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Abstract

Background

Worldwide, dengue is an unrelenting economic and health burden. Dengue outbreaks have

become increasingly common, which place great strain on health infrastructure and ser-

vices. Early warning models could allow health systems and vector control programmes to

respond more cost-effectively and efficiently.

Methodology/Principal Findings

The Shewhart method and Endemic Channel were used to identify alarm variables that may

predict dengue outbreaks. Five country datasets were compiled by epidemiological week over

the years 2007–2013. These data were split between the years 2007–2011 (historic period)

and 2012–2013 (evaluation period). Associations between alarm/ outbreak variables were

analysed using logistic regression during the historic period while alarm and outbreak signals

were captured during the evaluation period. These signals were combined to form alarm/ out-

break periods, where 2 signals were equal to 1 period. Alarm periods were quantified and used

to predict subsequent outbreak periods. Across Mexico and Dominican Republic, an increase

in probable cases predicted outbreaks of hospitalised cases with sensitivities and positive pre-

dictive values (PPV) of 93%/ 83% and 97%/ 86% respectively, at a lag of 1–12 weeks. An

increase in mean temperature ably predicted outbreaks of hospitalised cases in Mexico and

Brazil, with sensitivities and PPVs of 79%/ 73% and 81%/ 46% respectively, also at a lag of

1–12 weeks. Mean age was predictive of hospitalised cases at sensitivities and PPVs of

72%/ 74% and 96%/ 45% in Mexico andMalaysia respectively, at a lag of 4–16 weeks.

Conclusions/Significance

An increase in probable cases was predictive of outbreaks, while meteorological variables,

particularly mean temperature, demonstrated predictive potential in some countries, but not

all. While it is difficult to define uniform variables applicable in every country context, the use
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of probable cases and meteorological variables in tailored early warning systems could be

used to highlight the occurrence of dengue outbreaks or indicate increased risk of dengue

transmission.

Introduction

Dengue epidemics have increased in frequency and magnitude globally since the 1970s [1], and

today represent a major, and still increasing, public health burden worldwide [2]. The primary

vector, Aedes aegypti, is highly anthropophilic [3] and breeds exclusively in small, freshwater

bodies. It thrives in dense, urban areas where it has evolved to complete its entire life cycle [3].

A secondary vector, Aedes albopictus has expanded its range dramatically in recent decades,

and is a serious threat for dengue transmission among populations where herd immunity is

low or absent [4]. With all four dengue serotypes now found worldwide [5], outbreaks caused

by a change in the predominant serotype form a major, global public health challenge [4].

Outbreaks can exert large pressures on public health systems, as hospitals and outpatient

clinics become overwhelmed by the surge in true dengue positive cases, as well as other febrile

illnesses [6,7]. These pressures are compounded by resource-limited or weak surveillance sys-

tems that might have given prior warning if sufficient funding, expertise and methodologies

were in place [8–11]. Arguably, the ability to predict outbreaks with a generous lag time should

enable public health systems to respond more efficiently through the timely allocation of

resources [6,12,13]. It is in this capacity that infectious disease modelling has become increas-

ingly relevant [12,14–16].

To date, epidemiological variables, such as the historic incident mean plus 2 standard devia-

tions (SD), have been used to forecast dengue outbreaks with some success [17–20]. Regression

functions are also a common feature of dengue modelling, and are used to calculate the proba-

bility of an outbreak, as reported recently in Vietnam [17] and Singapore [21]. These analyses

identified clear trends between abnormal changes in meteorological and/ or epidemiological

variables and subsequent dengue outbreaks.

Yet, due to the complex interactions between vector, pathogen and human [22], models

struggle to accurately capture spatial and temporal data required to project the intricate trans-

mission dynamics of dengue [23]. And while predictive models exist, these tend to focus on

smaller spatial units, which are often inadequate for the district- or country-level responses

required for public health control interventions [18–20,24]. Programme managers and regional

epidemiologists alike need user-friendly, early warning systems (EWS) that can adequately

explain inter-district dengue variation [13,25]. Novel approaches are required to develop pre-

dictive, accessible methodologies that utilise alarm variables on broad spatial scales [13]. To

this end, we considered the Shewhart method and Endemic Channel to build a simple model

based on logistic regression that can predict forthcoming outbreaks, with high sensitivity

(number of true positive outbreak detections) and a low number of false alarms (PPV).

