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Abstract
A kinase anchoring proteins (AKAPs) compose a growing list of diverse but functionally related
proteins defined by their ability to bind to the regulatory subunit of protein kinase A. AKAPs perform
an integral role in the spatiotemporal modulation of a multitude of cellular signaling pathways. This
review highlights the extensive role of AKAPs in cardiac excitation/contraction coupling and cardiac
physiology. The literature shows that particular AKAPs are involved in cardiac Ca2+ influx, release,
re-uptake, and myocyte repolarization. Studies have also suggested roles for AKAPs in cardiac
remodeling. Transgenic studies show functional effects of AKAPs, not only in the cardiovascular
system, but in other organ systems as well.

AKAPs: multiprotein signal integration complexes
PKA signaling plays a prominent role in the modulation of cardiac function. Extensive research
indicates that AKAPs, which bind and sequester PKA to specific subcellular locations, also
nucleate multicomponent protein signaling complexes. Thus, AKAPs are central mediators of
crosstalk and integration of cAMP/PKA signaling with other signaling pathways. Most known
AKAPs bind to the type II regulatory subunit of PKA (RII); however, several `dual-AKAPs'
also bind type I regulatory subunit (RI). A survey of some of the AKAPs found in the heart
(Table 1) reveals that multiple signaling proteins including kinases, protein phosphatases, and
phosphodiesterases, can be found in complex with different AKAPs. The targeting of
phosphodiesterases together with PKA is believed to enable finite control over local cAMP
levels, and thus, the extent and duration of PKA activation (30,31,79,87), see also (4,88). A
comprehensive list of AKAPs is found in a recent review (51). Based upon distinct
complements of signaling molecules bound to each AKAP, the local spatial and temporal
activation of PKA bound to each AKAP is likely to be unique. The ability of AKAPs to
sequester discrete sets of signaling molecules to particular regions of the cell therefore allows
for specificity and diversity of local cellular signaling dynamics (12).

Examples of signal integration and crosstalk are seen with mAKAP and AKAPLbc. mAKAP
is expressed in cardiac and brain tissue and is known to form a multienzyme complex that
includes PKA, PDE4D3, Epac, Erk5 and PDK1 (57,74,77,108). These components interact to
form a local signal cascade that can positively or negatively modulate cAMP metabolism
(30). Another example of signal integration is seen with AKAP-Lbc, which associates with
Rho, PKC, and PKD, in addition to PKA. AKAP-Lbc demonstrates a Rho-specific guanine
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nucleotide exchange factor activity (GEF) at the C-terminus (27,29,60). PKA-dependent
phosphorylation of Ser1565 of AKAP-Lbc facilitates binding of an accessory protein (14-3-3)
which, in turn, results in inhibition of GEF activity (26). Moreover, AKAP-Lbc positions PKC
to phosphorylate and activate PKD (17). Thus, AKAPs not only localize signaling peptides to
particular locations in the cell, but also provide a mechanism for a diverse array of signal
integration.

AKAPs bind PKA Regulatory subunit dimers
Canonical AKAPs bind the regulatory (R) subunits of the PKA holoenzyme via an amphipathic
α-helix, typically 14 to 18 amino acids in length (20). A wide range of sequence variation is
observed between the RII binding domains of individual proteins; therefore, AKAPs are
typically defined as a functionally homologous family of proteins. A loose consensus motif (X
[L,I,V]XX[L,I,V] [L,I,V]XX[L,I,V][L,I,V]XX[A,S][L,I,V]) has been proposed, (103) but the
critical feature of the A-kinase anchoring domain is a concentration of hydrophobic amino
acids on one face of the helix that forms a ̀ hydrophobic ridge'. Introduction of a proline residue,
with its rigid structure, introduces a ̀ kink' that disrupts the amphipathic α-helix and eliminates
binding, which highlights the importance of secondary structure in RII:AKAP interaction
(19,20). Binding to a general hydrophobic ridge rather than a sequence-specific motif permits
high affinity binding between diverse AKAPs and the RII subunit dimer (82). Despite the
proposed consensus motif, `unconventional' RII binding proteins such as pericentrin are not
predicted to contain the hallmark helix; however, they are believed to anchor RII in a manner
still dependent on hydrophobic residues in the putative RII binding site (28).

