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Abstract

Cancer cells may overcome growth factor dependence by deregulating oncogenic and/or tumor-suppressor

pathways that affect their metabolism, or by activating metabolic pathways de novo with targeted mutations

in critical metabolic enzymes. It is unknown whether human prostate tumors develop a similar metabolic

response to different oncogenic drivers or a particular oncogenic event results in its own metabolic

reprogramming. Akt and Myc are arguably the most prevalent driving oncogenes in prostate cancer. Mass

spectrometry–based metabolite profiling was performed on immortalized human prostate epithelial cells

transformed by AKT1 or MYC, transgenic mice driven by the same oncogenes under the control of a prostate-

specific promoter, and human prostate specimens characterized for the expression and activation of these

oncoproteins. Integrative analysis of these metabolomic datasets revealed that AKT1 activation was

associated with accumulation of aerobic glycolysis metabolites, whereas MYC overexpression was associated

with dysregulated lipid metabolism. Selected metabolites that differentially accumulated in the MYC-high

versus AKT1-high tumors, or in normal versus tumor prostate tissue by untargeted metabolomics, were

validated using absolute quantitation assays. Importantly, the AKT1/MYC status was independent of Gleason

grade and pathologic staging. Our findings show how prostate tumors undergo a metabolic reprogramming

that reflects their molecular phenotypes, with implications for the development of metabolic diagnostics and

targeted therapeutics. Cancer Res; 74(24); 7198–204. �2014 AACR.

Introduction

Metabolomics allows unbiased identification of subtle

changes in metabolite profiles as affected by signaling path-

ways or genetic factors (1–3). Metabolic alterations may rep-

resent the integration of genetic regulation, enzyme activity,

and metabolic reactions. In addition, because the known

metabolome is considerably smaller than the number of genes,

transcripts, or proteins, metabolomics may more clearly char-

acterize altered cellular networks (4). Clinically, metabolic

imaging technologies such as PET, can be used to monitor

disease progression and drug response (5).

Genomic loss of the PTEN locus, leading to constitutive

activation of the PI3K/AKT pathway, and 8q amplification,

including the MYC gene, occurs in 30% to 70% and approxi-

mately 30% of prostate tumors, respectively (6), representing

the most frequent genetic alterations in prostate cancer. Both

activated AKT and in particular MYC overexpression faithfully

reproduce the stages of human prostate carcinogenesis in

genetically engineered mice (7, 8).

While MYC promotes glutaminolysis (9, 10), AKT activation

is associated with enhanced aerobic glycolysis (the "Warburg

effect"; ref. 11) and/or increased expression of glycolytic

enzymes in different cell types, including prostate (12). How-

ever, the impact of these oncogenes (or the genomic alterations

causing their activation) on the metabolome of human pros-

tate tumors has not yet been elucidated.

Materials and Methods

Generation of AKT1- and MYC-overexpressing RWPE-1

Immortalized human prostate epithelial RWPE-1 cells were

obtained from Novartis and confirmed to be nontumorigenic

(growth in soft agar) before performing the experiments.

RWPE-1 was authenticated by DDC Medical. Cells were
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infected with pBABE vector alone (RWPE–EV), myristoylated

AKT1 (RWPE-AKT1) or MYC (RWPE–MYC). Briefly, cells were

transduced through infection in the presence of polybrene

(8 mg/mL), and retroviral supernatants were replaced with

fresh media after 4 hours of incubation. Twenty-four hours

later, puromycin selection (1 mg/mL) was started. Cells were

grown in phenol red-free Eagle's Minimum Essential Medium

(MEM) supplemented with 10% FBS, 0.1 mmol/L nonessential

amino acids, 1 mmol/L sodium pyruvate, and penicillin–

streptomycin.