The Shewhart method is typically used to monitor the quality control of goods within the

manufacturing process [26]. This method involves the use of control charts to define ‘in-con-

trol’ and ‘out-of-control’manufacturing states, using the historic mean and standard deviation

of the outcome variable [26,27]. Within a dataset, this method can identify variation that is

beyond the influence of natural, random fluctuation, i.e. the consequence of an identifiable or

‘attributable’ cause or change in the process [14,27,28]. Since regional epidemiologists often

collect historical data to calculate the moving incident mean (or median), applying this

approach to infectious diseases modelling becomes possible.
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These data can be used to forecast changes in the variable of interest, which is the primary

basis of the Endemic Channel calculation [29]. In this sense, the Endemic Channel represents

the number of cases within the expected normal range, or the ‘in control’ state, while anything

above this moving threshold would be considered representative of an unprecedented number

of cases and an ‘out of control’ state i.e. an outbreak. This approach is favoured in many coun-

tries, as it allows programme managers to easily define the presence/ absence of an outbreak

[6,10,30], despite the limitations associated with abnormally high historic means and the varia-

tion in the seasonal timing of dengue cases [6]. Such predictive methodologies have demon-

strated success in both Puerto Rico and Thailand [14,15,24], where measuring a prior increase

in the outcome variable enabled models to retrospectively predict subsequent outbreak periods,

thus indicating potential in prospective operational capacities. Extending this rationale further,

it should be possible to investigate a preceding rise in meteorological, entomological and epide-

miological independent variables, or alarm variables, to predict dengue outbreaks.

In spite of the progress made in modelling high risk areas and population dynamics [13,31–

33], reliable, affordable and practical dengue early warning systems are still needed to mitigate

the growing economic and human costs of dengue [25]. Accordingly, as part of IDAMS (Inter-

national Research Consortium on Dengue Risk Assessment, Management and Surveillance)

and the WHO-based Special Programme for Research and Training in Tropical Diseases

(TDR), this paper describes the development and evaluation of an early warning system using

the Shewhart method and Endemic Channel to predict dengue outbreaks at the district and

country level in five countries in Asia and Latin America.

Materials and Methods

Objectives
Using retrospective country datasets, the aim was to define and detect dengue outbreaks using

probable/ hospitalised cases as the outbreak variable [3], and successfully predict these out-

breaks using earlier changes in various entomological, meteorological and epidemiological

alarm variables.

Data Collection
The five participating countries (Brazil, Dominican Republic, Mexico, Malaysia and Vietnam)

were selected from a larger group whose dengue surveillance systems had been analysed previ-

ously [6,34]. A protocol for the data capture of a number of evidence-based alarm variables

was agreed [6,10] and a data capture spreadsheet using Microsoft Excel was created. Participat-

ing countries conducted active data collection from October 2013 to April 2014. Data from 7

years (2007–2013) were collected and split into two periods: a 5-year historic period (2007–

2011), used to calibrate and parameterise the model, and a 2-year evaluation period (2012–

2013), used to test the model. WHO-TDR support staff periodically visited each country to

ensure that data capture was completed accurately and to verify data sources to reduce the risk

of misreporting. Each visit was documented and known problems were communicated.

All data were collected in-country with the cooperation of the Ministries of Health. The tem-

poral unit was the epidemiological week (Sunday to Saturday) and the spatial unit was based on

pre-existing political boundaries, most commonly the district (the municipality in Brazil; the

locality in Mexico). The following variables were captured using the Excel spreadsheet:

• Meteorological (outdoor mean air temperature, rainfall, outdoor relative humidity);

• Epidemiological (mean age, circulating serotype, probable dengue cases [3], hospitalised den-

gue cases [3]);
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• Entomological (Breteau Index, House Index, Ovitrap Index (Mexico only)).

Datasets were hugely variable but in general described an increase in temperatures and out-

break intensity, depending on the country context.

All meteorological data were matched to the district of interest to minimise spatial bias,

although this was not possible in Malaysia. Paucity among meteorological datasets was some-

times high; consequently, external websites Wunderground [35] and Tutiempo [36] were used

to augment the data collection. Where this was not possible, no meteorological variables were

captured (Vietnam only). No remote sensing data were collected or used.

Weeks 1 and 53 for all variables were excluded due to inconsistent data quality. All patient

medical data were anonymised. Microsoft Excel was used to transform daily data to weekly

units and build epidemiological, entomological and meteorological datasets.

Due to paucity among datasets, logistic models for each district were not possible. There-

fore, while meteorological data were not aggregated at the country level, one logistic model was

based on data from all districts i.e. the same relationship observed at the national level between

alarm variables and outbreaks was assumed to exist to the same degree within each district.

The Endemic Channel
Two Endemic Channels were created using the outbreak variables probable cases and hospital-

ised cases. Each Endemic Channel was used in two prediction models to quantify outbreaks.

Each Endemic Channel was defined and calculated as follows:

No: of weekly hospitalised cases

District population

No: of weekly probable cases

District population

The Endemic Channel was calculated for each district using a smoothed 13-week (6+1+6

week) moving mean and standard deviation, based on data in the historic period [14,28,37].

Using a multiplier of the standard deviation known as ‘z’, it was possible to vary the Endemic

Channel within the evaluation period.

Incident cases with a value above the Endemic Channel triggered outbreak signals. Out-

break signals were combined into outbreak periods. An outbreak period was begun when 2

consecutive outbreak signals were detected; the same outbreak period ended when the outbreak

signal had been absent for 2 consecutive weeks (Fig 1). Epidemic years were not excluded.