Crystallographic and NMR data have shown that R subunit dimers form an x-type, four helix
bundle containing a `hydrophobic groove' that is the binding site for AKAPs (58). Thus the
`hydrophobic ridge' in the PKA anchoring domain of AKAPs fits the `hydrophobic groove'
formed by R subunit dimers. While a portion of the groove formed by RIα dimers contains a
cavity that can accept bulky side chains, the corresponding sequence on RIIα dimers generate
a relatively flatter hydrophobic surface. The difference in the hydrophobic grooves has been
proposed as a mechanism that allows AKAP peptides to differentially interact with RI and RII
dimers (58).

Highly localized dynamics of PKA are determined by the unique complement of signaling
molecules associated with each AKAP. The affinity of individual AKAPs for RII differs, likely
due in part to sequence variations within the PKA binding domain that correlate with
differences in 3D structure of the R binding site (2,111). For example, the 24 amino acid peptide
called Ht31, which constitutes the RII binding domain of AKAPLbc, is used as an experimental
tool to disrupt RII:AKAP interaction. Ht31 binds RIIα with much higher affinity (Kd=2-10nM),
than RIα (Kd=1030-1277nM) (19,46,111). Differences in binding affinity between different R
isoforms and other AKAPs have also been determined. Protein interaction can be measured
via surface plasmon resonance analysis, and work by our lab and others has demonstrated that
AKAP proteins can have varying affinities for specific R isoforms. S-AKAP84/D-AKAP-1, a
“dual AKAP”, binds both RI and RII with high (nM) affinity; in contrast, AKAP79
preferentially binds RII isoforms α and β (Kd=1.5nM and 4.5nM, respectively), and binds RI
with a Kd exceeding 1μM (46). AKAP95, mAKAP, and AKAP15/18 also preferentially bind
RII isoforms, but variations such as a three-fold difference in affinity for AKAP95 and RIIα
versus RIIβ suggest that isoform affinity is highly relevant in PKA anchoring (46,111). These
binding preferences between various AKAPs and R subunits may represent an important
component of the mechanism by which isoforms of PKA are organized into highly localized,
discrete, signaling microdomains.
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Phosphorylation of the R subunit
To date, limited information is available on the functional significance of different affinities
of different AKAPs for the PKA holoenzyme, as discussed above. PKA redistribution upon
RII phosphorylation may be one mechanism by which dynamic changes in micro-PKA
distribution occurs. For example, this could take place upon down-regulation of the β-
adrenergic signaling pathway in cardiac disease.

As cAMP levels increase, cAMP binds to cooperative sites on each R subunit, inducing a
conformational change that releases the catalytic (C) subunits. The C subunit phosphorylates
RII at Ser96, a residue within the PKA `inhibitory domain,' which then decreases the affinity
of RII for C (42,85). In contrast, phosphorylated RII binds the A-kinase anchoring domain of
AKAPs with higher affinity than unphosphorylated RII, as indicated by surface plasmon
resonance studies (111) and more recently, studies where RIIS96D and RIIS96A, mimicking
phosphorylated and unphosphorylated RII, respectively, were expressed in isolated myocytes
(71). Expression of RIIS96D also resulted in increased phosphorylation of PKA substrates,
and altered Ca2+ signaling (71). Increased PKA substrate phosphorylation suggests that a local
conformational change that occurs upon Ser96 phosphorylation is communicated to the AKAP
binding domain at the N-terminal of the molecule.

