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ABSTRACT

Motivation: Amino acid sequence alignments are widely

used in the analysis of protein structure, function and

evolutionary relationships. Proteins within a superfamily

usually share the same fold and possess related functions.

These structural and functional constraints are reflected

in the alignment conservation patterns. Positions of

functional and/or structural importance tend to be more

conserved. Conserved positions are usually clustered in

distinct motifs surrounded by sequence segments of low

conservation. Poorly conserved regions might also arise

from the imperfections in multiple alignment algorithms

and thus indicate possible alignment errors. Quantification

of conservation by attributing a conservation index to each

aligned position makes motif detection more convenient.

Mapping these conservation indices onto a protein spatial

structure helps to visualize spatial conservation features of

the molecule and to predict functionally and/or structurally

important sites. Analysis of conservation indices could be

a useful tool in detection of potentially misaligned regions

and will aid in improvement of multiple alignments.

Results: We developed a program to calculate a con-

servation index at each position in a multiple sequence

alignment using several methods. Namely, amino acid

frequencies at each position are estimated and the

conservation index is calculated from these frequencies.

We utilize both unweighted frequencies and frequencies

weighted using two different strategies. Three conceptu-

ally different approaches (entropy-based, variance-based

and matrix score-based) are implemented in the algorithm

to define the conservation index. Calculating conservation

indices for 35 522 positions in 284 alignments from

SMART database we demonstrate that different methods

result in highly correlated (correlation coefficient more

than 0.85) conservation indices. Conservation indices

show statistically significant correlation between sequen-

tially adjacent positions i and i + j , where j < 13, and

averaging of the indices over the window of three positions

∗To whom correspondence should be addressed.

is optimal for motif detection. Positions with gaps display

substantially lower conservation properties. We compare

conservation properties of the SMART alignments or

FSSP structural alignments to those of the ClustalW

alignments. The results suggest that conservation indices

should be a valuable tool of alignment quality assessment

and might be used as an objective function for refinement

of multiple alignments.

Availability: The C code of the AL2CO program and its

pre-compiled versions for several platforms as well as

the details of the analysis are freely available at ftp://iole.

swmed.edu/pub/al2co/.

Contact: grishin@chop.swmed.edu

INTRODUCTION

Homologous proteins tend to form distinct families and

superfamilies that are characterized by specific sequence

motifs, common folds, and related functions. Multiple

sequence alignments are routinely used for structure and

function prediction and analysis, and for phylogenetic

tree reconstruction of protein families. Analysis of posi-

tional conservation in an amino acid sequence alignment

can aid in detection of motifs and functionally and/or

structurally important residues, e.g. at the binding sites

(Zuckerkandl and Pauling, 1965; Villar and Kauvar,

1994; Ouzounis et al., 1998). Mapping the conservation

information onto a protein 3D structure helps to visualize

spatial conservation patterns and to deduce potential

functional surfaces of a protein molecule (Sander and

Schneider, 1991; Lichtarge et al., 1996; Landgraf et

al., 1999; Makarova and Grishin, 1999; Zhang et al.,

2000). Several methods of conservation analysis have

been used previously to extract functional information

from sequence alignments. A vectorial method was

proposed in predicting functionally important residues

(Casari et al., 1995). Another method, called evolutionary

tracing, has been used for defining binding surfaces

(Lichtarge et al., 1996) and for identifying functional

and structural features in protein families (Landgraf et
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al., 1999; Pritchard and Dufton, 1999). Entropy-based

conservation analysis (Sander and Schneider, 1991;

Shenkin et al., 1991) has been utilized extensively for

characterization of protein families (Atchley et al.,

1999; Lowry and Atchley, 2000) and for the analysis

of protein folds (Mirny and Shakhnovich, 1999). Other

methods of measuring conservation deal with amino acid

substitution matrices (Levin and Satir, 1998; Landgraf

et al., 1999) or the deviance of amino acid frequencies

from the mean values (Lockless and Ranganathan, 1999).

However, comprehensive comparison between differ-

ent estimators of positional conservation has not been

done.

Vast numbers of algorithms have been developed to

construct multiple sequence alignments (Barton and

Sternberg, 1987; Feng and Doolittle, 1987; Taylor,

1988; Lipman et al., 1989; Thompson et al., 1994a;

Eddy, 1995; Gotoh, 1996; Notredame et al., 1998;

Morgenstern, 1999; to cite a few). Despite significant

progress in this direction, none of the available alignment

algorithms is perfect (Thompson et al., 1999), leaving

the user to cope with the task of manual adjustment of

automatically generated alignments. Several approaches

have been developed for assessing the quality and re-

liability of sequence alignment (Vingron and Argos,

1990; Mevissen and Vingron, 1996; Notredame et al.,

1998; Thompson et al., 1999; Domingues et al., 2000).

Since alignment construction is based on sequence

conservation, it appears that a positional conserva-

tion estimator is suitable as a measure of alignment

quality.

We developed a program (AL2CO) that performs

conservation analysis in a comprehensive and systematic

way. For a given protein multiple sequence alignment we

calculate a conservation index for each position. Twelve

different strategies of conservation index calculation

have been implemented and their performance has been

tested and compared on the alignments from the SMART

database (Schultz et al., 1998; Ponting et al., 1999).

