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Albuminuria reflects widespread vascular damage* 
The Steno hypothesis 
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Summary. Albuminuria in Type 1 (insulin-dependent) 
diabetes is not only an indication of  renal disease, but a new, 
independent risk-marker of  proliferative retinopathy and 
macroangiopathy. The coincidence of  generalised vascular 
dysfunction and albuminuria, advanced mesangial expansion, 
proliferative retinopathy, and severe macroangiopathy sug- 
gests a common cause of  albuminuria and the severe renal and 
extrarenal complications associated with it. Enzymes involved 
in the metabolism of anionic components of the extracellular 

matrix (e.g. heparan sulphate proteoglycan) vulnerable to 
hyperglycaemia, seem to constitute the primary cause of albu- 
minutia and the associated complications. Genetic poly- 
morphism of such enzymes is possibly the main reason for 
variation in susceptibility. 

Key words: Diabetes, albuminuria, extracellular matrix, he- 
paran sulphate, vascular dysfunction. 

Albuminuria indicates a poor prognosis in Type I (in- 
sulin-dependent) diabetic patients [1]. However, only 
about 35% of patients with Type 1 diabetes will ever de- 
velop Albustix, (Ames, Bucks, England) positive albu- 
minuria [2], Why is albuminuria associated with such a 
poor prognosis, and why do only 35% of Type 1 
diabetic patients develop A[bustix positive albuminu- 
ria? 

Onset of albuminuria 

Albuminuria is not present at the onset of Type 1 
diabetes. Shortly after the onset of Type I diabetes, the 
urinary albumin excretion rate (UalbV) is normal or 
sub-normal [3]. However, in the 35% of patients who 
later develop persistent proteinuria, UalbV increases in 
an exponential way at about 20% per year [4]. The rate 
of increase varies between patients and the intra indi- 
vidual variations of UalbV are quite large [5]. When 
UalbV is persistently more than 30 mg/24 h, it is clearly 
abnormal and we speak of incipient nephropathy. After 
a further 5-10 years, UalbV has increased to more than 
300 mg/24 h, which is the macroalbuminuric range at 
which Albustix becomes positive. Thus, Albustix posi- 
tive proteinuria is a late event in a long-lasting process 
which starts shortly after the onset of diabetes (Borch- 
Johnsen K, Skovgaard LT, Keiding N, DeckertT. To 

* Given by T.Deckert as Claude Bernard lecture, Paris 1988 

be published). But why only in 35% of patients, and 
why is prognosis so poor? 

Albuminuria, more than an indicator of renal disease 

Albuminuria is generally believed to reflect renal dis- 
ease. This is also true in Type I diabetes as seen in 
Table 1 and Figure 1 which demonstrate changes in the 
glomerular filtration rate (GFR) in a trans-sectional 
study (Table 1) and during a 2-year prospective study in 
long-term Type 1 diabetic patients with different levels 
of UalbV (Fig. 1). A persistent decrease in GFR means 
loss of glomerular filtration surface due to advanced 
mesangial expansion [6,7]. Research during recent 
years has, however, demonstrated that albuminuria in 
Type I diabetes is not only associated with renal alter- 
ations but also with proliferative retinopathy [8-11] and 
cardiovascular mortality [12]. An association with car- 
diovascular mortality is not only present in Type 1 
diabetic patients but also in non-diabetic subjects 
[13-15] and Type2 (non-insulin-dependent) diabetic 
patients [16-18]. The increased cardiovascular mortality 
in patients with albuminuria is only partly due to a 
higher prevalence of cardiowascular risk factors [19], 
such as smoking [20, 21], lipids [22, 23] high blood-pres- 
sure [8, 14, 16] and plasma fibrinogen [22, 24]. Thus, al- 
buminuria is not only an indication of renal disease but 
also a new, strong and independent risk-marker of pro- 
liferative retinopathy and cardiovascular death. 
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Fig.l. Glomerular filtration 
rate (GFR) in 29 patients with 
conventional treated long-term 
Type 1 (insulin-dependent) 
diabetes, prospectively followed 
for 2 years (M +_ SEM). * per- 
sistent normoalbuminuria 
(UalbV<30 rag/24 h), n=6;  
�9 UalbV at first observation 
30-100 mg/24 h, n = 13; 
�9 UalbV at first observation 
101-300 rag/24 h, n = t0. The 
difference of GFR after 
24 months between group 2 and 
3 was significant, p=  0.04 