Phosphorylation of RII at alternative sites can result in other downstream effects. For example,
in quiescent cells, Yotiao localizes RIIα to the centrosome; however, as cells enter mitosis,
RIIα is phosphorylated at Thr54 by cyclin B-p34cdc2 kinase (CDK1). Whereas Ser96 is located
in the inhibitory domain of RII, Thr54 is adjacent to the dimerization/docking domain of RII.
Phosphorylation at this latter site results in decreased affinity of RII for Yotiao and
redistribution of PKA to the cytoplasm and chromatin (16). Interestingly, CDK1-dependent
phosphorylation of RIIα at Thr54 also increases the binding affinity of RIIα for AKAP95. This
has the effect of recruiting RIIα for proper chromatin remodeling during mitosis (65). Thus
phosphorylation of at least two sites on the RII subunit represents additional, distinct
mechanisms for regulating localization of PKA in different microdomains within the cell,
ultimately affecting local kinase function.

AKAPs and cardiac physiology
PKA enzymatic activity is extensively involved in normal cardiac myocyte function. It is
widely known that perturbations of PKA activity, including decreased PKA phosphorylation
of phospholamban, myosin binding protein C, and troponin I, accompany remodeling of the
heart, and heart failure (10,45,96,104,105,112). The ryanodine receptor (RyR) Ca2+ release
channel located in the sarcoplasmic reticulum and the α and β subunits of L-type Ca2+ channels
are also phosphorylated by PKA. The functional effects resulting from PKA phosphorylation
of RyR and the relative roles of different RyR phosphorylation sites are controversial. Recent
conclusions from several investigators indicate that β-adrenergic stimulation has only a small
effect on RyR phosphorylation, leading primarily to increased kinetics of Ca2+ release and
affecting Ca2+ cycling (6,40,70). Others report that PKA phosphorylation of RyR does not
change significantly in heart failure (6,52). In contrast, Marks and colleagues have identified
a more significant role of PKA-dependent RyR phosphorylation. They report that in heart
failure RyR hyperphosphorylation takes place, with a resultant increase in RyR channel leak
(32,73,86). Further discussion of the role of mAKAP in the regulation of RyR channel
phosphorylation is described at a later point in this review.

The functional importance of PKA targeting by AKAPs is supported by experiments in which
the targeting of PKA is disrupted via expression of a competing peptide (Ht31) which binds
RII dimers in cells or tissues. Under these conditions, a spectrum of changes as a result of
disruption of PKA anchoring to AKAPs has been observed, including impaired forskolin-
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stimulated Cl- current activity (61), decreased PKA- potentiation of L-type current (37),
decreased PKA phosphorylation of troponin I, phospholamban and RyR, and altered
contraction, upon β-adrenergic-stimulation of cardiomyocytes (33) or hearts in vivo (75). Thus,
a substantial body of evidence highlights the involvement of multiple AKAPs in the heart.

Cardiac Hypertrophy and AKAPs
Cardiac hypertrophy may be viewed as a graded adaptive response of the heart to systemic
demands. Left unchecked, however, cardiac growth can lead to maladaptive remodeling of the
heart that leads to poor performance and, eventually, failure. Recent studies have suggested
that two AKAPs in particular (AKAP-Lbc, mAKAP) are involved in the hypertrophic response
of the heart.

AKAP-Lbc—Chronic infusion of phenylephrine (PE) into mice increased cardiac weight
index (ventricular weight/body weight) and levels of AKAP-Lbc mRNA from ventricular
myocytes in vivo. Interestingly, downregulation of this AKAP, via RNA interference, inhibited
the PE-stimulated activation of RhoA and cellular hypertrophy in rat neonatal cardiomyocytes
(NCM). These investigators concluded that AKAP-Lbc is involved in the hypertrophic
pathway activated by α1-adrenergic receptors in rat NCM (3). The downstream effector/s of
activated RhoA in the hypertrophic response remain to be elucidated; however, putative
pathways involved in participation of AKAP-Lbc in the hypertrophic process have been
proposed (25). A recent report by Scott and colleagues (18) postulated that by means of binding
of PKD1, AKAP-Lbc plays a significant role in the agonist-stimulated hypertrophic response.
These investigators showed that gene silencing of AKAP-Lbc blunted the hypertrophic
response to phenylephrine in NCM. Agonist-stimulated hypertrophy could be reinstated by
introduction of AKAP-Lbc constructs that retained their ability to bind PKD. Furthermore,
exogenous expression of AKAP-Lbc in NCM increased agonist-driven nuclear PKD activity
and export of histone deacetylase 5 (HDAC5). The investigators postulated that AKAP-Lbc
participates in the hypertrophic response by enhancing the efficiency of activation of the ̀ fetal
program' involving upstream activity of PKD/HDAC5/MEF2 (18).