Transgenic mice

Ventral prostate lobes were isolated from 12- to 13-week-old

MPAKT (FVB-Tg[Pbsn-AKT1]9Wrs/Nci; ref. 7) and Lo-Myc

(FVB-Tg[Pbsn-MYC]6Key/Nci; ref. 8) transgenicmice and from

age-matched wild-type mice (FVB/N) within 10 minutes after

CO2 euthanasia. Animals' care was in accordance with insti-

tutional guidelines (Institutional Animal Care and Use Com-

mittee). MPAKT mice were generated and raised at the Dana-

Farber Cancer Institute's Facility (7). Lo-MYC and wild-type

mice were obtained from the NCI Frederick mouse repository

and raised at the Johns Hopkins University's Facility (13).

Human prostate tissues

Fresh-frozen, radical prostatectomy samples approved by

the Institutional Review Board were obtained from the insti-

tutional tissue repository at the Dana-Farber Cancer Institute

and Brigham and Women's Hospital (Boston, MA; 61 tumors

and 25 normals).

The percentage of tumor was assessed by top and bottom

frozen sections. To obtain �80% tumor purity, normal tissue

was trimmed and the tumor sample was reembedded in

optimal cutting temperature without thawing. Sections (two

or three 8-mm sections) were cut from these tissue blocks and

DNA, RNA, and proteins were purified (AllPrep DNA/RNA

Micro Kit; Qiagen Inc.). The remainder was processed for

metabolite extraction (Supplementary Fig. S1C).

Metabolite profiling

RWPE–EV, RWPE–AKT1, and RWPE–MYC cells in mono-

layer culture were trypsinized for 4 minutes at 37�C. Following

trypsin neutralization with 10% FBS-supplementedMEM, cells

were centrifuged, and cell pellets were washed twice with cold

PBS before freezing. A recovery standard was added before the

first step in the extraction process for quality control purposes.

Aqueous methanol extraction was used to remove the protein

fraction. The resulting extract was divided into fractions for

analysis by UPLC/MS-MS (positive mode), UPLC/MS-MS (neg-

ative mode), and GC/MS. Samples were placed on a TurboVap

(Zymark) to remove the organic solvent. Each sample was

frozen and dried under vacuum (see also Supplementary

Materials and Methods).

Absolute quantitation of metabolites

Fifty-six human prostate tissue samples (40 tumors and 16

normals) were used to validate the untargeted metabolite

profiling. Oleic, arachidonic, and docosahexaenoic acids, cre-

atine and 2-aminoadipic acid were measured using specific

internal standards (see also Supplementary Materials and

Methods). Absolute values were expressed as mg/g tissue.

Results were analyzed using the Mann–Whitney test, and

significance was defined with P < 0.05.

mRNA expression analysis

Total RNA was isolated from RWPE–EV, RWPE–AKT1, and

RWPE–MYC cells (RNeasy Micro Kit; Qiagen Inc.), prostate

tumors, and normal controls (AllPrep DNA/RNA Micro Kit;

Qiagen Inc.). Real-time PCR was performed using custom

micro fluidic cards (TaqMan Custom Arrays; Applied Biosys-

tems). The list of the probes and primers is provided in

Supplementary Text S1. One-sample t test was applied using

GraphPad Prism 5.0, and significance was defined with P < 0.05

(see also Supplementary Materials and Methods).

Immunohistochemistry

Immunohistochemistry for MYC, stathmin, GLUT-1, and

phosphoAKT1 was performed on formalin-fixed paraffin-

embedded tissue samples. Immunostaining of human tumors

was scored microscopically counting the percentage of posi-

tive cells (higher or lower than 50%). The entire section was

evaluated and five representative areas at �20 magnification

were counted for an average of 500 cells per section. The Fisher

test was applied using GraphPad Prism 5.0, and significance

was defined with P < 0.05 (see also Supplementary Materials

and Methods).

Results and Discussion

To focus on an oncogene-specific context while profiling the

metabolic heterogeneity of prostate cancer, we integrated

phosphorylated AKT1- or MYC-associated metabolomic sig-

natures from prostate epithelial cells in monolayer culture,

transgenic mouse prostate, and primary nonmetastatic pros-

tate tumors (Fig. 1). We aimed at identifying patterns of

metabolomic changes that were different for the two onco-

genes but common for the datasets. Human tumors were

assayed for phosphorylated AKT1 and MYC expression by

immunoblotting. All of these tumors were pathologic stage

T2, 22 high Gleason (4þ3 or 4þ4) and 38 low Gleason (3þ3 or

3þ4). Levels of phosphoAKT1 and MYC were not associated

with the Gleason grade of the tumors (Supplementary Fig.

