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Abstract. A unifying logic is built on top of ontologies and rules for the
revised Semantic Web Architecture. This paper proposes ALCu

P , which
integrates a description logic (DL) that makes a unique names assump-
tion with general rules that have the form of Datalog Programs per-
mitting default negation in the body. An ALCu

P knowledge base (KB)
consists of a TBox T of subsumptions, an ABox A of assertions, and a
novel PBox P of general rules that share predicates with DL concepts
and DL roles. To model open answer set semantics, extended Herbrand
structures are used for interpreting DL concepts and DL roles, while open
answer sets hold for general rules. To retain decidability, a well-known
weak safeness condition is employed. We develop DL tableaux-based al-
gorithms for decision procedures of the KB satisfiability and the query
entailment problems.

1 Introduction

Based on input from the Semantic Web Rules community, the Semantic Web
Architecture has been recently reconsidered by Tim Berners-Lee [3]: ontologies
and rules are now sitting side by side between RDF(S) and a unifying logic
layer. The Web Ontology Language (OWL), whose formalization relies directly
on Description Logic (DL) [2], dates back to a W3C Recommendation released
on 10 February 2004 [23]. Subsequently, W3C announced the formation of the
Rule Interchange Format (RIF [24]) Working Group on 7 November 2005, aiming
to specify a format for rules in the Semantic Web chartered to allow “knowledge
expressed in OWL and in rules to be easily used together”. Not surprisingly, how
to best combine OWL/DL and rules has become a topic of heated discussions
in the Semantic Web community.

At the top-level, those integration approaches are either homogeneous or hy-
brid [1]. Early work in the hybrid direction comprises AL-log [7] and CARIN
[16], both of which extend Datalog rules with DL constraints. Recent homoge-
neous work prefers a more general and tight integration, such as DL + log [22]



(originating from r-hybrid KBs [21]) and HEX-programs [8] (originating from
dl-programs [9]). Their generality appeals to negation and disjunction in rules,
namely Datalog¬,∨, while their tightness calls for certain safeness conditions
that limit the interaction between the DL component and rules.

In hybrid approaches, ontology and rule predicates are always kept distinct.
Homogeneous frameworks instead permit predicate sharing in a syntactically
and semantically coherent manner. DLP (Description Logic Programs [11]) has
been proposed as the intersection of DL and Datalog rules, while SWRL (Se-
mantic Web Rule Language [25]) is their union. Unfortunately, DLP seems too
restrictive, and SWRL seems too expressive (hence is undecidable).

Reduction is another way to build a homogeneous platform. The paper [15]
works on reducing DL KBs to disjunctive Datalog programs, getting ready for an
extension with DL-safe rules [19] and even MKNF rules [18]. There, DL-safeness
is imposed as the condition for grounding rule variables with named individuals.

Summarizing, from a practical perspective, hybrid approaches are component-
based, using plug-ins of both DL reasoners and rule engines, in addition to well-
defined interfaces. Most homogeneous approaches make use of translators from
the DL component into rules (even first-order formulae), followed by running
rule engines (even first-order provers) with support for those reduced languages.
We totally agree that reusing existing reasoning tools (e.g., DL reasoners and
rule engines) facilitates various applications on the Semantic Web. But, towards
a unifying logic on top of ontologies and rules, as envisioned by [3], it makes
sense to develop a novel algorithm specifically for the homogeneous integration
of DL and general rules.

This paper extends a DL KB – consisting of a TBox T of subsumptions and
an ABox A of assertions – with a PBox P of general rules, i.e., Datalog¬ rules
permitting default negation for atoms in the body, in a homogeneous manner.
Particularly, we show the following characteristics:
Sharing predicates Rule predicates are exactly DL concepts and DL roles,
taking advantage of the expressivity and reasoning power of both DL and rules.
Negative atoms The default negation “not” is allowed to prefix atoms in the
body, making non-monotonicity applicable. Note that the classical negation “¬”
is still preserved for DL’s negative constructor.
Open Answer Set Semantics Extended Herbrand structures are used for in-
terpreting DL concepts and DL roles, while open answer sets hold for general
rules, making a unique names assumption. Unnamed individuals, e.g. as intro-
duced by DL existential restrictions, also occur in the open domain. To retain
decidability, a well-known weak safeness condition [22] is employed, grounding
variables in the rule head with named individuals.
Tableau-based algorithms Decision procedures for the knowledge base (KB)
satisfiability problem and the query entailment problem are designed on com-
pletion graphs, getting rules incorporated into classical DL tableaux algorithms
(which originally work on completion forests or trees).

The remainder of this paper starts with preliminaries for integrating DL and
general rules in our homogeneous language ALCu

P . The syntax and semantics



are defined in Section 3. Section 4 elaborates on algorithms, giving decision
procedures for the KB satisfiability problem and the query entailment problem.
Finally, Section 5 is our conclusion. Because of paper space limitations, detailed
proofs are available in an Online Appendix1.

2 Preliminaries

Description Logic, as discussed in this paper, is a fragment of classical first-
order logic (FOL). Therefore, the semantics for DL is based on first-order in-
terpretations, of which the domain is arbitrary. However, a fixed domain, viz.
the Herbrand universe, in which rule variables are instantiated, is the key to
the semantics of logic programming (LP). When combining DL and rules, we
first of all should figure out the domain in common. A good candidate is the
so-called open domain, i.e., an arbitrary non-empty countable superset of the
Herbrand universe, as proposed for open answer set programming to solve the
lack of modularity in closed world answer set programming [12].