mAKAP—Two separate studies have shown that adrenergic- and cytokine-induced
hypertrophy in cultured NCM can be decreased by downregulation of mAKAP (30,83). The
study by Kapiloff and colleagues further showed that adrenergic stimulation facilitated
activation and nuclear localization of NFATc1. The investigators proposed that mAKAP
participates in hypertrophic gene expression via a mechanism involving activation of the pro-
hypertrophic transcription factor NFATc (83).

Cardiac EC Coupling and AKAPs
As indicated above (33,75), it is increasingly evident that AKAPs are intimately involved in
modulation of cardiac EC coupling at many levels. Studies have revealed extensive
participation of AKAPs in the generation of the cardiac action potential and Ca2+ transients.
Multiple AKAPs associate with specific components of the cardiac EC coupling machinery
and, along with other signaling proteins, facilitate modulation of the cardiac cycle.

AKAP15/18 and Ca2+ influx—AKAP15 (or AKAP18), named for slight differences in
molecular weight following its discovery by two independent laboratories, has multiple
isoforms with molecular weights ranging from 15-50 kDa (35,43,44,76,101). The αδ, and γ
isoforms have all been reported to be expressed in the heart (68,101). AKAP 15/18 colocalizes
with, and co-immunoprecipitates L-type Ca2+ channels (14,43,44). Lipid modification is
involved in the localization of AKAP15/18 to the plasma membrane (35). AKAP15/18 interacts
with the C-terminal domain of the α1 subunit of skeletal L-type Ca2+ channel (48).
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A number of studies have demonstrated that L-type Ca2+ currents are modulated by
AKAP15/18-dependent mechanisms (Fig 1). PKA-mediated phosphorylation of the Ca2+

channel augments channel activity (24,55,110). PKA-dependent phosphorylation of both the
α1C and β2a subunits has been reported, however the question of whether one or more of these
sites is required for the increased Ca2+ flux through the channel in intact cardiac myocytes is
still being debated, in part because of long standing difficulties encountered in reconstituting
the AKAP-dependent signaling complexes in heterologous expression systems. For example,
while Hosey and colleagues (37) identified Ser1928 of the α1C subunit as critical for PKA-
mediated modulation of the channel, O'Rourke and colleagues reported that mutation of
Ser1928 to an alanine did not significantly attenuate the beta-adrenergic response (36).
However, when AKAP15/18 is expressed in HEK293 cells, it targets PKA to the channel and
enhances L-type Ca2+ channel activity in response to activation of PKA. This effect is lost
upon expression of the inactive AKAP15/18 mutant (35). Thus, both measurements of Ca2+

currents and colocalization/coimmunoprecipitation studies indicate a role for AKAP15/18 in
the modulation of Ca2+ influx (Fig 1), and by extension, cytosolic Ca2+ concentration.

Interestingly, a report by Hosey and colleagues also suggested that AKAP79 can modulate
activity of L-type Ca2+ channels (37). These investigators reported that when α1C subunit of
L-type channels is expressed in HEK293 cells stably expressing wild type AKAP79, L-type
Ca2+ channels are phosphorylated upon activation of PKA. Ser1928 of α1C was identified as
the PKA phosphorylation site. PKA-dependent phosphorylation of Ser1928 did not increase
in cells expressing an AKAP79 construct in which a proline residue disrupted the structure of
the RII binding domain. The results suggested that AKAP79 can potentially substitute for
AKAP15/18 in the facilitation of the phosphorylation of the α1C subunit of L-type Ca2+

channels. The question of whether AKAP79 plays a physiological role in the modification of
this channel in the heart remains to be determined. This particular AKAP has also been reported
to regulate L-type Ca2+ channel trafficking independently of PKA, though to date, this has
only been observed in the brain (1).