This is an interesting observation. How does albu- 
minutia indicate cardiovascular damage? Our hy- 
pothesis is that albuminuria reflects a more generalised 
vascular process which affects the glomeruli, the retina 
and intima of large vessels simultaneously. We therefore 
looked for indicators ofgeneralised vascular dysfunction 
[25, 26] and studied the coincidence of some of the com- 
plications associated with albuminuria [8, 12, 27]. To as- 
sess alterations of the vascular system in general, 
measurement of the transcapillary escape rate (TER) of 
albumin and fibrinogen was undertaken and some mark- 
ers of endothelial cell function were measured. As can be 
seen in Figure 2, long-term diabetic patients with normal 
UalbV had a normal albumin TER of about 5%. This 
means that 5% of the intravascular albumin mass will 
leave the vascular space per hour. But diabetic patients 
with elevated UalbV have a 50% increase in the albumin 
TER. Similar results were obtained with fibrinogen and a 
statistically significant (p< 0.01) correlation was found 
between the albumin TER and that of fibrinogen 
( r= 0.72) (Bent-Hansen L and Deckert T, to be pub- 
lished). Two observations were of interest. Firstly, an in- 
crease in albumin TER was observed in patients with the 
slightest increase of UalbV (Fig.2). Secondly, the in- 
crease in TER was not due to increased vascular surface 
[28], longer diabetes duration, higher blood-pressure or 
poorer diabetic control [25] but only related to increased 
UalbV. If the increased albumin and fibrinogen TER re- 
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fleets increased vascular permeability, these observa- 
tions might indicate increased extravascular coagulation 
[29] which leads to an increased release of von Wille- 
brand factor [30]. In fact, von Willebrand factor, a marker 
of endothelial dysfunction, was increased in albuminuric 
patients, but normal in long-term diabetic patients with 
normal UalbV [31, 32]. Similar results were seen with 
other markers of endothelial lesions such as angiotensin 
converting enzyme [33-35] and plasminogen activator 
[113]. Thus, albuminuria seems to indicate widespread 
vascular dysfunction�9 

The coincidence of albuminuria along with pro- 
gressiw~ mesangial expansion, proliferative retinopathy 
and/or  macroangiopathy was striking. As can be seen in 
Figure 3 some mesangial expansion can be seen in near- 
ly all long-term diabetic patients. But only in patients 
with increasing UalbV does mesangial expansion pro- 
gress so seriously that the GFR begins to decline [6, 7]. 
Some cases of proliferative retinopathy can also be seen 
in patie, nts with normal UalbV, but, as soon as UalbV in- 
creases the incidence of proliferative retinopathy in- 
creases enormously (Fig. 4) [8]. Also, some diabetic pa- 
tients with normal UalbV will die from coronary heart 
disease (CHD), but the cumulative incidence of CHD in- 
creases remarkably in patients after the onset of  albu- 
minutia [27]. In the absence of album•177 mesangial 
expansion remains unimportant and never leads to renal 
insufficiency. Without albuminuria the incidence of pro- 
liferative retinopathy and cardiovascular events remains 
low. Thus, the process which leads to albuminuria would 
also seem to be a serious promotor of mesangial expan- 
sion, retinopathy and macroangiopathy. 

Mechanism of the generalised process 
leading to albuminuria 

What is the mechanism of this widespread process ? It can 
hardly be exclusively related to hyperglycaemia or the as- 
sociates of hyperglycaemia like the sorbitol pathway or 
non-enzymatic glycation. No doubt poor blood sugar 

T a b l e  1. Glomeru la r  filtration rate (GFR)  in 113 pat ients  with Type 1 ( insul in-dependent)  diabetes and  different levels o f  UalbV 

Sex ratio Age  Diabetes  dura t ion  H b A l c  G F R  
m / f  (years) (years) (%) ( m l / m i n  x 1.73 m 2) 

Control  subjects 
n = 1 3  13/10 3 3 + 7  

N o r m o a l b u m i n  
< 30 m g / 2 4  h 
n = 3 8 ,  group I 21/17 35 •  

Albuminur ic  
30-100 
n = 32, group 2 19/23 33 • 9 

100-300 
n = 23, group 3 13/10 32 _+ 8 

3O0 

5.3 •  1 0 4 •  15 b, c, e 

1 5 •  9.1+--1.2 116 •  a'e 

18 • 5 9.1 - 1.2 117 • 1 9  a' e 

20--+8 8 .9 •  111 •  e 

n = 20, group 4 ] 1 /  9 34 ___ 9 19 ___ 7 9.5 • 0.9 85 _ 29 a, b, e, d 

Significant difference ( p <  0.05) compared  with a control subjects,  b group 1, e group 2, d group 3 and  e group 4; Results  are given as m e a n _  SD 
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Fig.2. Transcapillary escape rate of albumin (TER alb) in 151 pa- 
tients with Type I (insulin-dependent) diabetes and different levels of 
UalbV (% per hour). N control subjects; Do long-term diabetic pa- 
tients with UalbV< 30 mg/24 h; Dll UalbV 30-100 rag/24 h; 
DI2 UalbV 101-300 mg/24 h; Dn UalbV > 300 rag/24 h 