We analyze the distribution of conservation indices, the

correlation of conservation indices between different

alignment positions, and the effects of gaps and the num-

ber of sequences on the conservation index. By comparing

the SMART alignments and raw ClustalW alignments

(Thompson et al., 1994a), we test which method of

conservation index calculation works best as a measure

of a multiple alignment quality. For highly divergent

sequences, where sequence-based alignment strategies

are likely to fail and cannot be used as a reference, we

make a similar comparison between representative struc-

tural alignments taken from FSSP database (Holm and

Sander, 1996, 1998) and the corresponding raw ClustalW

alignments.

ALGORITHM

The algorithm of AL2CO program performs calculations

in two steps. First, amino acid frequencies at each position

are estimated. The conservation index is then calculated

from these frequencies. An optional third step allows the

user to average the conservation indices over a window

covering a selected number of positions.

Various methods to estimate position-specific amino

acid frequencies have been developed. We divide them

into three groups:

1.1. Unweighted amino acid frequencies: f u
a (i) =

na(i)/n(i), where na(i) is the number of sequences in

which position i is occupied by amino acid a, and n(i) is

the total number of aligned sequences in which position i

is present (no gap at this position): n(i) =
∑20

a=1 na(i).

1.2. Weighted amino acid frequencies: f w
a (i) =

∑n(i)
k=1 δ(a, k, i)wk/

∑n(i)
k=1 wk , where wk is a given

weight of a sequence k, and we put δ(a, k, i) = 1 if amino

acid a is in sequence k at position i , and δ(a, k, i) = 0

otherwise. Setting equal weights wk = wl for all se-

quences k and l results in unweighted frequencies. The

idea behind the weights is to correct for unequal distances

between different sequence pairs in the alignment. It ap-

pears logical that two close sequences with high similarity

should influence amino acid frequencies less than a pair

of divergent sequences. Thus, the weight attributed to

each of a large family of similar sequences is less than

the weight of a single divergent sequence. A wide variety

of different methods have been proposed to calculate

weights wk (Altschul et al., 1989; Sander and Schneider,

1991; Gerstein et al., 1994; Henikoff and Henikoff,

1994; Thompson et al., 1994b; Eddy et al., 1995; Gotoh,

1995; Krogh and Mitchison, 1995). We used a modified

method of Henikoff and Henikoff that is implemented

in PSI-BLAST (Henikoff and Henikoff, 1994; Altschul

et al., 1997). In sequence weight calculation, we ignore

positions with gaps present in more than 50% of the

sequences and invariant positions.

1.3. Estimated independent counts: f ic
a (i) = nic

a (i)/nic(i)

where nic
a (i) is an estimate of the number of independent

observations of amino acid a at position i and nic(i) =
∑20

a=1 nic
a (i). The idea behind this approach is to correct

for the correlation between aligned sequences. We use

a modified method proposed by Sunyaev et al. (1999).

The number of independent observations (= counts) of

amino acid a at a position i is equal to the effective

number of sequences that contain amino acid a at this

position. The effective number of sequences in a sample

is calculated in the following way. Given a sequence

alignment, we define a function F whose value depends

on the number of sequences in the alignment. For a given
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alignment, we can calculate the value of Freal (Sunyaev

et al., 1999). For a random alignment consisting of N

random sequences we calculate F(Nrandom). The value of

Nrandom for which Freal = F(Nrandom) corresponds to the

effective number of sequences. Sunyaev et al. (1999) uses

the number of invariant positions as the function F . This

number can be easily calculated for a given alignment.

Since the number of invariant positions is usually small in

divergent sequence alignments, the estimate of F is often

imprecise. We choose a more effective F , which is the

average number of different amino acids per position. For

a random alignment of N random sequences composed of

equifrequent amino acids one gets F = 20(1 − 0.95N )

(see appendix for the proof) which allows us to estimate

the effective number of sequences as Neff = ln(1 −
F/20)/ ln 0.95. For any F , if amino acid a is present in

a single sequence at a position i , its count is nic
a (i) = 1. If

amino acid a is present in na(i) sequences at a position

i , its count is 1 ≤ nic
a (i) ≤ na(i); nic

a (i) = 1 if all

sequences with amino acid a at the position i are identical,

and nic
a (i) = na(i) if all sequences are independent.

Weighted frequencies have been used extensively in

sequence analysis. However, we realize that sometimes

researchers are particularly interested in a group of highly

similar sequences that might be present in the alignment,

and would like to see the conservation within that group

not being influenced by divergent sequences. In this case,

unweighted frequencies should be used. The presence of

an amino acid a at a position i indicates that it is an

admissible amino acid at this position, even if it is present

in a single sequence only. If this sequence happens to be

highly similar to other sequences, then the frequency of

amino acid a will be reduced due to the weighting scheme.

The strategy of independent counts can avoid this negative

effect.

The conservation index is calculated in the next step

from amino acid frequencies by one of the following

strategies.

2.1. Entropy-based measure: Ce(i) =
∑20

a=1 fa(i) ln fa(i).

Traditionally, the order of a system is measured by its

entropy. Consequently, it can be used in particular for

measuring sequence variability, as was proposed for ex-

ample by Shenkin et al. (1991) and has been implemented

in a number of studies (Sander and Schneider, 1991;

Atchley et al., 1999; Mirny and Shakhnovich, 1999;

Lowry and Atchley, 2000). Entropy for a position i is

maximal if all 20 amino acids at this position have equal

frequencies. We use entropy with the reverse sign defined

on position-specific frequencies fa(i) to estimate the

conservation index. Entropy does not take into account

possible bias in amino acid composition or similarities

among amino acids. The latter defect can be partially

corrected for by forming groups of amino acids with

similar properties and calculating frequencies for these

groups (Atchley et al., 1999; Mirny and Shakhnovich,

1999).

