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The b-adrenergic receptor/cyclic AMP/protein kinase A (PKA)
signalling pathway regulates heart rate and contractility. Here,
we identified a supramolecular complex consisting of the
sarcoplasmic reticulum Ca2þ -ATPase (SERCA2), its negative
regulator phospholamban (PLN), the A-kinase anchoring protein
AKAP18d and PKA. We show that AKAP18d acts as a scaffold that
coordinates PKA phosphorylation of PLN and the adrenergic
effect on Ca2þ re-uptake. Inhibition of the compartmentalization
of this cAMP signalling complex by specific molecular disruptors
interferes with the phosphorylation of PLN. This prevents the
subsequent release of PLN from SERCA2, thereby affecting the
Ca2þ re-uptake into the sarcoplasmic reticulum induced by
adrenergic stimuli.
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INTRODUCTION
Coordinated handling of Ca2þ in cardiac myocytes is essential for
the efficient contraction, and relaxation of the heart. Sympathetic
control of the heart through b-adrenergic stimulation increases
both the rate and force of contraction, and relaxation of
the cardiac muscle by regulating Ca2þ handling at the level of
the L-type Ca2þ channel, the ryanodine receptor (RYR), a Ca2þ -
activated Ca2þ release channel, and the cardiac sarcoplasmic

reticulum Ca2þ -ATPase (SERCA2; Simmerman & Jones, 1998;
Bers, 2002). SERCA2 has a crucial role in Ca2þ homoeostasis
by controlling Ca2þ re-uptake into the sarcoplasmic reticulum,
a rate-limiting step for the relaxation and filling of the heart
before the next contraction (Szentesi et al, 2004). Phospholamban
(PLN), a 52-amino-acid sarcoplasmic reticulum phosphoprotein,
is a crucial regulator of SERCA2 (MacLennan & Kranias, 2003).
In its dephosphorylated state, PLN binds to SERCA2 and suppres-
ses its ATPase activity, whereas phosphorylation of PLN on Ser 16
by protein kinase A (PKA) dissociates PLN from SERCA2, releasing
the Ca2þ pump from inhibition. Alterations in the levels and
function of PLN and SERCA2 have been linked to post-infarction
heart failure, and PLNmutations have been shown to cause heritable
dilated cardiomyopathy both in mice and humans (Haghighi et al,
2003; MacLennan & Kranias, 2003; Schmitt et al, 2003).

Stimulation of b-adrenergic receptors generates many discrete
microdomains of cyclic AMP in the region of the transverse
tubules and the sarcoplasmic reticulum, which leads to specific
activation of anchored pools of PKA (Zaccolo & Pozzan, 2002).
This specificity in cAMP signalling is conferred by the binding of
PKA to A-kinase anchoring proteins (AKAPs), which target specific
intracellular locations and provide spatial and temporal control
of cAMP signalling events (Tasken & Aandahl, 2004; Wong &
Scott, 2004). Several AKAPs have been identified in adult cardiac
myocytes, including AKAP-LBC, AKAP15/18a, muscle-selective
AKAP, AKAP79, yotiao, gravin, D-AKAP1, D-AKAP2, ezrin,
AKAP95, BIG2, AKAP220 and the recently described AKAPs
sphingosine kinase-interacting protein 1 and synemin (Ruehr et al,
2004; Russell et al, 2006; Scholten et al, 2006). AKAP18a in
complex with the L-type Ca2þ channel and muscle-selective
AKAP complexed with RYR have been implicated in b-adrenergic
regulation of Ca2þ handling, however, no AKAP has yet been
reported to target a pool of PKA to the PLN–SERCA2 complex to
provide accurate controlled PLN phosphorylation and thereby
Ca2þ re-uptake into the sarcoplasmic reticulum. Here, we show
that AKAP18d, a large splice variant derived from the AKAP18
gene (Henn et al, 2004), forms a supramolecular complex with
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PKA, PLN and SERCA2 in cardiac myocytes. We show that this
AKAP18d-anchored pool of PKA phosphorylates PLN in response
to adrenergic stimuli and thereby regulates SERCA2-mediated
Ca2þ re-uptake into the sarcoplasmic reticulum.

