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Abstract. We extend the Description LogidLC with a “typicality” operatorT that allows us

to reason about the prototypical properties and inhergamith exceptions. The resulting logic is
called ALC + T. The typicality operator is intended to select the “mostmali’ or “most typical”
instances of a concept. In our framework, knowledge basggsmea contain, in addition to ordinary
ABoxes and TBoxes, subsumption relations of the fo{¢) is subsumed by”, expressing that
typical C-members have the proper. The semantics of a typicality operator is defined by a set
of postulates that are strongly related to Kraus-Lehmaragilfbr axioms of preferential logfe.

We first show thafl’ enjoys a simple semantics provided by ordinary structugespped with a
preference relation. This allows us to obtain a modal inttgtion of the typicality operator. We
show that the satisfiability of ad LC+T knowledge base is decidable and itis precisely EXPTIME.
We then present a tableau calculus for deciding satisfiglufi ALC + T knowledge bases. Our
calculus gives a (suboptimal) nondeterministic-expoia¢time decision procedure fod£C + T.

We finally discuss how to extendLC + T in order to infer defeasible properties of (explicit or
implicit) individuals. We propose two alternatives: (i) ammonotonic completion of a knowledge
base; (ii) a “minimal model” semantics fo£C + T whose intuition is that minimal models are
those that maximise typical instances of concepts.

Keywords: Description Logics, Prototypical Reasoning, TableauxcGlal

1. Introduction

The family of description logics (DLs, [1]) is one of the masiportant formalisms of knowledge repre-
sentation. DLs are reminiscent of the early semantic nétsvand of frame-based systems. They offer
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two key advantages: a well-defined semantics based on fist-togic and a good trade-off between
expressivity and complexity. DLs have been successfullylémented by a range of systems and they
are at the base of languages for the semantic web such as OWL.kivowledge base (KB) comprises
two components: (i) the TBox, containing the definition ohcepts (and possibly roles) and a specifica-
tion of inclusion relations among them, and (ii) the ABox t@ining instances of concepts and roles, in
other words, properties and relations of individuals. 8itiee primary objective of the TBox is to build a
taxonomy of concepts, the need of representing prototyprcgerties and of reasoning about defeasible
inheritance of such properties easily arises. The traditiapproach is to handle defeasible inheritance
by integrating some kind of nonmonotonic reasoning meamaniThis has led to study nonmonotonic
extensions of DLs [2, 3, 6, 5, 4, 8, 10, 11, 23]. However, figdinsuitable nonmonotonic extension for
inheritance reasoning with exceptions is far from obvious.

In this work, we propose an approach to defeasible inhedtaeasoning based on the typical-
ity operatorT. The intended meaning is that, for any concéptT(C) singles out the instances
of C' that are considered as “typical” or “normal”’. Thus assedi@s “normally students do not pay
taxes” [13] or “typically mammals inhabit land” [4] are regzented byT'(Student) = — TazPayer and
T(Mammal) C FHabitat.Land.

Before entering in the technical details, let us sketch hawintend to use the typicality operator
and what kind of inferential services we expect to profit. \Weume that a KB comprises, in addition
to the standard TBox and ABox, a set of assertions of the &) C D, whereT does not occur in
D. The reasoning system should be able to infer prototypiagigrties as well as to ascribe defeasible
properties to individuals. For instance, let the KB contain

T (ItalianFencer) C — Loved ByPeople
T (ItalianFencer M OlympicGoldMedalist) T Loved ByPeople
T (ItalianFencerMOlympicGoldMedalistT3 Take Part. RealityShow) E — Loved ByPeople

corresponding to the assertions: normally an Italian fereceot a people’s favourite (fencing is not so
popular in Italy...), but normally an Italian fencer who wamold medal in an Olympic competition is a
people’s favourite, whereas normally an Italian Olympitdgmedalist in fencing who has taken part to
a reality show is not a people’s favourite (because he hasiepassion in sport and his determination
to obtain better and better results...). Observe that,eifstime properties were expressed by ordinary
inclusions, such a&alianFencer C —LovedByPeople, we would simply get that there are not Italian
gold medalists in fencing and so on, thus the KB would cobaghis collapse is avoided as we do not
assume thdl' is monotonic, that is to say = D does not implyT'(C') C T(D). Suppose next that the
ABox contains the following facts about the individualonzo, aldo andluca:

1. ItalianFencer(oronzo)
2. ItalianFencer(aldo), OlympicGoldMedalist (aldo)
3. ItalianFencer(luca), OlympicGoldMedalist (luca), 3 TakePart. RealityShow (luca)

Then the reasoning system should be able to infer the expédideasible) conclusions:

1. ~LovedByPeople(oronzo)
2. LovedByPeople(aldo)
3. = LovedByPeople(luca)



L. Giordano, V. Gliozzi, N. Olivetti, G.L. Pozzato / Extemsdf Description Logics for Reasoning About Typicality 3

As a further step, the system should be able to infer (ddfEggoroperties also of individuals implicitly
introduced by existential restrictions. For instancehd ABox further contains

JHasChild. ItalianFencer (mario)
it should conclude (defeasibly)
JHasChild.— Loved ByPeople (mario)

Given the nonmonotonic character of tlieoperator, there is a difficulty with handling irrelevantan{
mation. For instance, given the KB as above, one should feetalimfer as well:

T(ItalianFencer M SlimPerson) C —Loved ByPeople
T (ItalianFencer M OlympicGoldMedalist M SlimPerson) T LovedByPeople

as SlimPerson is irrelevant with respect to being loved by people or notr the same reason, the
conclusion aboutldo being a favourite of the people or not should not be influermethe addition of
SlimPerson(aldo) to the ABox. We refer to this problem as the problem of Irratese.

In this paper we lay down the base of an extension of DL withpgcsfity operator. Our starting
point is a monotonic extension of the bagi€C with the T operator. The operator is supposed to satisfy
a set of postulates that are essentially a reformulationrafi, Lehmann, and Magidor (KLM) axioms
of preferential logic, namely, the asserti@{C) C P is equivalent to the conditional assertiéh~ P
of KLM preferential logicP. It turns out that the semantics of the typicality operatom be equivalently
specified by considering a preference relation (a stridigdarder) on individuals: the typical members
of a concepC are just the most preferred (or “most normal”) individual€loaccording to the preference
relation. The preference relation is the only additiongré@dient that we need in our semantics.

We assume that “most normal” members of a conc@lways exist, whenever the conceptis
non-empty. This assumption corresponds to @meoothness Conditioof KLM logics, or the well-
known Limit Assumptionn conditional logics. Taking advantage of this semantitirsg, we can give a
modal interpretation to the typicality operator: the moola¢rator—] has intuitively the same properties
as in Godel-Lob modal logic G of arithmetic provability.

From a computational viewpoint, we show that the extensiom.6C with the T operator is de-
cidable and we provide an EXPTIME complexity upper boundac&ireasoning itdLC alone with
arbitrary TBox has already the same complexity, we can calecthat the extension bl is essentially
inexpensive. We also define a tableau proof proceduredit€ with the T operator that has, how-
ever, a suboptimal upper bound NEXPTIME. Actually we conjee that the tableau procedure can be
made more efficient in order to match the EXPTIME upper bobigdneans of optimization techniques
developed fortdLC. This issue will be part of our future research.

From a knowledge representation viewpoint, however, theatamic extension is not enough to per-
form inheritance reasoning of the kind described above. &éelm way of inferring defeasible properties
of individuals and a way of handling Irrelevance. In the kesttion, we discuss two different approaches:

e we can define aompletionof an ABox: the idea is that each individual is assumed to lypiadl
member of the most specific concept to which it belongs. Sucbtnapletion allows to perform
inferences as 1.,2.,3. above;
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e we can strengthen the semantics4xfC + T by proposing aninimal model semanticéntuitively,
the idea is to restrict our consideration to models that méeseé typical instances of a concept.

The first proposal is computationally easy, but it presentses difficulties. The second proposal is
computationally more expensive, but it is more powerfulifidreritance reasoning.