S1A). K-means clustering of phosphorylated AKT1 and MYC

densitometric values (Fig. 1C) was conducted to segregate four

prostate tumor subgroups, that is, phosphoAKT1-high/MYC-

high (6/60, 10%), phosphoAKT1-high/MYC-low (21/60, 35%),

phosphoAKT1-low/MYC-high (9/60, 15%), and phosphoAKT1-

low/MYC-low (24/60, 40%; Fig. 1C and Supplementary Fig.

S1B).

To define differential metabolic reprogramming induced by

the sole activation of AKT1 or overexpression of MYC, we

performed mass spectrometry–based metabolomics of pros-

tate epithelial nontransformed RWPE-1 cells genetically engi-

neered with constructs encoding myristoylated AKT1 or MYC,

and transgenic mice expressing humanmyristoylated AKT1 or

MYC in the prostate (Fig. 1A and B). More than 50 metabolite

sets (KEGG annotation—Supplementary Dataset S1) were
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tested using single-sample Gene Set Enrichment Analysis

(GSEA). A clear clustering of phosphoAKT1-high versus

MYC-high samples was noticeable within the genetically engi-

neered cell andmouse datasets, with phosphoAKT1-high being

associated with the strongest phenotype in a distinct cluster

compared with MYC-high and control samples that appeared

closer together, yet recognizable as two subclusters (Fig. 2A

and B). Human tumors fell in three clusters (defined by

Silhouette analysis), in which the phosphoAKT1-low/MYC-

high tumors and the phosphoAKT1-high/MYC-low tumors

differentially segregated (Fisher test, P < 0.01; Fig. 2C). Inter-

estingly, although both RWPE–AKT1 and RWPE–MYC cells

showed significant changes in intermediates of glucosemetab-

olism and higher enrichment of the glycolysis set compared

with RWPE–EV cells (Fig. 2A), only RWPE–AKT1 cells exhib-

ited accumulation of lactate (aerobic glycolytic phenotype;

Supplementary Fig. S2A). These results were even more pro-

nounced in vivo, with exclusively the MPAKT mouse prostate

samples being characterized by both high levels of lactate and

enrichment of the glycolysis set (Fig. 2B and Supplementary

Fig. S2A). When applied to primary nonmetastatic prostate

tumors stratified by the expression levels of phospho-AKT1

andMYC, the pathway enrichment analysis revealed thatMYC-

high tumors have a negative enrichment of glycolysis com-

pared with nontumoral prostate tissues (Fig. 2C and Supple-

mentary Fig. S2A). Interestingly, normal prostate tissues may

also be metabolically heterogeneous and exhibit a glycolytic

phenotype (14), potentially attenuating the metabolic differ-

ences between normal and tumor tissue in phosphoAKT1-high

tumors.

Next, we compared directly the AKT1 and MYC metabolic

signatures (Supplementary Datasets S2 and S3). Pathway

enrichment analysis by GSEA was used to determine which

metabolic pathways were commonly enriched across the

genetically engineered models and the prostate tumor sub-

groups defined above, specifically comparing AKT1-high with

MYC-high background. Gene set-size-normalized enrichment

scores (NES) fromGSEAwere used to determine the extent and

direction of enrichment for each pathway in the three datasets.