Moreover, in the context of LP, rule variables are ultimately substituted by
constants, receiving a grounded version of rules. Within a combined signature
of DL and rules [5], constants are referred to as named individuals, which are
asserted explicitly into the corresponding KB, and the Herbrand universe ex-
actly consists of those constants. Nevertheless, DL existential restrictions would
introduce unnamed individuals, and unnamed individuals also act as constants
but unfortunately are beyond the Herbrand universe. Again, the open domain
appears to be the right place for capturing unnamed individuals. Referring to [6],
if there are no unnamed individuals in the domain, we say the parameter names
assumption (PNA) applies. Not surprisingly, we prefer not to adopt PNA.

Open answer set semantics adheres to a unique names assumption (UNA),
which is not the case for DL. However, if desired, the UNA can be made explicit
in DL by adding an assertion a 6= b for each pair of differently named individuals
to the KB. In this respect, we also adopt UNA. Since, the combination of PNA
and UNA is called the standard names assumption (SNA), our proposal is under
UNA but neither PNA nor SNA, while DL+ log [22] etc. adopted SNA.

Next, we should point out the (un)decidability issue. Actually, a decade ago,
the undecidability of an unrestricted combination of DL and rules was proved
with CARIN [16]. For reobtaining decidability, safeness conditions were pro-
posed, e.g., role-safeness in [16], DL-safeness in [19] and weak safeness in [22],
each of which ensures a certain separation between DL and rule predicates.
Differing from those predicate-separated systems, this paper is based on rule
predicates shared with DL concepts and DL roles. Thus, we merely require the
most general Datalog safeness in the syntax, while we adopt a semantic weak
safeness condition that relies on grounding variables in the rule head with named
individuals to avoid undecidability.

On the other hand, DL is a family with many layers [2][13]. Bottom up,
ALC is a basic and simple language, permitting concept descriptions via C1 u
1 http://www.is.pku.edu.cn/˜mayyam/proof.pdf



C2, C1 tC2,¬C,∀R.C, and ∃R.C, where C,C1, C2 are concepts and R is a role.
Augmented by transitive roles, ALC becomes ALCR+ , denoted by S in the fol-
lowing. SI is an extension to S with inverse roles, followed by SHI with role
hierarchies. It is called SHIF if extending by functional restrictions, SHIN if
by cardinality restrictions, and SHIQ if by qualified number restrictions. Sup-
port for datatype predicates (e.g., string, integer) brings up the concrete domain
of D, and using nominals O helps construct concepts with singleton sets. With
the expected pervasive use of OWL, SHIF(D) and SHOIN (D) are paid much
attention: OWL Lite is a syntax variant of one, and OWL DL, of the other.

As the DL foundation,ALC is regarded as the right level for our homogeneous
DL-rule integration, observing that the expressivity of extending ALC with Dat-
alog rules covers that of SHI, i.e., ALCR+HI, except for the semantic weak safe-
ness condition for rules. Specifically, the role hierarchy H of R1 v R2 is captured
by R2(x, y)← R1(x, y), and inverse roles I and transitive roles R+ are charac-
terized, respectively, by Inv(R)(y, x) ← R(x, y) and S(x, z) ← S(x, y), S(y, z),
where R1, R2, R, Inv(R) and S are roles, in addition to Trans(S) being true.

At this point, we are ready for a proposal of ALCu
P , where the superscript

“u” denotes the adoption of UNA, and the subscript “P” means a program of
general (normal [17]) rules. Even if the “not” operator of general rules in P is
removed from ALCu

P , our proposal develops SHI into a language with “more
Datalog and less DL”. The “more Datalog” characteristic is evident, since ‘end-
user’ rules are integrated right into the foundation of the DL machinery. The
“less DL” characteristic results from the ‘SHI-desugaring’ rules, translating the
role hierarchy H, inverse roles I, and transitive roles R+, but because of their
semantic weak safeness condition not providing full support for SHI on top of
ALC.

This finally brings us to the design of algorithms. DL tableaux algorithms
yield completion trees (resp. forests) for checking DL concept satisfiability [13]
(resp. ABox consistency [14]). Those completion trees or forests are finite, and
represent a set of possibly infinite models. For getting general rules incorpo-
rated homogeneously into this setting, we will use a parameter l and develop
l-completion graphs. Thus, our algorithm is still tableau-based, and we conclude
that: (1) An ALCu

P KB K is satisfiable iff the algorithm yields a complete and
clash-free lK-completion graph; and (2) a query Q is entailed by an ALCu

P KB
K iff Q is mappable to all complete and clash-free lK,Q-completion graphs that
the algorithm yields. More technical details are discussed below.

3 The ALCu
P Language

Syntactically, ALCu
P , built on ALC-concepts and ALC-roles, has three parts: a

TBox T of subsumptions, an ABox A of assertions, and additionally, a PBox
P of general rules. Semantically, open answer sets are associated with extended
Herbrand structures, treating weak safeness as a semantic condition for rules.