2. The Description LogicALC + T

We consider an alphabet of concept nafgsf role namesk, and of individualsD. The language of
the logic ALC + T is defined by distinguishingonceptsandextended concepts follows. Concepts:
A € CandT areconceptof £; if C,D € LandR € R, thenC N D,C U D,-~C,VR.C,3R.C are
conceptsf £. Extended concepts:  is a concept, thew andT(C') areextended conceptand all
the boolean combinations of extended concepts are extemfeepts of. A knowledge base is a pair
(TBox,ABox). TBox contains subsumptiods C D, whereC € L is an extended concept of the form
eitherC’ or T(C"), andD € L is a concept. ABox contains expressions of the farita) and a Rb
whereC' € L is an extended concep® € R, anda, b € O.

In order to provide a semantics to the operdlgrwe extend the definition of a model used in
“standard” terminological logicA£C?:

Definition 2.1. (Semantics ofT" with selection function)

A model is any structuréA, I, ft), where:A is the domainy is the extension function that maps each
extended concepf to C! C A, and each rol&® to aR! C A x A. I is defined in the usual way (as
for ALC) and, in addition(T(C))! = fr(CT). fr : Pow(A) — Pow(A) is a function satisfying the
following propertieggivenS C A):

(fr—1) fr(S)csS (fr —2)if S # 0, then also fr(S) # 0
(fr — 3) if fr(S) C R, then fr(S) = fr(SNR) (fr —4) fr(JS) €| fr(S)
(fr =5) () fr(S) < fr(JSH)

Intuitively, given the extension of some concept fr selects thaypical instances ofC. (fr — 1)
requests that typical elements $foelong toS. (fr — 2) requests that if there are elementsSinthen
there are alstypical such elements. The following properties constrain the \iehaf fr with respect
to N andU in such a way that they do not entail monotonicity. Accordiad fr — 3), if the typical
elements ofS are in R, then they coincide with the typical elements$h R, thus expressing a weak
form of monotonicity (namelycautious monotoniciy (fr — 4) corresponds to one direction of the
equivalencefr(|J S;) = U fr(S;), so that it does not entail monotonicity. Similar considierss apply
to the equatiorf—r () Si) = () fr(S:), of which only the inclusiorf) fr(S;) € fr([)S;) is derivable.
(fr — b) is a further constraint on the behavior f&f with respect to arbitrary unions and intersections;
it would be derivable iff+ were monotonic.

We can give an alternative semantics ibased on a preference relation. The idea is that there is
a global preference relation among individuals and thatytpial members of a conceft (i.e., those
selected byt (C7)) are the minimal elements 6f with respect to this relation. Observe that this notion
is global, that is to say, it does not compare individual$wétspect to a specific concept (something like

We refer to [1] for a detailed description of the standardddigsion Logic ALC.
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y is more typical than: with respect to concept’). In this framework, an element € A is atypical
instanceof some concepf’ if € C! and there is n@'-element inA more typicalthanz. The typicality
preference relation is partial since it is not always pdesib establish which element is more typical
than which other. The following definition is needed beforemovide the Representation Theorem.

Definition 2.2. Given apreferencerelation <, which is a strict partial order (i.e., an irreflexive and
transitive relation) over a domaid, for all S C A, we defineMin_(S) = {z : x € Sandfy € S
s.t.y < z}. We say thak satisfies th&Smoothness Conditidff for all S C A, for all z € S, either

x € Min(S)or3y € Min(S) such thaty < x.

Now we are ready to provide the Representation Theorem,isgdhat, given a model with a selection
function, we can definen the same domaia preference relatior such that, for allS C A, fr(S) =
Min-(S). Notice that, as a difference with respect to related regdlheorem 3 in [18]), the relation
is defined on the same domaik of fr. On the other hand, ik is a strict partial order satisfying
the Smoothness Condition, then the operator defineth@S) = Min.(S) satisfies the postulates of
Definition 2.1. In order to give a formal proof, we also neeel thilowing lemma:

Lemma2.l. fr(SUR)NS C fp(S)

Proof:

First, considerft((S U R) N .S). Since(SU R) NS = 9, it follows that fr((SU R) N S) = fr(9).
Hencefr((SUR)NS) C fr(S) U (A —S). Consider nowfp((SUR) N (A —S)). By (fr — 1), it
follows thatfr((SUR)N (A —S)) € A— S, hence alsgr((SUR)N (A= S)) C fr(S)U(A-29).
Finally, from (fr — 4), alsofr(S U R) C fr(S) U (A —S). From this, it can be easily derived that
Jr(SUR)NS C fr(9). O

Theorem 2.1. (Representation Theorem)

Given any modekA, I, fr), fr satisfies postulatesftr — 1) to (fr — 5) above iff it is possible to
define onA a strict partial order, satisfying the Smoothness Condition, such that forSalc A,
fr(S) = Min(S9).

