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Abstract. We extend the Description LogicALC with a “typicality” operatorT that allows us
to reason about the prototypical properties and inheritance with exceptions. The resulting logic is
calledALC + T. The typicality operator is intended to select the “most normal” or “most typical”
instances of a concept. In our framework, knowledge bases may then contain, in addition to ordinary
ABoxes and TBoxes, subsumption relations of the form “T(C) is subsumed byP ”, expressing that
typical C-members have the propertyP . The semantics of a typicality operator is defined by a set
of postulates that are strongly related to Kraus-Lehmann-Magidor axioms of preferential logicP.
We first show thatT enjoys a simple semantics provided by ordinary structures equipped with a
preference relation. This allows us to obtain a modal interpretation of the typicality operator. We
show that the satisfiability of anALC+T knowledge base is decidable and it is precisely EXPTIME.
We then present a tableau calculus for deciding satisfiability of ALC + T knowledge bases. Our
calculus gives a (suboptimal) nondeterministic-exponential time decision procedure forALC + T.
We finally discuss how to extendALC + T in order to infer defeasible properties of (explicit or
implicit) individuals. We propose two alternatives: (i) a nonmonotonic completion of a knowledge
base; (ii) a “minimal model” semantics forALC + T whose intuition is that minimal models are
those that maximise typical instances of concepts.

Keywords: Description Logics, Prototypical Reasoning, Tableaux Calculi.

1. Introduction

The family of description logics (DLs, [1]) is one of the mostimportant formalisms of knowledge repre-
sentation. DLs are reminiscent of the early semantic networks and of frame-based systems. They offer
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two key advantages: a well-defined semantics based on first-order logic and a good trade-off between
expressivity and complexity. DLs have been successfully implemented by a range of systems and they
are at the base of languages for the semantic web such as OWL. ADL knowledge base (KB) comprises
two components: (i) the TBox, containing the definition of concepts (and possibly roles) and a specifica-
tion of inclusion relations among them, and (ii) the ABox containing instances of concepts and roles, in
other words, properties and relations of individuals. Since the primary objective of the TBox is to build a
taxonomy of concepts, the need of representing prototypical properties and of reasoning about defeasible
inheritance of such properties easily arises. The traditional approach is to handle defeasible inheritance
by integrating some kind of nonmonotonic reasoning mechanism. This has led to study nonmonotonic
extensions of DLs [2, 3, 6, 5, 4, 8, 10, 11, 23]. However, finding a suitable nonmonotonic extension for
inheritance reasoning with exceptions is far from obvious.

In this work, we propose an approach to defeasible inheritance reasoning based on the typical-
ity operatorT. The intended meaning is that, for any conceptC, T(C) singles out the instances
of C that are considered as “typical” or “normal”. Thus assertions as “normally students do not pay
taxes” [13] or “typically mammals inhabit land” [4] are represented byT(Student) ⊑ ¬TaxPayer and
T(Mammal ) ⊑ ∃Habitat .Land .

Before entering in the technical details, let us sketch how we intend to use the typicality operator
and what kind of inferential services we expect to profit. We assume that a KB comprises, in addition
to the standard TBox and ABox, a set of assertions of the typeT(C) ⊑ D, whereT does not occur in
D. The reasoning system should be able to infer prototypical properties as well as to ascribe defeasible
properties to individuals. For instance, let the KB contain:

T(ItalianFencer ) ⊑ ¬LovedByPeople

T(ItalianFencer ⊓ OlympicGoldMedalist ) ⊑ LovedByPeople

T(ItalianFencer⊓OlympicGoldMedalist⊓∃TakePart .RealityShow ) ⊑ ¬LovedByPeople

corresponding to the assertions: normally an Italian fencer is not a people’s favourite (fencing is not so
popular in Italy...), but normally an Italian fencer who wona gold medal in an Olympic competition is a
people’s favourite, whereas normally an Italian Olympic gold medalist in fencing who has taken part to
a reality show is not a people’s favourite (because he has lost his passion in sport and his determination
to obtain better and better results...). Observe that, if the same properties were expressed by ordinary
inclusions, such asItalianFencer ⊑ ¬LovedByPeople , we would simply get that there are not Italian
gold medalists in fencing and so on, thus the KB would collapse. This collapse is avoided as we do not
assume thatT is monotonic, that is to sayC ⊑ D does not implyT(C) ⊑ T(D). Suppose next that the
ABox contains the following facts about the individualsoronzo, aldo andluca:

1. ItalianFencer(oronzo)
2. ItalianFencer(aldo),OlympicGoldMedalist (aldo)
3. ItalianFencer(luca),OlympicGoldMedalist (luca),∃TakePart .RealityShow (luca)

Then the reasoning system should be able to infer the expected (defeasible) conclusions:

1. ¬LovedByPeople(oronzo)
2. LovedByPeople(aldo)
3. ¬LovedByPeople(luca)
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As a further step, the system should be able to infer (defeasible) properties also of individuals implicitly
introduced by existential restrictions. For instance, if the ABox further contains

∃HasChild .ItalianFencer (mario)

it should conclude (defeasibly)

∃HasChild .¬LovedByPeople(mario)

Given the nonmonotonic character of theT operator, there is a difficulty with handling irrelevant infor-
mation. For instance, given the KB as above, one should be able to infer as well:

T(ItalianFencer ⊓ SlimPerson) ⊑ ¬LovedByPeople

T(ItalianFencer ⊓ OlympicGoldMedalist ⊓ SlimPerson) ⊑ LovedByPeople

asSlimPerson is irrelevant with respect to being loved by people or not. For the same reason, the
conclusion aboutaldo being a favourite of the people or not should not be influencedby the addition of
SlimPerson(aldo) to the ABox. We refer to this problem as the problem of Irrelevance.

In this paper we lay down the base of an extension of DL with a typicality operator. Our starting
point is a monotonic extension of the basicALC with theT operator. The operator is supposed to satisfy
a set of postulates that are essentially a reformulation of Kraus, Lehmann, and Magidor (KLM) axioms
of preferential logic, namely, the assertionT(C) ⊑ P is equivalent to the conditional assertionC |∼ P

of KLM preferential logicP. It turns out that the semantics of the typicality operator can be equivalently
specified by considering a preference relation (a strict partial order) on individuals: the typical members
of a conceptC are just the most preferred (or “most normal”) individuals of C according to the preference
relation. The preference relation is the only additional ingredient that we need in our semantics.

We assume that “most normal” members of a conceptC always exist, whenever the conceptC is
non-empty. This assumption corresponds to theSmoothness Conditionof KLM logics, or the well-
knownLimit Assumptionin conditional logics. Taking advantage of this semantic setting, we can give a
modal interpretation to the typicality operator: the modaloperator� has intuitively the same properties
as in Gödel-Löb modal logic G of arithmetic provability.

From a computational viewpoint, we show that the extension of ALC with the T operator is de-
cidable and we provide an EXPTIME complexity upper bound. Since reasoning inALC alone with
arbitrary TBox has already the same complexity, we can conclude that the extension byT is essentially
inexpensive. We also define a tableau proof procedure forALC with the T operator that has, how-
ever, a suboptimal upper bound NEXPTIME. Actually we conjecture that the tableau procedure can be
made more efficient in order to match the EXPTIME upper bound,by means of optimization techniques
developed forALC. This issue will be part of our future research.

From a knowledge representation viewpoint, however, the monotonic extension is not enough to per-
form inheritance reasoning of the kind described above. We need a way of inferring defeasible properties
of individuals and a way of handling Irrelevance. In the lastsection, we discuss two different approaches:

• we can define acompletionof an ABox: the idea is that each individual is assumed to be a typical
member of the most specific concept to which it belongs. Such acompletion allows to perform
inferences as 1.,2.,3. above;
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• we can strengthen the semantics ofALC+T by proposing aminimal model semantics. Intuitively,
the idea is to restrict our consideration to models that maximise typical instances of a concept.

The first proposal is computationally easy, but it presents some difficulties. The second proposal is
computationally more expensive, but it is more powerful forinheritance reasoning.

2. The Description LogicALC + T

We consider an alphabet of concept namesC, of role namesR, and of individualsO. The languageL of
the logicALC + T is defined by distinguishingconceptsandextended conceptsas follows. Concepts:
A ∈ C and⊤ areconceptsof L; if C,D ∈ L andR ∈ R, thenC ⊓ D,C ⊔ D,¬C,∀R.C,∃R.C are
conceptsof L. Extended concepts: ifC is a concept, thenC andT(C) areextended concepts, and all
the boolean combinations of extended concepts are extendedconcepts ofL. A knowledge base is a pair
(TBox,ABox). TBox contains subsumptionsC ⊑ D, whereC ∈ L is an extended concept of the form
eitherC ′ or T(C ′), andD ∈ L is a concept. ABox contains expressions of the formC(a) andaRb

whereC ∈ L is an extended concept,R ∈ R, anda, b ∈ O.
In order to provide a semantics to the operatorT, we extend the definition of a model used in

“standard” terminological logicALC1:

Definition 2.1. (Semantics ofT with selection function)
A model is any structure〈∆, I, fT〉, where:∆ is the domain;I is the extension function that maps each
extended conceptC to CI ⊆ ∆, and each roleR to aRI ⊆ ∆ × ∆. I is defined in the usual way (as
for ALC) and, in addition,(T(C))I = fT(CI). fT : Pow(∆) → Pow(∆) is a function satisfying the
following properties(givenS ⊆ ∆):

(fT − 1) fT(S) ⊆ S (fT − 2) if S "= ∅, then also fT(S) "= ∅

(fT − 3) if fT(S) ⊆ R, then fT(S) = fT(S ∩ R) (fT − 4) fT(
⋃

Si) ⊆
⋃

fT(Si)

(fT − 5)
⋂

fT(Si) ⊆ fT(
⋃

Si)

Intuitively, given the extension of some conceptC, fT selects thetypical instances ofC. (fT − 1)
requests that typical elements ofS belong toS. (fT − 2) requests that if there are elements inS, then
there are alsotypical such elements. The following properties constrain the behavior of fT with respect
to ∩ and∪ in such a way that they do not entail monotonicity. Accordingto (fT − 3), if the typical
elements ofS are inR, then they coincide with the typical elements ofS ∩ R, thus expressing a weak
form of monotonicity (namely,cautious monotonicity). (fT − 4) corresponds to one direction of the
equivalencefT(

⋃
Si) =

⋃
fT(Si), so that it does not entail monotonicity. Similar considerations apply

to the equationfT(
⋂

Si) =
⋂

fT(Si), of which only the inclusion
⋂

fT(Si) ⊆ fT(
⋂

Si) is derivable.
(fT − 5) is a further constraint on the behavior offT with respect to arbitrary unions and intersections;
it would be derivable iffT were monotonic.

We can give an alternative semantics forT based on a preference relation. The idea is that there is
a global preference relation among individuals and that thetypical members of a conceptC (i.e., those
selected byfT(CI)) are the minimal elements ofC with respect to this relation. Observe that this notion
is global, that is to say, it does not compare individuals with respect to a specific concept (something like

1We refer to [1] for a detailed description of the standard Description LogicALC.
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y is more typical thanx with respect to conceptC). In this framework, an elementx ∈ ∆ is a typical
instanceof some conceptC if x ∈ CI and there is noC-element in∆ more typicalthanx. The typicality
preference relation is partial since it is not always possible to establish which element is more typical
than which other. The following definition is needed before we provide the Representation Theorem.

Definition 2.2. Given apreferencerelation <, which is a strict partial order (i.e., an irreflexive and
transitive relation) over a domain∆, for all S ⊆ ∆, we defineMin<(S) = {x : x ∈ S and∄y ∈ S

s.t. y < x}. We say that< satisfies theSmoothness Conditioniff for all S ⊆ ∆, for all x ∈ S, either
x ∈ Min<(S) or ∃y ∈ Min<(S) such thaty < x.