mAKAP and Ca2+ release—mAKAP localizes to the junctional membrane of the
sarcoplasmic reticulum and to the perinuclear region (56,57,73,74,108). In the heart, mAKAP
forms a complex with type 2 ryanodine receptor (RyR2) and PKA (56,108). Marks and
colleagues reported that FKBP12.6, PP2A and PP1 form a complex with RyR2 and that PKA-
dependent phosphorylation of RyR2 decreased the amount of FKBP12.6 that
coimmunoprecipitated with RyR2 (73). Dissociation of FKBP12.6 was predicted to increase
the open probability of the Ca2+ release channel (13,53). Recently, we demonstrated that
overexpression of a phosphomimic of RII, (with the phosphorylatable serine 96 substituted by
an aspartate) increased the binding of RII for AKAPs (111) and resulted in increased PKA
phosphorylation of RyR2 (Ser 2809) in NCMs (71). Taken together, these studies suggest that
localization of PKA to RyR2, represents an important mechanism for modulating the activity
of RyR2 and, ultimately, the cardiac Ca2+ transient (Fig 1). As indicated previously in this
review, the functional significance of mAKAP-dependent, PKA phosphorylation of RyR2
continues to be actively investigated. mAKAP and Na+ Ca2+ exchange: mAKAP may
participate in the modulation of Na+-Ca2+ exchange. The cardiac Na+-Ca2+ exchanger (NCX1),
located on the plasma membrane and enriched in transverse tubules, plays a primary role in
Ca2+ extrusion in the heart, as well as in other tissues (for review (7,9)). The intracellular loop
of NCX1 can be phosphorylated by PKA (50), but the functional outcome of PKA
phosphorylation of NCX1 remains to be clarified (113). Whereas some investigators report
effects of PKA-dependent phosphorylation of NCX1 (62,89), others have not detected PKA-
mediated modulation of NCX (39). Interestingly immunoprecipitation of NCX1 from rat
ventricular cardiac lysates revealed that mAKAP, but not other AKAPs was present in the
immunoprecipitated complex (94). In this study, Ruknudin and colleagues showed that the RI
subunit of PKA was also found in complex with mAKAP. These findings differ from results
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of surface plasmon resonance studies which reported no appreciable binding of RI to mAKAP
(111). The reason for this inconsistency is unknown, but differences may be due to the methods
and conditions used for the two studies. Ruknudin and colleagues reported that the complex
also contained protein phosphatase 1 and 2A (PP1 and PP2A), PKC and localized to the Z-line
in rat cardiomyocytes. To date, no additional studies have described an mAKAP:NCX
complex. As indicated earlier, the majority of studies demonstrate that mAKAP targets RII to
the RyR at the junctional sarcoplasmic reticulum (SR) and nuclear membrane. Further
investigation is needed to determine a potential role for mAKAP at the plasma membrane.

AKAP15/18δ and SR Ca2+ re-uptake—A recent study by Klussmann and colleagues
described a role for AKAP15/18δ in modulation of Ca2+ re-uptake into the SR via SERCA in
cardiomyocytes. Immunogold staining in neonatal heart tissue showed that SERCA2,
phospholamban (PLN), and AKAP15/18δ colocalize, and that these three proteins were found
to coimmunoprecipitate as a protein complex. Furthermore, disruption of the
PLNAKAP15/18δ interaction, via expression of a short peptide derived from PLN, disrupted
the striated distribution of AKAP15/18δ, decreased isoproterenol-induced phosphorylation of
PLN (Ser 16), and reduced Ca2+ re-uptake. Knockdown of AKAP15/18δ abolished the effect
of norepinephrine on Ca2+ re-uptake. The investigators concluded that AKAP15/18δ plays a
significant role in PKA-mediated phosphorylation of PLN and Ca2+ re-uptake into cardiac SR
(68) (Fig 1).