RESULTS AND DISCUSSION
AKAP18d is present in the heart sarcoplasmic reticulum
In a search for the heart sarcoplasmic reticulum AKAP associated
with PLN, we analysed sarcoplasmic reticulum fractions for the
presence of PKA-RII-binding proteins by using an RII overlay
assay. Rat hearts were homogenized, subjected to discontinuous
sucrose density gradient fractionation and overlaid with 32P-
labelled RII in the absence or presence of the anchoring disruptor
peptide Ht31 (Fig 1A). RII-binding proteins with mobilities of
more than 200 and approximately 110, 90, 60 and 50 kDa were
detected in the fractions containing sarcoplasmic reticulum, in
addition to PKA-RII itself, owing to dimerization with low levels of
monomer R in the solution. Immunoblotting of the heart fractions
showed that AKAP18d was present in fractions enriched in sarco-
plasmic reticulum (Fig 1B), together with PKA subunits (Fig 1C).
Furthermore, the distribution of AKAP18d differed from that of the
sarcolemmal marker, Naþ /Ca2þ exchanger (NCX), which peaked
in fractions 8–10, indicating that AKAP18d is not a sarcolemmal
protein (Fig 1B). We confirmed the presence of AKAP18d in the

heart by immunoprecipitation of AKAP18d from total rat heart
homogenate and analysis of immunoprecipitates by using an
RII overlay (Fig 1D). The detection of AKAP18d in the heart
is also in agreement with our previous northern blot analysis
(Henn et al, 2004).

Subcellular localization of AKAP18d
The subcellular localization of AKAP18d in rat heart tissue was
examined by co-immunostaining of AKAP18d and a-actinin,
PKA-RIIa, SERCA2 and PLN (Fig 2A). The a-actinin staining identifies
z-lines, allows visualization of the myofibrils and acts as a reference
for the position of the sarcoplasmic reticulum (Vangheluwe et al,
2003). AKAP18d immunofluorescence produced a striated pattern
overlapping that of a-actinin, PLN and SERCA2. Further-
more, AKAP18d colocalized with PKA-RIIa. In addition, SERCA2
colocalized with a-actinin, in agreement with earlier studies
(Vangheluwe et al, 2003), and with PKA-RIIa (Fig 2A). AKAP18d
immunostaining was specific, as evident from controls with pre-
immune serum and secondary antibody only (see supplementary
Fig S1 online). Immunogold staining of neonatal heart tissue
using specific antibodies labelled with two different sizes of gold
particles allowed colocalization of AKAP18d, PLN and SERCA2 by
electron microscopy (Fig 2B). As evident from the ultrastructure,
all three proteins (85–95% of grains) localized on stacks of
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Fig 1 |AKAP18d is present in the heart sarcoplasmic reticulum. (A) Fractions of rat heart sarcoplasmic reticulum (SR) were subjected to a solid-phase

binding assay using 32P-labelled RIIa (RII overlay) as a probe in the absence (upper panel) or presence (middle panel) of the Ht31 anchoring

disruptor peptide (500 nM). The same fractions were analysed by immunoblot for the presence of SR proteins ryanodine receptor 2 (RYR2),

Ins(1,4,5)P3 receptor II (IP3RII) and calsequestrin, a major Ca2þ -binding protein of SR (lower panels). Calsequestrin was routinely used in the

following as an SR marker and indicator for the quality of SR enrichment. Fraction numbers refer to a discontinuous sucrose density gradient

fractionation. (B) Detection of AKAP18d in rat heart SR fractions by immunoblotting (IB). Pep: AKAP18d antibody was preincubated with the peptide

used for immunization as specificity control. NCX was used as a sarcolemmal marker. (C) Levels of immunoreactive PKA regulatory (RIa, RIIa and

RIIb) and catalytic (C) subunits in SR fractions. (D) Rat heart homogenate was subjected to immunoprecipitation (IP) with AKAP18d antibody or

pre-immune IgG. Total extract and immunoprecipitates were analysed by using RII overlay. Recombinant AKAP18d protein was used as a positive

control. AKAP, A-kinase anchoring protein; NCX, Naþ /Ca2þ exchanger; PKA, protein kinase A.
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sarcoplasmic reticulum that were interspersed with the contractile
machinery. Approximately 10% of AKAP18d and SERCA2, 12% of
AKAP18d and PLN, and 20% of PLN and SERCA2 colocalized
within distances of less than 60nm, indicating significant
colocalization using this technique. Similar data were obtained
by examination of adult heart tissue. The presence of AKAP18d,
PLN and SERCA2 in such close proximity suggests the possibility
of a SERCA2–PLN–AKAP18d–PKA supramolecular complex in
heart tissue.