Now we are ready to provide the Representation Theorem, showing that, given a model with a selection
function, we can defineon the same domaina preference relation< such that, for allS ⊆ ∆, fT(S) =
Min<(S). Notice that, as a difference with respect to related results (Theorem 3 in [18]), the relation
is defined on the same domain∆ of fT. On the other hand, if< is a strict partial order satisfying
the Smoothness Condition, then the operator defined asfT(S) = Min<(S) satisfies the postulates of
Definition 2.1. In order to give a formal proof, we also need the following lemma:

Lemma 2.1. fT(S ∪ R) ∩ S ⊆ fT(S)

Proof:
First, considerfT((S ∪ R) ∩ S). Since(S ∪ R) ∩ S = S, it follows thatfT((S ∪ R) ∩ S) = fT(S).
HencefT((S ∪ R) ∩ S) ⊆ fT(S) ∪ (∆ − S). Consider nowfT((S ∪ R) ∩ (∆ − S)). By (fT − 1), it
follows thatfT((S ∪R)∩ (∆−S)) ⊆ ∆−S, hence alsofT((S ∪R)∩ (∆−S)) ⊆ fT(S)∪ (∆−S).
Finally, from (fT − 4), alsofT(S ∪ R) ⊆ fT(S) ∪ (∆ − S). From this, it can be easily derived that
fT(S ∪ R) ∩ S ⊆ fT(S). ⊓⊔

Theorem 2.1. (Representation Theorem)
Given any model〈∆, I, fT〉, fT satisfies postulates(fT − 1) to (fT − 5) above iff it is possible to
define on∆ a strict partial order<, satisfying the Smoothness Condition, such that for allS ⊆ ∆,
fT(S) = Min<(S).

Proof:
(“Only if” direction) GivenfT satisfying postulates (fT − 1) to (fT − 5), we define< as follows: for
all x, y ∈ ∆, we letx < y if ∀S ⊆ ∆, if y ∈ fT(S), thenx 6∈ S and∃R ⊆ ∆ such thatS ⊂ R and
x ∈ fT(R). We prove that< is irreflexive, transitive, and satisfies the Smoothness Condition. Moreover,
we prove that, for allS ⊆ ∆, we havefT(S) = Min<(S):

1. < is irreflexive and transitive. Irreflexivity follows from the definition of<. For transitivity, let
(a) x < y and (b)y < z. Let z ∈ fT(S) for someS, then, by definition of<, y 6∈ S and∃R s.t.
S ⊂ R andy ∈ fT(R). Furthermore,x 6∈ R and∃Q : R ⊂ Q andx ∈ fT(Q). From this, we can
conclude thatx 6∈ S (otherwisex ∈ R) andS ⊂ Q, and hencex < z.

2. fT(S) ⊆ Min<(S). Let x ∈ fT(S). Supposex 6∈ Min<(S), i.e., for somey ∈ S, y < x. By
definition of<, y 6∈ S, contradiction, hencex ∈ Min<(S).

3. Min<(S) ⊆ fT(S). Let x ∈ Min<(S). Thenx ∈ S, i.e., S 6= ∅. By (fT − 2), fT(S) 6= ∅.
Supposex 6∈ fT(S). Consider

⋃
Ri for all Ri ⊆ ∆ s.t. x ∈ fT(Ri). By (fT − 5), we have

x ∈ fT(
⋃

Ri). Consider nowfT(
⋃

Ri ∪ S). We can show thatfT(
⋃

Ri ∪ S) 6⊆
⋃

Ri, since
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otherwise, by (fT − 3) we would havefT(
⋃

Ri ∪ S) = fT(
⋃

Ri), and by Lemma 2.1 we would
concludefT(

⋃
Ri) ∩ S ⊆ fT(S), which contradicts the fact thatx ∈ fT(

⋃
Ri), butx 6∈ fT(S).

Consider hencey ∈ fT(
⋃

Ri ∪ S) s.t. y 6∈
⋃

Ri. We can observe thaty < x: indeed,x ∈
fT(

⋃
Ri), whereasy 6∈

⋃
Ri; however,

⋃
Ri ⊂

⋃
Ri ∪ S andy ∈ fT(

⋃
Ri ∪ S), theny < x by

the definition of<. Furthermore, sincey ∈ fT(
⋃

Ri ∪S), by (fT− 1) we have thaty ∈
⋃

Ri ∪S

and, sincey 6∈
⋃

Ri, we conclude thaty ∈ S. It follows thatx 6∈ Min<(S), contradiction, hence
Min<(S) ⊆ fT(S).

4. < satisfies the Smoothness Condition. LetS 6= ∅ andx ∈ S. If x ∈ fT(S) then by point 2
we havex ∈ Min<(S). If x 6∈ fT(S), we can reason as for point 3 to conclude that there is
y ∈ fT(

⋃
Ri ∪ S) s.t. y 6∈

⋃
Ri (hencey ∈ S), andy < x. By Lemma 2.1, we havey ∈ fT(S),

hence by point 2 we concludey ∈ Min<(S).

(“ If ” direction) Given a strict partial order< satisfying the Smoothness Condition, we can definefT :
Pow(∆) → Pow(∆) by lettingfT(S) = Min<(S). It can be easily shown thatfT satisfies postulates
(fT − 1) to (fT − 5). The proof is left to the reader.

⊓⊔

Having the above Representation Theorem, from now on, we will refer to the following semantics:

Definition 2.3. (Semantics ofALC + T)
A modelM is any structure〈∆, <, I〉, where∆ andI are defined as in Definition 2.1, and< is a strict
partial order over∆ satisfying the Smoothness Condition (see Definition 2.2 above). I is the extension
function that maps each extended conceptC to CI ⊆ ∆, and each roleR to aRI ⊆ ∆×∆. I is defined
in the usual way (as forALC) and, in addition,(T(C))I = Min<(CI).

Definition 2.4. (Model satisfying a Knowledge Base)
Consider a modelM, as defined in Definition 2.3. We extendI so that it assigns to each individuala of
O an elementaI of the domain∆. Given a KB (TBox,ABox), we say that:

• M satisfies TBox if for all inclusionsC ⊑ D in TBox, for all elementsx ∈ ∆, if x ∈ CI , then
x ∈ DI .

• M satisfies ABox if: (i) for allC(a) in ABox, we have thataI ∈ CI , (ii) for all aRb in ABox, we
have that(aI , bI) ∈ RI .

M satisfies a knowledge base if it satisfies both its TBox and itsABox.

Notice that the meaning ofT consists of two parts: for any elementx of the domain∆, x ∈ (T(C))I just
in case (i)x ∈ CI , and (ii) there is noy ∈ CI such thaty < x. In order to formalize (ii) in the calculus
that we present in Section 3, we introduce a new modality� whose interpretation inM is defined as
follows.

Definition 2.5. (�C)I = {x ∈ ∆ | for everyy ∈ ∆, if y < x theny ∈ CI}

The basic idea is simply to interpret the preference relation < as an accessibility relation. By the Smooth-
ness Condition, it turns out that the modality� has the properties of Gödel-Löb modal logic of provability
G. The Smoothness Condition ensures that typical elements of CI exist wheneverCI 6= ∅, by prevent-
ing infinitely descending chains of elements. This condition therefore corresponds to the finite-chain
condition on the accessibility relation (as in G). A similarcorrespondence has been presented in [14] to
interpret the preference relation in KLM logics. The following relation betweenT and� holds:
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Proposition 2.1. For allx ∈ ∆, we havex ∈ (T(C))I iff x ∈ CI andx ∈ (�¬C)I

Since we only use� to capture the meaning ofT, in the following we will always use� followed by a
negated concept, as in�¬C.

Let us now show that the satisfiability of anALC + T-knowledge base is a decidable problem and
it is precisely EXPTIME-complete. In order to do this, we need some more definitions. First of all, we
define the languageLKB of all subformulas of KB plus all boxed formulas�¬C such thatT(C) occurs
in KB:

Definition 2.6. Given anALC+T knowledge base KB=(TBox,ABox), we define the languageLKB as
follows: - if C is a subformula of KB, thenC ∈ LKB and¬C ∈ LKB; - if T(C) occurs in KB, then
�¬C ∈ LKB and¬�¬C ∈ LKB.

Let us now define thesaturationof a setA of formulas ofLKB:

Definition 2.7. Let KB=(TBox,ABox) be anALC + T knowledge base, and letA be a set of formulas
of LKB, i.e.,A ⊆ LKB. We say thatA is saturated if the following conditions hold:

• if ¬C ∈ LKB, thenC ∈ A if and only if¬C 6∈ A;
• if C ⊔ D ∈ LKB, thenC ⊔ D ∈ A if and only if C ∈ A or D ∈ A;
• if C ⊓ D ∈ LKB, thenC ⊓ D ∈ A if and only if C ∈ A andD ∈ A;
• if T(C) ∈ LKB, thenT(C) ∈ A if and only if C ∈ A and�¬C ∈ A;
• if ¬T(C) ∈ LKB, then¬T(C) ∈ A if and only if¬C ∈ A or ¬�¬C ∈ A;
• if C ⊑ D ∈ TBox, then ifC ∈ A thenD ∈ A.

Intuitively, given a set of formulasA of LKB, we say that it is saturated if it is free of obvious contra-
dictions, i.e., for allC ∈ LKB, eitherC ∈ A or ¬C ∈ A, but not both. In the following a saturated set
A ⊆ LKB will also be called anatom, and the set of all atomsA ⊆ LKB will be denoted byAt(LKB).
It is easy to see that a set of conceptsS = {C1, C2, . . . , Cn} of LKB such thatC1 ⊓ C2 ⊓ . . . ⊓ Cn is
satisfiable in some model of the TBox, can be extended to a saturated setA ∈ At(LKB).

We can show that, given anALC + T knowledge base KB=(TBox,ABox) such that the TBox is
consistent and the ABox is consistent w.r.t. the TBox, we canbuild a canonical model for KB by means
of a construction whose temporal complexity is exponentialin the size of the KB. The basic idea is that
of building a canonical model whose domain is a subset of the set of atomsAt(LKB).

Definition 2.8. Given anALC + T knowledge base KB=(TBox,ABox), we define acanonicalmodel
M = 〈∆, <, I〉 iteratively through the following steps:

(Step 1)Let:
• ∆ = At(LKB)

• I be the following extension function:

– concepts: givenA ∈ ∆, letA ∈ CI if and only if C ∈ A;
– roles: givenA ∈ ∆ andB ∈ ∆, let (A,B) ∈ RI if and only if there exists∃R.C ∈ A (resp.

¬∀R.C ∈ A) such that: (i)C ∈ B (resp. ¬C ∈ B); (ii) for all ∀R.D ∈ A (resp. for all
¬∃R.D ∈ A), D ∈ B (resp.¬D ∈ B);
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• <0 be the following relation:

– givenA ∈ ∆ andB ∈ ∆, let A <0 B if and only if there exists¬� ¬C ∈ B such that: (i)
C ∈ A and�¬C ∈ A; (ii) for each�¬D ∈ B, D ∈ A and�¬D ∈ A;

(Step 2)Repeatedly update∆, I and<0 as follows:

• remove from∆ all A such that:∃R.C ∈ A (resp.¬∀R.C ∈ A) and there is noB ∈ ∆ such that
(A,B) ∈ RI andC ∈ B (resp.¬C ∈ B);

• remove from∆ all B such that:¬� ¬C ∈ B and there is noA ∈ ∆ such thatA <0 B andC ∈ A
and�¬C ∈ A;

• UpdateI and<0 accordingly (by removing from eachCI all the atoms which have been removed
from ∆; by removing fromRI all the pairs(A,B) such that eitherA orB has been removed from
∆, etc.)

until no further deletion of atoms from∆ is possible.

(Step 3)Define the preference relation< as the transitive closure of<0.

Observe that, (Step 2) above removes from the domain∆ those domain elements containing existential
(or negated Box) concepts of which that domain element cannot be an instance. Due to the finiteness of
the set∆ as defined in (Step 1), the number of iterations in (Step 2) must be finite.

It is easy to prove that, given the canonical modelM = 〈∆, <, I〉 of Definition 2.8, the functionI
is defined according to the semantics ofALC + T, namely:

- A ∈ (D ⊔ E)I if and only if eitherA ∈ DI or A ∈ EI ;
- A ∈ (D ⊓ E)I if and only ifA ∈ DI andA ∈ EI ;
- A ∈ (¬D)I if and only if A 6∈ DI ;
- A ∈ (∃R.C)I if and only if there is aB ∈ ∆ such that(A,B) ∈ RI andB ∈ CI ;
- (T(C))I = Min<(CI).

The proof of all cases is obvious apart from the last one, for which we prove the next two lemmas.

Lemma 2.2. Let KB=(TBox,ABox) be anALC + T knowledge base and letM = 〈∆, <, I〉 be the
canonical model of Definition 2.8. GivenA ∈ ∆, if �¬C ∈ A, then for allB < A we have that¬C ∈ B
and�¬C ∈ B.

Proof:
We distinguish two cases: (i)B <0 A: by construction, for all�¬C ∈ A we have that¬C ∈ B
and�¬C ∈ B and we are done; (ii)B < A has been obtained by the transitive closure of<0 with
B <0 A1 <0 A2 <0 · · · <0 An−1 <0 An <0 A. By construction, for all�¬C ∈ A, we have that
¬C ∈ An and�¬C ∈ An. For the same reason, we have that¬C ∈ An−1 and�¬C ∈ An−1, and so
on, then¬C ∈ B and�¬C ∈ B, and we are done.