The Shewhart Method
Alarm variables were used to detect outbreaks. Each variable is described below, including any

formulae used.

1) Relative change in mean age of dengue incident cases was calculated using a smoothed

average due to noisy, low frequency data. The formula used is as follows:

Smoothed average at week X � ðsmoothed value at week X � 1Þ

Smoothed value at week X � 1

2) Number of probable cases divided by the population (per 1,000 population)

3) Mean weekly outdoor temperature (weekly mean of daily means)

Alarm Variables for Dengue Outbreaks
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4) Total weekly rainfall

5) Mean weekly outdoor relative humidity (weekly mean of daily means)

Model Calibration
Using data within the historic period, logistic regression was performed on the alarm variable

(continuous) and outbreak signal (binary), which provided coefficients for use during the eval-

uation period. The statistical fit of the logistic regression model was not evaluated alone but

considered as a part of the full outbreak detection model in terms of sensitivity and PPV. For

each calendar week, data from all years were combined and separate models (in total 51 models

from week 2 to 52) were estimated to accommodate for seasonal differences in the relation

between the alarm variable levels and the risk of an outbreak. Accommodating these temporal

patterns by simply estimating one model per calendar week implies that data from all districts

need to be used and limits the possibilities for a spatial breakdown of the analysis. Hence, each

observed relationship between alarm variable and outbreak signal was assumed to exist on a

countrywide-basis, even though there were likely differences at smaller spatial scales.

Fig 1. Modelling with a test dataset (3 years only) using the z value (z = 1.25) to form the Endemic Channel.Outbreak signals were
detected (black dots) where incidence crossed the Endemic Channel. Outbreak periods (red dots) were formed when 2 consecutive
outbreak signals were present; outbreak periods ended when 2 absent consecutive outbreak signals were registered (incidence did not
cross the Endemic Channel for 2 consecutive weeks).

doi:10.1371/journal.pone.0157971.g001
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Subsequently, each coefficient, together with the absolute value for the alarm variable in the

current week, was used to calculate the outbreak probability during the evaluation period. This

outbreak probability was plotted on a weekly basis against an artificial threshold, known as the

alarm threshold. An alarm signal was triggered when the outbreak probability crossed the

alarm threshold.

To reduce spurious associations with outbreak periods, weekly alarm signals were combined

to form alarm periods, which were equal to 2 alarm signals within the lag period (see definition

below). Thereafter the alarm threshold was systematically altered between values of 0.08–0.2 to

find a balanced environment within which alarms periods were formed. These alarm periods

were used to predict outbreak periods, and as the basis for model performance outputs.

Model Validation
The parameter settings, such as the threshold levels for outbreak and alarm and the definition

of an outbreak period (2 outbreak signals vs. 3 outbreaks signals), were changed for each run.

Sensitivity. The successful detection of outbreaks was reported using sensitivity. The num-

ber of positive events e.g. alarms periods and outbreak periods, were used to calculate sensitiv-

ity by the following formula:

Outbreak periods detected by alarm periods

Total no: outbreak periods

Specificity. The number of negative events was not recorded due to the difficulty of defin-

ing absent alarm and outbreak periods.

Positive Predictive Value. The proportion of false positive alarms was calculated using

the positive predictive value (PPV). The formula can be seen below. NB: Multiple positive

events (alarm periods) were defined as correct, even if they were positive for the same out-

break.

No: of correct alarm periods

Total no: of defined alarm periods

Negative Predictive Value. The number of negative events was not recorded due to the

difficulty of defining absent alarm and outbreak periods.

Lag Period
Research has shown diverse effects of a range of lag times between independent variables and

epidemic dengue transmission [38–41], however as yet no systematic review exists that can

provide a definitive range of an appropriate lag time for each covariate. There is evidence that

early monitoring and targeting of both the ‘quiet phase’, when cases are few in the inter-epi-

demic period, and the ‘development phase’, characterised by increasing number of cases, can

provide the most effective and timely period in which to intervene [22]. Accordingly, evidence

from these sources was discussed in detail in consultation with expert opinion [42] before

defining each lag period, detailed below:

• Temperature: 1–12 weeks before the outbreak

• Rainfall: 3–12 weeks before the outbreak

• Humidity: 2–12 weeks before the outbreak

Alarm Variables for Dengue Outbreaks
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• Mean Age: 4–16 weeks before the outbreak

• Breteau Index: 1–8 weeks before the outbreak

• House Index: 1–8 weeks before the outbreak

• Ovitrap Index: 2–8 weeks before the outbreak

• Probable Cases: 1–4 weeks before the outbreak (altered to 1–12 weeks due to too few alarm

periods)

Data Analysis
Analyses were run in duplicate, independently by two of the authors (LRB and MP) to limit

systematic error. The Endemic Channel and Shewhart method were programmed in Stata 13.1

[43].