Proof:

(“Only if” direction) Given fr satisfying postulatesf¢ — 1) to (fr — 5), we define< as follows: for
all z,y € A,weletz < yif VS C A, if y € fr(S), thenz ¢ S and3R C A such thatS ¢ R and
x € fr(R). We prove thak is irreflexive, transitive, and satisfies the Smoothnesgiion. Moreover,
we prove that, for als C A, we havefr(S) = Min<(S5):

1. < isirreflexive and transitive. Irreflexivity follows from ¢éhdefinition of<. For transitivity, let
(@)x < yand (b)y < z. Letz € fr(S) for someS, then, by definition ok, y ¢ S and3R s.t.
S C Randy € fr(R). Furthermorez ¢ Rand3Q : R C Q andz € fr(Q). From this, we can
conclude that: ¢ S (otherwiser € R) andS C @, and hence: < z.

2. fr(S) € Min(S). Letz € fr(S). Supposer ¢ Min(S), i.e., forsomey € S,y < z. By
definition of <, y ¢ S, contradiction, hence € Min.(S).

3. Min.(S) C fr(S). Letx € Min(S). Thenz € S, i.e.,S # 0. By (fr — 2), fr(S) # 0.
Supposer ¢ fr(S). ConsidedJR; for all R; C A s.t. x € fr(R;). By (fr — 5), we have
z € fr(JR;). Consider nowfr(|J R; U S). We can show thafr(J R; U S) € J R;, since
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otherwise, by fr — 3) we would havefr(|J R; U S) = fr(J R;), and by Lemma 2.1 we would
concludefr(|J Ri) NS C fr(S), which contradicts the fact thatc fr(|J R;), butz & fr(S).
Consider hencg € fr(lJR; US) s.t. y € |JR;. We can observe that < z: indeed,x €
fr(UR;), whereas; ¢ |J R;; however|JR; C UR; U S andy € fr(UJ R; US), theny < z by
the definition of<. Furthermore, sincg € fr(|J R;US), by (fr — 1) we have thay € | JR; U S
and, sincey ¢ |J R;, we conclude thay € S. It follows thatz ¢ Min(S), contradiction, hence
Min<(S) C fr(S).

4. < satisfies the Smoothness Condition. 1St () andz € S. If x € fr(S) then by point 2
we haver € Min.(S). If x ¢ fr(S), we can reason as for point 3 to conclude that there is
ye fr(UR;US) sty |JR; (hencey € S), andy < x. By Lemma 2.1, we havg € fr(S),
hence by point 2 we concludee Min.(S).

(“If " direction) Given a strict partial order. satisfying the Smoothness Condition, we can defipe
Pow(A) — Pow(A) by letting fr(S) = Min(S). It can be easily shown thgtr satisfies postulates
(fr — 1) to (fr — 5). The proof is left to the reader.

0

Having the above Representation Theorem, from now on, weefdr to the following semantics:

Definition 2.3. (Semantics ofALC + T)

A model M is any structuré A, <, I'), whereA andI are defined as in Definition 2.1, ardis a strict
partial order over\ satisfying the Smoothness Condition (see Definition 2.2/@pd is the extension
function that maps each extended conagpb C! C A, and each rol&? to aR! C A x A. I is defined
in the usual way (as fad£C) and, in addition(T(C))! = Min.(C7).

