Huiman Barnhart for providing the 
WESDR data set. The author is grateful to Dr Lynn Eberly, 
two referees, an associate editor, and the editor for extremely 
thorough and helpful comments that greatly improved the 
article. 
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les kquations d'estimation gknkraliskes (GEE) est une mkthode 
d'importance croissante pour de telles donnkes. Poutant, il 
semble exister peu de critkres de sklection de modkles disponi- 
bles pour GEE. Le critkre d'information d'Akaike (AIC) bien 
connu, ne peut 6tre appliquk directement, ktant donnk que 
I'AIC est bask sur l'estimation du maximum de vraisemblance. 
alors que GEE est bask sur la quasi-vraisemblance, Nous pro- 
posons une modification de AIC, oh la vraisemblance est rem- 
placke par la quasi-vraisemblance et un ajustement adapt6 est 
fait pour le terme de pknalitk. Ses performances sont kvalukes 
au travers d'ktudes de simulation. Pour illustration, la mk- 
thode est appliquke & un jeu de donnkes rkel. 

Akaike, H. (1973). Information theory and an extension of 
the maximum likelihood principle. In Proceedings of the 
Second International Symposium on Information The-

Model 

3 4 8 10 

ory, B. N .  Petrov and F .  Csaki (eds), 267-281. Budapest: 
Akademiai Kiado. 

Bahadur, R. R. (1961). A representation of the joint distri-
bution of responses to n dichotomous items. In Studies 
i n  Item Analysis and Prediction, Volume VI, Stanford 
Mathematical Studies i n  the Social Sciences, H. Solomon 
(ed.), 158-168. Stanford, California: Stanford University 
Press. 

Barnhart, H. X. and Williamson, J. M. (1998). Goodness-of- 
fit tests for GEE modeling with binary data. Biometries 
54,720-729. 

Fitzmaurice, G. M. (1995). A caveat concerning independence 
estimating equations with multiple multivariate binary 
data. Biometrics 51,309-317. 

J .  J .  and Liang, K.-Y. (Igg5). likeli-
hood ratios for general estimating functions. Biometrika 
82, 461-477. 

Klein, R., Klein, B. E. K., Moss, S. E., Davis, M. D., and 
DeMets, D. L. (1984). The Wisconsin Epidemiologic 
Study of Diabetic Retinopathy: 11. Prevalence and risk 
of diabetic retinopathy when age at  diagnosis is less than 
30 years. Archives of Ophthalmology 102,520-526. 

Kullback, S. and Leibler, R. A. (1951). On information and 
sufficiency. Annals of Mathematical Statistics 22,79-86. 

Lehmann, E. L. (1983). Theory of Point Estimation. New 
York: Wiley. 

Li, B. (1993). A deviance function for the quasi-likelihood 
method. Biometrika 80,741-753. 

Liang, K.-Y. and Zeger, S. L. (1986). Longitudinal data anal- 
ysis using generalized linear models. Biometrika 73,13-
22. 

Linhart, L. and Zucchini, W.  (1986). Model Selection. New 
York: Wiley. 

Mallows, C. L. (1973). Some comments on Cp.Technometrics 
15,661-675. 

McCullagh, P. and Nelder, J.  A. (1989). Generalized Linear 
Models, 2nd edition. London: Chapman and Hall. 

McDonald, B. 	W. (1993). Estimating logistic regression pa- 
rameters for bivariate binary data. Journal of the Royal 
Statistical Society, Series B 55,391-397. 



125 AIC in Generalized Estimating Equations 

Miller, A. J.  (1990). Subset Selection i n  Regression. London: Zeger, S. L. (1988). The analysis of discrete longitudinal data: 
Chapman and Hall. Commentary. Statistics i n  Medicine 7, 161--168. 

Pepe, M.S. and Anderson, G. (1994). A cautionary note on in- Zeger, S. L., Liang, K.-Y., and Albert, P. S. (1988). Models 
ference for marginal regression models with longitudinal for longitudinal data: A generalized estimating equation 
data and general correlated response data. Communica- approach. Biometrics 42, 121-130. 
tions i n  Statistics, Series B 23, 939-951. 

Wedderburn, R. W. M. (1974). Quasi-likelihood functions, Received June 1999. Revised December 1999 and June 2000. 
generalized linear models, and the Gauss-Newton meth- Accepted June 2000. 
od. Biometrika 61, 439-447. 



You have printed the following article:

Akaike's Information Criterion in Generalized Estimating Equations
Wei Pan
Biometrics, Vol. 57, No. 1. (Mar., 2001), pp. 120-125.
Stable URL:

http://links.jstor.org/sici?sici=0006-341X%28200103%2957%3A1%3C120%3AAICIGE%3E2.0.CO%3B2-Q

This article references the following linked citations. If you are trying to access articles from an
off-campus location, you may be required to first logon via your library web site to access JSTOR. Please
visit your library's website or contact a librarian to learn about options for remote access to JSTOR.