Five pathways with highly positive NES and two pathways with

highly negative NES across and common to the datasets were

defined as outliers (Fig. 3A and Supplementary Fig. S3A and

S3B). These results link AKT1 activation with glycolysis and

other glucose-related pathways, including the pentose phos-

phate shunt and fructose metabolism, and MYC overexpres-

sion with deregulated lipid metabolism (Fig. 3A and Supple-

mentary Fig. S3C). On the one hand, enrichment of the glycer-

ophospholipid, glycerolipid, and pantothenate/CoA biosynthe-

sis metabolite sets, as well as higher levels of lipogenesis-

feeding metabolites such as citrate, were distinctively associ-

ated with MYC overexpression in RWPE cells, suggesting a

MYC-dependent deregulation of synthesis and/or turnover of

membrane lipids. Interestingly, higher levels of both omega-3

(docosapentaenoate and docosahexaenoate) and omega-6

(arachidonate, docosadienoate, and dihomo-linolenate) fatty

acids were found in Lo-MYC mice and in phosphoAKT1-low/

MYC-high prostate tumors relative to MPAKT mice and phos-

phoAKT1-high/MYC-low tumors (Supplementary Dataset S2).

Prostate cells may use unsaturated, exogenous essential fatty

acids early during transformation, perhaps as energy sources

via oxidation (15).

As a validation of untargeted metabolomics, absolute con-

centrations of selected metabolites were measured. Oleic,

arachidonic, and docosahexaenoic acids were validated in

phosphoAKT1-high/MYC-low tumors (n ¼ 14) and phos-

phoAKT1-low/MYC-high tumors (n ¼ 5). Oleic acid can be

Figure 1. Integrative models of AKT or MYC-driven prostate

tumorigenesis.Metabolomic profilingwas performed on nontransformed

prostate RWPE-1 cells (A) and mice (B) genetically engineered to

overexpress myristoylated AKT1 or MYC, primary nonmetastatic

prostate tumors (C), and controls. AKT1 and MYC overexpression is

represented by orange and green, respectively. Blue, controls. A,

phosphoAKT1andMYC levels inRWPE–AKT1,RWPE–MYC, andcontrol

(RWPE–EV) cells are shown by immunoblots. B, both MPAKT and

Lo-MYC transgenic mice exhibited prostate intraepithelial neoplasia at

11 to 13 weeks of age, as shown by hematoxylin and eosin (H&E)

staining. Overexpression of phosphoAKT1 and MYC was confirmed by

immunohistochemistry. C, K-means clustering was used to segregate

four prostate tumor subgroups, that is, phosphoAKT1-high/MYC-high

(dark gray dots), phosphoAKT1-high/MYC-low (orange dots),

phosphoAKT1-low/MYC-high (green dots), and phosphoAKT1-low/

MYC-low (light gray dots).
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generated in the cell via desaturation of stearic acid by stearoyl-

CoA delta-9-desaturase (SCD1). Consistent with the semiquan-

titative data, all of these fatty acids were present at a signif-

icantly higher concentration in MYC-high tumors (Fig. 3B).

Additional validation of the untargeted metabolomics includ-

ed the tumor-associated 2-aminoadipic acid, an intermediate

of lysine metabolism, and creatine, which was increased in

phosphoAKT1-high/MYC-low versus phosphoAKT1-low/

MYC-high tumors (Supplementary Fig. S4).

Next, we askedwhether themetabolome changes associated

with the oncogenic transformation of prostate epithelial cells

are accompanied by transcriptional changes in key metabolic

enzymes. Consistent with the metabolite profiling of RWPE-1

cells, glycolytic components such as the glucose transporter

GLUT-1 and the hexokinase 2 were increased upon AKT1

overexpression/activation (Fig. 4A). As expected, downstream

targets of AKT1 such asHIF1a (hypoxia-inducible factor 1) and

VEGF-A were induced in AKT1-overexpressing cells (Supple-

mentary Fig. S5A). RWPE–MYC cells showed increased expres-

sion of two key enzymes of the glycerophospholipid metabo-

lism, choline kinase alpha, and cholinephosphotransferase-1

(Fig. 4A). At the proteins level, hexokinase 2 was increased by

AKT1 activation, and choline kinase alpha was induced by

MYC overexpression (Fig. 4B). Consistent with published data

(10), MYC induced the expression of glutaminase, a glutami-

nolytic enzyme responsible for the conversion of glutamine

into glutamate, at both the mRNA and the protein levels (Fig.