2.2. Variance-based measure:

Cv(i) =
√

∑20
a=1 ( fa(i) − fa)2, where fa is the

overall frequency for amino acid a in the alignment,

i.e. fa =
∑l

i=1 na(i)/
∑l

i=1 n(i) if fa(i) were esti-

mated using the methods 1.1 and 1.3 (see above), and

f w
a =

∑l
i=1

∑n(i)
k=1 δ(a, k, i)wk/

∑l
i=1

∑n(i)
k=1 wk for the

method 1.2, and l is the total number of aligned positions.

A similar method has been employed in the estimation

of evolutionary conservation and coupling parameters

(Lockless and Ranganathan, 1999). The position with

amino acid frequencies fa(i) equal to the overall amino

acid frequencies fa in the aligned sequences will result in

Cv(i) = 0. Alternatively, Cv(i) reaches its maximum for

the position occupied by an invariant amino acid whose

frequency in the alignment is minimal. The advantage of

this method is the use of overall amino acid frequencies,

which differ for different protein families. This measure

does not take into account similarities among amino acids.

To utilize such information, usually presented as a scoring

matrix, we opt for using

2.3. Sum of pairs measure:

C p(i) =
∑20

a=1

∑20
b=1 fa(i) fb(i)Sab, where Sab is an

amino acid scoring matrix. This conservation index will

be higher for the positions occupied by more similar

amino acids. Since the diagonal scores might differ for

different amino acids, conservation indices for invariant

positions will depend on the amino acid type. For example,

positions with invariant Trp will have the highest index if

BLOSUM62 matrix is utilized. If the user wants to make

conservation indices equal to each other for all invariant

positions, the scoring matrix can be normalized: S
′
ab =

Sab/
√

Saa Sbb. We also allow the user to modify the scores

according to the formula: S
′′
ab = 2Sab − (Saa + Sbb)/2.

This adjustment makes C p(i) equal to the original matrix

score Sab for the alignment of two sequences with amino

acids a and b at a position i ( fa(i) = fb(i) = 0.5,

C p(i) = 0.5 ∗ 0.5 ∗ S
′′
ab + 0.5 ∗ 0.5 ∗ S

′′
ba + 0.5 ∗ 0.5 ∗

S
′′
aa + 0.5 ∗ 0.5 ∗ S

′′
bb = Sab).

Despite the fact that conserved positions tend to cluster

to form motifs, conservation indices for adjacent sequence

positions usually show large variation. Averaging the

indices over a window can smoothen the conservation

profile along a sequence and facilitate sequence motif

detection. For a given window of size w at position i , we

average the indices from position i −(w−1)/2 to position

i+(w−1)/2 if w is odd, and from position i−(w−2)/2 to

position i+w/2 if w is even. The average value is assigned

as a new index to position i . When averaging is applied to
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the positions near N-(C-) terminus (N terminus: i < w/2

if w is even and i < (w+1)/2 if w is odd; analogously for

C terminus), the window sizes are reduced to completely

cover the sequence at the N-(C-) terminus and the target

position is placed in the middle of the window: e.g. for

the N-terminus, the new window size is w′ = 2i − 1

for positions i if w′ < w − 1. To compensate for the

increase of the index variance caused by the decrease of

the window size, we also adjust the index as C ′(i) =
C + (C(i) − C)

√

w′/w where C(i) is the conservation

for position i near the alignment termini averaged over a

smaller window of size w′, w is the given window size, C

is the mean conservation index with window size 1.

Calculated conservation indices can then be normalized

to make comparisons possible among sets of indices

calculated for different alignments or using different

methods: Cn(i) = (C(i) − C)/σC , C =
∑l

i=1 C(i)/ l,

σC =
√

∑l
i=1 (C(i) − C)2/(l − 1), where l is the number

of positions in the alignment.

IMPLEMENTATION AND DISCUSSION

Multiple sequence alignments taken from SMART

database (Schultz et al., 1998; Ponting et al., 1999) were

used to compare different estimation methods of positional

conservation. SMART database is well curated and in our

opinion represents a large sample of alignments with high

quality that are adjusted manually according to structural

and/or functional considerations (Schultz et al., 1998;

Ponting et al., 1999). Alignments that contain less than

20 sequences or less than 40 positions with gap fraction

less than 0.5 were not considered in this analysis, resulting

in 284 alignments that were used for conservation index

calculation (for the information on the alignments see

ftp://iole.swmed.edu/pub/al2co/SMART list/). A total of

4 ∗ 3 = 12 methods that differ in weighting schemes and

conservation–calculation strategies as discussed above

were used. We designate the methods by two numbers

with an underscore in between. The first number refers to

the conservation–calculation strategy: 1, entropy-based

measure; 2, variance-base measure; 3, sum-of-pairs

measure using identity matrix; 4, sum-of-pairs measure

using BLOSUM62 matrix. The second number refers to

frequency estimation strategy: 1, unweighted frequencies;

2, Henikoff-weighted frequencies; 3, independent-count

based frequencies.

Correlation between methods

For each of the 284 SMART alignments, positions with

gaps in no less than 50% of sequences were discarded

and conservation indices were calculated for the remaining

positions (35 522 total) using all the 4 ∗ 3 = 12 proposed

methods. The resulting conservation indices were then

normalized to zero mean and unity variance for each
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Fig. 1. Correlation plot between two methods that show the lowest

correlation coefficient. The two methods are: 2 1 (variance based

measure with no weighting) and 4 3 (sum-of-pairs measure with the

BLOSUM62 matrix and independent count weights). 35 522 data

points are shown. The correlation coefficient is 0.85.

individual alignment. (Cm
k (i) is a conservation index

calculated by the method m = 1, . . . , 12 for position

i = 1, . . . , lk in alignment k = 1, . . . , 284, Cm
k =

∑lk
i=1 Cm

k (i)/ lk = 0, σ 2
Cm

k
=

∑lk
i=1 Cm

k (i)2/(lk − 1) = 1).