Proof of Concept
As a starting point, multiple runs with a test dataset were conducted to analyse the reliability of

the model and consistency of the approach. A test dataset is defined as a dataset that is 100%

complete and reliable that was taken from multiple sources to act as a ‘control’ for the model. It

was necessary to evaluate the model in this capacity to generate results and demonstrate proof

of concept i.e. when datasets are complete, accurate and reliable, this is the way in which the

early warning system uses and interprets the data.

Alarm and Outbreak Thresholds
Altering the z-value was the only method used to change the Endemic Channel and generate

outbreak periods. As z was increased, fewer outbreak periods were generated (Fig 2). At a low

z-value, outbreak periods were generated by relatively low magnitude incidence, and were con-

tinually recorded for long durations (Fig 2). Thereafter, as the z-value increased, lower magni-

tude incidence did not cross the Endemic Channel, and the number of outbreak periods

became less frequent.

In a similarly systematic approach, the outbreak probability was tested against the alarm

threshold to generate alarm signals/ periods prior to outbreak periods (Fig 3). As with the

Endemic Channel and outbreak periods, alarm period frequency also decreased as the alarm

threshold was increased (Figs 3 and 4).

Alarm and Outbreak Definitions
To ensure that detection times were reasonably short, 2, 3 and 4 weekly alarm/ outbreak signals

were used to define alarm/ outbreak periods. Altering the number of signals required to form

an alarm/ outbreak period increased or decreased the frequency of alarm/ outbreak periods

(Fig 5). It also affected the temporal relationship between alarm and outbreak periods by alter-

ing the week at which alarm/ outbreak periods were observed (Fig 5). In prospective terms,

increasing the number of alarm signals required to form outbreak periods delayed detection

times. In addition, the analyses showed that using 2 or 3 alarm/ outbreak signals to form

alarm/ outbreak periods generated highest model performance metrics. Considering these

results, the model was parameterised using 2 signals as this reduced detection delay and

resulted in higher model performance.

Alarm Variables for Dengue Outbreaks
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Ethical Permission
Ethical approval for the study protocol was sought from and granted byWHO Regional Ethical

Committees, specifically the Pan American Health Organization Ethics Review Committee

(PAHO-ERC; Ref No. 2011-12-0021) and the Western Pacific Regional Office Ethics Review

Committee (WPRO-ERC; Ref. 2013.25.ICP.2.ESR). All patient medical data were anonymised.

Results

Model Performance Evaluation
After demonstrating the functionality of the model using a test dataset (Figs 1–5), country

datasets (evaluation period) were subsequently used.

Firstly, z-values and outbreak probabilities that provided sufficient alarms and outbreaks

were determined. A systematic approach ensured that all z and alarm threshold values were

tested incrementally, using three of the five country datasets (Brazil, Mexico, Malaysia), as

these were most complete at this stage. Results indicated that, despite altering the alarm and

outcome variables, a z-value of between 1.0–1.3, and an alarm threshold of between 0.08 and

0.12, yielded the best model performance (Figs 6–9). Higher coefficients of either outbreak

probabilities or z-values resulted in marked decreases in sensitivity, and to some extent, PPV

Fig 2. Modelling with a test dataset (3 years only) using two z values (Top: z = 1.25; Bottom: z = 2.0) to form the Endemic Channel. Outbreak
periods (red dots) were equal to two consecutive outbreak signals (black dots) and ended in the absence of 2 consecutive outbreak signals.

doi:10.1371/journal.pone.0157971.g002
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(Figs 6–9). Hence, z = 1.25 and an alarm threshold = 0.12 as parameters for all subsequent eval-

uations of country datasets. These country results can be seen in Table 1.

Discussion

Early warning systems are becoming more important as a tool to mitigate the impact of disease

outbreaks [44]. Clearly, alarm variables that provide advance warning of outbreaks are the

most valuable, in order to enact timely clinical preparations and vector control responses. It is

crucial that these same alarm variables should not trigger too many false positive alarms, as

this would result in reduced confidence in the EWS, primarily due to wasted resources. In this

study, the Shewhart method and Endemic Channel were used to evaluate alarm variables with

the potential to predict subsequent outbreak periods. A number of epidemiological and meteo-

rological variables were tested, primarily to evaluate their predictive potential, and secondarily

to establish the most appropriate case definition to define outbreaks.

Surprisingly, despite inherent variability throughout the datasets, certain meteorological

and epidemiological alarm variables were predictive across all countries. These findings are

consistent with trends and evidence reported elsewhere at smaller spatial levels [17–21,45].