Yotiao and cardiac repolarization—Yotiao was initially identified in the brain, where it
is involved in the regulation of NMDA receptors (66,106). In cardiac tissue, Yotiao interacts
with the α subunit of the IKs channel (KCNQ1) via two cooperative domains on Yotiao itself:
a seventeen amino acid binding site at the amino terminus, and a leucine zipper motif in the
carboxy-terminus, which is likely to interact with a complimentary leucine zipper domain on
KCNQ1 (22,72). The channel responsible for the IKs current is composed of two subunits, a
regulatory subunit (KCNE1) and the α subunit (KCNQ1) (92). β-adrenergic receptor-mediated
modulation of IKs is known to involve Yotiao (72). Yotiao anchors PKA near the channel,
which in turn affects the function of IKs via phosphorylation of the α subunit at Ser-27 (Fig
1). In CHO cells heterologously expressing IKs, stimulation with cAMP resulted in
phosphorylation of the α subunit and augmentation of the IKs current (63,64). Interestingly,
PKA phosphorylates Yotiao itself (Ser-43). Mutation of Ser-43 in Yotiao to an Ala decreased
the response of IKs to cAMP; therefore, Yotiao may also modulate IKs via allosteric
mechanisms (21).

Long-QT syndrome (LQTS) is a cardiac disorder characterized by a prolonged repolarization
of the cardiac action potential. This temporal lengthening of the action potential can promote
arrhythmia and increase risk of sudden cardiac death (93). Some forms of congenital LQTS
have been linked to mutations in either subunit of the slowly activating IKs channel (reviewed
in (84) and (47)). Some mutations have been shown to affect channel current and endosomal
recycling of IKs, while others disrupt the ability of IKs to associate with the regulatory signaling
complex nucleated by Yotiao (22,95).

Whereas a number of point mutations in the α subunit of IKs have been associated with
development of LQTS, at least two (G598D and S1570L) directly disrupt the ability of the
Yotiao signaling complex to associate with the α subunit of IKs. Computational analysis has
demonstrated that the G598D mutation in KCNQ1 disrupts the targeting of the Yotiao-PKA-
PP1 complex to the channel subunit. A study conducted in Finland identified this mutation in
more than fifty percent of LQTS patients (34,72). The mutant phenotype was observed after
β-adrenergic stimulation, which promoted a prolonged QT wave and T wave abnormalities
(72). When the S1507L was introduced into KCNQ1, the amount of Yotiao that co-
immunoprecipitated with KCNQ1 was significantly decreased (22). Furthermore, PKA-
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dependent phosphorylation of the α subunit in response to elevated cAMP was decreased in
cells expressing the S1570L mutant subunit when compared to wild type (21,22).
Computational analysis indicated that heterozygous and homozygous S1570L mutant mice
have prolonged duration of the cardiac action potential, suggesting a link between development
of LQTS and disruption of the Yotiao scaffolding protein complex (22).

AKAP mutations and knockouts
Members of the diverse AKAP family participate in a wide array of signaling processes.
Perturbations of the signaling complexes nucleated by different AKAPs can potentially disrupt
cellular homeostasis. Considering the multiple roles of AKAPs and the vital nature of cAMP-
dependent signaling, deficiencies in these proteins are likely to be associated with human
disease; however, interestingly, to date, few AKAPs have been definitively linked to human
disease. There is also a lack of published studies that describe ramifications of a loss of function
of particular AKAP family members.

Single nucleotide polymorphism in D-AKAP2
D-AKAP2 (AKAP10) is a dual function AKAP associated with mitochondria, membrane and
cytosolic cell fractions. Analysis of approximately 6500 single nucleotide polymorphism
(SNPs) in a population of `healthy' European-Americans revealed a polymorphism at amino
acid 646 of D-AKAP2, in which an Ile residue was replaced with a Val. This SNP is located
within the PKA binding domain of the AKAP. Biochemical analysis of each variant
demonstrated that the Ile-646 D-AKAP2 bound RIα with three-fold lower affinity than the
Val-646 variant. Interestingly, binding of both variants to RII remained unaffected. The
Val-646 variant was associated with a shorter cardiac P-R interval than that of Ile-646 (54).
The investigators suggested that the cardiac phenotype resulted from altered localization of
RIα from the sarcolemma. In a separate study, Conklin and colleagues (100) examined the
Val-646 polymorphism in a cohort of 122 patients. Patients with the Val-646 SNP had an
elevated heart rate, but low heart rate variability, which is considered a risk factor for sudden
cardiac death (11,38,59,100). Interestingly, the study by Conklin and colleagues, conducted
on patients who already had coronary heart disease, found no correlation between the SNP
occurrence and other factors, such as age, that were highlighted in the study by Braun and
colleagues (54). Clearly, additional studies are needed to elucidate the role of this AKAP in
cardiac function and disease.