AKAP18d interacts with PLN
To examine whether AKAP18d forms a complex with PKA in
the sarcoplasmic reticulum, a cAMP pull-down experiment from
sarcoplasmic reticulum fractions using Rp-8-AHA-cAMP-agarose
beads was carried out. An approximately 50-kDa protein was
recognized by a specific AKAP18d antibody in the eluate, which
also contained PKA-RIIa, PKA-C and SERCA2 (Fig 3A). As SERCA2

co-purified on cAMP-agarose, we tested next whether AKAP18d
forms a complex with the PKA substrate PLN. Immunoprecipita-
tion of AKAP18d from sarcoplasmic reticulum fractions showed
the presence of PLN in the precipitate (Fig 3B). PLN also co-
precipitated with AKAP18d from the left ventricles of adult rat
hearts (data not shown). Interestingly, in the opposite immuno-
precipitation experiment using anti-PLN, AKAP18d was not
detected, presumably because the epitope for the PLN antibody
overlapped the AKAP18d-binding site (Fig 3D; data not shown),
but it could also be due to AKAP18d, like SERCA2, interacting
only with the monomer PLN but not the pentamer population of
PLN. However, immunoprecipitation of green fluorescent protein
(GFP)–PLN, but not GFP, from HEK293 cells co-transfected with
AKAP18d in the absence of SERCA2 pulled down AKAP18d, as
detected by immunoblotting (Fig 3C). Conversely, immuno-
precipitation of AKAP18d co-precipitated GFP–PLN but not GFP
(Fig 3C). Collectively, these experiments indicate that AKAP18d
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Fig 2 |AKAP18d and PKA colocalize with SERCA2 and PLN in heart tissue. (A) Rat heart tissue sections were immunostained for AKAP18d (red) in

combination with a-actinin (green), PKA-RIIa (green), SERCA2 (green) and PLN (green), and for SERCA2 (red) in combination with a-actinin (green)

and PKA-RIIa (green). The relative fluorescence intensities along an axis perpendicular to the orientation of the sarcomeres are shown (right panels).

Scale bar, 20 mm. (B) Immunogold staining was carried out using secondary antibodies labelled with gold particles of different sizes to allow dual

staining. Co-staining of AKAP18d (15 nm) and PLN (10 nm), AKAP18d (18 nm) and SERCA2 (12 nm), and PLN (15 nm) and SERCA2 (10 nm). Scale

bars, 1mm. The magnified views show representative areas where the indicated proteins colocalize (arrowheads). AKAP, A-kinase anchoring protein;

PKA, protein kinase A; PLN, phospholamban; SERCA2, sarcoplasmic reticulum Ca2þ -ATPase.
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forms a complex with PLN and SERCA2 in situ through interaction
with PLN.

AKAP18d binds to the cytoplasmic domain of PLN
As AKAP18d does not have any transmembrane domains or
lipid anchors, we examined next the cytoplasmic domain of PLN
to identify the AKAP18d-binding site. The PLN (1–36) sequence
was synthesized as 20-mer peptides with 2-amino-acid offset
on cellulose membranes and analysed for AKAP18d binding by
overlay with purified, recombinant glutathione-S-transferase
(GST)–AKAP18d protein, followed by anti-GST immunoblotting
(Fig 3D). GST alone was used as a negative control. To evaluate
the specificity of the assay, an AKAP18d–PLN disruptor peptide
(described below) was included in the overlay, which inhibited
binding. The AKAP18d core binding sequence was mapped to
amino acids 13–20 in PLN (Fig 3D, underlined). This sequence is
positioned at the end of domain IA (amino acids 1–16) and in the
loop domain (amino acids 17–21), which is part of the hinge
region between the two helical domains of PLN (Metcalfe et al,
2004). The identified AKAP18d-binding site overlaps with the PKA
phosphorylation site (RRAS) in PLN. To analyse whether PKA
phosphorylation affected the AKAP18d–PLN interaction, PLN was
synthesized with a phosphorylated Ser 16 (pS) to mimic PKA-
phosphorylated PLN and spots were overlaid with GST–AKAP18d