⊓⊔

Lemma 2.3. Given anALC + T knowledge base KB=(TBox,ABox) and given the canonical model
M = 〈∆, <, I〉 of Definition 2.8, we have that(T(C))I = Min<(CI).
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Proof:
First, we prove that(T(C))I ⊆ Min<(CI). ConsiderA ∈ (T(C))I . By the definition of the extension
functionI in Definition 2.8, we have thatT(C) ∈ A sinceA ∈ (T(C))I . SinceA is saturated (Defini-
tion 2.7), we have thatC ∈ A and�¬C ∈ A, then (i)A ∈ CI by construction ofI in the model. Let us
now consider eachB ∈ ∆ such thatB < A: since�¬C ∈ A, by Lemma 2.2 we have that¬C ∈ B then,
by the definition of the extension functionI in the model, we have that (ii)B 6∈ CI . We can conclude
that (i)A ∈ CI and (ii) for eachB < A we haveB 6∈ CI , i.e.,A ∈ Min<(CI).
Second, we prove thatMin<(CI) ⊆ (T(C))I . ConsiderA ∈ Min<(CI). By definition, we have that
A ∈ CI and there is notB < A such thatB ∈ CI . SinceA ∈ CI , we have that (i)C ∈ A by the
definition of I in Definition 2.8. By absurd, suppose that�¬C 6∈ A: sinceA is saturated (Definition
2.7),¬�¬C ∈ A. By construction of the canonical model, there existsB′ < A such thatC ∈ B′ and
�¬C ∈ B′ then, by the definition ofI, B′ ∈ CI . Therefore, there existsB′ < A such thatB′ ∈ CI ,
against the hypothesis thatA ∈ Min<(CI). We can conclude that (ii)�¬C ∈ A. SinceA is saturated
(Definition 2.7),T(C) ∈ A. We conclude thatA ∈ (T(C))I by the definition ofI in Definition 2.8. ⊓⊔

To show that the canonical model is indeed a model, we also need to show that the relation< satisfies
the properties of a preference relation.

Lemma 2.4. Given anALC + T knowledge base KB=(TBox,ABox) and given the canonical model
M = 〈∆, <, I〉 of Definition 2.8, we have that< is an irreflexive and transitive relation and satisfies the
smoothness condition.

Proof:
Transitivity follows from the definition of< from <0. For the irreflexivity, suppose by absurd that
B < B for someB ∈ ∆. We distinguish two cases:(i) B <0 B, then there exists¬�¬C ∈ B and, by
construction, also�¬C ∈ B, against the fact thatB is saturated;(ii) B < B sinceB < A1 < A2 <

· · · < An < A < B for someA,A1,A2, . . . ,An ∈ ∆. SinceA < B, there is¬�¬C ∈ B such that
�¬C ∈ A. By Lemma 2.2, for allB′ < A we have that¬C ∈ B′ and�¬C ∈ B′, then also�¬C ∈ B
sinceB < A, once again against the saturation ofB. Concerning the smoothness condition, we have to
show that, given a setS, if S 6= ∅, then alsoMin<(S) 6= ∅. This immediately follows from the fact that
< does not contain infinite descending chains of elements of∆; since∆ = At(LKB) is finite, then we
have only to show that< is acyclic. This immediately follows from irreflexivity. ⊓⊔

We have seen that the canonical modelM defined above is indeed anALC+T model. We will see later
thatM satisfies all the inclusion occurring in the TBox of the givenKB. However, up to now we have
not yet defined how the functionI can map individuals occurring in the ABox into domain elements.
This mapping should be defined in such a way that the assertions in the ABox are satisfied. How can we
be sure that, for each individuala occurring in the Abox, we can find a proper element of the domain,
namely an atomA ∈ ∆ such that for all the conceptC with C(a) ∈ABox, C belongs toA?

We need to introduce some further Lemmas. Given an atomA ∈At(LKB), whereA={C1, . . . , Cn},
let us denote byÂ the conceptC1 ⊓ . . . ⊓ Cn. The next lemma says that an atom which has not been
included in the canonical model corresponds to a set of concepts which are not conjunctively satisfiable
(with respect to the TBox).
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Lemma 2.5. Given anALC + T knowledge base KB=(TBox,ABox) and given the canonical model
M = 〈∆, <, I〉 of Definition 2.8, for all atomsA ∈ At(LKB), if A 6∈ ∆, then in all modelsM′ =
〈∆′, <′, I ′〉 satisfying the TBox,ÂI′ = ∅.

Proof:
We give a sketch of the proof. IfA ∈ At(LKB) andA 6∈ ∆, it is the case that, during the construction of
the canonical model, atomA has been deleted from the domain∆ at some iteration step within (Step 2).
The theses can be proved by induction on the order in which atoms have been deleted from∆ during the
construction of the model.

Let us consider in detail the base case. AssumeA ∈ At(LKB) andA is deleted from∆ at the first
iteration step. There are two possible cases: either (1) there is a concept∃R.C ∈ A and there is no
B ∈ ∆ with (A,B) ∈ RI andC ∈ B or (2) there is a concept¬�¬C ∈ A and there is noB ∈ ∆
such thatB <0 A and C ∈ B and �¬C ∈ B. Let us consider case (1) (case (2) is similar). By
construction of the canonical model, it must be the case that, there is noB in ∆ such thatC ∈ B and,
for all for all ∀R.D ∈ A (resp. for all¬∃R.D ∈ A), D ∈ B (resp. ¬D ∈ B). Let D1, . . . ,Dk be
all conceptsDi such that either∀R.Di ∈ A or ¬∃R.Di ∈ A. It must be that there is no atomB ∈ ∆
such that{C,D1, . . . ,Dk} ⊆ B. As it is not the case thatB has been rejected from∆ (A has been
rejected at the first iteration step), then there is no atomB ∈ At(LKB) such that{C,D1, . . . ,Dk} ⊆ B.
Then the conceptC ⊓ D1 ⊓ . . . ⊓ Dk is not satisfiable with respect to the TBox, that is, in all models
M′ = 〈∆′, <′, I ′〉 satisfying the TBox,(C ⊓ D1 ⊓ . . . ⊓ Dk)

I′ = ∅. Therefore, in all modelsM′

satisfying the TBox,ÂI′ = ∅. We omit the inductive case.
⊓⊔

Lemma 2.6. Let KB=(TBox,ABox) be anALC + T knowledge base and letS ⊆ LKB. If there is a
modelM′ = 〈∆′, <′, I ′〉 satisfying the TBox and a domain elementx ∈ ∆′ such thatx ∈ CI′

i , for all
Ci ∈ S, then there is an atomA ∈ ∆ such thatS ⊆ A.

Proof:
Assume, by absurdum, that there is no atomA ∈ ∆ such thatS ⊆ A. Let A1, . . . ,Ar be all the
atoms inAt(LKB) such thatS ⊆ Ai (if S is not contained in any atomAi ∈ At(LKB), thenŜ would
not be satisfiable with respect to the TBox, against the hypothesis). By hypothesis, there is a model
M′ = 〈∆′, <′, I ′〉 satisfying the TBox and a domain elementx ∈ ∆′ such thatx ∈ CI′

i , for all Ci ∈ S.

Hence,ŜI′ 6= ∅. Then it is easy to see that, for somei = 1, .., r, Âi
I′

6= ∅. By Lemma 2.5,Ai ∈ ∆.
⊓⊔

The last Lemma guarantees that, for a KB=(TBox,ABox), wherethe TBox is consistent and the ABox is
consistent w.r.t. the TBox, given an individuala occurring in the ABox, it is always possible to find an
elementA of the domain∆ of the canonical model such that{C1, .., Cn} ⊆ A, whereC1(a), .., Cn(a)
are all the assertions concerninga in the ABox. Hence, the assertions of the formC(a) can be made true
in the canonical model, by definingaI = A, for such anA. We have also to ensure that all the assertions
of the formR(a, b) can be made true in the canonical model by a proper choice ofaI andbI .

Given anALC + T knowledge base KB=(TBox,ABox) and given an individuala explicitly men-
tioned in the ABox, we writeσ(a) to denote the set of concepts of whicha is an instance, i.e.,σ(a) =
{C ∈ LKB | C(a) ∈ ABox}.
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Lemma 2.7. Let KB=(TBox,ABox) be anALC +T knowledge base, where the TBox is consistent and
the ABox is consistent w.r.t. the TBox, and letM = 〈∆, <, I〉 be a canonical model as in Definition 2.8.
The following properties hold:

1. given an individuala explicitly mentioned in the ABox, there existsA ∈ ∆ such thatσ(a) ⊆ A;
2. if R(a, b) ∈ ABox, there existA,B ∈ ∆ such that:(i) σ(a) ⊆ A, (ii) σ(b) ⊆ B and,(iii) for all

∀R.C ∈ A (resp. for all¬∃R.C ∈ A), we have thatC ∈ B (resp.¬C ∈ B).

Proof:
1. The conclusion follows immediately from Lemma 2.6.
2. As the ABox is consistent w.r.t. the TBox, there must be a modelM′ = 〈∆′, <′, I ′〉 satisfying both

the TBox and the ABox. In particular, there is a domain element aI′ ∈ ∆′ such thataI′ ∈ CI′, for
all C ∈ σ(a). Let us consider the setSa of all the concepts (including those inσ(a)) of whichaI′

is an instance. By Lemma 2.6, there must be an atomA ∈ ∆ such thatSa ⊆ A.

Similarly, there is a domain elementbI′ ∈ ∆′ such thatbI′ ∈ CI′ , for all C ∈ σ(b). Let us consider
the setSb of all the concepts (including those inσ(b)) of which bI′ is an instance. By Lemma 2.6,
there must be an atomB ∈ ∆ such thatSb ⊆ B.

Finally, sinceR(a, b) ∈ABox, then it must be that(aI′ , bI′) ∈ RI′ . Let us consider any∀R.C ∈ A.
It must be that in the modelM′, aI′ ∈ (∀R.D)I

′

. Then, it must be thatbI′ ∈ DI′ . Hence,D ∈ Sb

andD ∈ B. This proves our thesis, as we have found two atomsA,B ∈ ∆ satisfying condition 2
above.

⊓⊔

We can now define a modelM′ of a KB:

Definition 2.9. Given anALC + T knowledge base KB=(TBox,ABox), where the TBox is consistent
and the ABox is consistent w.r.t. the TBox, and given the canonical modelM = 〈∆, <, I〉 of Definition
2.8, we define the modelM′ = 〈∆, <, I ′〉 whereI ′ extendsI as follows: 1. by properly assigning to
each individuala of the ABox an elementA ∈ ∆, call it aI′ , such that (i)σ(a) ⊆ A and (ii) for all
R(a, b) ∈ ABox and for all∀R.C ∈ A (resp.¬∃R.C ∈ A) we haveC ∈ B (resp.¬C ∈ B), where
B = bI′ , and2. by adding(aI′ , bI′) ∈ RI′ for eachR(a, b) ∈ ABox.

It is easy to see that the addition of a pair(aI′ , bI′) to RI′ for eachR(a, b) ∈ ABox preserves the
properties of the extension function in the model. In particular:

Lemma 2.8. Let KB=(TBox,ABox) be anALC +T knowledge base, where the TBox is consistent and
the ABox is consistent w.r.t. the TBox, and letM′ = 〈∆, <, I ′〉 be the model of Definition 2.9. Given
A ∈ ∆ andB ∈ ∆, then if (A,B) ∈ RI′ andA ∈ (∀R.C)I

′

(resp.A ∈ (¬∃R.C)I
′

), then alsoB ∈ CI′

(resp.B ∈ (¬C)I
′

).

Proof:
We distinguish two cases.1. (A,B) ∈ RI , i.e.A andB are alreadyR-related in the canonical model of
Definition 2.8: this means that, for all∀R.C ∈ A (resp. for all¬∃R.C ∈ A) we have thatC ∈ B (resp.
¬C ∈ B). By construction ofM′, we can conclude thatB ∈ CI′ (resp.B ∈ (¬C)I

′

). 2. (A,B) 6∈ RI ,
while (A,B) ∈ RI′ : (A,B) has been added toRI′ in step 2 of the construction ofM′ to satisfy some
R(a, b) ∈ ABox. In such a case, the conclusion follows immediatley follows from part 2. of Lemma 2.7.