3.1 Syntax

Let I be a finite set of named individuals, and V = {x, y, z, x1, · · · } a countable
set of variables. A (Datalog) term is a named individual or a variable.

Let NC be a set of concept names and NR a set of role names. The set R
of ALC-roles is NR. The set C of ALC-concepts is the smallest set such that
(1) The top concept > and the bottom concept ⊥ are ALC-concepts; (2) Every
concept name in NC is an ALC-concept; (3) If C,C1, C2 are ALC-concepts and
R is an ALC-role, then ¬C,C1uC2, C1tC2,∃R.C, ∀R.C are also ALC-concepts.

A concept is said to be in negation normal form (NNF) if negation occurs only
in front of concept names. By pushing negations inwards using a combination
of DeMorgan’s laws, any concept can be translated to NNF in linear time, and
we will assume that all concepts are in NNF in this paper. Given a concept C,
clos(C) is the smallest set that contains C and is closed under subconcepts
and negation (in NNF). For a set of concepts M , clos(M) =

⋃
C∈M clos(C).

The size of clos(C) is linear in the length of C, and the size of clos(M) is
polynomial in the size of M .

Definition 1. An ALCu
P KB has the form K = (T ,A,P), where

TBox T : Subsumptions are C1 v C2 with C1, C2 ∈ C
ABox A: Assertions are C(a) or R(a, b) with C ∈ C, R ∈ R, and a, b ∈ I
PBox P: Rules are r : p(u)← q1(v1), · · · , qm(vm), not qm+1(vm+1), · · · not qn(vn)
with p, qi ∈ C∪R, and u,vi are vectors of terms in I∪V, for each 1 6 i 6 m 6 n
(each vector has length 1 or 2 since concepts from C become unary predicates
and roles from R become binary predicates)

We remark that weak safeness [22] for general rules originally assumes a
lexical separation of DL and rule predicates, while ALCu

P permits rule predicates
shared with DL concepts and DL roles. Later, we will show how weak safeness is
moved into the semantics. Syntactically, rule variables in the PBox P are merely
required to satisfy the most general Datalog safeness condition. That is, every
variable in a rule r must appear among at least one of the v1, · · · ,vm.

3.2 Semantics

Referring to [6], we introduce first-order and (extended) Herbrand structures.
Given a function-free first-order language L, an L-structure is a pair I =

〈U, I〉, where the universe U = (D, σ) consists of a non-empty domain D and a
function σ : I ∪ D′ → D which assigns a domain value to each individual, and
σ(d) = d for all d ∈ D′, given I ∩ D′ = ∅. Elements of D′ are called unnamed
individuals. We remark that the corresponding definitions in [6] are less clear,
where σ : I∪D → D and any d ∈ D is defined as an unnamed individual if there
is no i ∈ I such that σ(i) = d.

Using σ, we formalize UNA, PNA, and SNA as follows: in case σ is injective,
the UNA applies; in case D′ is empty, the PNA applies; the SNA is exactly the
combination of UNA and PNA.



We call I an L-interpretation over D, which assigns a relation pI ⊆ Dn to
each n-ary predicate symbol p (here n ≥ 1). Being a fragment of function-free
first-order logic, DL can also rely on structures for interpreting concepts (here
n = 1) and roles (here n = 2).

Answer set semantics is usually defined in terms of a Herbrand structure that
has a fixed universe, namely Herbrand universe H = (I, id), where id : I → I is
the identity function. Obviously, by I and id, the SNA applies here.

Relaxing the PNA, open answer set semantics considers an extended Herbrand
structure based on an extended Herbrand universe eH = (D, id), where id :
I ∪ D′ → D is still an identity function and id(d) = d for all d ∈ I ∪ D′, given
I∩D′ = ∅. Thus, by id, the UNA applies, but unnamed individuals reside in D′.

Definition 2. An extended Herbrand structure I = 〈(D, id), I〉 is defined for a
set of named individuals I, a set of concepts C and a set of roles R, where

id : I ∪ D′ → D and id(d) = d for all d ∈ I ∪ D′, given I ∩ D′ = ∅
I : C→ 2D for concepts and I : R→ 2D×D for roles

such that for concepts C,C1, C2 ∈ C and roles R ∈ R, the following are satisfied:
>I = D ⊥I = ∅ (¬C)I = D\CI (C1uC2)I = CI

1∩CI
2 (C1tC2)I = CI

1∪CI
2

(∃R.C)I = {e1 ∈ D|∃e2.(e1, e2) ∈ RI and e2 ∈ CI}
(∀R.C)I = {e1 ∈ D|∀e2.(e1, e2) ∈ RI implies e2 ∈ CI}

An associated valuation vI of an interpretation I over D is a mapping s.t.
vI(C(d)) = true, if d ∈ CI , where C ∈ C and d ∈ D
vI(R(d1, d2)) = true, if (d1, d2) ∈ RI , where R ∈ R and d1, d2 ∈ D

An extended Herbrand structure I satisfies a TBox T if, CI
1 ⊆ CI

2 for all
C1 v C2 in T , where C1, C2 ∈ C. Such a structure I is called a model of T ,
written as I |= T . An extended Herbrand structure I satisfies an ABox A if,
id(a) = a ∈ CI and (id(a1), id(a2)) = (a1, a2) ∈ RI for all C(a) and R(a1, a2) in
A, where C ∈ C, R ∈ R and a, a1, a2 ∈ I. Such a structure I is called a model
of A, written as I |= A.