(Fig 3D). Introduction of the phosphorylated Ser 16 abolished
AKAP18d binding. Thus, the AKAP18d–PLN interaction seems to
be direct and possibly dynamically regulated by PKA phospho-
rylation of Ser 16 providing an on/off mechanism.

A two-dimensional peptide array, in which each residue in the
PLN sequence from 13 to 23 was replaced with all natural amino
acids, was analysed for AKAP18d binding (see supplementary
Fig S2 online). Substitutions of Arg 13, Arg 14 and Pro 21 almost
totally abolished AKAP18d binding, indicating the relevance
of these amino acids for binding. The importance of Arg 13
and Arg 14 was also shown in a proline scanning array of PLN
(data not shown). Interestingly, deletion of Arg 14 is associated
with inherited human dilated cardiomyopathy and premature
death (Haghighi et al, 2006). Conversely, the PLN-binding site in
AKAP18d was delineated by deletional mapping and inter-
action analysis by overlaying arrays of the cytoplasmic domain
of PLN with truncated GST–AKAP18d proteins, and by coexpres-
sion and co-immunoprecipitation analysis (see supplementary
Fig S3 online).

Effect of disrupting PLN–AKAP18d interaction
To evaluate the significance of AKAP18d in the coordination of the
PKA-mediated phosphorylation of PLN, we made a short peptide
from PLN covering the AKAP18d-binding domain to compete with
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and displace the AKAP18d–PLN interaction. Plasma membrane-
permeable PLN derivatives were generated by the coupling of
9 or 11 arginine residues to the amino or carboxyl terminus of
the peptide (Arg 9–11-PLN or PLN-Arg 9–11). N- or C-terminal
coupling, or length of the poly-arginine sequence between 9
and 11 residues did not affect biological activity, as evident from
in vitro and in situ testing (data not shown). We then used rat

neonatal cardiac myocytes, which have been shown to contain
AKAP18d (Fig 4A), for further functional experiments. The active
peptide abolished the striated distribution pattern of AKAP18d
detected by immunofluorescence microscopy, indicating that
the peptide disrupts the interaction of the two binding partners,
whereas the control peptide did not seem to influence the
distribution of AKAP18d (Fig 4B). Neither peptide affected the
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distribution of PLN or a-actinin (data not shown). The isoproterenol-
induced phosphorylation of PLN-Ser 16 was analysed in
the presence or absence of the disruptor peptide (Fig 4C).
Neonatal cardiac myocytes were incubated with or without the
Arg 9-PLN peptide (Arg 9-RRASTIEMPQQ) for 30min and then
stimulated with isoproterenol. The phosphorylation of PLN at
Ser 16 increased fivefold by b-adrenergic stimulation. The
presence of the PLN peptide inhibited the increase in phospho-
rylation by almost 50%, indicating that AKAP18d is necessary for
the recruitment of PKA to its target, PLN. As Ser 16-phosphorylated
PLN does not seem to bind to AKAP18d, we used Arg 9-pSer 16-
PLN as a negative control. This had no influence on the
phosphorylation level of PLN-Ser 16 after stimulation with
isoproterenol (Fig 4C). By contrast, a peptide in which Ser 16
was substituted with cysteine to control for substrate competition
was equally effective as the PLN-derived peptide (data not
shown). Furthermore, we examined the consequence of disrupting
the AKAP18d–PLN complex on Ca2þ re-uptake into the sarco-
plasmic reticulum. Neonatal cardiac myocytes were transfected
with the fluorescence resonance energy transfer (FRET)-based
Ca2þ sensor Cameleon D1ER (Palmer et al, 2004) targeted to the
sarcoplasmic reticulum, and the response to a 10mM caffeine
pulse was recorded in the presence or absence of 10mM
norepinephrine in control cells or cells pretreated with 25 mM
PLN-Arg 11 for 40min (Fig 4D). Ca2þ re-uptake showed a
recovery time of approximately 1min, which is consistent
with the kinetics by the Kasai et al (2004) using the same sensor,
and reflects simultaneous re-uptake of Ca2þ through SERCA2,
the release of Ca2þ through RYR owing to elevated cytosolic
Ca2þ and reassociation with Ca2þ buffers in the sarcoplasmic
reticulum after the depletion. Neonatal cardiac myocytes treated
with PLN-Arg 11 showed significantly reduced Ca2þ re-uptake
into the sarcoplasmic reticulum, both at the basal level and after
treatment with norepinephrine (Fig 4D).