4A and B), resulting in an increased amount of glutamate

relative to RWPE–EV. AKT1 activation strongly increased the

expression of the neutral amino acid transporter ASCT2 (Fig.

4A and B). Interestingly, mRNA and protein expression of fatty

acid synthase (FASN) was higher in RWPE–AKT1 and RWPE–

MYC cells compared with RWPE–EV cells (Supplementary Fig.

S5A and S5C), as well as in prostate tumors compared with

normal prostate tissue samples (Supplementary Fig. S5B and

S5C). Although FASN expression can be induced downstream

of AKT1 via mTORC1-mediated SREBP1 (sterol regulatory

element-binding protein 1) activation, a link between

increased de novo lipogenesis and aerobic glycolysis has been

proposed in various tumor types (16, 17), suggesting a multi-

faceted role of FASN.

Sarcosine, an intermediate of the glycine and cholinemetab-

olism previously identified as a progression marker in prostate

cancer (18), was increased exclusively in the prostate of
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Figure 2. Metabolic pathway analysis in phosphoAKT1-high or MYC-high samples relative to controls. A–C, heatmap representation of NESs (P < 0.05) for
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Metabolic Classification of Prostate Cancer

www.aacrjournals.org Cancer Res; 74(24) December 15, 2014 7201

on September 4, 2019. © 2014 American Association for Cancer Research. cancerres.aacrjournals.org Downloaded from 

Published OnlineFirst October 16, 2014; DOI: 10.1158/0008-5472.CAN-14-1490 

http://cancerres.aacrjournals.org/


Lo-MYC mice (Supplementary Fig. S2B). Associated with the

sarcosine increase were a concomitant elevation of the inter-

mediate betaine and a decrease in glycine levels (Supplemen-

tary Fig. S2B). These results reflect a dysregulation of the

sarcosine pathway by MYC.

To determine whether genomic alterations at the PTEN or

MYC loci are predictive of active AKT1 or MYC overexpression

in prostate tumors, we performed SNP arrays using genomic

DNA isolated from the same sections of each tumor or non-

tumoral matched control sample assayed by immunoblotting

(phosphorylated AKT1 and MYC). SNP arrays revealed that

20% of these tumors harbored 10q loss and 18% harbored 8q

gain, including the MYC locus (Supplementary Fig. S6), where-

as cooccurrence of PTEN loss andMYC copy gain was found in

Pathway Cell Mouse Human Mean

Glycolysis gluconeogenesis 1.36 1.28 1.59 1.41

Fructose and mannose metabolism 1.46 1.22 1.31 1.33

Pentose phosphate pathway 1.46 0.99 1.42 1.29

Propanoate metabolism 0.97 1.42 1.18 1.19

Amino sugar and nucleotide sugar metabolism 1.29 0.66 1.53 1.16

Glycerolipid metabolism –1.04 –0.99 –0.85 –0.96

Fatty acid biosynthesis –0.95 –0.87 –1.34 –1.05
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Figure 3. Overall differential metabolite set enrichments in phosphoAKT1-high versus MYC-high samples. A, simultaneous GSEA measurements in all

three datasets (cultured cells, mouse prostate, and human tumors) are shown (left). This information is depicted as dots in three-dimensional space,

where each dot represents a particular pathway and each dimension a dataset. Enrichment of a pathway in phosphoAKT1-high versus MYC-high

samples or vice versa is defined by a positive or negative score, respectively. The top five positively enriched pathways (i.e., in phosphoAKT1-high

samples) and the top two negatively enriched pathways (i.e., in MYC-high samples) in all three datasets, as identified with outlier analysis

(Supplementary Fig. S3), are shown as orange and green dots, respectively. NESs of the seven pathways identified as outliers in the three datasets and

the average of these scores are shown per each set (KEGG pathway) on the right. B, semiquantitative (top) and absolute (bottom) measurements of

arachidonic acid, docosahexaenoic acid, and oleic acid in phosphoAKT1-high/MYC-low (orange) and phosphoAKT1-low/MYC-high (green) tumor

samples. The Mann–Whitney test was applied; �, P < 0.05 and ��, P < 0.01.
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3%of tumors, consistentwith published data (19). Importantly,

the genomic alterations accounted for 26% (7/27) of phos-

phoAKT1-high tumors and for 13% (2/15) of MYC-high tumors

(Supplementary Fig. S6), as expected from previous reports

(20).