⊓⊔
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We are able to prove that:

Theorem 2.2. Given anALC + T knowledge base KB=(TBox,ABox), where the TBox is consistent
and the ABox is consistent w.r.t. the TBox, the modelM′ = 〈∆, <, I ′〉 of Definition 2.9 satisfies KB.

Proof:
First of all, Lemmas 2.3 and 2.8 show thatI ′ is an extension function in the sense of Definition 2.1.
Moreover, Lemma 2.4 shows that< is an irreflexive and transitive relation and satisfies the smoothness
condition. We have to show that both the TBox and the ABox are satisfiable inM′:

• TBox: for eachC ⊑ D ∈ TBox, we have to show that, for eachA ∈ ∆, if A ∈ CI′ then also
A ∈ DI′ . SupposeA ∈ CI′ . By construction, we have thatC ∈ A. SinceA is saturated, we have
also thatD ∈ A and, by construction of the model,A ∈ DI′ , and we are done;

• ABox: we have to show that, for eachC(a) ∈ ABox and for eachR(a, b) ∈ ABox, aI′ ∈ CI′ and
(aI′ , bI′) ∈ RI′ . This follows by the construction ofM′ in Definition 2.9.

⊓⊔

We conclude with a complexity analysis ofALC + T:

Theorem 2.3. Given anALC + T knowledge base KB=(TBox,ABox), the problem of deciding satisfi-
ability of KB is EXPTIME-complete.

Proof:
First, we prove that the problem of deciding satisfiability of KB is in EXPTIME. If KB is satisfiable,
we can build a model as defined in Definition 2.9. Letn be the length of the string representing KB: the
cardinality of the languageLKB (Definition 2.6) isO(n), then the number of different sets of formulas
of LKB is O(2n). Also the size ofAt(LKB) is O(2n). The size of each set of formulas ofAt(LKB) is
O(n).

The construction of the canonical model in Definition 2.9 starts with (Step 1) the definition of a do-
main∆ containingO(2n) atoms, and the definition of the binary relations<0 andRIs onAt(LKB). The
definition of each of these relations requires, at most,O(2n) steps. Indeed, the construction introduces at
mostO(2n)×O(2n) pairs(A,B) for eachRI (where the different roles are at mostO(n)), and the same
for <0. Observe that the iterative step (Step 2) requires at mostO(2n) iterations, since each iteration
removes at least one atom from∆. Moreover, each iteration requires at mostO(2n) steps. It is easy to
see that also (Step 3) and the assignment of a domain element to each individual occurring in the ABox,
as done in Definition 2.9, require at mostO(2n) steps.

The standard DLALC is EXPTIME-complete [1]. Since our logicALC + T extendsALC, it
immediately follows that the problem of deciding satisfiability of KB is EXPTIME-hard. ⊓⊔

Let us finally consider other standard reasoning tasks for DLs. Given a KB, we consider:
• concept satisfiability: given a conceptC, is there a model of KB assigning a non empty extension

to C?
• subsumption: given two conceptsC andD, is C more general thanD in any model of KB?
• instance checking: given an individuala and a conceptC, is a an instance ofC in any model of

KB?
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Theorem 2.4. In ALC+T, given a KB=(TBox,ABox), the problems ofconcept satisfiability, subsump-
tion and ofinstance checkingare EXPTIME-complete.

Proof:
The problem ofconcept satisfiabilitycan be reduced to the problem of satisfiability of KB’=(TBox,ABox’),
where ABox’=ABox∪{C(a)}, with a not occurring in ABox, therefore it is EXPTIME-complete. The
problem ofconcept satisfiabilityextends the problem of satisfiability of a KB, therefore it isEXP-
TIME-complete. Concerning the problems ofsubsumptionand ofinstance checking, let us consider the
complementary problem of deciding whether KB6|= α, whereα is eitherC ⊑ D or C(a), respectively.
These problems can be reduced to the problem of verifying thesatisfiability of KB∪ {¬α}2, which is
EXPTIME-complete. It follows that subsumption and instance checking areCO-EXPTIME-complete,
then they are EXPTIME-complete sinceCO-EXPTIME=EXPTIME (see Chapter 7 in [22]). ⊓⊔

3. A Tableaux calculus forALC + T

In this section we present a tableau calculus for deciding the satisfiability of a knowledge base. Given a
KB (TBox,ABox), any concrete reasoning system should provide the usual reasoning services, namely,
satisfiability of the KB, concept satisfiability, subsumption, andinstance checking. It is well known that
the latter three services are reducible to the satisfiability of a KB.

We introduce a labelled tableau calculus for our logicALC +T, which enriches the labelled tableau
calculus forALC presented in [7]. The calculus is calledTALC+T and it is based on the notion of
constraint system. We consider a set ofvariablesdrawn from a denumerable setV. TALC+T makes use
of labels, which are denoted withx, y, z, . . . . Labels represent either a variable or an individual of the
ABox, that is to say an element ofO ∪ V.

A constraint is a syntactic entity of the formx
R

−→ y or y < x or x : C, whereR is a role and
C is either an extended concept or has the form�¬D or ¬�¬D, whereD is a concept. The ABox of
anALC + T-knowledge base can be translated into a set of constraints by replacing every membership

assertionC(a) with the constrainta : C and every roleaRb with the constrainta
R

−→ b (Definition 3.1).
A tableau is a tree whose nodes are pairs〈S | U〉, where:

• S contains constraints (orlabelledformulas) of the formx : C or x
R

−→ y or y < x;

• U contains formulas of the formC ⊑ DL, representing subsumption relationsC ⊑ D of the TBox.
L is a list of labels. As we will discuss later, this list is usedin order to ensure the termination of
the tableau calculus.

A node 〈S | U〉 is also called aconstraint system. A branch is a sequence of nodes〈S1 | U1〉, 〈S2 |
U2〉, . . . , 〈Sn | Un〉 . . . , where each node〈Si | Ui〉 is obtained by its immediate predecessor〈Si−1 |
Ui−1〉 by applying a rule ofTALC+T, having〈Si−1 | Ui−1〉 as the premise and〈Si | Ui〉 as one of its
conclusions. A branch is closed if one of its nodes is an instance of (Clash), otherwise it is open. We say
that a tableau is closed if all its branches are closed.

Given a KB, we define itscorresponding constraint systemas follows:

2In caseα has the formC ⊑ D, for ¬α we mean(C ⊓ ¬D)(b), givenb not appearing in the KB.
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Definition 3.1. (Corresponding constraint system)
Given anALC + T-knowledge base(TBox,ABox), we define itscorresponding constraint system〈S |

U〉 as follows:S = {a : C | C(a) ∈ ABox} ∪ {a
R

−→ b | aRb ∈ ABox} andU = {C ⊑ D∅ | C ⊑
D ∈ TBox}.

Definition 3.2. (Model satisfying a constraint system)
Let M = 〈∆, <M, I〉 be a model as defined in Definition 2.4. We define a functionα which assigns
to each variable ofV an element of∆ and assigns every individuala ∈ O to aI ∈ ∆. M satisfies (i)

x : C underα if α(x) ∈ CI , (ii) x
R

−→ y underα if (α(x), α(y)) ∈ RI and (iii) y < x underα if
α(y) <M α(x). A constraint system〈S | U〉 is satisfiable if there is a modelM and a functionα such
thatM satisfies underα every constraint inS and that, for allC ⊑ D ∈ U and for allx occurring inS,
we have that ifα(x) ∈ CI , thenα(x) ∈ DI .

It can be easily shown that:

Proposition 3.1. Given anALC + T-knowledge base, it is satisfiable if and only if its corresponding
constraint system is satisfiable.

Therefore, in order to check the satisfiability of (TBox,ABox), we build its corresponding constraint
system〈S | U〉 and then we useTALC+T to check the satisfiability of〈S | U〉. In order to check a
constraint system〈S | U〉 for satisfiability, our calculusTALC+T adopts the usual technique of applying
the rules until either a contradiction is generated (Clash)or a model satisfying〈S | U〉 can be obtained
from the resulting constraint system.

In order to take into account the TBox, we use a technique ofunfolding, similar to the one described
in [7]. Given a node〈S | U〉, for each subsumptionC ⊑ DL ∈ U and for each labelx that appears in
S, we add toS the constraintx : ¬C ⊔ D. As mentioned above, each formulaC ⊑ D is equipped by
the listL of labels in which it has been unfolded in the current branch.This is needed in order to avoid
multiple unfolding of the same subsumption by using the samelabel, generating non-termination in a
proof search.

Before introducing the rules ofTALC+T we need some more definitions. First, as in [7], we assume
that labels are introduced in a tableau according to an ordering ≺, that is to say ify is introduced in the
tableau, thenx ≺ y for all labelsx that are already in the tableau.

Given a tableau node〈S | U〉 and a labelx, we defineσ(〈S | U〉, x) = {C | x : C ∈ S}.
Furthermore, we say that two labelsx andy areS-equivalent, writtenx ≡S y, if they label the same set
of concepts, i.e.,σ(〈S | U〉, x) = σ(〈S | U〉, y). Intuitively, S-equivalent labels can represent the same
element in the model built by the rules ofTALC+T. Last, we defineSM

x→y = {y : ¬C, y : �¬C | x :

�¬C ∈ S}. SM
x→y is used in order to propagate both the argument¬C of a boxed formula�¬C and the

boxed formula�¬C itself, due to transitivity.
The rules ofTALC+T are presented in Figure 1. Rules(∃+), (∀−), and(�−) are calleddynamic

since they introduce a new variable in their conclusions. The other rules are calledstatic. We do not
need any extra rule for the positive occurrences of the� operator, since these are taken into account by
the computation ofSM

x→y. Intuitively, when the rule(�−) is applied tox : ¬�¬D generating a new
labely such thaty < x, then, for eachx : �¬C in S, the rule propagates the boxed formula by adding
(i) its argumenty : ¬C and (ii) y : �¬C since< is transitive.



L. Giordano, V. Gliozzi, N. Olivetti, G.L. Pozzato / Extension of Description Logics for Reasoning About Typicality15

(Clash)〈S, x : C, x : ¬C | U〉

〈S, x : C, x : !¬C | U〉 〈S, x : ¬!¬C | U〉〈S, x : ¬C | U〉

〈S, x : ∀R.C, x
R

−→ y, y : C | U〉

〈S, x : ∀R.C, x
R

−→ y | U〉

(!−)
〈S, x : ¬!¬C | U〉

〈S, x : ∃R.C | U〉

(Unfold)
〈S, x : ¬C ⊔ D | U,C ⊑ DL,x〉

〈S | U,C ⊑ DL〉

(∃+)(∀+)

〈S, x : ¬∀R.C | U〉
(∃−)

(∀−)

〈S, x : ¬∃R.C, x
R

−→ y, y : ¬C | U〉

〈S, x : ¬∃R.C, x
R

−→ y | U〉

〈S, x : ¬¬C | U〉
(¬)

〈S, x : C | U〉

(T+)
〈S, x : T(C) | U〉

(T−)
〈S, x : ¬T(C) | U〉

〈S, x : ∃R.C, x
R

−→ y, y : C | U〉

〈S, x : ¬∀R.C, x
R

−→ y, y : ¬C | U〉

if ! ∃z ≺ x s.t. z ≡S,x:∃R.C x and

! ∃u s.t. x
R

−→ u ∈ S and u : C ∈ S

! ∃u s.t. x
R

−→ u ∈ S and u : ¬C ∈ S

if ! ∃z ≺ x s.t. z ≡S,x:¬∀R.C x and

if y : ¬C !∈ S

if y : C !∈ S

if x occurs in S and x !∈ L
y new

y new

y new

〈S, x : ¬!¬C, y < x, y : C, y : !¬C,SM
x→y | U〉

if ∄z ≺ x s.t. z ≡S,x:¬!¬C x and

∄u s.t. {u < x, u : C, u : !¬C,SM
x→u

} ⊆ S

Figure 1. The calculusTALC+T. To save space, we omit the standard rules for⊔ and⊓.

The side conditions on the rules(∃+), (∀−), and(�−) are introduced in order to ensure a terminating
proof search, by implementing the standardblockingtechnique described below. The rules ofTALC+T

are applied with the followingstandard strategy: 1. apply a rule to a labelx only if no rule is applicable
to a labely such thaty ≺ x; 2. apply dynamic rules only if no static rule is applicable.This strategy
ensures that the labels are considered one at a time according to the ordering≺. Consider an application
of a dynamic rule to a labelx of a constraint system〈S | U〉. For all 〈S′ | U ′〉 obtained from〈S | U〉
by a sequence of rule applications, it can be easily shown that (i) no rule can be applied in〈S′ | U ′〉
to a labely s.t. y ≺ x and(ii) σ(〈S | U〉, x) = σ(〈S′ | U ′〉, x). The calculus so obtained is sound
and complete with respect to the semantics described in Definition 3.2. In order to prove this, we first
introduce the notion ofwitness:

Definition 3.3. (Witness)
Given a constraint system〈S | U〉 and two labelsx andy occurring inS, we say thatx is a witness of
y if the following conditions hold: 1.x ≡S y; 2. x ≺ y; 3. there is no labelz s.t. z ≺ x andz satisfies
conditions 1. and 2., i.e.,x is the least label satisfying conditions 1. and 2. w.r.t.≺. We say thaty is
blockedby x in 〈S | U〉 if y has witnessx.