To confirm the involvement of AKAP18d, we knocked
down AKAP18d using short interfering RNA (siRNA; see blot in
Fig 5 (right) for siRNA efficacy tested in HaCaT cells) and mea-
sured Ca2þ re-uptake. Cy3-labelled siRNA was transfected into
cardiomyocytes together with the FRET-based Ca2þ sensor D1ER.
Sarcoplasmic reticulum was Ca2þ -depleted by blocking SERCA2
with 2,5-di-tert-butylhydroquinone (BHQ, a reversible inhibitor)
in a Ca2þ -free solution, BHQ was washed out, Ca2þ was added
and Ca2þ re-uptake was measured in Cy3-positive cells with
the Ca2þ sensor in the absence or presence of norepinephrine. As
shown in Fig 5, AKAP18d siRNA oligonucleotides abolished the
effect of norepinephrine on Ca2þ re-uptake in the sarcoplasmic
reticulum, whereas control siRNA did not interfere with the action
of norepinephrine.

Our results indicate that AKAP18d recruitment of PKA to a
supramolecular complex containing PLN and SERCA2 is impor-
tant to discretely regulate PKA phosphorylation of PLN at
Ser 16, and thereby the PLN inhibitory effect on SERCA2 and
Ca2þ re-uptake into heart sarcoplasmic reticulum. Moreover, our
data indicate that the b-adrenoceptor/PKA-dependent phospho-
rylation of PLN requires the interaction of AKAP18d with PLN.
Our results provide a mechanism for the precise spatiotemporal
control of PLN phosphorylation through the interaction with
AKAP18d and a pharmacologic tool that can specifically target
PKA phosphorylation of a particular substrate and determine its
role in the response of failing myocardium to catecholamines and
to catecholamine antagonists. Further work will be necessary to
determine how and to what extent the manipulation of the
SERCA2–PLN–AKAP18d–PKA complex can be targeted to regulate
PLN/SERCA2 function under pathophysiological conditions.

METHODS
Experimental procedures are provided in detail in the supplemen-
tary information online. Briefly, rat hearts were homogenized or
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fractionated according to protocols described in the supplemen-
tary information online. Neonatal and adult cardiac myocytes
were isolated from the ventricles of 1- to 3-day-old or 8- to 12-
week-old Wistar rat hearts, as described in the supplementary
information online. RII overlays were carried out as described
previously using 32P-labelled recombinant murine RIIa with some
modifications (see the supplementary information online). Immuno-
detection and immunostainings were carried out using standard
methods, with details on protocols and antibodies provided in the
supplementary information online. Peptides (PLN-Arg9–11: RRAS-
TIEMPQQ-Arg9–11; Arg9-PLN: Arg9-RRASTIEMPQQ; Arg9-pSer 16-
PLN: Arg9-RRApSTIEMPQQ) were synthesized as described pre-
viously. Calcium re-uptake was assessed by transfection of the
FRET-based Ca2þ sensor Cameleon D1ER targeted to the sarco-
plasmic reticulum, with details provided in the supplementary
information online.
Disclosures. Some of the authors have filed a pending patent
application on drug targeting of the above-described signal complex.
Supplementary information is available at EMBO reports online
(http://www.emboreports.org).
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