Fig.3. Relative mesangial volume (%) in 35 patients with long-term 
Type I (insulin-dependent) diabetes (>9 years) and different levels of 
UalbV (mg/24 h). Median duration of diabetes was similar in the dif- 
ferent groups [6]. The dotted area represents the range in non-diabetic 
subjects (m + SD) [112] 

regulation plays an important role in the development of  
albuminuria [36-39]. However, the correlation between 
metabolic control and the development of  persistent al- 
buminuria is poor [38, 39]. Poor glycaemic control is a 
necessary, but not a sufficient condition to cause the 
development of  albuminuria. This is also indicated in 
Figure 5 which demonstrates HbAoc in Type 1 diabetic 
patients with albuminuria and long-term diabetic pa- 
tients with Type i diabetes for more than 40 years but 
with normal UalbV. Thus, it would seem that some pa- 
tients are susceptible to the deleterious effects of  poor 
diabetes control, whereas others are resistant. 

Elevation of  blood-pressure can hardly in itself be the 
common cause of  the generalised vascular dysfunction 
and organ-damage. It is true that elevated blood-pressure 
is seen early in diabetic patients with albuminuria as seen 
in Table 2, but the blood-pressure is not significantly 
elevated before UalbV is > 100 rag/24 h. Similar results 
were seen in a prospective study of  200 normoalbu- 
minuric Type 1 diabetic patients. Among these patients 
15 developed persistent microalbuminuria during a 5- 
year follow-up. These patients had similar blood-pres- 
sure readings to those who remained in the normoalbu- 
minuric range for several years [40]. Thus, blood-pressure 
elevation does not appear simultaneously with, or be- 
fore, but after the increase of  UalbV, probably due to a 
disequilibrium between sodium reabsorpfion and 
glomerular filtration capacity, a hypothesis which is 
presently being tested. This does not mean that blood- 
pressure is without significance for the prognosis of  
diabetic patients with albuminuria. Increased blood- 
pressure might well be an independent promotor of me- 
sangial expansion [41], retinopathy [8] and macroangiop- 
athy [16] but it is not the cause of  albuminuria, and the 
blood-pressure elevation per se can neither explain the 
high cardiovascular mortality [16] nor the deleterious me- 
sangial expansion [42] and the high incidence of prolif- 
erative retinopathy [8]. Nor does increased intraglomeru- 
lar pressure seem to be the cause of  albuminuria [43-45]. 
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Fig.4. The annual incidence (new cases per year) of proliferative reti- 
nopathy in 110 patients with Type I (insulin-dependent) diabetes who 
developed clinical nephropathy (UalbV>300 rag/24 h) at 0. 110 
age-, diabetes duration- and sex-matched patients who did not de- 
velop clinical nephropathy are shown as control subjects [9] 
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Fig.5. HbAlc in patients 
with long-term Type 1 
(insulin-dependent) 
diabetes of juvenile 
onset. �9 patients with 
UalbV 50-300 mg/24 h; 
�9 patients who survived 
with diabetes for more 
than 40 years duration 
and normal UalbV 
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Table 2. Blood-pressure (BP) in 151 patients  with long-term Type 1 ( insul in-dependent)  diabetes and  different levels o f  UalbV. No  ant ihyper ten-  
sive therapy  was used  

Sex ratio Age Diabetes  durat ion HbAlc  Systolic BP Diastolic BP 
m / f  (years) (years) (%) ( m m  Hg) (ram Hg) 

Control  Subjects 
n = 2 0  14/  6 3 0 + 6  5.0_+0.4 1 2 3 +  9 d,e 7 9 +  7 c,d,e 

N o r m o a l b u m i n u r i a  
< 30 m g / 2 4  h 
n = 55, group 1 37/18 34 _+ 7 17 _+ 7 8.2 +- 1.1 128 ___ 13 d, e 82 4- 7 d' e 

Albuminur ia  
30-100 
n = 3 8 ,  group 2 21/17 31 +_9 18 _+ 5 8.0_+ 1.6 131 -+ 15 e 84_+ 10 a, e 

101-300 
n = 20, group 3 18/  4 37 --_ 7 23 _+ 7 7.8 _+ 1.2 139 _+ 15 a, b, e 87 _+ 10 a, b, e 