References

Goodness-of-Fit Tests for GEE Modeling with Binary Responses
Huiman X. Barnhart; John M. Williamson
Biometrics, Vol. 54, No. 2. (Jun., 1998), pp. 720-729.
Stable URL:

http://links.jstor.org/sici?sici=0006-341X%28199806%2954%3A2%3C720%3AGTFGMW%3E2.0.CO%3B2-9

A Caveat Concerning Independence Estimating Equations with Multivariate Binary Data
Garrett M. Fitzmaurice
Biometrics, Vol. 51, No. 1. (Mar., 1995), pp. 309-317.
Stable URL:

http://links.jstor.org/sici?sici=0006-341X%28199503%2951%3A1%3C309%3AACCIEE%3E2.0.CO%3B2-0

Approximate Likelihood Ratios for General Estimating Functions
John J. Hanfelt; Kung-Yee Liang
Biometrika, Vol. 82, No. 3. (Sep., 1995), pp. 461-477.
Stable URL:

http://links.jstor.org/sici?sici=0006-3444%28199509%2982%3A3%3C461%3AALRFGE%3E2.0.CO%3B2-I

On Information and Sufficiency
S. Kullback; R. A. Leibler
The Annals of Mathematical Statistics, Vol. 22, No. 1. (Mar., 1951), pp. 79-86.
Stable URL:

http://links.jstor.org/sici?sici=0003-4851%28195103%2922%3A1%3C79%3AOIAS%3E2.0.CO%3B2-3

http://www.jstor.org

LINKED CITATIONS
- Page 1 of 2 -

http://links.jstor.org/sici?sici=0006-341X%28200103%2957%3A1%3C120%3AAICIGE%3E2.0.CO%3B2-Q&origin=JSTOR-pdf
http://links.jstor.org/sici?sici=0006-341X%28199806%2954%3A2%3C720%3AGTFGMW%3E2.0.CO%3B2-9&origin=JSTOR-pdf
http://links.jstor.org/sici?sici=0006-341X%28199503%2951%3A1%3C309%3AACCIEE%3E2.0.CO%3B2-0&origin=JSTOR-pdf
http://links.jstor.org/sici?sici=0006-3444%28199509%2982%3A3%3C461%3AALRFGE%3E2.0.CO%3B2-I&origin=JSTOR-pdf
http://links.jstor.org/sici?sici=0003-4851%28195103%2922%3A1%3C79%3AOIAS%3E2.0.CO%3B2-3&origin=JSTOR-pdf


A Deviance Function for the Quasi-Likelihood Method
Bing Li
Biometrika, Vol. 80, No. 4. (Dec., 1993), pp. 741-753.
Stable URL:

http://links.jstor.org/sici?sici=0006-3444%28199312%2980%3A4%3C741%3AADFFTQ%3E2.0.CO%3B2-Z

Longitudinal Data Analysis Using Generalized Linear Models
Kung-Yee Liang; Scott L. Zeger
Biometrika, Vol. 73, No. 1. (Apr., 1986), pp. 13-22.
Stable URL:

http://links.jstor.org/sici?sici=0006-3444%28198604%2973%3A1%3C13%3ALDAUGL%3E2.0.CO%3B2-D

Quasi-Likelihood Functions, Generalized Linear Models, and the Gauss-Newton Method
R. W. M. Wedderburn
Biometrika, Vol. 61, No. 3. (Dec., 1974), pp. 439-447.
Stable URL:

http://links.jstor.org/sici?sici=0006-3444%28197412%2961%3A3%3C439%3AQFGLMA%3E2.0.CO%3B2-F

Longitudinal Data Analysis for Discrete and Continuous Outcomes
Scott L. Zeger; Kung-Yee Liang
Biometrics, Vol. 42, No. 1. (Mar., 1986), pp. 121-130.
Stable URL:

http://links.jstor.org/sici?sici=0006-341X%28198603%2942%3A1%3C121%3ALDAFDA%3E2.0.CO%3B2-E

http://www.jstor.org

LINKED CITATIONS
- Page 2 of 2 -

http://links.jstor.org/sici?sici=0006-3444%28199312%2980%3A4%3C741%3AADFFTQ%3E2.0.CO%3B2-Z&origin=JSTOR-pdf
http://links.jstor.org/sici?sici=0006-3444%28198604%2973%3A1%3C13%3ALDAUGL%3E2.0.CO%3B2-D&origin=JSTOR-pdf
http://links.jstor.org/sici?sici=0006-3444%28197412%2961%3A3%3C439%3AQFGLMA%3E2.0.CO%3B2-F&origin=JSTOR-pdf
http://links.jstor.org/sici?sici=0006-341X%28198603%2942%3A1%3C121%3ALDAFDA%3E2.0.CO%3B2-E&origin=JSTOR-pdf