Correlation coefficients between the indices obtained by

different methods m and s



ρ(Cm, Cs) =
∑284

k=1

∑lk
i=1 Cm

k (i)Cs
k(i)

√

∑284
k=1

∑lk
i=1 Cm

k (i)2
∑284

k=1

∑lk
i=1 Cs

k(i)
2





for all pairs of the 12 methods are presented in Table 1.

All correlation coefficients are no less than 0.85, showing

good correspondence among methods. For the four

conservation–calculation strategies, strategy number 4,

the one applying the BLOSUM62 matrix shows smallest

correlation coefficients with the other three strategies.

Calculations using the BLOSUM62 matrix take into

account similarities among amino acids, while the re-

maining three methods do not. Figure 1 shows the plot

of conservation indices of the two methods with the

lowest correlation (Methods 2 1 and 4 3). These two

methods differ in schemes for frequency calculation

and in strategies for conservation–calculation: method

2 1 is a variance-based measure with no weighting and

Method 4 3 is a sum-of-pairs BLOSUM62 measure with

independent counts weighting scheme.
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Table 1. Correlation between conservation indices calculated by different methods1

1 1 100

1 2 99 100

1 3 97 98 100

2 1 97 96 92 100

2 2 97 98 94 99 100

2 3 96 97 97 96 97 100

3 1 97 96 93 97 97 96 100

3 2 96 97 94 96 97 96 99 100

3 3 92 94 96 90 92 97 95 97 100

4 1 93 93 92 93 93 93 93 93 91 100

4 2 92 93 92 91 93 94 92 93 92 99 100

4 3 89 90 93 85 87 93 87 89 93 95 97 100

Method 1 1 1 2 1 3 2 1 2 2 2 3 3 1 3 2 3 3 4 1 4 2 4 3

1Correlation coefficients are shown in percent. See text for method abbreviations.

We paid special attention to the matrix-based sum-of-

pairs method since it is the only one that can take into

account similarities among amino acids. To evaluate the

effects of different scoring matrices on the conservation

index, we performed correlation analysis of conser-

vation indices obtained using eight different scoring

matrices: 30, 45, 62, and 80 from the BLOSUM series

(Henikoff and Henikoff, 1992), PAM250 (Dayhoff et al.,

1978), GONNET (Gonnet et al., 1992), and two recent

structure-derived matrices, namely Structure-Derived

Matrix (SDM) and Homologous Structure-Derived Ma-

trix (HSDM) (Prlic et al., 2000). Independent counts

scheme was used to estimate amino acid frequencies.

All correlation coefficients are no less than 0.93 (data

not shown), suggesting that different matrices perform

in a similar way. PAM250 matrix shows the smallest

correlation coefficients to the others (data not shown).

PAM250 is the oldest one and is derived by matrix

multiplication from the mutation rates estimated using

very similar sequences (Dayhoff et al., 1978), while other

matrices are obtained from direct statistical estimation of

frequencies of aligned amino acid pairs in more divergent

sequences. The highest correlation coefficient (99.7%)

is found between the two structure-derived matrices

SDM and HSDM. HSDM is obtained from a subset (77

presumably homologous proteins pairs out of the 122

structurally aligned pairs that might contain analogs) of a

database that is used to derive SDM (Prlic et al., 2000).

Correlation between positions

It is well known that alignments contain regions of

high conservation (sequence signatures or motifs) with

variable regions between them (Henikoff et al., 1999).

To clarify applicability of conservation indices calculated

by different methods for motif detection, we calculated

correlation of conservation indices at positions i and i + j

( j = 1, . . . , 20) for all of the 284 SMART alignments

using 12 methods. All 12 methods show rather similar

traits in positional correlation (four of them are shown

in Figure 2). For j ≤ 12, the corresponding positions

i and i + j display significant positive correlation (P-

value <0.05). This correlation pattern shows that the

positions that are sequentially close to each other tend to

have the same conservation properties (high conservation

or low conservation), for stretches on average up to

12 residues in length. Directly adjacent positions (i and

i + 1) have, on average, the highest correlation. The

correlation drops when the positions get further apart in

sequence. All correlation coefficients do not differ from

0 significantly for j larger than 12, indicating that long-

range sequential coupling between positions are not the

same in different protein families. Interestingly, the four

peaks ( j = 1, 4, 7, 11) show periodicity that is consistent

with that of an α-helix where residues in positions i , i +1,

i +4, i +7, and i +11 are spatially close. It appears that the

medium-range coupling (3 ≤ j ≤ 12) is mainly caused by

α-helices. β-strands, on the other hand, tend to contribute

to short-range coupling (1 ≤ j ≤ 4) since they are usually

short and adopt extended conformation.