To define a model of a PBox P, we start by grounding P. The grounding Pg

of P w.r.t. an extended Herbrand universe eH = (D, id) is the set of all rules
obtained as follows. For every rule r in P,
(1) keep each named individual a ∈ I appearing in r unchanged as id(a) = a ∈ D,
(2) replace each variable v ∈ V appearing in r with a certain d ∈ D,
(3) replace each variable v ∈ V appearing in the head of r with a certain d ∈ I.

In order to guarantee decidability, the semantic condition of (3) is proposed.
While DL+ log [22] has defined such a (syntactical) weak safeness condition for
hybrid rules, we rephrase it semantically for homogeneous rules here. That is,
only named individuals are legal for grounding the head of rules, so unnamed
individuals cannot be propagated by rules.

Below, given an extended Herbrand structure I = 〈(D, id), I〉, we will first
consider the grounded PBox Pg of rules without not, i.e., m = n for all rules r
in Pg. Put differently, Pg corresponds to the positive (function-free Horn) case
of traditional logic programming. The extended Herbrand model of Pg is a set S
such that, for any rule r : p(u) ← q1(v1), · · · , qm(vm) in Pg, if qi(vi) ∈ S for



all 1 6 i 6 m, then p(u) ∈ S. By λ(Pg), we denote the least extended Herbrand
model of Pg in which none of the rules contains not.

Next, suppose Pg is a grounded PBox of general rules and S a set. Similarly
as in the Gelfond-Lifschitz transformation [10], we denote with Γ (Pg, S) the set
of rules obtained from Pg by deleting
1. each rule r ∈ Pg that has a “not q(v)” in the rule body with q(v) ∈ S;
2. all “not q(v)” occurrences in the bodies of the remaining rules.

Clearly, Γ (Pg, S) does not contain “not” any more, and its extended Her-
brand model is already defined above. If the least extended Herbrand model of
Γ (Pg, S) coincides with S, then we say that S is an open answer set of Pg. In other
words, open answer sets of Pg are characterized by the equation S = λ(Γ (Pg, S)).

An extended Herbrand structure I satisfies a PBox P if the set S = {C(d)|
vI(C(d)) = true}∪{R(d1, d2)|vI(R(d1, d2)) = true} is an open answer set of Pg.
Such a structure I is called a model of P, written as I |= P.

An extended Herbrand structure I satisfies an ALCu
P KB K = (T ,A,P) if I

is a model of T ,A and P. Such a structure I is called a model of K, written as
I |= K. A KB K is satisfiable if there is a model of K. Two KBs K1 and K2 are
equivalent if the models of K1 are also the models of K2, and vice versa.

3.3 An Example

We demonstrate an example in Table 1, about the policy of “one family, one
child” for the current generation in China.

Disjunction is exemplified by (1), a cyclic TBox by (2) and existential re-
striction by (3), all of which state the properties of a person. Among persons,
the current generation is described in (4) having OnlyChild as descendants.

Recursive rules are used for the “descend” relationship by (5) and (6), of
which (5) is the base and (6) is the propagation. Rule (7) describes a symmetric
relationship of “hasSpouse”. Rules (8) and (9) reflect the disjunction of male and
female, according to (1), while role subsumptions of having parents are shown in
(10). Excluding unmarried parents, we suppose, in (11), someone having a child
has a spouse. As for (12) and (13), the OnlyChild has no sibling, while someone
whose parents both have no siblings has no cousin.

Default negation appears in (14) and (15), also DL existential restriction
participates in the rule head. The current generation, in general, has siblings
(resp. cousins), but not in the case when there is an explicit statement of having
no sibling (resp. having no cousin).

Classical negation, serving for DL negative concepts, appears in the head
of rules (16), (17) and (18). It seems redundant to state both (18) and (13),
whose heads are complements of each other. We remark that “hasSibling”, in
the rule body of (18), is possibly derived from (14), while (13) helps to override
the default in (14). However, (14) merely concerns the current generation, and
(13) is for all.

In (19), classical negation gets along with default negation, stating that On-
lyChild generally has another OnlyChild as his/her spouse.



Table 1. An example of an ALCu
P KB

(1) Person v Male t Female Person is male or female.
(2) v ∀ hasChild.Person Any child of a person is a person.
(3) v ∃ hasFather.Male u∃ hasMother.Female Any person has a father and a mother.
(4) CCG v Person u∀ descend.OnlyChild CCG: The current generation.

(5) descend(x, y) ← hasChild(x, y). The relationship of descend is the
(6) descend(x, z) ← descend(x, y), hasChild(y, z). transitive closure of having children.

(7) hasSpouse(x, y) ← hasSpouse(y, x). Having spouse is symmetric.
(8) hasFather(x, y) ← hasChild(y, x), Male(y). A male having a child is the father.
(9) hasMother(x, y) ← hasChild(y, x), Female(y). A female having a child is the mother.
(10) hasFather v hasParent hasMother v hasParent Parents consist of father and mother.
(11) ∃ hasChild.Person v ∃ hasSpouse.Person One having a child has a spouse.