Fig 3. Test dataset: Alarm threshold of 0.12 was used against the outbreak probability. Alarm periods (defined by 2 alarm signals (black
dots) within the lag period) successfully detected outbreak periods (red dots) (defined by 2 outbreak signals). Correct and false alarms are
highlighted. z = 1.25.

doi:10.1371/journal.pone.0157971.g003
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Epidemiological Variables
Alarm variable: probable cases. Epidemiological variables have already been used to pre-

dict outbreaks retrospectively with some success [45]. Of the epidemiological alarm variables

studied here, probable dengue cases demonstrated the greatest predictive capacity. In Mexico

and the Dominican Republic, sensitivity and PPV were high, at 93%/ 83% and 97%/ 86%

respectively, while in Brazil and Vietnam, model performance was 97%/ 43% and 93%/ 43%

respectively (Table 1) (No data were available fromMalaysia). From these data it is clear that

the use of probable cases as an alarm variable was highly sensitive across all countries, and

while the same broad success cannot be said for PPV, still in Mexico and Dominican Republic,

this output was relatively high–high enough to ensure few false alarms in practice. The metrics

demonstrate that models that work well in one country context can also be beneficial in others.

In both Dominican Republic and Mexico, it could be argued that the success achieved was

because incidence during the period of evaluation better reflected the patterns observed during

the historic period, i.e. that outbreaks were aligned in time and space throughout the historic

and evaluation periods, thereby resulting in fewer false alarms. While on the contrary, in Brazil

and Vietnam, the lower PPV values could be attributed to noisier datasets that were

Fig 4. Test dataset: Alarm threshold of 0.13 was used against the outbreak probability. Alarm periods (defined by 2 alarm signals (black
dots) within the lag period) successfully detected outbreak periods (red dots) (defined by 2 outbreak signals). Correct and false alarms are
highlighted. z = 1.25.

doi:10.1371/journal.pone.0157971.g004
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inconsistent across the years. This would not be surprising given that the length of historic

periods was relatively low when compared to similar forecasting models [15,19,46].

There are almost certainly other factors at play here. The observed differences between PPV

values could reflect the context-dependent nature of dengue transmission, which has long been

argued as a feature of dengue [47–49]. Equally, country surveillance systems are often unique,

resulting in heterogeneous case registration and reporting systems [10,30]. Indeed these differ-

ences could also be due to the presence of co-circulating infections with similar clinical presen-

tations, such as Chikungunya or Zika viruses [50,51], which may be confounding probable

dengue case diagnoses, or because case definitions are less specific (or likely a combination of

both) [4,52].

Nonetheless, while suspected or probable cases are notifiable within many existing disease

surveillance systems [10,30], these data suggest that probable case data can, in some cases, be

predictive of dengue outbreaks and should be considered for use in early warning systems.

Alarm variable: mean age. Theoretically, since population-level serotype shifts are known

to fluctuate inter-annually [53–56] thereby influencing the herd immunity of a population

[55], it should be possible to detect such changes through a proxy increase or decrease in the

mean age of infection [57]. Throughout these analyses the model performance metrics for

Fig 5. Test dataset: Alarm threshold = 0.12, z-value = 1.25. Top: alarm periods defined by 2 alarms signals (black dots). Bottom: alarm
periods defined by 4 alarm signals.

doi:10.1371/journal.pone.0157971.g005
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mean age were extremely varied–the range of sensitivity was 57%–96% while PPV range was

41%-74%. Indeed, in the context of this specific model, these results indicate that the use of a

change in mean age may warrant further investigation, but due to inconsistency, mean age can

not currently be recommended for use in early warning systems.

The limited success of this model in using mean age as a predictor for dengue outbreaks

may in part be due to the following limitations. Firstly, it was not possible to correlate the inci-

dent age distribution of dengue with serotype shifts to stratify the risk of infection among age

groups, primarily due to inconsistent data entry. Secondly, mean age was calculated as either a

function of probable or hospitalised cases, perhaps masking true associations that may have

been more pronounced if the calculation had been standardised across countries. Finally,

where the calculation of mean age was based on probable cases, the effect of poorer specificity

within this case definition likely diluted any associations with the outbreak variable probable

cases, which may explain why all countries, excepting Vietnam, generated lower PPV values

when compared with the outbreak variable hospitalised cases.

Meteorological variables. Countries that had access to better meteorological datasets

(Mexico and Brazil) produced higher performance metrics when compared to those countries

that captured fewer data points (Table 1). These were often spread disparately over wide geo-

graphic areas (Dominican Republic and Malaysia). It is likely that meteorological data captured

over broader spatial scales poorly reflected the weather variation present over finer scales.

Fig 6. Performance testing of the outbreak probability using 3 country datasets (evaluation period). Sensitivity. z-value = 1.25,
alternative alarm thresholds. Brazil: Alarm variable = Probable Cases; Outbreak variable = Hospitalised Cases; Mexico: Alarm
variable = mean temperature; Outbreak variable = Hospitalised Cases; Malaysia: Alarm variable = Mean age; Outbreak
variable = Hospitalised Cases.

doi:10.1371/journal.pone.0157971.g006
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Consequently, any outbreak probability calculated using these data may not have been repre-

sentative of the interactions between meteorological and outbreak variables in the district.

Additionally, inconsistencies between the location of data captured for meteorological and out-

break variables within districts may have increased variability.