Finally, to identify unique mRNA expression changes in

phosphoAKT1-high/MYC-low and phosphoAKT1-low/MYC-

high prostate tumors, we performed a qPCR-based expression

profiling analysis of 28 metabolic genes (Supplementary Fig.

S5D) in tumor relative to normal prostate tissues. Consistent

with the MYC-dependent negative enrichment for the glyco-

lytic pathway (Fig. 2C and Supplementary Fig. S2A), high MYC

expression in a phosphoAKT1-low context in human tumors

was associated with decreased mRNA expression of GLUT-1

(Fig. 4C). This findingwas specific to theMYC-high tumors and

not generalizable to all tumors versus normal prostate tissues

(Supplementary Fig. S5B). Also, no decrease in GLUT-1 expres-

sion was found in phosphoAKT1-high/MYC-high tumors (Fig.

4C). A significant association between GLUT-1 high expression

and phosphoAKT1-high status was found by immunohis-

tochemistry in a subset of this cohort (Fig. 4D and Supple-

mentary Fig. S5C). Seven of 14 phosphoAKT1-low tumors were

MYC-high, and only 14% (1/7) of these showed high GLUT-1,

whereas 85% (6/7) had low or no GLUT-1 expression (Fig. 4D).

Altogether, these results suggest that AKT1 activation may be

critical tomaintain high GLUT-1 levels in prostate cancer cells,

and that AKT1-independent MYC activation can potentially

affect glucose uptake in prostate tumors.

In summary, our data demonstrate that individual prostate

tumors have distinct metabolic phenotypes, resulting from

their genetic complexity, and reveal a novel potential meta-

bolic role for MYC in prostate cancer. The evidence provided

Figure 4. AKT1- and MYC-dependent regulation of metabolic gene expression. A, relative qPCR analysis of mRNA levels of genes of glucose,

glycerophospholipid, andglutaminemetabolism inRWPE–AKT1 (orangebars) andRWPE–MYC (green bars) cells normalized toRWPE–EV (bluebars) cells. B,

immunoblotting of hexokinase 2 (HK2), the glutamine transporter ASCT2, glutaminase (GLS), and choline kinase alpha (CHKa) in RWPE–AKT1, RWPE–MYC,

and RWPE–EV cells. C, relative qPCR analysis of mRNA levels of the glucose transporter GLUT-1 in phosphoAKT1-high/MYC-low (orange bar; n ¼ 13),

phosphoAKT1-low/MYC-high (green bar; n ¼ 5), and phosphoAKT1-high/MYC-high (dark gray bar; n¼ 3) prostate tumors versus normal prostate samples

(blue bar; n¼9). D, hematoxylin and eosin (H&E) and immunohistochemical staining forMYC, stathmin (anAKTdownstream target used as a surrogate of AKT

activity), and GLUT-1 in representative cases of phosphoAKT1-low/MYC-high and phosphoAKT1-high/MYC-low prostate tumors. Red cells (arrows)

represent a positive control forGLUT-1 staining.One-sample t testwasperformedusing average fold changeof at least three experiments (A) or samples (C); �,

P < 0.05; ��, P < 0.01; and ���, P < 0.001.
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links AKT1 or MYC activation with differential deregulation of

glucose-related pathways aswell as lipidmetabolism in human

prostate cancer. To our knowledge, this is the first report of

oncogene-associated metabolic signatures as the result of an

integrative analysis of cultured cells, mouse models, and

human tumors. This opens novel avenues for the metabolic

imaging and therapeutic targeting of patients with prostate

cancer.
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