Definition 2.4. (Model satisfying a Knowledge Base)
Consider a modeM, as defined in Definition 2.3. We exterido that it assigns to each individuabf
O an element:;! of the domainA. Given a KB (TBox,ABox), we say that:
e M satisfies TBox if for all inclusiong’ = D in TBox, for all elements: € A, if z € CZ, then
xz € D
e M satisfies ABox if: (i) for allC(a) in ABox, we have that! € C7, (ii) for all aRb in ABox, we
have thata!,b") € R’.
M satisfies a knowledge base if it satisfies both its TBox andBsx.

Notice that the meaning aF consists of two parts: for any elemenof the domaimA, = € (T(C))! just
in case (i)z € C!, and (i) there is nay € C! such thaty < z. In order to formalize (ii) in the calculus
that we present in Section 3, we introduce a new modalityhose interpretation ioM is defined as
follows.

Definition 2.5. (JC)! = {z € A | for everyy € A, if y < z theny € C'}

The basic idea is simply to interpret the preference retati@s an accessibility relation. By the Smooth-
ness Condition, it turns out that the modalifyhas the properties of Godel-Lob modal logic of provapilit
G. The Smoothness Condition ensures that typical eleméré exist whenever’! # (), by prevent-

ing infinitely descending chains of elements. This conditiberefore corresponds to the finite-chain
condition on the accessibility relation (as in G). A simitanrespondence has been presented in [14] to
interpret the preference relation in KLM logics. The foliog relation betwee andd holds:
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Proposition 2.1. For allz € A, we haver € (T(C))! iff z € CT andz € (O-C)!

Since we only usél to capture the meaning &, in the following we will always usé] followed by a
negated concept, asin—C.

Let us now show that the satisfiability of ahZC + T-knowledge base is a decidable problem and
it is precisely EXPTIME-complete. In order to do this, we des®me more definitions. First of all, we
define the languagé i 5 of all subformulas of KB plus all boxed formulés~C such thafT'(C') occurs
in KB:

Definition 2.6. Given anALC + T knowledge base KB=(TBox,ABox), we define the languéggs as
follows: - if C'is a subformula of KB, thed € Lxp and—C € Lgp; - if T(C) occurs in KB, then
O-C € Lxgp and—-O-C € LkB.

Let us now define theaturationof a setA of formulas of Lk g:

Definition 2.7. Let KB=(TBox,ABox) be an4LC + T knowledge base, and let be a set of formulas
of Lk g, i.e., A C L. We say that4 is saturated if the following conditions hold:

o if -C € Lip,thenC € Aifandonly if ~C ¢ A;

e ifCUDE Lkgp,thenCUD e AifandonlyifC € AorD € A,

e ifCNDeLkgp, thenCNDe Aifandonlyif C € AandD € A,

o if T(C) € Lkp,thenT(C) € Aifand only if C € AandOd-C € A,;

o if -T(C) € Lkp, then—-T(C) € Aifand only if -C € Aor -0-C € A,

o if C C D € TBox, thenifC € AthenD < A.

Intuitively, given a set of formulasl of Lk 5, we say that it is saturated if it is free of obvious contra-
dictions, i.e., for allC € Lkp, eitherC € A or =C € A, but not both. In the following a saturated set
A C Lk p will also be called amtom and the set of all atomd C Lx g will be denoted byAt(Lx p).

It is easy to see that a set of concefts= {C1,Cs,...,C,} of Lxp such thatCy MCy ... M Cy, is
satisfiable in some model of the TBox, can be extended to sagatlsetd € At(Lxp).

We can show that, given adLC + T knowledge base KB=(TBox,ABox) such that the TBox is
consistent and the ABox is consistent w.r.t. the TBox, welnghl a canonical model for KB by means
of a construction whose temporal complexity is exponetidhe size of the KB. The basic idea is that
of building a canonical model whose domain is a subset oféhefsatomsAt(Lx ).

Definition 2.8. Given anALC + T knowledge base KB=(TBox,ABox), we definecanonicalmodel
M = (A, <, I) iteratively through the following steps:

(Step 1)Let:
o A= At(Lkp)
e [ be the following extension function:
— conceptsgiven A € A, let A € CTifand only if C' € A;
— roles given. A € A andB € A, let (A, B) € R! if and only if there existSIR.C' € A (resp.