However, mean temperature was a reliable variable in Mexico, and to some extent in Brazil,

where sensitivity and PPV were 79%/ 73% and 81%/ 46% respectively. Rainfall and humidity

were more variable and generally less reliable early warning variables for dengue outbreaks.

This was the case across all countries, but that is not to say that these variables should be ruled

out of early warning systems altogether. It is certainly conceivable that each meteorological var-

iable could indicate increased risk of transmission, rather than forecast an outbreak. Indeed,

given their direct influence on vector population dynamics and on the extrinsic incubation

period of the dengue virus, it is perhaps not surprising that meteorological variables have dem-

onstrated potential, both in this study and in various mathematical models also using field data

[17,18,25].

That mean temperature generally outperformed both rainfall and humidity is unsurprising.

Associations between temperature and dengue have been observed before, as with other vector

borne diseases, often as a consequence of the effect on the development rate of the vector and

the extrinsic incubation period of the pathogen [58–61]. In particular, temperature variations

are known to influence DENV replication, vector survival and larval development [13,62–64],

Fig 7. Performance testing of the outbreak probability using 3 country datasets (evaluation period). Positive Predictive Value.
z-value = 1.25, alternative alarm thresholds. Brazil: Alarm variable = Probable Cases; Outbreak variable = Hospitalised Cases;
Mexico: Alarm variable = Mean Temperature; Outbreak variable = Hospitalised Cases; Malaysia: Alarm variable = Mean Age; Outbreak
variable = Hospitalised Cases.

doi:10.1371/journal.pone.0157971.g007
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while rainfall, or lack thereof, can affect the quantity and/ or quality of breeding sites

[18,22,24,65,66]. Certainly, some of the variation observed within this study might be attribut-

able to land use, vegetation, altitude and indeed human behaviour [67,68]—data that were not

readily available during the data capture process. At the same time, spatial smoothing effects

might also be a contributory factor, as district sizes were not standardised between countries—

working at coarser resolutions tends to obscure or weaken associations often present at finer

spatial scales. Nevertheless, the differences between countries in this study, particularly with

regard to rainfall and humidity, are similar to other research that has also reported context-

dependent meteorological alarm variables [69]. For example, rainfall has been positively associ-

ated with subsequent dengue outbreaks in a number of studies [70,71]. Indeed in Mexico, sen-

sitivity and PPV was modest at 59%/ 63%, and although it has not been strongly predictive in

all locations, there is the suggestion that all meteorological variables can play a part in the pre-

diction of dengue outbreaks.

Defining Outbreaks
Probable and hospitalised cases. Defining outbreaks using incident hospitalised cases, a

common practice today [6], broadly demonstrated significantly better predictions with alarm

variables when compared with incident probable cases. It is reasonable to presume that lower

sensitivities and PPVs were likely the result of less specific dengue case definitions. If so,

Fig 8. Performance testing of the outbreak probability using 3 country datasets (evaluation period). Sensitivity. Alarm threshold = 0.12,
alternative z-values. Brazil: Alarm variable = Probable Cases; Outbreak variable = Hospitalised Cases; Mexico: Alarm variable = Mean
Temperature; Outbreak variable = Hospitalised Cases; Malaysia: Alarm variable = Mean Age; Outbreak variable = Hospitalised Cases.

doi:10.1371/journal.pone.0157971.g008
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outbreak probabilities calculated during the historic period would have been consistently

weaker, thereby reducing the performance metrics for each dataset accordingly. And yet, the

utility of probable case definitions as outbreak variables should not be diminished. Similar

trends observed between alarm variables and hospitalised cases were also seen between alarm

variables and probable cases. Thus, this variable could be used as a substitute when developing

Endemic Channels and epidemic curves, if timely reporting of hospitalised cases is not avail-

able [4].

The Endemic Channel. Worldwide, the multiplier ‘2’ is used to build the Endemic Chan-

nel using the following formula: mean+2�SD. This multiplier is used as it broadly captures 95%

of the variation in dengue incidence about the mean. However, for the purposes of outbreak

detection, this does not account for any localised variation that may warrant context-specific

multipliers [47,72]. It is also important to identify that dengue incidence fluctuates on an inter-

annual basis, and that the pattern of outbreaks may shift in time, frequency and duration [47].

Indeed, in terms of prediction, it is crucial to capture local covariates in order to anticipate

whether the seasonal pattern of outbreaks is likely to change, perhaps due the presence of a

new serotype early in the season [72,73]. In this model, it was not possible to capture such

Fig 9. Performance testing of the outbreak probability using 3 country datasets (evaluation period). Positive Predictive Value. Alarm
threshold = 0.12, alternative z-values. Brazil: Alarm variable = Probable Cases; Outbreak variable = Hospitalised Cases; Mexico: Alarm
variable = Mean Temperature; Outbreak variable = Hospitalised Cases; Malaysia: Alarm variable = Mean Age; Outbreak variable = Hospitalised
Cases.

doi:10.1371/journal.pone.0157971.g009
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variation due to paucity among the datasets; hence regression coefficients were derived on a

countrywide scale, arguably too coarse to detect such nuances.