(12) NoSibling(x) ← OnlyChild(x). One in OnlyChild belongs to NoSibling.
(13) NoCousin(x) ← hasFather(x, y), NoSibling(y). One whose father and mother are both

hasMother(x, z), NoSibling(z). in NoSibling belongs to NoCousin.

(14) ∃ hasSibling.Person(x) ← CCG(x), One CCG not being known as NoSibling
not NoSibling(x). has some sibling.

(15) ∃ hasCousin.Person(x) ← CCG(x), One CCG not being known as NoCousin
not NoCousin(x). has some cousin.

(16) ¬ NoSibling(x) ← hasSibling(x, y). One with sibling is outside of NoSibling.
(17) ¬ NoCousin(x) ← hasCousin(x, y). One with cousin is outside of NoCousin.
(18) ¬ NoCousin(x) ← hasParent(x, y), hasSibling(y, z). One special is outside of NoCousin.

(19) OnlyChild(y) ← hasSpouse(x, y), OnlyChild(x), The OnlyChild generally has
not ¬ NoSibling(y). another OnlyChild as his/her spouse.

Therefore

[1] CCG v ∀descend.NoSibling
[2] CCG v ¬NoSibling u¬NoCousin u∀hasChild.∀descend.NoCousin

[3]

Antecedent(*) CCG(a). CCG(b). OnlyChild(a). ∀hasParent.OnlyChild(b).
Consequence(*) NoSibling(a). ¬NoCousin(a). NoCousin(b). ¬NoSibling(b).

Suppose AmusingFamily ← amusedBy(x, y).
amusedBy(x2, y2) ← hasSpouse(x1, y1), NoSibling(x1), NoCousin(y1),

hasCousin(x1, x2), hasSibling(y1, y2), not amusedBy(y2, x2).
Conclude AmusingFamily when Antecedent(*) holds in addition to hasSpouse(a, b).

So far, we conclude definitely that [1]: descendants of the current generation
are those without any sibling, as derived from (4)(12). By default, we conclude
that [2]: (14)(16) and (15)(17) respectively state the current generation has sib-
lings and cousins, while (13) implies that children of the current generation will
have descendants without any cousin. For [3], when the antecedent (*) arises,
we have one person a and the other person b as the current generation. Being
OnlyChild, a has no sibling – an exception to (14). An exception to (15) is b,
whose parents are both OnlyChild, and b has no cousin.

Suppose an amusing family, in which one is amused by the other. For a couple,
one has a cousin but no sibling, and the other has a sibling but no cousin. As
to such a case, the cousin is amused by the sibling, or in the converse direction.
Given the antecedent (*) plus hasSpouse(a, b), an amusing family does exist.



4 Algorithms

In the following, if not stated otherwise, for an ALCu
P KB K = (T ,A,P), we

denote that: (1) ΣC is the closure of concepts occurring in T , A and P; (2) ΣR

is the set of roles occurring in T , A and P; (3) ΣI is the set of named individuals
occurring in A and P.

The algorithm first rewrites TBox subsumptions with rules, andK = (T ,A,P)
becomes K′ = (∅,A,PT ), followed by K′′ = (∅,A,PT ,E) to compute extensions
of complex ALC-concepts. Upon that, we will establish completion graphs, to-
wards the decision procedure for the KB satisfiability problem and the query
entailment problem, respectively.

4.1 Preprocessing

Given an ALCu
P KB K = (T ,A,P), concept subsumptions in the TBox T are

rewritten such that PT = P ∪ {C2(x) ← C1(x)|C1 v C2 ∈ T }, and the KB is
updated to K′ = (∅,A,PT ).

Next, the computation, along with reasoning, is used to evaluate extensions
of complex ALC-concepts, and now the KB becomes K′′ = (∅,A,PT ,E). Starting
from PT , we obtain PT ,E by appending rules for each computable ALC-concept
in ΣC , that is C1 u C2, C1 t C2 and ∃R.C. We observe that classical negation
appears in ¬C and ∀R.C, where ∀R.C concerns a case for the negation of R.
Incomplete information possibly leads to neither positive nor negative atoms,
which motivates us to introduce universal concepts of Ct¬C and ∀R.Ct∃R.¬C
for ¬C and ∀R.C, respectively. So that, individuals in the top concept > are
assigned into those universal concepts.
C1 u C2(x)← C1(x), C2(x). C1 t C2(x)← C1(x). C1 t C2(x)← C2(x).
∃R.C(x)← R(x, y), C(y). C t ¬C(x)← >(x). ∀R.C t ∃R.¬C(x)← >(x).

Above, computation rules are specified for every concept ¬C,C1 u C2, C1 t
C2,∃R.C and ∀R.C appearing in ΣC . Since these ‘system-level’ rules are de-
signed for DL concepts, named individuals and facts need not to stay here. We
also realize that, in a similar but more elaborate manner, [12] simulates DLs
via open answer set programming. Interestingly, support for DL reasoning to-
tally replies on running simulation rules in [12], while we would develop DL
tableaux-based algorithms getting the above computation rules involved.

In the Online Appendix1, it shows that: The ALCu
P KB K = (T ,A,P) and

its updated version K′ = (∅,A,PT ) as well as K′′ = (∅,A,PT ,E) are equivalent.