By the strategy on the application of the rules described above and by Definition 3.3, we can prove the
following Lemma:

Lemma 3.1. In any constraint system〈S | U〉, if x is blocked, then it has exactly one witness.

Since all the rules are invertible, we can assume that there is only one single tableau (there can be several
that only differ as far as the labels’ names are concerned). In order to prove the completeness of the
calculus, we need to introduce the notion of saturated branch. Informally speaking, this is a branch in
which all the rules of the calculus have been applied as much as possible. More formally:
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Definition 3.4. (Saturated Branch)
A branchB=〈S0 | U0〉, 〈S1 | U1〉, . . . , 〈Si | Ui〉, . . . is saturatedif the following conditions hold: 1. for
all C ⊑ DL and for all labelsx occurring inB, eitherx : ¬C or x : D belong toB; 2. if x : T(C) occurs
in B, thenx : C andx : �¬C occur inB; 3. if x : ¬T(C) occurs inB, then eitherx : ¬C or x : ¬�¬C

occurs inB; 4. if x : ¬�¬C occurs inB, then either there isy such thaty < x, y : C, y : �¬C, and
SM

x→y occur inB or x is blocked by a witnessw, and there isy such thaty < w, y : C, y : �¬C, and

SM
w→y occur inB; 5. if x : ∃R.C occurs inB, then either there isy such thatx

R
−→ y andy : C occur

in B or x is blocked by a witnessw, andw
R

−→ y andy : C occur inB; 6. if x : ∀R.C andx
R

−→ y

occur inB, alsoy : C occurs inB; 7. for x : ¬∀R.C and forx : ¬∃R.C the condition of saturation is
defined symmetrically; 8. for the boolean rules the condition of saturation is defined in the usual way.
For instance, ifx : C ⊓ D occurs inB, alsox : C andx : D.

By following the strategy on the order of application of the rules outlined above and by Lemma 3.1, the
following Proposition holds:

Proposition 3.2. Any open branch can be expanded into an opensaturatedbranch.

In order to show the completeness ofTALC+T, given an open, saturated branchB, we explicitly add to
B the relationy < x if x is blocked andw is the witness ofx andy < w occurs inB. Before proving the
completeness, we prove the following Lemma:

Lemma 3.2. In the tableau, there is no open branchB containing an infinite descending chain. . . x2 <

x1 < x0.

Proof:
The only way to obtain an infinite descending chain. . . x2 < x1 < x0 would be to have either (i) a loop
or (ii) an infinite set of distinct labels. We can show that neither (i) nor (ii) can occur. As far as (i) is
concerned, suppose for absurd that there were a loop, that isto say there is an infinite descending chain
x < u < · · · < yi < · · · < y < x. The relationx < u cannot have been inserted in the branch by the
rule (�−), that can only introduce in the branch relationsx < u wherex is a new label. Hence,x < u

must have been introduced becauseu is blocked by some witnessw, andx < w occurs inB. Notice,
however, that in this case: 1.x < w has been introduced by(�−) applied to somew : ¬�¬C, hence,
x : �¬C occurs inB; 2. it can be easily proved that also for allyi and foru, we have thatyi : �¬C

andu : �¬C belong toB; 3. sincew is a witness ofu, alsou : ¬�¬C occurs in the branchB, which
contradicts the hypothesis thatB was open. Concerning (ii), suppose there were an infinite descending
chain< · · · < xi · · · < x0. Each relation must be generated by a¬�¬C that has not yet been used in
the chain, either by an application of the rule(�−) to ¬�¬C in xi−1, or by an application of the rule
(�−) to¬�¬C in the witnessw of xi−1. Indeed, if¬�¬C had been previously used in the chain, say in
introducingxi < xi−1, for eachxj such thatxj < · · · < xi, xj : �¬C is in B, hencexj : ¬�¬C cannot
be in B, otherwiseB would be closed, against the hypothesis. Notice however that the only formulas
¬�¬C that appear in the branch are derived fromT(C) appearing in the initial constraint system. Since
the number of suchT(C) is finite, it follows that also the number of possible different ¬�¬C is finite,
and the infinite descending chain cannot be generated.

⊓⊔



L. Giordano, V. Gliozzi, N. Olivetti, G.L. Pozzato / Extension of Description Logics for Reasoning About Typicality17

With the above propositions at hand, we can show that:

Theorem 3.1. (Soundness and Completeness ofTALC+T)
Given a constraint system〈S | U〉, it is unsatisfiable iff it has a closed tableau.

Proof:
As usual, the soundness can be proven by induction on the height of the closed tableau for〈S | U〉. By
considering each rule ofTALC+T, it can be easily shown that if the premise is satisfiable, so is (at least)
one of its conclusion. The theorem follows by contraposition.

Concerning the completeness, we show the contrapositive, i.e., that if the tableau is open, then the
starting constraint system is satisfiable. An open tableau contains an open branch that by Proposition 3.2
can be expanded into an opensaturatedbranch. From such a branch, call itB, we define a canonical
modelM = 〈∆B, <′, I〉 where: ∆B = {x : x is a label appearing inB}; <′ is the transitive closure
of relation< in B; I is an interpretation function s.t. for all atomic conceptsA, AI = {x such that
x : A occurs inB}. I is then extended to all conceptsC in the standard way, according to the semantics

of the operators. For role namesR, RI = {(x, y) : eitherx
R

−→ y occurs inB or x is blocked andw is

the witness ofx (by Lemma 3.1 suchw exists) andw
R

−→ y occurs inB}. We can show that:

• <′ is irreflexive, transitive, and satisfies the Smoothness Condition. Irreflexivity follows from the
fact that the relation< is either introduced by rule (�

−) between a label already present inB and a
new label or is explicitly added in case somex : ¬�¬C is on the branch andx is blocked. In this
case, suppose by absurd thatx < x is added, this means thatx is blocked byw, thusw : ¬�¬C

belongs toB, as well asx < w, x : C, x : �¬C belong toB, but this contradicts the fact thatB
is open (bothx : ¬�¬C andx : �¬C occur). Transitivity follows from definition of<′. The
Smoothness Condition follows from transitivity of<′ together with the finiteness of chains of<

deriving from Lemma 3.2.

• for all conceptsC we have:(a) if x : C occurs inB, thenx ∈ CI ; (b) if x : ¬C occurs inB, then
x ∈ (¬C)I . We reason by induction on the complexity ofC. If C is a boolean combination of
concepts, the proof is simple and left to the reader.

If C is ∃R.D, then by saturation, eitherx
R

−→ y, y : C occur inB or w
R

−→ y, y : C occur inB,
for w witness ofx. In both cases,(x, y) ∈ RI by construction, and by inductive hypothesis
y ∈ CI , hence (a) follows. (b) can be proven similarly to the following case (a).

If C is ∀R.D, then by saturation, for ally s.t.x
R

−→ y occurs inB, alsoy : D occurs inB, and the
(a) holds by the inductive hypothesis. (b) can be proven similarly to the previous case (a).

If C is �¬D andx : �¬D occurs inB, let xi <′ x, then there isxi < y < · · · < u < x, where
each relation has been introduced either by (�

−) or by the completion described before Lemma
3.2. Observe that, in both cases,u : ¬D andu : �¬D are added toB, since they belong to the
conclusion of the first application of(�−) generatingu. For the same reason, further applications
of (�−) introducey : ¬D andy : �¬D. Therefore, alsoxi : ¬D occurs inB. By inductive
hypothesis,xi ∈ (¬D)I , hencex ∈ (�¬D)I . If x : ¬�¬D, then by saturation there isy s.t.
y < x, y : D andy : �¬D occur inB. By definition of<′, we have thaty <′ x and, by inductive
hypothesis,y ∈ DI andy ∈ (�¬D)I . It follows thatx ∈ (¬�¬D)I .
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〈x : T(A), x : S | T(A) ⊑ T ∅,T(S) ⊑ A∅,T(S) ⊑ ¬T ∅〉

〈x : ¬A, x : A, . . . | . . .〉 〈x : ¬!¬A, x : !¬A, . . . | . . .〉

〈x : ¬T, x : T, . . . | . . .〉

〈x : ¬S, x : S, . . . | . . .〉

〈y : ¬A, y : A, . . . | . . .〉

〈y : ¬!¬S, y : !¬S, . . . | . . .〉〈y : ¬S, y : S, . . . | . . .〉

〈x : A, x : !¬A, x : S | . . .〉

〈x : ¬T(A) ⊔ T, x : A, x : !¬A, x : S | T(A) ⊑ T {x}, . . .〉

〈x : ¬T(A), x : A, x : !¬A, x : S | . . .〉 〈x : T, x : A, x : !¬A, x : S | . . .〉

〈x : ¬T(S) ⊔ ¬T, x : T, x : !¬A, x : S, . . . | T(S) ⊑ ¬T {x}, . . .〉

〈x : ¬T(S), x : !¬A, x : S, . . . | . . .〉

〈x : ¬!¬S, x : !¬A, . . . | . . .〉

〈y : S, y : !¬S, y : ¬A, . . . | . . .〉

〈y : ¬T(S), y : S, y : !¬S, . . . | . . .〉

〈y : ¬T(S) ⊔ A, y : S, y : !¬S, y : ¬A, . . . | T(S) ⊑ A{y}, . . .〉

Figure 2. A closed tableau showing thatT(Adult) ⊑ ¬Student can be inferred from the TBox{T(Adult) ⊑
TaxPayer ,T(Student) ⊑ Adult ,T(Student) ⊑ ¬TaxPayer}. To save space, we useA for Adult , T for
TaxPayer , andS for Student .

If C is T(D) andx : T(D) occurs inB, by saturation, bothx : D andx : �¬D occur inB,
hence by inductive hypothesisx ∈ DI andx ∈ (�¬D)I , and by Proposition 2.1,x ∈ (T(D))I .
If x : ¬T(D) occurs inB, then by saturation alsox : ¬D occurs inB or x : ¬�¬D occurs inB.
By inductive hypothesis eitherx 6∈ DI or x 6∈ (�¬D)I . In both cases, by Proposition 2.1, we
conclude thatx ∈ (¬T(D))I .

• for all C ⊑ D ∈ U and all labelsx, eitherx ∈ (¬C)I or x ∈ DI , i.e.,CI ⊆ DI . By saturation,
eitherx : ¬C occurs inB or x : D occurs inB. The property follows by inductive hypothesis.

• M satisfies the starting constraint system: this is an immediate consequence of the previous points.
⊓⊔

As an example, Figure 2 shows a derivation inTALC+T of the fact thatT(Adult) ⊑ ¬Student can be in-
ferred from the TBox{T(Adult) ⊑ TaxPayer ,T(Student) ⊑ Adult ,T(Student) ⊑ ¬TaxPayer}. In
order to do so,TALC+T checks whether the KB whose TBox is the one above and whose ABox contains
an individualx which is both a typicalAdult and aStudent (i.e., ABox={T(Adult)(x),Student (x)})
is unsatisfiable. In detail,TALC+T tries to build a closed tableau for the constraint system corre-
sponding to the KB, namely,〈x : T(Adult), x : Student | T(Adult) ⊑ TaxPayer ∅,T(Student) ⊑
Adult∅,T(Student) ⊑ ¬TaxPayer ∅〉.

Let us conclude this section by analyzing termination and complexity of TALC+T. In general, non-
termination in labelled tableau calculi can be caused by twodifferent reasons: 1. some rules copy their
principal formula in the conclusion(s), and can thus be reapplied over the same formula without any
control; 2. dynamic rules may generate infinitely-many labels, creating infinite branches.

Concerning the first source of non-termination (point 1), the only rules copying their principal for-
mulas in their conclusions are(∀+), (∃−), (Unfold), (∀−), (∃+), and(�−). However, the side condi-
tions on these rules avoid multiple applications on the sameformula. Indeed, (Unfold) can be applied
to a constraint system〈S | U,C ⊑ DL〉 by using the labelx only if it has not yet been applied to
x in the current branch (i.e.,x does not belong toL). Concerning(∀+), the rule can be applied to

〈S, x : ∀R.C, x
R

−→ y | U〉 only if y : C does not belong toS. Wheny : C is introduced in the branch,
the rule will not further apply tox : ∀R.C. Similarly for (∃−), (∃+), (∀−), and(�−).