—-VR.C € A) such that: (i)C € B (resp. -C € B); (i) for all VR.D € A (resp. for all
-3R.D € A), D € B (resp.—D € B);
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e < be the following relation:

—givenA € A andB € A, let A <, B if and only if there exists-[0 —-C € B such that: (i)
C € AandO-C € A; (i) for eachd-D € B, D € Aandd-D € A;

(Step 2)Repeatedly updatd, I and< as follows:

e remove fromA all A such that3R.C € A (resp.—VR.C € A) and there is n&@ € A such that
(A,B) € Rl andC < B (resp.—C < B);

e remove fromA all B such that—= -C € B and there is nod € A such thatd <qg BandC € A
and-C € A;

e Updatel and<, accordingly (by removing from eacfi’ all the atoms which have been removed
from A; by removing fromR! all the pairs(A, B) such that eitheid or B has been removed from
A, etc.)

until no further deletion of atoms froi is possible.

(Step 3)Define the preference relaticn as the transitive closure efy.

Observe that, (Step 2) above removes from the domdaihose domain elements containing existential
(or negated Box) concepts of which that domain element damman instance. Due to the finiteness of
the setA as defined in (Step 1), the number of iterations in (Step 2} teiéinite.

It is easy to prove that, given the canonical madél= (A, <, I) of Definition 2.8, the function’
is defined according to the semantics4ofC + T, namely:

- A e (DuE)!ifand only if eitherA € D! or A € EY;

-Ae(DnE) ifandonlyif A € D' andA € E';

-A e (-D)! ifand only if A ¢ D';

- A € (3R.C)! if and only if there is @3 € A such tha( A, B) € R andB € C;

- (T(C))' = Min(C).
The proof of all cases is obvious apart from the last one, tuckvwe prove the next two lemmas.

Lemma 2.2. Let KB=(TBox,ABox) be an4LC + T knowledge base and le¥! = (A, <, I) be the
canonical model of Definition 2.8. Gived € A, if O-C € A, then for allB < A we have that-C € B
andd-C € B.

Proof:
We distinguish two cases: (B <o A: by construction, for all0-C € A we have that-C € B
and0-C € B and we are done; (i < A has been obtained by the transitive closure<gfwith
B <g A1 <g A2 <o -+ <o An_1 <o An <o A. By construction, for ald0-C € A, we have that
-C € A,, andd-C € A,,. For the same reason, we have that ¢ A,,_; andO0-C <€ A,,_1, and so
on, then—C e B andO-C € B, and we are done.

O

Lemma 2.3. Given anALC + T knowledge base KB=(TBox,ABox) and given the canonical nhode
M = (A, <, I) of Definition 2.8, we have thdfl'(C))! = Min(CT).
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Proof:

First, we prove thatT(C))! € Min-(CT). ConsiderA € (T(C)). By the definition of the extension
function I in Definition 2.8, we have thaF(C') € A sinceA € (T(C))!. SinceA is saturated (Defini-
tion 2.7), we have thaf' € A and-C € A, then (i).4 € C! by construction of in the model. Let us
now consider eacB € A such that? < A: sinced-C € A, by Lemma 2.2 we have thatC € B then,
by the definition of the extension functidnin the model, we have that (ip ¢ C!. We can conclude
that (i) A € C! and (ii) for eachB < A we haveB ¢ C1,i.e., A € Min_(C7).

Second, we prove thadt/in- (C!) C (T(C))!. Considerd € Min(CT). By definition, we have that
A € C and there is noB < A such thatB € C!. SinceA € C!, we have that (i)C € A by the
definition of I in Definition 2.8. By absurd, suppose that-C' ¢ A: since A is saturated (Definition
2.7),-0-C € A. By construction of the canonical model, there exiBts< A such thatC € B’ and
O-C € B’ then, by the definition of, B’ € C!. Therefore, there exis#8’ < A such thatB’ € C,
against the hypothesis that € Min.(CT). We can conclude that (ilJ-C € A. SinceA is saturated
(Definition 2.7),T(C) € A. We conclude thatl € (T(C))! by the definition off in Definition 2.8. O

To show that the canonical model is indeed a model, we alsd teshow that the relatior: satisfies
the properties of a preference relation.