Despite statistically significant correlation between

conservation indices for positions close in sequence, the

smoothness of the conservation index versus position

number is low. Averaging of conservation indices over

a window of w positions smoothens the indices. We

calculated correlation coefficients between conservation

indices at positions i and i + j ( j = 1, . . . , 21) for

different window sizes (w = 1, . . . , 20) and different

methods of conservation index estimation. Again all 12

methods show similar properties. One example is shown

in Table 2 for method 1 3 of window size w up to 5

and position difference j up to 15. If window size w is

larger than j , then correlation between i and i + j is

biased (and always significant) since the two windows for

i and i + j overlap (Table 2, shown in italic numbers).
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Fig. 2. Correlation between conservation indices at positions i and i + j for different methods. The two gray lines parallel to the horizontal

axis mark the area of insignificant difference from zero correlation (P > 0.05) in between. Methods are designated by two numbers with

an underscore in between (x 2). The first number refers to the conservation–calculation strategy: 1, entropy-based measure; 2, variance-base

measure; 3, sum-of-pairs measure using identity matrix; 4, sum-of-pairs measure using BLOSUM62 matrix. The second number (2) refers

to Henikoff weighting scheme.

Diagonal elements (w = j , in bold) mark the start of

an unbiased correlation along each row in Table 2. For

all window sizes, statistically significant correlation lasts

for about 11–12 residues beyond the window size. For

each method, the first unbiased correlation (diagonal

elements) increases to its maximum value at a window

size of 3 (underlined, in bold), and then gradually drops

with the increase of window size. The increase is due to

the increase of smoothness, and the drop is caused by the

averaging effect and the increased window size. Thus we

propose that window size 3 should be ideal for smoothing

of conservation indices and optimal for motif detection.

Distribution of conservation indices

The histogram of the normalized (to zero mean and unit

variance) conservation indices for the 35 522 positions in

284 alignments is shown as discrete points in Figure 3

(bin size 0.2σ ). It exhibits a single sharp mode at about

−0.7σ , drops fast at its left side and has a shoulder at

its right side. Such shape indicates a mixed distribution

that is likely to have several distinct components. We

use the sum of two Gaussian distributions to fit the data

(Figure 3). The two Gaussians may serve as a rough

approximation of low-conservation and high-conservation

components respectively, although the overall fit is far

from perfect. The low-conservation component (on the

left) contributes mostly to the sharp peak. The high

conservation component (on the right) gives rise to the

shoulder. It has a larger variance than the low conservation

component and may actually be further decomposed into

several sub-components. The low and high conservation

components cover almost equal areas, indicating that

about 50% of all positions display significant conservation

while the remaining positions are not conserved.

The effect of gaps

A question remains regarding the treatment of gaps in

conservation-index calculation. In the former analysis,

gaps were ignored and only positions with gaps present

in no more than 50% of sequences were considered. It

is clear that a gap should not be treated as a 21st letter

for calculating frequencies since in that case the positions

containing mostly (or entirely) gaps will be described as

highly (or completely) conserved. However, the presence

of a gap character at a position means the absence of the

corresponding amino acid in the protein structure. This

indicates a lack in the backbone chain and, thus, seems to

be ‘less conserved’ than the mere change of an amino acid

side chain corresponding to the substitution of one amino

acid by another. In any case, deletion should represent
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Table 2. Correlation coefficients between positions in alignments for different window sizes1

Window Position difference ( j)

size (w) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 0.23 0.19 0.21 0.23 0.08 0.04 0.10 0.08 0.02 0.02 0.04 0.03 0.00 0.00 0.00

0 0 0 0 0 0 0 0 1.13 0.28 1e−8 2e−3 47.9 61.1 55.1

2 0.67 0.34 0.35 0.31 0.18 0.11 0.13 0.11 0.05 0.04 0.06 0.04 0.02 0.01 0.00

0 0 0 0 0 0 0 0 0 2e−8 0 6e−8 0.93 24.8 59.2

3 0.82 0.63 0.42 0.36 0.26 0.19 0.15 0.13 0.09 0.07 0.06 0.05 0.03 0.02 0.01

0 0 0 0 0 0 0 0 0 0 0 0 3e−4 1.78 15.4

4 0.88 0.74 0.58 0.41 0.32 0.25 0.20 0.15 0.12 0.10 0.08 0.06 0.04 0.03 0.01

0 0 0 0 0 0 0 0 0 0 0 0 7e−7 7e−3 4.33

5 0.90 0.78 0.66 0.52 0.36 0.28 0.23 0.18 0.14 0.11 0.09 0.07 0.05 0.04 0.03

0 0 0 0 0 0 0 0 0 0 0 0 0 2e−5 2e−2

Method 1 3 (entropy-based measure with independent counts frequencies) was used. For each element in the table, the upper number is the

correlation coefficient between the sites i and i + j for the window size w, the lower number is its significance (P-value, in percent) of

difference from zero correlation. P-value in percent is shown as 0 if it is less than 10−8.
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Fig. 3. Distribution of conservation indices for the method 1 3. 35 522 normalized conservation indices are used. Bin-size is 0.2σ . The

number of data points in each bin is shown as circles. These data were fitted to the sum of two normal distributions using the SigmaPlot

software: 0.2σ N
(

p1√
2πσ1

exp
[

− (x−µ1)
2

2σ 2
1

]

+ p2√
2πσ2

exp
[

− (x−µ2)
2

2σ 2
2

])

, where N is the total number of data points (35 522), p1 and p2 are

the fractions of the two Gaussians. The best-fit parameters are shown in the upper right corner.

an event different from a substitution. It is also clear

that ignoring gaps is not appropriate. For example, when

at a given position only a few sequences contain amino

acids and most have gaps, estimation of conservation that

ignores sequences with gaps in that position will be on

average higher, and the position would be completely

conserved if only one sequence contains an amino acid.