Concerning the second source of non-termination (point 2),we can prove that we only need to adopt
the standard loop-checking machinery known asblocking, which ensures that the rules(∃+), (∀−), and
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(�−) do not introduce infinitely-many labels on a branch. Thanks to the properties of�, no other
additional machinery would be required to ensure termination. Indeed, we can show that the interplay
between rules(T−) and(�−) does not generate branches containing infinitely-many labels.

Let us discuss the termination in more detail. Without the side conditions on the rules(∃+) and
(∀−), the calculusTALC+T does not ensure a terminating proof search. Indeed, given a constraint
system〈S | U〉, it could be the case that(∃+) is applied to a constraintx : ∃R.C ∈ S, introducing

a new labely and the constraintsx
R

−→ y andy : C. If an inclusionT(∃R.C) ⊑ D belongs toU ,
then (Unfold) can be applied by usingy, thus generating a branch containingy : ¬T(∃R.C), to which
(T−) can be applied introducingy : ¬�¬(∃R.C). An application of(�−) introduces a new variable
z and the constraintz : ∃R.C, to which (∃+) can be applied generating a new labelu. (Unfold) can
then be re-applied onT(∃R.C) ⊑ D by usingu, incurring a loop. In order to prevent this source of non
termination, we adopt the standard technique ofblocking: the side condition of the(∃+) rule says that
this rule can be applied to a node〈S, x : ∃R.C | U〉 only if x is not blocked. In other words, if there is a
witnessz of x, then(∃+) is not applicable, since the condition and the strategy imply that the(∃+) rule
has already been applied toz. The same for(∀−) and(�−).

As mentioned, another possible source of infinite branches could be determined by the interplay
between rules(T−) and (�−). However, even if we had no blocking on(�−) this could not occur,
i.e., the interplay between these two rules does not generate branches containing infinitely-many labels.
Intuitively, the application of(�−) to x : ¬�¬C addsy : �¬C to the conclusion, so that(T−) can
no longer consistently introducey : ¬�¬C. This is due to the properties of� (no infinite descending
chains of< are allowed). More in detail, if (Unfold) is applied toT(C) ⊑ D by usingx, an application
of (T−) introduces a branch containingx : ¬�¬C; when a new labely is generated by an application
of (�−) on x : ¬�¬C, we have thaty : �¬C is added to the current constraint system. If (Unfold)
and(T−) are also applied toT(C) ⊑ D on the new labely, then the conclusion wherey : ¬�¬C is
introduced is closed, by the presence ofy : �¬C. By this fact, we would not need to introduce any
loop-checking machinery on the application of(�−). A detailed proof of termination of the calculus
without blocking on(�−) can be found in [15]. However, in this paper we have introduced blocking
also on(�−) for complexity reasons.

Theorem 3.2. (Termination ofTALC+T)
Let 〈S | U〉 be a constraint system, then any tableau generated byTALC+T is finite.

Our calculusTALC+T gives a (suboptimal) nondeterministic-exponential time decision procedure for
ALC + T:

Theorem 3.3. (Complexity ofTALC+T)
Given anALC + T-knowledge base (TBox,ABox), checking whether it is satisfiable by usingTALC+T

is in NEXPTIME.

Proof:
We first show that the number of labels generated on a branch isat most exponential in the size of KB.
Let n be the size of a KB. Given a constraint system〈S | U〉, the number of extended concepts appearing
in 〈S | U〉, including also all the ones appearing as a subformula of other concepts, isO(n). As there
are at mostO(n) concepts, there are at mostO(2n) variables labelling distinct sets of concepts. Hence,
there areO(2n) non-blocked variables inS.
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Let m be the maximum number of direct successors of each variablex ∈ S, obtained by applying
dynamic rules.m is bound by the number of∃R.C concepts (O(n)) plus the number of¬∀R.C concepts
(O(n)) plus the number of¬�¬C concepts (O(n)). Then, there are at mostO(2n × m) variablesin S,
wherem ≤ 3n. The number ofindividuals in ABox is bound byn too, and each individual has at most
m direct successors. The number oflabelsin S is then bound byO((2n + n) × m), hence byO(22n).

For a given labelx, the concepts labelled byx introduced in the branch (namely, all the possible
subconcepts of the initial constraint system, as well as allboxed subconcepts) areO(n). According to
the standard strategy, after all static rules have been applied to a labelx in phase 1, no other concepts
labelled byx can be introduced later on a branch. Hence, the labelled concepts introduced on the branch
is O(n) for each label, and the number of all labelled concepts on thebranch isO(n × 22n). Therefore,
a branch can contain at most an exponential number of applications of tableau rules.

The satisfiability of a KB can thus be solved by defining a procedure which nondeterministically
generates an open branch of exponential size (in the size of KB). The problem is in NEXPTIME.

⊓⊔

4. Extensions ofALC + T for Reasoning about Typicality

Logic ALC + T allows one to reason monotonically about typicality. InALC + T we can consistently
express, for instance, the fact thatitalian fencerstypically are not people’s favorite, thatitalian fencer
olympic championstypically are people’s favorite, and thatitalian fencer olympic champions taking part
to a reality showtypically are not people’s favorite.

What about the typical properties of an individualaldo that we know being an italian fencer, who
won the gold medal at an olympic competition and who has been part of a reality show? Of course,
if we know thataldo is a typical instance of the conceptItalianFencer ⊓ OlympicGoldMedalist ⊓
∃TakePart .RealityShow , i.e., if the ABox contains the assertion

(∗) T(ItalianFencer ⊓ OlympicGoldMedalist ⊓ ∃TakePart .RealityShow )(aldo)

then, inALC + T, we can conclude that¬LovedByPeople(aldo). However, in absence of (*),
¬LovedByPeople(aldo) cannot be derived by the logic itself given the nonmonotonicnature ofT.

The basic monotonic logicALC +T is then too weak to enforce these extra assumptions, so that we
need an additional mechanism to perform defeasible inferences.

We propose two alternatives. The first one, introduced in [13], is based on a nonmonotonic comple-
tion of a knowledge base. The second one, presented in [12], consists of a “minimal model” semantics for
ALC + T whose intuition is that minimal models are those that maximise typical instances of concepts.

4.1. Completion of a knowledge base

In general, we would like to infer that individuals have the properties which are typical of the most
specific concept to which they belong. To this purpose, we define a completion of the knowledge base
which adds to the ABox, for each individuala occurring in the ABox, the assertion thata is a typical
instance of the most specific conceptC to which it belongs.
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Definition 4.1. (Completion of a Knowledge Base)
The KB (TBox,ABox’) is the completion of the KB (TBox,ABox) if ABox’ is obtained from ABox by
adding to it, for all individual namesa in the ABox, the assertionT(C1⊓ . . .⊓Cj)(a), whereC1, . . . , Cj

are all the conceptsCi such that: (1)Ci is a subconcept of any concept occurring in (TBox,ABox); (2)
Ci does not containT; (3) a is an instance ofCi, i.e.,Ci(a) is derivable inALC from (TBox,ABox).

For instance, assuming that:

ItalianFencer(aldo)
OlympicGoldMedalist(aldo)
∃TakePart .RealityShow (aldo)

are the only assertions concerningaldo derivable from the KB, the completion above would add:

T(ItalianFencer ⊓ OlympicGoldMedalist ⊓ ∃TakePart .RealityShow )(aldo)

to the ABox, asItalianFencer ⊓OlympicGoldMedalist ⊓∃TakePart .RealityShow is the most specific
concept of whichaldo is an instance. From this, we can conclude inALC+T thataldo is not a people’s
favourite.

The completion addsT(C1 ⊓ . . . ⊓ Cj)(a) by considering eachCi(a) derivable in ALC from
the KB, rather than considering onlyCi(a) in the ABox. This is needed, for instance, to infer that
aldo is not loved by people from the KB containingItalianFencer ⊑ ∀HasChild .ItalianFencer ,
ItalianFencer(mario), andHasChild(mario, aldo).

Notice that the completion of the ABox only introducesO(n) new assertionsT(C1 ⊓ . . . ⊓ Cj)(a),
one for each named individuala in the ABox. Furthermore, the size of the assertionT(C1⊓ . . .⊓Cj)(a)
is O(n2) asC1, . . . , Cj are all distinct subformulas of the initial formula (O(n)), and eachCi has size
O(n). Hence, after the completion construction, the size of the KB is polynomial inn. Moreover, for
each individuala (O(n)) and for each conceptC (O(n)), we have to check whetherC(a) is derivable
in ALC from the KB, which is a problem in EXPTIME. Hence, the completion construction requires
exponential time and produces a KB of size polynomial in the size of the original one:

Theorem 4.1. The problem of deciding satisfiability of the knowledge baseafter completion is EXP-
TIME-complete in the size of the original KB.

It is worth noticing that, given a consistent KB, its completion might be inconsistent. Suppose the ABox
contains the information:

LovedByPeople(aldo)

This would not cause an inconsistent completion of the KB. Indeed, in such a case,ItalianFencer ⊓
OlympicGoldMedalist⊓∃TakePart .RealityShow⊓LovedByPeople would be the most specific concept
of whichaldo is an instance, so that the assertion:

T(ItalianFencer ⊓ OlympicGoldMedalist ⊓ TakePart .RealityShow ⊓ LovedByPeople)(aldo)

would be added in the completion of the KB. This does not allowto infer that¬LovedByPeople(aldo).
Hence, no inconsistency arises. However, if the KB contains:
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T(FootballTeam) ⊑ ∀HasMember .Rich

T(FencingTeam) ⊑ ∀HasMember .¬Rich

FootballTeam(juventus)
FencingTeam(schermaTorino)
HasMember(juventus , alex )
HasMember(schermaTorino , alex )

we can observe that KB is consistent, whereas its completion, including also:

T(FootballTeam)(juventus)
T(FencingTeam)(schermaTorino)

is not. In this case, we can consider two alternatives:

• given an inconsistent completion, we can choose to keep the original KB rather than the completed
one;

• we could consider all maximal consistent KBs (extensions) that can be generated by adding, for
all individuals, the relative most-specific concept assumptions. We could then perform either a
skeptical or a credulous reasoning with respect to such extensions.

The completion process presents some difficulties. For instance, it is not clear how to take into account
implicit individuals, as well as it is not clear whether and how the completion has to take into account
concept instances that are inferred from previous typicality assumptions introduced by the completion
itself. In order to deal with the last one, we would need some kind of fixpoint definition.

4.2. Minimal model semantics forALC + T

As an alternative to the completion process described above, we propose another approach: rather than
defining an ad-hoc mechanism to perform defeasible inferences or making nonmonotonic assumptions,
we strengthen the semantics of the logic by proposing a minimal model semantics. Intuitively, the idea
is to restrict our consideration to models that maximise typical instances of a concept.

In order to define the preference relation on models we take advantage of the modal semantics of
ALC + T: the preference relation on models (with the same domain) isdefined by comparing, for
each individual, the set of modal (or more precisely�-ed) concepts containing the individual in the two
models. Given a KB, we consider a finite setLT of concepts occurring in the KB, the typicality of whose
instances we want to maximize. This is similar to circumscription (see [4]), where we must specify a
set of minimized predicates. The maximization of the set of typical instances will apply to individuals
explicitly occurring in the ABox as well as to implicit individuals. We assume that the setLT contains
at least all conceptsC such thatT(C) occurs in the KB.

We have seen thata is a typical instance of a conceptC (a ∈ (T(C))I ) when it is an instance ofC
and there is not another instance ofC preferred toa, i.e. a ∈ (C ⊓ �¬C)I . In the following, in order
to maximize the typicality of the instances ofC, we minimize the instances of¬�¬C. Notice that this
is different from maximising the instances ofT(C). We have adopted this solution since it allows to
maximise the set of typical instances ofC without affecting the extension ofC (whereas maximising the
extension ofT(C) would imply maximising also the extension ofC).
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We define the setM�−

LT
of negated boxed formulas holding in a model, relative to theconcepts in

LT . Given a modelM = 〈∆, <, I〉, letM�−

LT
= {(a,¬�¬C) | a ∈ (¬�¬C)I , with a ∈ ∆, C ∈ LT }.

Let KB be a knowledge base and letLT be a set of concepts occurring in KB.