300 
n = 38, g roup  4 28/10  34 --+ 8 20 _+ 7 9.8 --+ 1.5 151 _+ 22 a' b, c, d 95 + 10 a' b, c, d 

Significant difference (p < 0.05) compared with a control subjects, b group 1, c group 2, d group 3 and e group 4; Results are given as mean + SD 

Alteration of the composition of the extracellular matrix 

We believe that the cause of this generalised process is a 
genetically determined alteration in the composition of 
the extracellular matrix. The evidence for the importance 
of genetic factors comes from several studies. 1) The in- 
cidence of albuminuria is significantly higher in males 
compared to females [1]. 2) Long-term Type I diabetic 
patients who have had diabetes for more than 40 years 
with normal UalbVhave a distribution of tissue type anti- 
gens which is significantly different from Type I diabetic 
patients with nephropathy [46]. 3) Furthermore, albu- 
minutia is more frequently observed in diabetic siblings 
of diabetic patients with albuminuria than in diabetic 
siblings of diabetic patients without albuminuria [47]. It 
has also been postulated that the Na+/Li  + counter 
transport activity in erythrocytes can be used as a genetic 
marker for patients who later develop albuminuria [48, 
49]. However, this is not the case in Copenhagen. In on- 
going studies we did not find that parents of diabetic pa- 
tients with nephropathy have higher blood-pressure [501 
than parents of patients without albuminuria. 

The evidence for the involvement of the extracellular 
matrix comes from studies of the composition and 
charge of the glomerular basement membrane (GBM) 
and other filtration barriers in diabetic animals and 
human subjects [51-57]. The GBM is condensed extra- 
cellular matrix. It is negatively charged, partly due to its 
content of heparan sulphate [58-60]. It is, however, diffi- 
cult to measure minor alterations in the complex compo- 
sition of GBM. We therefore studied alterations in the 
glomerular charge selectivity which might reflect quali- 
tative changes of the GBM. By measuring the renal clear- 
ance of pairs of plasma proteins which differ in charge 
but not in molecular size, alterations of the charge selec- 
tivity of the GBM can be identified. We have used non- 
glycated and glycated albumin [61,621, glycated albumin 
being more negatively charged in comparison to non- 
glycated [62]. We have also used neutral IgG and the an- 
ionic charged IgG4 fraction [64, 651. The ratio between 

the clearance of the less anionic and the more anionic 
plasma proteins is the selectivity index (SI). A decrease 
of SI indicates loss of the charge selectivity. With both 
pairs of  plasma proteins we found a highly significant 
loss of charge selectivity in albuminuric patients with 
Type 1 diabetes (Fig. 6). These findings have been con- 
firmed by others [55, 66, 67]. Interestingly, loss of charge 
selectivity could be seen already in patients with UalbV 
of 30-50 mg/24 h [65] i.e. at the very beginning of inci- 
pient nephropathy where size selectivity of the GBM 
seems to be normal [66, 68]. The combination of normal 
size selectivity and reduced charge selectivity strongly in- 
dicates that loss of charge selectivity is due to a reduction 
of negative charges of the GBM and not to increased 
pore size. These conclusions are strengthened by histo- 
chemical analyses of anionic sites within the GBM, 
which demonstrated a negative correlation between the 
density of negative charges and albuminuria in Type 1 
diabetic patients [69, 70]. A reduction of fixed negative 
charge density induced by diabetes has been demon- 
strated in the GBM [71] as well as in Bruch's membrane 
[721, (the extracellular matrix between the chorioid and 
the pigment epithelium of the retina), on erythrocytes 
[731 and in the arterial intima [741. These observations in- 
dicate that diabetes leads to a generalised reduction of 
negative charges of extracellular matrix and plasma 
membranes, reflecting qualitative changes in the compo- 
sition of the membranes. In diabetic patients with albu- 
minutia these alterations seem to be severe enough to in- 
duce changes in permeability. 

Loss of heparan sulphate proteoglycan in diabetes 

What does the loss of anionic charge mean in biochemi- 
cal terms? There are several reasons to believe that the 
loss of anionic charge is due to a loss of normal heparan 
sulphate proteoglycan, the main glycosaminoglycan 
component of basement membranes of glomeruli [54, 
75], aortic myomedial cells [761, mesangium [54, 771 and 
endothelial plasma membranes [78]. 
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1) The loss of heparan sulphate in the GBM leads to 
loss of anionic sites and albuminuria [79-81]. 