To study the conservation properties at positions with

varying fractions of gaps, we employed the following

strategy. Conservation indices were calculated for every

position in each of the 284 SMART alignments without

considering the effects of gaps. However, the mean (µ)

and standard deviation (σ ) for normalization was calcu-

lated only using the positions that do not contain gaps at

all. Then the positions containing amino acids in less than

20 sequences were discarded and the remaining positions
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with gaps were binned by the fraction of gaps with each

bin containing the same number of data points. For each

bin, the average of conservation indices was calculated

and plotted as shown in Figure 4 for method 1 2. Positions

with gaps indeed show lower average conservation than

positions without gaps (mean value 0). The average

conservation index drops sharply to about −0.8σ when

the gap percentage increases from 0 to about 5% . The

reasons for the decrease are two-fold. On the one hand,

structurally or functionally important positions with high

conservation tend to contain no gaps. On the other hand,

the presence of gaps means that this position is to some

extent unnecessary, so the conservation should be lower.

Average conservation index stays about −1.0σ with gap

percentage ranging from 10 to 70%, suggesting that there

is little effect of gap percentage on positional conservation

within this range. For gap percentages larger than 70%,

the average conservation index gradually increases. Two

reasons may account for this increase: the small number

of the effective sequences for conservation calculation at

positions with high gap fraction and, secondly, the fact

that when a gap is present in most of the sequences, the

remaining ungapped sequences tend to form subfamilies

with distinct conservation features at that position. Since

these subfamilies are not representative for the whole

set of sequences, it seems reasonable to consider such

positions as less conserved even if the apparent conserva-

tion indices calculated by ignoring gaps are high. Based

on this analysis, we recommend to treat positions with

gaps in the following way: (1) calculate conservation

indices for all positions with gap percentage less than a

given threshold (e.g. 50%) and estimate the mean (µ) and

standard error (σ ); (2) set the conservation indices for all

positions with gap percentage higher than the threshold to

µ − 1.0σ .

The effect of the number of sequences

All 284 SMART alignments used in this study contain at

least 20 sequences to ensure appropriate sampling from

sequence space. Here we address the effect of the number

of sequences on the estimation of conservation properties.

Of the 284 SMART alignments, those containing from

60 to 300 sequences were selected for this study. For

each of these 107 alignments, sets of sub-alignments

with various numbers of sequences (2, 4, 6, etc.) were

generated by random sampling of sequences from the

original complete alignment. Conservation indices were

calculated for each sub-alignment and compared to those

calculated for the complete alignment by calculating

correlation coefficient between the two vectors of indices.

The correlation coefficient increased rapidly with the

increase of the number of sequences in sub-alignments.

For most of alignments, less than 30 randomly selected

sequences were enough to bring the correlation coefficient

Gap percentage

0 20 40 60 80 100

C
o
n
s
e
rv

a
ti
o
n
( σ

)

-1.0

0.0

Fig. 4. Distribution of conservation indices at positions with

gaps. The conservation indices generated by the method 1 2 were

normalized using the mean and the variance of the conservation

indices at positions without gaps. The conservation indices at

positions with no less than 20 ungapped sequences and with at least

one gap were binned into ten sets with equal number of data points

in each set. The average conservation indices in each set are plotted

against the average gap percentage in that set.

above 0.85. The number of sequences required to reach

the correlation coefficient of 0.85 has a mean of 13.7

and a standard deviation of 5.6 for the 107 selected

alignments. Based on this observation, we conclude that

about 20 representative sequences are usually enough for

estimating the conservation patterns in a protein family.

Conservation as a measure of alignment quality

Comparison between SMART and ClustalW alignments.

To probe if conservation indices can aid in evaluation

of alignment quality, we generated alignments from

the sequences for each of the 284 SMART domains by

ClustalW program (version 1.7) with default parameters

(BLOSUM series matrices, gap open penalty 10, gap

extension penalties for pairwise/multiple alignments

0.1/0.05) (Thompson et al., 1994a; Jeanmougin et al.,

1998). Curated and manually adjusted SMART align-

ments are expected to be of higher quality than the

raw ClustalW alignments. We compared the average

values of conservation indices (without normalization)

for positions with gap percentage less than 50% for

SMART alignments and ClustalW alignments of SMART

domains. In all 12 methods, the average conservation

of SMART alignments is significantly higher than that

of ClustalW alignments (P-value<0.05, Table 3). The

difference is small, suggesting that ClustalW performs

fairly well for sequences from SMART database. Higher

conservation in SMART alignments versus ClustalW

alignments illustrates well that it is possible to improve a

multiple alignment algorithm, and a conservation index is
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Table 3. Differences between SMART alignments and ClustalW alignments1

Method

1 1 1 2 1 3 2 1 2 2 2 3 3 1 3 2 3 3 4 1 4 2 4 3

SMART average −1.73 −1.79 −1.97 0.433 0.412 0.344 0.297 0.275 0.214 1.18 1.02 0.609

conservation

ClustalW average −1.75 −1.80 −1.99 0.429 0.407 0.339 0.293 0.272 0.211 1.14 0.978 0.571

conservation

P-value of the 0.005 0.001 0.001 0.012 0.002 0.001 0.046 0.022 0.021 0.008 0.004 0.002

difference

SMART correlation 0.423 0.422 0.425 0.402 0.402 0.415 0.366 0.364 0.361 0.355 0.356 0.359

for j = 3 and w = 3

ClustalW correlation 0.440 0.439 0.444 0.415 0.416 0.432 0.380 0.378 0.375 0.370 0.371 0.378

for j = 3 and w = 3

P-value of the 0.005 0.05 0.002 0.037 0.025 0.006 0.030 0.030 0.030 0.021 0.021 0.003

difference

1Correlation coefficients are calculated between the sites i and i + j for the window size w.