Definition 4.2. (Preferred and minimal models)
Given a modelM = 〈∆M, <M, IM〉 of KB and a modelN = 〈∆N , <N , IN 〉 of KB, we say thatM
is preferred toN with respect toLT , and we writeM <LT

N , if the following conditions hold:

• ∆M = ∆N ;

• M�−

LT
⊂ N�−

LT
.

A modelM is a minimal modelfor KB (with respect toLT ) if it is a model of KB and there is no a
modelM′ of KB such thatM′ <LT

M.

Let us now define when aqueryF is minimally entailed inALC +Tmin from a KB. A queryF is either
an inclusionC ⊑ D or a membership formulaC(a):

Definition 4.3. (Minimal Entailment in ALC + Tmin)
A queryF is minimally entailed from a knowledge base KB with respect to LT if it holds in all models

of KB minimal with respect toLT . We write KB |=LT

min F .

While the originalALC + T is monotonic, ALC + Tmin is nonmonotonic. Consider the following
example. Let KB contains:

T(ItalianFencer ) ⊑ ¬LovedByPeople

ItalianFencer (aldo)
SlimPerson(aldo)

and letLT = {ItalianFencer ,SlimPerson}. We have that:

KB |=LT

min ¬LovedByPeople(aldo)

Indeed, there is a unique minimal model of KB on the domain∆ = {aldo}, in whichaldo is an instance
of T(ItalianFencer ) (as well as an instance ofT(SlimPerson)), and hence¬LovedByPeople holds in
aldo. Observe that¬LovedByPeople(aldo) is obtained in spite of the presence of the irrelevant property
SlimPerson(aldo).

Consider also the knowledge base KB’ obtained by adding to KBthe formula:

T(ItalianFencer ⊓ SlimPerson) ⊑ LovedByPeople

and letLT = {ItalianFencer ,SlimPerson , ItalianFencer⊓SlimPerson}. From KB’,¬LovedByPeople

(aldo) is not derivable any more. Instead, we have that:

KB’ |=LT

min LovedByPeople(aldo)
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KB’ has a unique minimal model on the domain∆ = {aldo, gianni}, in which aldo is an instance of
T(ItalianFencer ⊓ SlimPerson) andT(SlimPerson), but is not an instance ofT(ItalianFencer ) (as
there isgianni , such thatgianni < aldo andItalianFencer holds atgianni ). This example shows that,
in case of conflict (here,aldo cannot be both a typical instance ofItalianFencer andItalianFencer ⊓
SlimPerson), typicality in the more specific concept is preferred.

In [12] we have also defined a tableaux calculus for computingminimal entailment and we have
provided an upper bound on the complexity of the resulting logic: checking if a query is minimally
entailed from a KB is inCO-NEXPNP.

5. Related works

Several nonmonotonic extensions of DLs have been proposed in the literature. In the following, we try
to summarize the main approaches proposed in the literature. We conclude this section by providing a
comparison with the KLM framework.

5.1. Nonmonotonic extensions of DLs

In [2] it is proposed the extension of DL with Reiter’s default logic. Intuitively, a KB comprises, in addi-
tion to TBox and ABox, a finite set of default rules whose prerequisites, justifications, and consequents
are concepts. Default rules are used in order to formalize prototypical properties. Concerning the KB
about the Italian fencer of the Introduction, the direct encoding by normal (open) defaults would be:

ItalianFencer : ¬LovedByPeople

¬LovedByPeople

ItalianFencer ⊓ OlympicGoldMedalist : LovedByPeople

LovedByPeople

ItalianFencer ⊓ OlympicGoldMedalist ⊓ ∃TakePart .RealityShow : ¬LovedByPeople

¬LovedByPeople

The same authors have pointed out that this integration may lead to both semantical and computational
difficulties, both caused by an unsatisfactory treatment ofopen defaults via Skolemization. Skolemiza-
tion of the ABox and of the consequents of default rules is needed in order to capture some intuitive infer-
ences. For instance, given the above defaults and ABox= {∃HasChild .ItalianFencer (mario)}, the in-
tuitive conclusion(∗) ∃HasChild .¬LovedByPeople(mario) could not be deduced by default. Skolem-
ization of ABox yields to ABox’= {HasChild(mario, giacomo), ItalianFencer (giacomo)}, where
giacomo is a new Skolem constant. Then, the closed defaults obtainedby instantiating open defaults with
giacomo are applicable and allow to conclude(∗). However, Skolemization may lead to counterintuitive
inferences. As an example, let us consider ABox1 = {∃HasChild .(ItalianFencer ⊓ Bold)(mario)}
and ABox2 = {∃HasChild .(ItalianFencer ⊓ Bold)(mario),∃HasChild .ItalianFencer (mario)}.
It is easy to see that ABox1 and ABox2 are logically equivalent. Skolemization leads to ABox′

1 =
{HasChild(mario, giacomo), (ItalianFencer ⊓ Bold)(giacomo)} and ABox′2 = {HasChild (mario,

paolo), (ItalianFencer ⊓ Bold)(paolo),HasChild(mario, antonio), ItalianFencer (antonio)}. Con-
sider the open default:

ItalianFencer : ¬Bold

¬Bold
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This default rule does not fire forgiacomo and paolo, since their being inItalianFencer ⊓ Bold is
inconsistent with the justification¬Bold . On the contrary, this default rule fires forantonio , since his
being anItalianFencer is consistent with the justification. Therefore,(∗∗) ∃HasChild .¬Bold(mario)
is a default conclusion of ABox′2, whereas it is not of ABox′1. In our setting, neither ABox1 nor
ABox2 can be used to infer(∗∗) in ALC + T. Consider the modelM = 〈∆, <, I〉, where∆ =
{marioI , ivoI , adelmoI}, adelmoI < ivoI andI is as follows: ItalianFencer I = {ivoI , adelmoI},
Bold I = {ivoI}, HasChild I = {(marioI , ivoI)}. We have that(T(ItalianFencer ))I = Min<

(ItalianFencer I) = {adelmoI}, thereforeM is a model for the KB whose ABox={∃HasChild .

ItalianFencer(mario),∃HasChild .(ItalianFencer ⊓Bold)(mario)} and whose TBox={T(
ItalianFencer) ⊑ ¬Bold}. However,∃HasChild .¬Bold(mario) does not hold inM. Notice that
this also occurs if we refer to the minimal entailment|=LT

min of ALC + Tmin, sinceM is also a minimal
model for the mentioned KB. For further examples about semantical difficulties arising when integrating
DLs with open defaults, we refer to Section 3 in [2].
The treatment of open defaults via Skolemization may also lead to an undecidable default consequence
relation, even if the underlying logic is decidable. For this reason, [2] proposes a restricted semantics for
open default theories, in which default rules are only applied to individuals explicitly mentioned in the
ABox.

The extension of DLs with Reiter’s default, even if restricted to explicitly mentioned individuals,
presents a further drawback, namely it inherits from general default logic the difficulty of modeling
inheritance with exceptions giving precedence to more specific defaults in a direct way. For instance, the
above formulation of the KB does not allow to infer correctlythe expected conclusions, as it does not give
priority to more specific information. Consider, for instance, the preceding KB containing the default
rules above and whose ABox containsItalianFencer(aldo) as well asOlympicGoldMedalist(aldo).
Such a terminological default theory has two extensions, one containing¬LovedByPeople(aldo) and the
otherLovedByPeople(aldo); the semantics does not allow to prefer the second one, in which the most
specific default was applied. This behaviour represents a critic aspect in the general context of default
logic, however it is more problematic in a DL framework wherethe emphasis lies on the hierarchical
organization of the concepts. To attack this problem, one has to impose a priority on default application
or to find a smarter (but ad hoc) encoding of defaults giving priority to more specific information. This
has motivated the study of extensions of DLs with prioritized defaults [23, 3, 6, 5].

To give a brief account, in [23] the author introduces an extension of DLs to perform default inheri-
tance reasoning, a kind of default reasoning specifically tailored to reason in presence of a taxonomy of
concepts. This formalism allows for defaultsC 7→ D as well asC 7→ R.D, whose intuitive meanings
are: “if a is an element ofC and the assumption thata is an element ofD is consistent, then assume
thata is aD” and “if a is an element ofC andb is related toa by the roleR and the assumption that
b is an element ofD is consistent, then assume thatb is a D”, respectively. Specificity is handled by
defining, for a given KB=(TBox,ABox) and an individuala occurring in the ABox, a preference relation
�KB,a over atomic concepts. As pointed out by the author, the relation�KB ,a can be seen as “the taxon-
omy induced by the strict and defeasible information, altogether”, belonging to the KB. Extensions are
computed by means of a fixpoint construction which takes intoaccount the relation�KB,a. Intuitively,
given a defaultC 7→ D, for all C(a) belonging to the extension under construction,D(a) is added to the
extension unless this leads to a contradiction or there is a conceptE such thatE �KB,a C, C 6�KB,a E

and either (i)E 7→ F is also a default of the theory and(D ⊓ F )(a) is inconsistent or (ii)E 7→ R.F is a
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default of the theory,R(a, b) is in the ABox and the addiction of bothD(a) and F (b) leads to an
inconsistency. Similarly for defaults of the formC 7→ R.D.

In [6] priorities among defaults are addressed by ordered default theories. The basic idea is to con-
sider a strict partial order on the set of defaults when computing extensions. However, this approach is
restricted to prerequisite-free normal defaults only. Such a severe restriction has motivated the general-
ization of ordered default theories to normal defaults withprerequisites [5, 3]. Similarly to [6], priorities
are given by an arbitrary partial order on defaults. As a difference with [23], priorities between defaults
are induced by the position of their prerequisites in the concept hierarchy of the TBox, then the speci-
ficity is determined by the strict information, and not by thedefaults. Intuitively, given a KB and a set
D of defaults, terminological default rules are obtained by instatiating eachd ∈ D by all constants oc-
curring in the ABox. Letd1 andd2 be two defaults so obtained, havingC(a) andD(b) as prerequisites,
respectively: we have thatd1 < d2, i.e. d1 has a major priority with respect tod2, if and only if (i) a = b,
(ii) C ⊑ D follows from the KB and (iii)D ⊑ C does not follow from the KB. The consequent of a
defaultd can be added to the extension ifd is not delayed by a preferred default, in other words if there
is nod′ < d which isactive, i.e. applicable in the current set of formulas of the extension. The authors
also describe an algorithm for computing extensions.

As for the proposal in [2], in order to avoid semantical and computational difficulties due to the
treatment of open defaults via Skolemization, all these approaches adopt a semantics in which defaults are
only applied to individuals explicitly mentioned in the ABox, thus introducing an asymmetric treatment
of domain elements.

A more general approach is undertaken in [10], where Description Logics of minimal knowledge and
negation as failure are proposed by augmenting DLs with two epistemic operators, K and A, interpreted
according to Lifschitz’s nonmonotonic logic MKNF [20, 21].In particular, [10] studies the extension of
ALC, calledALCKNF , which allows to capture Reiter’s default logic, integrityconstraints, procedural
rules as well as role and concept closure. The paper providesa sound, complete and terminating tableau
calculus for checking satisfiability ofsimpleALCKNF KBs, where in a simple KB the occurrences of
the operator K within the scope of quantifiers are limited. The calculus uses triple exponential time in the
size of the KB. For MKNF-DLs without quantifying-in (i.e., with no occurrences of epistemic operators
in the scope of quantifiers), a general deductive method can be defined (see [9]), which is parametric with
respect to the underlying DL. The authors prove that the problem of instance checking in a MKNF-DL
without quantifying-in is decidable if and only if the problem of instance checking in the underlying
DL is decidable. In particular, for the logicALCKNF without quantifying-in the problem of instance
checking is EXPTIME-complete as in the non-modal case. [17]extends the work in [10] by providing a
translation of anALCKNF KB to an equivalentflat KB and by defining a simplified tableau algorithm
for flat KBs, which includes an optimized minimality check.

In both [10] and [9], the domain of epistemic interpretations is assumed to be countably-infinite
and to be the same for all interpretations. Although this assumption restricts the semantics of first-
order MKNF, nevertheless it allows an encoding of prerequisite-free defaults with an open semantics.
[10] also provides an encoding of closed defaults by translating them into simpleALCKNF inclusions.
Although [10, 9] introduce very general nonmonotonic DLs, they do not address specifically the problem
of reasoning about inheritance with exceptions, nor the problem of specificity on which we focus in this
paper.