Gene trapping, a technique used to insert a deleterious fragment into the mouse genome (for
review (97)), was employed by Conklin and colleagues to disrupt a C-terminal fifty one amino
acid section of D-AKAP2 which contains the A-kinase anchoring domain. The resulting
phenotype displayed severe functional abnormalities in the cardiovascular and nervous
systems, including changes in heart rate, baroreceptor function, and abnormal conduction at
the sinoatrial and atrioventricular nodes. These mice exhibited arrhythmias characterized by
extended P-P and P-R intervals. These factors suggest a potential risk of sudden cardiac death
in organisms lacking a complete, functional D-AKAP2 (100).

AKAP Knockout studies
To better define the role of individual AKAPs in the whole organism, efforts have been made
to generate knockout mice. Table 2 summarizes the phenotypes observed in a selection of
AKAP knockout studies. Selective knockout of particular AKAPs have functional outcomes,
not only in the cardiovascular system, but in multiple organ systems. Transgenic studies have
also shown that examination of the effects of AKAP knockout in mice can be a complex
undertaking. For example, loss of AKAP95, a nuclear protein that recruits RII to chromatin
during mitosis, resulted in no observable phenotype; however, crossing AKAP95-null mice
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with mice lacking the chaperone protein, fidgetin, resulted in poor survival in neo- and post-
natal periods, cleft palate, and respiratory distress (23,109).

In a study designed to examine the role of mAKAPα in the brain, knockout of mAKAPα, which
is 244 amino acids longer than the β isoform, resulted in significant postnatal lethality, low
body weight, and craniofacial defects. Interestingly, loss of mAKAPα, the preferred isoform
expressed in brain, induced expression of the normally heart-specific β isoform in the brains
of mAKAPα knockout mice (77). Thus, the effects of total knockout of mAKAP or of loss of
its β isoform, a significant A-kinase anchoring protein in the heart, remain unresolved.

Reports from other investigators show more straightforward effects of other AKAP knockouts.
Homozygous strains of mice deficient in D-AKAP1 exhibited disrupted oocyte meiosis,
decreased female fertility and litter size (81). Loss of AKAP4 (AKAP82), a sperm-specific
AKAP, resulted in altered sperm morphology, motility and viability (78). While the phenotypic
knockout of AKAP5 (AKAP75/79) was not analyzed, knock-in of a mutant protein on this
mouse background that lacked the PKA-anchoring domain affected neural function in the
hippocampus, suggesting a role for this AKAP in long-term memory (67). In contrast, loss of
the P1 isoform of AKAP250 (gravin) from the nervous system resulted in no observable
phenotype (15).

The AKAP family has rapidly expanded in number and diversity over the last two decades, yet
limited progress has been made in defining the role of these proteins using mouse knockout
models. Even when null mice are successfully generated, differences between mice and humans
can render interpretation of these phenotypes difficult. SNP analysis of normal human
populations versus those at risk for conditions such as cardiac disease is a promising tool
through which the functional significance of AKAP-mediated signaling may be examined. To
date, D-AKAP2 is the only AKAP, of which we are aware, with a phenotype-associated
polymorphism within the PKA binding domain. It is possible that the vital nature of PKA
anchoring to growth and development precludes introduction of deleterious SNPs in
populations that have been analyzed to date. For example, loss of AKAP function could
compromise survival of carriers of critical mutations. Given the number of AKAPs that
sequester PKA to similar areas within the cell, it is reasonable to assume that redundancy is
built into the PKA-anchoring system. The isoform switch observed following knockout of
mAKAPα is an example of an adaptation that arises to accommodate disrupted PKA targeting.
Future studies focusing on the role of AKAP SNPs and isoforms in the context of disease
should elucidate a link between disrupted AKAP function and human pathology.