Table 4. Differences between FSSP structural alignments and ClustalW alignments1

Method

1 2 2 2 3 2 4 2(B62) BLOSUM30 BLOSUM45 BLOSUM80 PAM250 GONNET SDM HSDM

FSSP average −2.13 0.287 0.158 −0.040 0.436 0.213 −0.548 0.134 0.260 0.413 0.420

conservation

ClustalW average −2.18 0.269 0.146 −0.218 0.318 0.026 −0.843 −0.046 0.070 0.149 0.076

conservation

P-value of the 4e−4 5e−5 0.001 2e−8 0.001 2e−7 2e−8 2e−7 1e−8 2e−9 3e−9

difference

FSSP correlation 0.337 0.382 0.362 0.331 0.280 0.329 0.338 0.300 0.322 0.336 0.331

for j = 3 and w = 3

ClustalW correlation 0.253 0.259 0.245 0.215 0.191 0.212 0.225 0.129 0.184 0.209 0.214

for j = 3 and w = 3

P-value of the 0.020 5e−4 0.001 0.002 0.017 0.001 0.002 6e−6 2e−4 5e−4 0.001

difference

1Correlation coefficients are calculated between the sites i and i + j for the window size w.

a reasonable indicator of the alignment quality. It is also

apparent that given an index calculation method, using

unweighted frequencies gives less significant differences

between SMART and ClustalW alignments than weighted

frequencies. The entropy-based scheme produces the

lowest P-value of the difference between SMART and

ClustalW alignments (Table 3).

Further, we compared the correlation between positions

for normalized conservation indices in SMART and

ClustalW alignments. The largest unbiased correlation

coefficients (window size w = 3, positional difference

j = 3) are shown in Table 3. For all 12 methods, The

SMART correlation is slightly but significantly smaller

than the ClustalW correlation. The lowest P-value results

from the comparison of the entropy-based estimates.

Additionally, the weighting scheme based on independent

counts (Methods x 3) shows the smallest P-values for all

strategies.

The results of comparisons between SMART and

ClustalW alignments show that conservation index should

be a valuable tool for alignment quality assessment. It

appears that a weighting scheme is necessary and inde-

pendent counts might be better than the Henikoff weights.

Additionally, the usage of the simple entropy-based

conservation measure does not seem to be inferior to that

of the BLOSUM62-based measure.

Comparison between FSSP and ClustalW alignments.

The protein families from the SMART database usually

consist of close homologues characterized by relatively

high sequence similarity. To compare the performance of

conservation indices in highly divergent but structurally

similar proteins, where sequence-based alignment strate-

gies are likely to fail (Vogt et al., 1995; Jaroszewski et al.,

2000), we compared the structural-based alignments taken

from the FSSP database (Holm and Sander, 1996, 1998)
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Fig. 5. Conservation mapping onto 3D-structures. The figures were drawn by BOBSCRIPT (Esnouf, 1997). Red and blue correspond to the

highest and the lowest conservation respectively. Two examples are shown. (a) The YBAK family protein of unkown function. The alignment

for conservation calculation and the structure (PDB entry 1DBU) are according to Zhang et al. (2000). (b) The Rab family of small G

proteins. Conservation indices are calculated using the alignment from the SMART database and the structure template (PDB entry 3RAB)

is according to Dumas et al. (1999). GppNHp is displayed in red lines; the Mg2+ is shown as an orange ball.

and the corresponding ClustalW alignments. Despite the

rapidly increasing number of determined structures, 3D-

structure database is still small compared to the protein

sequence database. Conservation index calculation usually

requires no less than 15 aligned sequences. Due to these

restrictions, we selected the eight largest representative

FSSP structural alignments, in which most of pairwise

identities are in the ‘twilight zone’ (less than 25%) and

the number of sequences is no less than 18 (the list is

available at ftp://iole.swmed.edu/pub/al2co/FSSP list/).

Five of these alignments cover the proteins with the

most widely spread folds, such as immunoglobin, OB,

Rossmann, ferrodoxin-like, and TIM barrel, and have

been studied previously by Mirny and Shakhnovich

(1999). Three additional alignments were of globin-like

superfamily, trypsin-like serine proteases, and P-loop

nucleotide triphosphate hydolases (Murzin et al., 1995).

Structurally non-equivalent extensions at N-(C-) terminus

were removed from the original FSSP alignments.

The procedures described above for comparing SMART

and ClustalW alignments were carried out to compare the

FSSP structural alignments and the ClustalW alignments

(Table 4). Since the structure-based alignments were

selected to contain very divergent sequences, results

obtained with different weighting schemes do not differ

significantly and are not shown. Implementation of the

Henikoff weights is illustrated in Table 4. Both the aver-

age conservation values and the correlation coefficients

are lower in Table 4 compared to Table 3 (methods 1 2,

2 2, 3 2, and 4 2), due to the lower sequence conser-

vation in FSSP alignments than in SMART alignment.

However, despite a much smaller dataset (about 1000

positions) from FSSP than that from SMART (about

35 000 positions), the P-values of the differences are

more significant in FSSP-ClustalW comparison than

those in SMART-ClustalW comparison. This observation

suggests that conservation properties are still strong in

structure-based alignments of divergent sequences, and

ClustalW performs poorly when the sequences display

low similarity with each other (Thompson et al., 1999).