So how should dengue outbreaks be defined? In this study, we altered z-values to improve

the success of detection, rather than consider the operational or financial implications of

changing outbreak definitions. These neglected implications had ramifications: low z-values

resulted in outbreaks that were often infrequent, long and protracted in nature, and would

require resource-intensive responses. We observed that as the z-value gradually increased, only

the highest magnitude peaks were captured—it was even possible to create additional outbreaks

as the z increased further (Fig 2). From these analyses it is clear that standardised thresholds

failed to distinguish between certain types or stages of the outbreak.

Dengue transmission is often characterised by a series of peaks in incident cases, which is a

function of variable intrinsic and extrinsic incubation periods [74]. The implication is that as one

increases the z-value, there will come a point at which a greater frequency of distinct outbreaks is

recorded, resulting in shorter duration but greater frequency outbreak responses (Fig 2). Consid-

eration to the type of outbreak detected is rarely given, which would otherwise be beneficial to

those in operational capacities. Indeed if it was possible to predict certain stages of an outbreak,

such dichotomies (outbreak/ no outbreak) that arise from use of the Endemic Channel, would

disappear. With it would go the mistrust that follows perceived unreliable or confusing forecast-

ing [75]. So rather than focus on a simple binary output, perhaps it would be prudent to charac-

terise outbreaks by a relative weekly increase in incidence, or indeed use the slope of the curve to

forecast the top of the epicurve. Such a system would provide programme managers and epide-

miologists with a more detailed insight into the speed and magnitude of future outbreaks, which

would increase the efficiency and cost-effectiveness of dengue outbreak responses.

Table 1. Summary results table stratified by country (data from evaluation period). Most sensitive variables stratified by country where z = 1.25 and
probability = 0.12.

Country Alarm Variable Outbreak variable Lag Period (weeks) Sensitivity (%) Positive Predictive Value (%)

Mexico Mean Temperature Hospitalised Cases 1–12 79 73

Mexico Rainfall Hospitalised Cases 3–12 59 63

Mexico Mean Age Hospitalised Cases 4–16 72 74

Mexico Probable Cases Hospitalised Cases 1–12 93 83

Brazil Mean Temperature Hospitalised Cases 1–12 81 46

Brazil Probable Cases Hospitalised Cases 1–12 97 43

Brazil Rainfall Hospitalised Cases 3–12 70 33

Brazil Mean Humidity Hospitalised Cases 2–12 79 46

Brazil Mean Temperature Probable Cases 1–12 49 50

Brazil Mean Age Hospitalised Cases 4–16 86 41

Malaysia Mean Age Hospitalised Cases 4–16 96 45

Malaysia Mean Temperature Hospitalised Cases 1–12 14 35

Malaysia Mean Humidity Hospitalised Cases 2–12 9 32

Dominican Republic Rainfall Hospitalised Cases 3–12 17 76

Dominican Republic Mean Temperature Hospitalised Cases 1–12 24 82

Dominican Republic Mean Humidity Hospitalised Cases 2–12 6 80

Dominican Republic Probable Cases Hospitalised Cases 1–12 97 86

Dominican Republic Mean Humidity Probable Cases 2–12 5 71

Dominican Republic Mean Temperature Probable Cases 1–12 23 81

Dominican Republic Rainfall Probable Cases 3–12 16 70

Vietnam Mean Age Probable Cases 4–16 57 45

Vietnam Probable Cases Hospitalised Cases 1–12 93 43

doi:10.1371/journal.pone.0157971.t001
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While the above techniques are under consideration, the results from this study suggest that

the Endemic Channel meanwhile remains an operationally useful aid, primarily because of its

ability to clearly demarcate thresholds based on simple summary statistics.

Temporal Associations between Alarm and Outbreak Variables
Timely outbreak detection. Using 2 or 3 alarm/ outbreak signals to define alarm/ out-

break periods produced the highest outcome metrics, while there was little difference between

these two multipliers across all alarm/ outbreak variables. As demonstrated previously, altering

this multiplier can increase or decrease outbreak detection times (Fig 5), which is particularly

important in a prospective context. Similarly, working with a moving average tends to delay

the anticipated outbreak pattern by delaying the increase and postponing the decrease in inci-

dence. In this study, the smoothing took place over 13 weeks (6+1+6), but this could be

reduced to better reflect real-time events. However, this would be at the expense of increasing

the impact of any noise in the dataset, also an important consideration prospectively.