2) Within the GBM a loss of heparan sulphate has been 
demonstrated in diabetic patients with nephropathy 
[531. 

3) The multiplicity of the effects of heparan sulphate 
proteoglycan might well explain the strong association 
between vascular dysfunction and renal and extrarenal 
complications [82]. Heparan sulphate proteoglycan not 
only inhibits the glomerular filtration of albumin but 
also contributes to the integrity of the pore size of the 
GBM [83, 84]. Thus, loss of heparan sulphate proteogly- 
can has been demonstrated to lead to disruption of the 
microstructure of the GBM [84]. These alterations 
would explain the increase of fractional IgG clearance 
seen in albuminuric diabetic patients [55, 64] and the 
changes in dextran clearance in these patients [66, 68]. 
Heparan sulphate proteoglycan also strongly inhibits 
mesangial cell growth [85], and loss of heparan sulphate 
has been shown to be a strong promotor of mesangial 
expansion [85, 86]. It has also been shown that heparan 
sulphate proteoglycan in plasma membranes of endo- 
thelial cells have important antithrombogenic proper- 
ties [87-89]. Thus, heparin-like components which ac- 
celerate thrombin-antithrombin complex formation 
have been identified in retinal microvascular endo- 
thelial cell preparations [90]. Loss of normal sulphated 
heparan sulphate in retinal capillaries might, therefore, 
contribute to the formation of microthrombi and/or 
platelet plugs followed by areas of non-perfusion, the 
forerunners of proliferative retinopathy in diabetes [91, 
92]. In fact, increased platelet adhesion in vivo has been 
demonstrated in albuminuric diabetic patients [19]. The 
formation of platelet plugs will lead to increased local 
concentrations of platelet derived growth factor, potent 
mitogens of a number of cells including mesangial cells 
[93-95]. Besides antithrombogenic properties, heparan 
sulphate proteoglycan binds lipoprotein lipase [96], 
stimulates its activity [97] and inhibits smooth muscle 
cell proliferation in arteries [98]. Loss of heparan sul- 
phate might, therefore, very well represent a serious 
promotor of atherosclerosis [82, 87, 99, 100]. 

4) Finally, diabetes affects heparan sulphate metabo- 
lism and leads to loss of normally sulphated heparan 
sulphate in extracellular matrix and plasma membranes 
[51, 54, 102]. Usually heparan sulphate is sulphated 
within the Golgi apparatus of many cells [103-105]. The 
key enzyme of sulphation is N-deacetylase [106]. After 
sulphation has taken place, heparan sulphate is incor- 
porated into plasma and basement-membranes where it 
contributes to the anionic charge of the extracellular 
matrix [58-60] and the integrity of the collagen network 
[83, 84]. Loss of anionic charge in GBM and increased 
glomerular permeability due to decreased sulphation of 
glomerular heparan sulphate has been described in ex- 
perimental membraneous nephropathy [80]. In diabetic 
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animals inappropriate sulphation of heparan sulphate 
has been demonstrated [57, 107-110] probably due to 
impaired activity of the deacetylase enzyme [107]. 

Therefore, we hypothesize that albuminuria and the as- 
sociated complications are due to genetic polymorphism 
of enzymes involved in the metabolism of heparan sul- 
phate proteoglycan e.g. N-deacetylase. Genetic poly- 
morphism of diabetes-sensitive enzymes involved in the 
metabolism of glycosaminoglycans has been demon- 
strated in the Uppsala strain of Sprauge Dawley rats 
[111]. According to our hypothesis, patients who develop 
albuminuria are characterised by iso-enzymes which are 
extremely vulnerable to poor dJiabetes control (Fig. 7). In 
these patients a critical reduction of normal heparan sul- 
phate would be expected, leading to albuminuria and 
progression of mesangial expansion, retinopathy and 
macroangiopathy, whereas persons equipped with iso- 
enzymes less vulnerable to hyperglycaemia would be 
protected. Thus, the polymorphism of enzymes involved 
in the metabolism of heparan sulphate proteoglycan 
might be the reason for the heterogeneous prognosis of 
poorly regulated diabetic patients and for the fact that 
only 35% of Type 1 diabetic patients develop albuminu- 
ria. Vulnerable to poor metabolic control, the presence 
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ANGIOPATHY) ANGIOPATHY) 

Fig.7. Pathogenesis of albuminuria and its associated complications. 
HS = heparan sulphate proteoglycan 

of this enzyme not only in epithelial and endothelial cells 
of the glomeruli but also in the mesangium, the retina 
and intima of large vessels, might explain why albuminu- 
ria in Type 1 diabetes reflects widespread vascular dam- 
age. 
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