It is clear that for divergent sequences from FSSP, BLO-

SUM62 matrix sum-of-pairs measure (Table 4, method

4 2) shows the most significant differences between

FSSP and ClustalW alignments (among methods 1 2,

2 2, 3 2, and 4 2), and sum-of-pairs measure based on

identity matrix (Table 4, methods 3 2) offers the poorest

discrimination. This is consistent with the notion that

identity between divergent sequences is very low, but
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similarity still exists. Thus we also compared the conser-

vation indices calculated with eight different amino acid

scoring matrices: 30, 45, 62, and 80 from the BLOSUM

series (Henikoff and Henikoff, 1992), PAM250 (Dayhoff

et al., 1978), GONNET (Gonnet et al., 1992), and two

structure-derived matrices, namely Structure-Derived

Matrix (SDM) and Homologous Structure-Derived Ma-

trix (HSDM) (Prlic et al., 2000) (Table 4). Among these

matrices, SDM and HSDM show the most significant

differences in average conservation indices. This can be

explained by the facts that SDM and HSDM are derived

from 3D-structure comparisons similarly to the align-

ments in FSSP database, and all the protein pairs used to

obtain these matrices had sequence identity below 30%

(Prlic et al., 2000). On the contrary, the BLOSUM30 ma-

trix, which is derived from the sequence-based alignments

of lower identity between sequences, offers the poorest

discrimination between FSSP and ClustalW alignments.

The differences in positional correlation show different

tendencies in FSSP–ClustalW and SMART–ClustalW

comparisons (Tables 3 and 4). The FSSP correlation is sig-

nificantly higher than the ClustalW correlation (Table 4),

while the SMART correlation is lower than the ClustalW

correlation (Table 3). This apparent contradiction can be

easily explained. The observed behavior of correlation

coefficients appears to be similar to the first-rise-then-fall

phenomenon for the correlation coefficients depending on

different window sizes (Table 2, bold numbers, discussed

above). For the SMART–ClustalW case, the differences

between SMART alignments and ClustalW alignments are

small. However, ClustalW could misalign a few positions

with relatively small shifts, resulting in a smoothing effect

of the conservation indices. This may account for the

slightly higher correlation between positions in ClustalW

alignments than in SMART alignments. For more di-

vergent sequences, such as the ones taken from FSSP,

ClustalW alignments are significantly inferior, which

results in much lower correlation between positions.

Comparing the curated (SMART) or structural (FSSP)

alignments with those that are automatically generated by

ClustalW (Version 1.7), we conclude that conservation

properties should be a valuable tool for alignment quality

assessment and might be used as an objective function for

alignment refinement. The independent-count weighting

scheme combined with the entropy-based indices seem

to be a more sensitive measure to judge the quality of

the alignments constructed from rather similar sequences

(SMART), while the sum-of-pairs index using structurally

derived amino acid scoring matrices appears to be superior

for very divergent sequences.

Mapping conservation onto protein spatial
structure

Mapping the conservation information onto the 3D-

structure helps visualizing the conservation in three-

dimensional space and facilitates prediction of struc-

turally and/or functionally important sites (Sander and

Schneider, 1991). Such an approach has already been

applied in a number of cases (Lichtarge et al., 1996;

Landgraf et al., 1999; Makarova and Grishin, 1999;

Zhang et al., 2000). The AL2CO program can be used

to assist in mapping conservation indices onto a spatial

structure. If the structure of a protein from a multiple

alignment is available, the user has an option to specify

the coordinate file in PDB format. B-factors in that file

will be substituted by conservation indices. Bobscript or

Molscript (Kraulis, 1991; Esnouf, 1997) can be used to

draw a structure diagram colored by the B-factor (line in

the Molscript/Bobscript input file: colour ss from blue via

green to red by b-factor from X to Y, values X = −1.0

and Y = 2.0 are usually good for normalized indices),

which in our case corresponds to the conservation index.

We illustrate an application of this procedure to a domain

of unknown function (YBAK, Figure 5a) (Zhang et al.,

2000). The conservation is maximal around a cavity on

this structure showing the potential location of the ligand

or substrate binding or catalytic site. Another example

(Figure 5b) is for the alignment of the Rab family of small

G proteins (Figure 3) (Dumas et al., 1999). The mapping

clearly shows that the regions of high conservation are

clustered around the catalytic site and hydrophobic core

of the molecule.

APPENDIX

The average number of different amino acids per
position

For N random sequences of equifrequent amino acids

(20 amino acids with frequency 1/20 each), average

number of different amino acids in a position is given

by the formula F = 20(1 − 0.95N ). The formula can

be proven by induction. If N = 1, then F = 1 and the

formula is true. Assume that the formula is true for N = n.

Let f (n, i) be the probability of i different amino acids to

occur at the position: F =
20
∑

i=1

f (n, i)i = 20(1 − 0.95n).

When the number of sequences increases by 1 (N =
n + 1), the number of different amino acids at the position

either remains to be i with probability i/20 (by adding an

amino acid of the same type to one of the existing i amino

acids), or becomes i + 1 with probability (20 − i)/20 (by

adding an amino acid different from any of the i amino

acids). Thus the average number of different amino acids
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in the position for n + 1 random sequences is:

F =
20
∑

i=1

[i(i/20) + (i + 1)(20 − i)/20] f (n, i)

=
20
∑

i=1

(1 + 0.95i) f (n, i)

= 1 + 0.95 ∗ 20(1 − 0.95n) = 20(1 − 0.95n+1)

which shows that the formula holds for n + 1.
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