Candidate Alarm Variables
In addition to the alarm variables explored within this study, there is increasing evidence that

novel variables may prove valuable in forecasting dengue outbreaks. Internet-based trending

metrics can warn of forthcoming outbreaks, with evidence suggesting that these data might be

useful for predicting dramatic surges in dengue incidence [8]. Both search query data [76,77]

and social media trends [78] have shown promise for detection of disease outbreaks, although

social media has yet to be evaluated for dengue. Other avenues of exploration could also

include the use of alternative summary statistics for those alarm and outbreak variables already

explored within this study, such as the diurnal temperature range instead of the mean tempera-

ture, or cumulative mean instead of the moving mean [47, 79]. And as the use of GIS-based

and remotely sensed data capture becomes increasingly prevalent, spatial analyses and predic-

tion based on the clustering nature of dengue, as well as geo-referencing of alarm variables,

should enable scientists to better pinpoint potential high risk transmission areas at smaller spa-

tial scales [46, 80–82].

Limitations
Inconsistent data collection and missing data almost certainly affected the quality of datasets,

especially with regard to entomological indices. As observed in another review [82], entomo-

logical indices were generated on varied temporal and/ or spatial scales in different countries,

resulting in a mismatch with the outbreak variables. Accordingly, these alarm variables could

not be fairly evaluated.

The following additional limitations in the routine surveillance data were observed:

• Temporal variation (monthly timescale observed for some entomological variables)

• Spatial variation (data, especially meteorological, were sometimes only available at coarser

resolutions)

• Paucity/ absence of data/ variables

• Varied data sources (independent online systems)

• Multiple non-verifiable data sources

• Random (inconsistent) sampling (particularly entomological indices)
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• Annual data entered only on one date rather than each week of the year

• As indicated above, mean age calculations were inconsistent between countries

The moving average and regression probabilities calculated during the historic period were

reliant upon a relatively low number of years (<5) of historic data, in contrast to others fore-

casting models [15,18,46]. Using a greater number of historic years would have generated a

more stable mean and outbreak probabilities.

Outbreak probabilities for alarm variables were based on countrywide associations, a spatial

scale that smoothens variation found at the district level, potentially underestimating true

probabilities. Also, due to co-linearity between variables, multivariate analyses were not

conducted.

Generally, z-values of 1.25 and alarm thresholds of 0.12 were the most appropriate to gener-

ate high sensitivities and PPVs by country. The reason the z value is lower than the normal ‘2’,

is due to the inclusion of epidemic years among the data, which if excluded would have necessi-

tated larger standard deviations to detect outbreaks [6]. This combination of z value and alarm

threshold would likely benefit from minor alterations to suit individual spatial units in any

future prospective investigations.

Some variables, in particular temperature, have been known to show non-monotonic rela-

tions concerning mosquito and viral replication [69,63,83], however these effects were not cap-

tured in the current model.

Conclusions

The findings reported here suggest that the Shewhart method and Endemic Channel,—relatively

simple approaches—are viable techniques that can be used retrospectively, and potentially pro-

spectively, to detect dengue outbreaks using alarm variables with an attributed lag time. This

approach builds on earlier observations that utilised multiple alarm variables on similar spatial/

temporal scales [13], and combined prior theoretical observations into a practical model [25].

While there is emerging evidence of alternative models that may be used for time series datasets,

in particular, the LASSO (least absolute shrinkage and selection) method [84], evidence suggests

that such alternatives may require particularly complete and detailed datasets. Datasets compiled

by mandatory electronic reporting and standardised surveillance systems will greatly improve

the quality of datasets and lend themselves to such analyses. Until this point, simpler methods

such as the Shewhart method and Endemic Channel may be more appropriate.

Of the epidemiological alarm variables studied, the number of probable cases showed great-

est predictive potential and should be routinely captured during active surveillance systems for

use in early warning systems. Increases in this metric may provide advance warning of increas-

ing dengue outbreaks in subsequent time periods (in this study, 1–12 weeks). By contrast, the

mean age of dengue cases requires further validation as a potential variable.

Meteorological alarm variables were more powerful predictors of outbreak periods in both

Mexico and Brazil than other countries, likely due to more frequent spatial data points and

accurate spatial correlations with outbreak variables. Therefore, where spatial meteorological

data are discordant with the spatial area of analysis, interpolation or remote-sensing techniques

should be used to generate additional climate data. Indeed, given the widespread availability of

temperature and humidity data, dengue surveillance programmes should routinely record

these metrics in order to detect any sustained, abnormal changes that may indicate increased

risk of dengue transmission, as well as outbreaks.

Exploratory analyses of the value of entomological indices as predictors of epidemic dengue

transmission are still required. This can only take place if study designs and data capture
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processes are standardised [85], thereby improving the quality of entomological datasets for

use in predictive models.

In the absence of process-based models, predictive dengue modelling must be based on

available retrospective datasets, validated across multiple contexts and parameterised for

smaller spatial scales to capture local drivers in dengue transmission.

This model could be simply transformed into a real-time, user-friendly early warning sys-

tem to identify at-risk areas in order to allocate resources more efficiently before outbreaks

begin. At the time of writing, the model is deployed in a predictive capacity across 3 dengue-

endemic countries, with initial results expected in the latter part of 2016.
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