4.2 Completion Graphs

Observing that role assertions are possibly refreshed by rules when such a role
occurs in the rule head, completion graphs instead of completion forests [14] or
completion trees [13] are studied in this paper.

A completion graph is a (directed) graph G where each node u is labeled with
a set L(u) ⊆ ΣC and each edge 〈u, v〉 is labeled with a set L(〈u, v〉) ⊆ ΣR. If
there is an edge 〈u, v〉 in G, then we say that v is the successor of u and u is the



predecessor of v. The transitive closure of predecessor (resp. successor) is called
ancestor (resp. descendant). For a node u, L(u) is said to contain a clash if, for
some concept C, {C,¬C} ⊆ L(u).

Initially, we construct a graph GA for an ABox A as follows.
– A node ua is created, for each named individual a ∈ ΣI .
– An edge 〈ua, ub〉 is created, if R(a, b) ∈ A for some role R ∈ ΣR and a, b ∈ ΣI .
– The labels of these nodes and edges are initialized by
L(ua) = {C|C(a) ∈ A} and L(〈ua, ub〉) = {R|R(a, b) ∈ A}.

Running CompGraph(GA), the algorithm proceeds.
Procedure CompGraph

Input: A graph Gin

Output: A set of graphs Gout

begin Gout := ∅
for each g in ExpGraph(Gin) do

for each g′ in SmsGraph(g) do

if g′ is complete then Gout := Gout ∪ {g′}
else Gout := Gout∪ CompGraph(g′)

return Gout

end

Expansion principles in Table 2 are ready for the procedure of ExpGraph.
The application of t-principle is non-deterministic, branching graphs. The ∃-
principle is a generating principle since, possibly, fresh new nodes are inserted
into the graph. Besides, we call nodes having been located in GA as a-nodes, each
of which represents a named individual, and b-nodes for the others, each of which
represents a unnamed individual (e.g., being introduced by the ∃-principle).

Table 2. Expansion Principles for ExpGraph

u: if C1 u C2 ∈ L(u) and {C1, C2} * L(u)
then L(u) := L(u) ∪ {C1, C2}

t: if C1 t C2 ∈ L(u) and {C1, C2} ∩ L(u) = ∅
then L(u) := L(u) ∪ {C1} or L(u) := L(u) ∪ {C2}

∀: if ∀R.C ∈ L(u) and R ∈ L(〈u, v〉) but C 6∈ L(v)
then L(v) := L(v) ∪ {C}

∃: if ∃R.C ∈ L(u) where u is an a-node or a b-node not being l-blocked,
there does not exist any node v such that R ∈ L(〈u, v〉) and C ∈ L(v)

then create a b-node v with L(v) := {C} and an edge 〈u, v〉 with L(〈u, v〉) := {R}

Referring to definitions of n-tree equivalence, n-witness and n-blocking in
[16][20], as restated below, we present l-blocking for the ∃-principle in Table 2.
The parameter of l will take the value of lK for the KB satisfiability problem
and of lK,Q for the query entailment problem, given that
lK: The maximal of lr for all r in PT ,E where lr is the number of variables in r
lQ: The length of a query Q and Section 4.4 presents more details
lK,Q: The maximal of lK and lQ



Definition 3. The n-tree of a node u is the tree that includes the node u and
its descendants, whose distance from u is at most n successor edges. We denote
the set of nodes in the n-tree of u by Vn(u).

Two nodes u, v in a graph G are said to be n-tree equivalent if there is an
isomorphism ψ : Vn(v)→ Vn(u) s.t. (1) ψ(v) = u; (2) L(s) = L(ψ(s)), for every
s ∈ Vn(v); (3) L(〈s, t〉) = L(〈ψ(s), ψ(t)〉), for every s, t ∈ Vn(v).

A node u is an n-witness of a node v in a graph G if (1) u is an ancestor of
v, (2) u is n-tree equivalent to v, and (3) v is not in the n-tree of u.

A node w is n-blocked in a graph G if (1) one of its ancestors is n-blocked, or
(2) w is in an n-tree of which root has an n-witness. Suppose u be an n-witness
of v and ψ : Vn(v) → Vn(u) the isomorphism. For any node w in the n-tree of
v, w is n-blocked by ψ(w).

A completion graph G is called complete when for some node u in G, L(u)
contains a clash, or when none of the expansion principles is applicable. The
output of ExpGraph consists of complete completion graphs, each of which again
becomes the input of SmsGraph. Intuitively, the procedure of ExpGraph serves
for DL constructors, while the procedure of SmsGraph for general rules.

With an input graph g to SmsGraph, a “bottom” set Bg and a “top” set
Tg are built. The former collects those labels in g such that Bg = {C(u)|C ∈
L(u)}∪{R(u, v)|R ∈ L(〈u, v〉)}, and the latter concerns all possible constituents
s.t. Tg = {C(u)|C ∈ ΣC and u appears in g}∪ {R(u, v)|R ∈ ΣR and u, v appear
in g}. By the Gelfond-Lifschitz transformation [10], we denote a stable set Sg s.t.
1. Bg ⊆ Sg ⊆ Tg;
2. For a rule r : p(u)← q1(v1), · · · , qm(vm), not qm+1(vm+1), · · · not qn(vn)
satisfying all qj(σ(vj)) 6∈ Sg and m + 1 6 j 6 n, in PT ,E , where σ is a term
assignment w.r.t. g and r, if qi(σ(vi)) ∈ Sg for each 1 6 i 6 m then p(σ(u)) ∈ Sg.