In [4] the authors propose an extension of DL with circumscription. One of the motivating applica-
tions of circumscription is indeed to express prototypicalproperties with exceptions, and this is done by
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introducing “abnormality” predicates, whose extension isminimized. The basic idea is as follows: in
order to expressT(C) ⊑ D, the authors introduce the inclusion

C ⊑ D ⊔ AbC

whereAbC is the predicate to be minimized. Concerning again the KB of the Introduction, one has to
introduce abnormality predicates (Abi), e.g.:

ItalianFencer ⊑ ¬LovedByPeople ⊔ Ab1

ItalianFencer ⊓ OlympicGoldMedalist ⊑ LovedByPeople ⊔ Ab2

ItalianFencer ⊓ OlympicGoldMedalist ⊓ ∃TakePart .RealityShow ⊑ ¬LovedByPeople ⊔ Ab3

Then one has to establish which predicates are minimized, fixed, or variable (the so-called circumscrip-
tion pattern). The basic idea of circumscription is indeed to consider only those models where the
extension of abnormality predicates is minimal with respect to set inclusion.

Circumscription patterns in [4] also allow to express priorities among predicates to be minimized.
As pointed out by the authors, these priorities usually reflect the taxonomy described by the TBox and,
since the subsumption hierarchy is a partial order, priorities are assumed to form a partial order, too, as a
difference with standard prioritized circumscription which assumes a total ordering.

The authors provide decidability and complexity results based on theoretical analysis. In detail, it is
shown that reasoning is decidable under the restriction that only concepts can be circumscribed, whereas
roles have to vary during circumscription. This also holds for expressive DLs such asALCIO and
ALCQO. Allowing roles to be fixed during minimization leads to an undecidability results even in the
extension of basicALC.

As in our approach, the extension of DLs with circumscription avoids the restriction of reasoning
about elements explicitly mentioned in the ABox. However, the authors do not provide a calculus for
their logic.

5.2. Relations with KLM

We have already mentioned that the semantics of the typicality operatorT of Definition 2.1 is strongly
related with the semantics of nonmonotonic entailment in KLM preferential logicP. Let us make precise
the relation between the two logics. KLM logicP is originally defined as a propositional logic, thus
we restrict our analysis to the propositional level. The basic assertions of KLM logics are positive
conditionals of the formA |∼ B, whereA,B are propositional formulas. In the literature, a few kinds
of languages or knowledge bases allowing conditionals havebeen considered: (i) a knowledge base is
a set of conditionals, this is indeed the original setting byKLM [18]; (ii) a knowledge base is a set
of conditionals and negated conditionals [19]; (iii) a knowledge base is or contains arbitrary boolean
combinations of conditionals (and possibly propositionalformulas) [14]. The axiomatization ofP for the
richer language (iii) is given by a refolmulation of KLM postulates through the following set of axioms,
where⊢PC denotes validity in classical propositional calculus:

• REF.A |∼ A (reflexivity)
• LLE. If ⊢PC A ↔ B, then⊢ (A |∼ C) → (B |∼ C) (left logical equivalence)
• RW. If ⊢PC A → B, then⊢ (C |∼ A) → (C |∼ B) (right weakening)
• CM. ((A |∼ B) ∧ (A |∼ C)) → (A ∧ B |∼ C) (cautious monotonicity)
• AND. ((A |∼ B) ∧ (A |∼ C)) → (A |∼ B ∧ C)
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• OR.((A |∼ C) ∧ (B |∼ C)) → (A ∨ B |∼ C)

To axiomatize the restricted languages (i) and (ii), axiomsmust be suitably replaced by inference rules.
We establish here a mapping betweenP andALC + T for the language (ii), that is a knowledge base
will be henceforth a set of positive and negative conditionals. The most general case (iii) is problematic,
sinceALC + T does not allow for disjunctions of subsumption relations.

A modelM for P is defined similarly to Definition 2.3, but the language is slightly different.

Definition 5.1. (Semantics of|∼)
A P modelM for a propositional languageL has the formM = (∆, <, I) , where∆ and< are as in
Definition 2.3,I : VarProp 7→ Pow(∆). We define:

M |= A |∼ B iff Min<(AI) ⊆ BI andM |= ¬(A |∼ B) iff M 6|= A |∼ B.

Let KB be a set of positive or negated conditionalsF . M |= KB iff M |= F for everyF ∈ KB.

There is an obvious correspondence betweenP models andALC+T models. In the following, given an
ALC + T modelM = 〈∆, <, I〉, we writeM |= C ⊑ D to say thatCI ⊆ DI .

Lemma 5.1. (a) Let M = (∆, <, I) be aP model for a propositional languageL, then the model
M+ = (∆, <, I), with T(A)I = Min<(AI) is anALC + T model forL that satisfies:

M |= A |∼ B iff M+ |= T(A) ⊑ B.

(b) LetM = (∆, <, I) be anALC+T model forL (the propositional variables are the concepts names),
then the modelM− = (∆, <, I), with M− |= A |∼ B iff Min<(AI) ⊆ BI is a P model forL that
satisfies:

M− |= A |∼ B iff M |= T(A) ⊑ B.

We can generalize this correspondence to knowledge bases. Let KB be a finite knowledge base inP:

KB = {A1 |∼ B1, . . . , Am |∼ Bm,¬(C1 |∼ D1), . . . ,¬(Cn |∼ Dn)}

We define theALC + T translation KB+ of KB as follows:

{T(A1) ⊑ B1, . . . ,T(Am) ⊑ Bm,T(C1)(i1),¬D1(i1), . . . ,T(Cn)(in),¬Dn(in)}

wherei1, . . . , in are distinct individuals. KB and its translation KB+ are related as expressed in the
following lemma.

Lemma 5.2. Let KB and KB+ as above. (a) LetM = (∆, <, I) be aP model of KB, then there is an
ALC + T modelM+ of KB+ such that:

M |= A |∼ B iff M+ |= T(A) ⊑ B.

(b) LetM = (∆, <, I) be aALC + T model of KB+ then there is aP modelM− of KB such that:

M− |= A |∼ B iff M |= T(A) ⊑ B.
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Proof:
(a) LetM = (∆, <, I) be a model of KB. We have in particular thatM |= ¬(Cj |∼ Dj) for j = 1, . . . , n;
thusMin<(CI

j ) − DI
j 6= ∅ for j = 1, . . . , n. Therefore there are elementsdj ∈ Min<(CI

j ) − DI
j , for

j = 1, . . . , n. We defineM+ = (∆, <, I), by stipulatingiIj = dj for j = 1, . . . , n andT(A)I =

min<(AI). It is immediate to see thatM |= A |∼ B iff M+ |= T(A) ⊑ B and thatM+ |= KB+.
(b) LetM = (∆, <, I) be anALC + T model of KB+. It is easily seen thatM 6|= T(Cj) ⊑ Dj,

for j = 1, . . . , n. Thus the modelM− obtained by stipulatingM− |= A |∼ B iff M |= T(A) ⊑ B and
by omitting the interpretation of the individualsij is aP model of KB. ⊓⊔

By the previous lemma we easily obtain the following proposition that summarizes the relation between
P andALC + T with respect to reasoning tasks:

Proposition 5.1. Let KB be aP knowledge base and KB+ its translation intoALC + T. Then:
(a) for any conditionalA |∼ B, KB |= A |∼ B in P iff KB + |= T(A) ⊑ B in ALC + T. Thus, (b) KB is
satisfiable inP iff KB + is satisfiable inALC + T.

This semantic correspondence betweenP andALC + T helps to understand intuitively the relation
between the axioms ofP and the semantic conditions of Definition 2.13. We illustrate the correspondence
by means of the translationA |∼ B asT(A) ⊑ B and the axioms ofP:

• REF.T(A) ⊑ A corresponding to(fT − 1)

• LLE. by takingC = T(B), we get: if⊢PC A ↔ B thenT(A) ⊑ T(B). This property gives the
independence from the syntax and is implicitly satisfied by any semantics.

• CM. by takingC = T(A), T(A) ⊑ B implies T(A ⊓ B) ⊑ T(A). The other inclusion is
derivable as well. They jointly give(fT − 3).

• OR. by takingC = T(A) ⊔ T(B), we getT(A ⊔ B) ⊑ T(A) ⊔ T(B). This corresponds to the
finitary version of(fT − 4).

On the other hand there is no way to derive fromP (a finitary version of) condition(fT − 5), since in
P we cannot express the fact that something is both a typicalC and a typicalD. This suggests that the
conditional operator|∼ is too weak to deal with the notion of typicality.

To end this section we mention that the family of KLM logics contains other interesting members,
notably the stronger logicR, known as Rational Preferential Logic. This system is obtained by adding
to P the axiom/rule of rational monotonicity:

A |∼ C ∧ ¬(A |∼ ¬B) → ((A ∧ B) |∼ C)

That is to say, fromA |∼ C we can conclude(A∧B) |∼ C unless we can deriveA |∼ ¬B. For a discussion
and a justification of this property we refer to the literature [19]. We also mention that many (but not
all) systems of probabilistic entailment satisfy this property. The semantics of rational logicR is well-
understood: the rational monotonicity principle corresponds to the additional property ofmodularityof

3In this work we have given two equivalent (via the Representation Theorem 2.1) semantical characterizations ofALC + T,
but we have not addressed the problem of giving a full axiomatization of the logic of typicality. The reason is that it is not our
main concern: we are interested in reasoning with respect toa knowledge base and not in deriving abstract properties of the
typicality operator. However, the problem of the axiomatization may be posed; to deal with it, we should first ask ourselfwhat
kind of assertions we allow in the language: inclusion relations or arbitrary combinations of them?
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the preference relation. We could think of developing a logic of typicality built upon rational logicR
rather than the weaker preferential logicP as we do. What is the impact of rational monotonicity to
reason about typicality? Translating the axiom into a property of the typicality operator we obtain:

¬(T(A) ⊓ B ⊑ ⊥) impliesT(A ⊓ B) ⊑ T(A)

Thus it is sufficient that there isoneindividual that is a typicalA and that has the propertyB, to conclude
thatall typical A andBs are typicalA. For instance ifaldo is a typical italian fencer and he won a gold
medal in an Olympic competition (these might be assertions in the ABox), then all typical italian fencers
winning the gold medal are typical italian fencers. This seems rather arbitrary and counterintuitive. All
of this means that the logicR is too strong and unsuitable to reason about typicality.

6. Conclusions and Future Work

We have proposed an extension ofALC for reasoning about typicality in the Description Logic frame-
work. For the resulting logic, calledALC + T, we have defined a calculus for deciding the satisfiability
of a general knowledge base. The calculus, calledTALC+T, is analytic, terminating, and allows us to
decide the satisfiability of a knowledge base inALC + T in nondeterministic exponential time. The
work is an extended and revised version of the preliminary contribution presented in [13].

The basic monotonic logicALC + T results to be too weak to perform defeasible inferences. We
have shown how to address this problem by presenting two different approaches. On the one hand,
we have proposed acompletionmechanism, whose objective is to complete the ABox by means of
typicality assumptions, in order to infer prototypical properties of the individuals explicitly mentioned in
the ABox. On the other hand, we have developed a preferentialsemantics. This nonmonotonic extension
of ALC + T allows for defeasible reasoning in presence of inheritancewith exceptions.

We plan to extend this work in several directions. First of all, the tableau procedure we have described
can be optimised in many ways. In particular, we believe thatthe calculusTALC+T can be made more
efficient by applying standard techniques such as caching.

From the point of view of knowledge representation, a limit of our logic is the unability to handle
inheritance of multiple properties in case of exceptions asin the example:T(Student) ⊑ ¬HasIncome ,
T(Student) ⊑ ∃Owns.LibraryCard , PhDStudent ⊑ Student , T(PhDStudent) ⊑ HasIncome . Our
semantics does not support the inferenceT(PhDStudent) ⊑ ∃Owns.LibraryCard , that is, PhDStu-
dents typically own a library card, as we might want to conclude (since having an income has nothing to
do with owning a library card). The reason why our semantics fails to support this inference is that the
first two inclusions are obviously equivalent to the single oneT(Student) ⊑ ¬HasIncome ⊓ ∃Owns.

LibraryCard which is contradicted byT(PhDStudent) ⊑ HasIncome . To handle this type of infer-
ences we would need a tighter semantics where the truth ofT(C) ⊑ P is no longer a function ofT(C)
andP or a smarter (and less direct) encoding of the knowledge. Observe that the same problem arises for
instance with circumscription, where we would need at leastdifferent abnormality predicatesfor each
pair of concept-defeasible property.

KLM logics, which are at the base of our semantics, are related to probabilistic reasoning. In [16],
the notion of conditional constraint allows typicality assertions to be expressed (with a specified interval
of probability values). In order to perform defeasible reasoning, a notion of minimal entailment is intro-
duced based on alexicographic preferencerelation on probabilistic interpretations. We plan to compare
in details this probabilistic approach to our approach in further research.
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