Future Directions
AKAPs in the heart

Studies to date show that AKAPs play an integral role in cardiac function. Two cardiac AKAPs
are currently implicated in agonist-induced cardiac myocyte hypertrophy. It would be very
interesting to explore whether the same AKAPs are involved in other paradigms of hypertrophy
(e.g. aortic banding, etc). Certain AKAPs are also of interest for development of therapeutic
strategies. The delta isoform of AKAP15/18 has been proposed as a therapeutic target for
modulating Ca2+ reuptake, and thus cardiac relaxation, in patients with heart failure (68). Such
strategies may be combined with existing therapies to enhance cardiac function and prevent
progression into heart failure (49,68,69).

AKAPs in general
The earlier studies utilizing oligopeptide constructs (Ht31, AKAP-is, etc) to effect broad and
global disruption of the distribution of PKA have identified a multitude of cellular processes
involving PKA activity. Since this disruption is global for all AKAPs and thus nonselective,
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the studies have not manipulated specific PKA:AKAP interactions and interpretation of results
have always included this caveat. The studies that followed, employing RNA interference-
mediated downregulation of specific AKAPs in cells, as well as generation of AKAP knockout
mice, have explored and revealed functional roles of particular AKAPs at the cellular and
organismal level. AKAPs can have diverse roles, well beyond anchoring of PKA. Moreover,
AKAPs may behave in a modular fashion, wherein peptide domains execute particular
functions, or as signal integration complexes. Wholesale knockdown or downregulation of
AKAPs may not differentiate between modular and integrative functions of AKAPs. Which
direction should future inquiries into AKAP biology take? We would suggest that whereas
studies utilizing RNAi and gene knockout should continue to provide valuable insights, the
future of AKAP research should be one of “increased specificity”. Effective future approaches
could include genetic manipulations of functional domains on individual AKAPs.
Alternatively, future studies should include design and development of peptides or small
molecules that bind with high affinity and specificity to certain domains on individual AKAPs.
These tactics could then be employed to selectively examine various functional domains on
the AKAP. Examples of the abovementioned strategies have been presented for AKAP-Lbc,
AKAP15/18δ and AKAP15/18α (18,48,68). In addition, studies can be designed to incorporate
cell- and organ system-specific modifications of AKAP protein expression. These combined
strategies will enable researchers to both tease out and piece together the functional roles of
this fascinating and diverse group of proteins.
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Figure 1. AKAPs modulate cardiac excitation/contraction coupling
Different AKAPs are thought to be involved in the modulation of the cardiac action potential
and Ca2+ transient. The processes of calcium entry via L-type calcium channels, calcium
release from the sarcoplasmic reticulum via ryanodine receptors, calcium reuptake and cardiac
repolarization employ AKAPs.
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Table 1
Partial list of cardiac AKAPs and their heterogeneous binding partners

Binding partners References

mAKAP PKA, PP2A, PDE4D3 (30,31,73)

AKAP-Lbc PKA, PKC, PKD, Rho (17,29,60)

Yotiao PKA, PP1 (106)

AKAP15/18 PKA, PP2B (91)

AKAP15/18δ PKA, PLN (68)

Gravin PKA, PKC, PDE4D, Src (80,99,107)

Synemin PKA, desmin, vimentin (41,90)

utrophin, vinculin (8,98)

α-actinin (5)
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Table 2
AKAP knockouts/mutations and associated phenotypes

Phenotype References

AKAP10 (D-AKAP2) ↑ cardiac cholinergic response cardiac arrhythmia human;
646Vassoc ↑ basal heart rate (100)

D-AKAP1 oocyte meiosis defects, ↓ female fertility (81)

AKAP4 sperm morphology, motility and viability defects (78)

AKAP5(AKAP150) LTP defects, motor coordination spatial memory (67,102)
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