A term assignment σ w.r.t. g and r is a mapping which assigns
(1) a node in g to every variable in r,
(2) an a-node ua in g to every named individual a in r,
(3) an a-node in g to every variable appearing in the head of r.
Naturally, the assignment of (3) concerns the semantic weak safeness.

After receiving all stable sets, we “repay” the input graph g with an output
set of graphs, SmsGraph(g), each of which is constructed by a stable set Sg s.t.
– Nodes are created the same as g;
– An edge 〈u, v〉 is created, if R(u, v) ∈ Sg for some R;
– Labels are L(u) = {C|C(u) ∈ Sg} and L(〈u, v〉) = {R|R(u, v) ∈ Sg}.

Since, the completion graph g′ in SmsGraph(g) updates g (e.g., having new
edges or more labels of nodes and edges), those expansion principles in Table 2
are possibly again applicable to g′. When g′ happens not to being complete, a
call to CompGraph(g′) is stacked. If completion graphs, obtained from procedures
of both ExpGraph and SmsGraph, are totally complete, the algorithm terminates.
We remark l-blocking, which occurs in the ∃-principle at Table 2, is crucial to
termination, and the following two subsections will elaborate on the parameter
l: one takes lK for the KB satisfiability problem, and the other is lK,Q for the
query entailment problem.



4.3 The KB Satisfiability Problem

The above algorithm that yields lK-completion graphs is shown up as a decision
procedure for the satisfiability problem w.r.t. an ALCu

P KB K = (T ,A,P).
Recalling that weak safeness plays a role in our algorithm, the Online Appendix1

declares the termination: For an ALCu
P KB K, the algorithm terminates.

As to the soundness, which states that if the algorithm yields a complete
and clash-free lK-completion graph then K is satisfiable, we need to introduce
canonical structures for completion graphs (cf. [16] and [20]).

Definition 4. Suppose G be an lK-completion graph generated by the algorithm
for K. A canonical structure IG = 〈(DG, id), IG〉 for G is defined such that
1. DG := {u | u is a node in G}
2. For each named individual a ∈ ΣI , id(a) ∈ DG corresponds to its a-node ua

3. For each concept C ∈ ΣC , CIG := {u | C ∈ L(u)}
4. For each role R ∈ ΣR, (u, v) ∈ RIG if and only if (1) R ∈ L(〈u, v〉); or (2)
R ∈ L(〈ψ(u), v〉) where u is lK-blocked, t is the root of the lK-tree to which u
belongs, s is the witness of t, ψ : VlK(t)→ VlK(s) is an isomorphism between the
lK-trees rooted with t and s.

Note that, for an lK-blocked node u, explicit edges, e.g., 〈u, v〉, are not avail-
able, but implicit edges, e.g., 〈ψ(u), v〉, rather contribute to interpreting roles.

Specifically, if the algorithm yields a complete and clash-free lK-completion
graph G for an ALCu

P KB K, a canonical structure IG = 〈(DG, id), IG〉 for G is
proved (in the Online Appendix1) as the model of K, so that K is satisfiable.

Next is the completeness, which states that if K is satisfiable, then the algo-
rithm yields a complete and clash-free lK-completion graph.

Since, K is satisfiable, by definitions, there is an extended Herbrand structure
I = 〈(D, id), I〉 satisfying the ABox A, the TBox T and the PBox P. Referring
to [14], we use I to trigger the application of the expansion principles such that
they yield a complete and clash-free lK-completion graph. To this propose, a
function π is defined, mapping nodes in a graph G to the domain D, as follows.
(1) For a named individual a, π(ua) := a where ua is the corresponding a-node.
(2) If π(u) = s is already defined, and a successor v of u was generated for
∃R.C ∈ L(u), then π(v) := t for some t ∈ D with t ∈ CI and (s, t) ∈ RI .

For all nodes u, v in a completion graph G, we claim a condition that
L(u) ⊆ {C|π(u) ∈ CI} and L(〈u, v〉) ⊆ {R|(π(u), π(v)) ∈ RI}. (*)

As shown in the Online Appendix1, the algorithm ends up with certain com-
plete lK-completion graph, denoted by GI , satisfying the condition (*). Because
I = 〈(D, id), I〉 is a model of K, we have CI ∩ (¬C)I = ∅ for any concept
C ∈ ΣC , which implies GI is clash-free. Otherwise, there exists a clash such
that {D,¬D} ⊆ L(u) ⊆ {C|π(u) ∈ CI} in GI , for some concept D and some
node u, making π(u) ∈ DI ∩ (¬D)I conflict with the model I. Summing up, GI
is the complete and clash-free lK-completion graph that the algorithm yields.

Theorem 1. The algorithm is a decision procedure for the satisfiability of an
ALCu

P KB K = (T ,A,P), and decides the KB satisfiability problem in 3EXPTIME

w.r.t. the size of K.



4.4 The Query Entailment Problem

Before we address this problem, queries are formalized.

Definition 5. A conjunctive query (CQ) q over an ALCu
P KB K is of the form

being {p1(w1), · · · , pn(wn)}, where pi is either a DL concept or a DL role, and
wi is a (unary, binary) vector of terms, for each 1 6 i 6 n. By lq, we denote
the length of a CQ q = {p1(w1), · · · , pn(wn)}, and lq = n.

A union of conjunctive queries (UCQ) q′ over an ALCu
P KB K is of the form

being q1 ∨ · · · ∨ qm, where qj is a CQ for each 1 6 j 6 m. By lq′ , we denote the
length of an UCQ q′ = q1 ∨ · · · ∨ qm, and lq′ = max{lqj

|1 6 j 6 m}.

For simplification, Q is said to be a query, whether Q is a CQ or an UCQ.
Queries are interpreted in a standard way. Given a query Q and an extended
Herbrand structure I = 〈(D, id), I〉, the variable substitution w.r.t. Q and I is
θ = {x1/t1, · · · , xn/tn}, which substitutes each variable xi ∈ V appearing in Q
with a (un)named individual ti ∈ D and 1 6 i 6 n. We use the LP notation αθ
to apply θ to variables in an atom α. As for a CQ q, a structure I is a model
of q, denoted by I |= q, if there is a variable substitution θ w.r.t. q and I such
that I |= pi(wi)θ for each pi(wi) in q, where 1 6 i 6 n. For an UCQ q′, I is a
model of q′, denoted by I |= q′, if I |= qj for some qj in q′, where 1 6 j 6 m.

Given an ALCu
P KB K and a query Q, we say K entails Q, denoted by

K |= Q, if I |= Q for each model I of K. The query entailment problem is to
decide whether K |= Q. We assume K being satisfiable, in this context; otherwise,
everything can be entailed from a contradictory KB.

Now, for an ALCu
P KB K = (T ,A,P) and a query Q, we redefine that: (1) ΣC

is the closure of concepts occurring in T , A, P and Q; (2) ΣR is the set of roles
occurring in T , A, P and Q; (3) ΣI is the set of named individual occurring in
A,P and Q. The parameter lK,Q is the maximal of lK and lQ, and the previous
algorithm, as described in Section 4.2, will yield lK,Q-completion graphs.

Next, referring to [20], we establish mappings from the query to those ob-
tained lK,Q-completion graphs. For a CQ q : {p1(w1), · · · , pn(wn)} and a graph
G, a mapping δ maps named individuals and variables in q to nodes in G, s.t.
1. For each named individual a ∈ ΣI in q, δ(a) = ua is the corresponding a-node;
2. For each C(t) and R(t1, t2) in q where t, t1, t2 are named individuals or vari-
ables, C ∈ L(δ(t)) and R ∈ L(〈δ(t1), δ(t2)〉).

A CQ q is mappable to a graph G, denoted by q ↪→ G, if there exists such
a mapping δ. An UCQ q′ : q1 ∨ · · · ∨ qm is mappable to a graph G, denoted by
q′ ↪→ G, if qj ↪→ G for some qj in q′ where 1 6 j 6 m.

Thus, the algorithm returns “Q is entailed by K”, denoted as K ` Q, if for
all complete and clash-free lK,Q-completion graphs G that the algorithm yields,
Q ↪→ G holds, otherwise the algorithm returns “Q is not entailed by K”.

We direct readers to the Online Appendix1 for details on termination, sound-
ness, completeness, and complexity etc. Below is the resulting theorem.

Theorem 2. The updated algorithm is a decision procedure for the entailment
of an ALCu

P KB K to a query Q, and decides the query entailment problem in
3EXPTIME w.r.t. the size of K.



5 Conclusion

This paper presents an ALCu
P KB, consisting of a TBox of subsumptions and

an ABox of assertions, augmented by a PBox of general rules sharing predicates
with the DL concepts and roles. For its open answer set semantics, extended Her-
brand structures are used to interpret DL concepts and roles, while open answer
sets hold for general rules. To retain decidability, a well-known weak safeness
[22] condition is employed. We extend DL tableaux-based algorithms to ALCu

P
decision procedures for the KB satisfiability and query entailment problems.

By way of comparison, CARIN [16] builds completion trees, which are used to
evaluate hybrid rules externally, so that the information flow is uni-directional,
i.e., from DL to rules but not vice versa. Our ALCu

P constructs completion graphs
shared homogeneously between the DL and rule components, which makes bi-
directional information flow a characteristic of ALCu

P .
Although existing DL reasoners and rule engines facilitate other related work

(e.g., [8][18][22]), we believe that novel algorithms, specified for a homogeneous
integration of DL and general rules, enable the newly envisioned unifying logic on
top of ontologies and rules in the Semantic Web. The unary/binary ALCu

P logic
could be extended for n-ary relations, which may be realized by decomposition
into binary ones; this might also benefit from DLR’s [4] extension of binary DL
roles to n-ary DL relations; we currently explore which n-ary approach works
best with our (extended) ALCu

P algorithms. On top of n-ary relations, further
rule layers, such as undecidable (function-full) Horn rules, could be built. On the
other hand, extensions of ALCu

P towards higher OWL layers, e.g., SHIF(D) and
SHOIN (D), deserve more investigation w.r.t. corresponding DL tableaux-based
algorithms that integrate general rules.
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