Lemma 2.4. Given anALC + T knowledge base KB=(TBox,ABox) and given the canonical nhode
M = (A, <, I) of Definition 2.8, we have that is an irreflexive and transitive relation and satisfies the
smoothness condition.

Proof:

Transitivity follows from the definition of< from <. For the irreflexivity, suppose by absurd that
B < Bfor someB € A. We distinguish two casegi) B <, B, then there exists(0-C € B and, by
construction, als@1-C € B, against the fact thaf is saturated{ii) B < B sinceB < A; < Ay <
o< Ay, < A < BforsomeA, Aq, As, ..., A, € A. SinceA < B, there is—O-C € B such that
O0-C € A. By Lemma 2.2, for alB’ < A we have that-:C € B and0-C € B, then alsdJ-C € B
sinceB < A, once again against the saturation®bfConcerning the smoothness condition, we have to
show that, given a sef, if S # (), then alsaMin(S) # 0. This immediately follows from the fact that
< does not contain infinite descending chains of elements;dfince A = At(Lk ) is finite, then we
have only to show that is acyclic. This immediately follows from irreflexivity. O

We have seen that the canonical madldefined above is indeed atCC + T model. We will see later
that M satisfies all the inclusion occurring in the TBox of the giveB. However, up to now we have
not yet defined how the functioh can map individuals occurring in the ABox into domain eleisen
This mapping should be defined in such a way that the assgiitidche ABox are satisfied. How can we
be sure that, for each individualoccurring in the Abox, we can find a proper element of the damai
namely an atord € A such that for all the concegt with C(a) € ABox, C belongs ta4?

We need to introduce some further Lemmas. Given an atopAt(Lx ), whereA={C1,...,Cy},
let us denote byd the concept’; ... M C,. The next lemma says that an atom which has not been
included in the canonical model corresponds to a set of gigaeehich are not conjunctively satisfiable
(with respect to the TBox).
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Lemma 2.5. Given anALC + T knowledge base KB=(TBox,ABox) and given the canonical nhode
M = (A, <, I) of Definition 2.8, for all atomsA € At(Lkp), if A ¢ A, then in all modelsM’ =
(A, <, I') satisfying the TBox A" = 0.

Proof:

We give a sketch of the proof. A € At(Lxp)andA ¢ A, itis the case that, during the construction of
the canonical model, atot has been deleted from the domairat some iteration step within (Step 2).
The theses can be proved by induction on the order in whighsatave been deleted frofduring the
construction of the model.

Let us consider in detail the base case. Assutne At(Lxp) and.A is deleted fromA at the first
iteration step. There are two possible cases: either (I tisea concepiR.C' € A and there is no
B ¢ A with (A,B) € R andC ¢ B or (2) there is a conceptl]-C < A and there is nd3 € A
such thatB <¢g A andC € B andJ-C € B. Let us consider case (1) (case (2) is similar). By
construction of the canonical model, it must be the case thate is na3 in A such that” € B and,
for all for all VR.D € A (resp. for all-3R.D € A), D € B (resp. =D € B). LetDy,..., Dy be
all conceptsD; such that eitheW R.D; € A or -3R.D; € A. It must be that there is no atothe A
such that{C, Dy, ..., Dy} C B. As itis not the case thaf has been rejected frolA (A has been
rejected at the first iteration step), then there is no afom At(L k) such that{C, D,,..., Dy} C B.
Then the concept’ M Dy M ... N Dy is not satisfiable with respect to the TBox, that is, in all ried
M = (A, <’ I') satisfying the TBox,(C' M Dy M ... 1M D) = (. Therefore, in all models\t’
satisfying the TBox,A!' = (). We omit the inductive case.

O

Lemma 2.6. Let KB=(TBox,ABox) be anALC + T knowledge base and I&t C Lk p. If there is a
model M’ = (A, <', I} satisfying the TBox and a domain element A’ such that: € C!', for all
C; € S, then there is an atotd € A such thatS C A.

Proof:

Assume, by absurdum, that there is no atdme A such thatS C A. Let A4,..., A, be all the
atoms inAt(Lx p) such thatS C A; (if S is not contained in any atod; € At(Lxp), then S would
not be satisfiable with respect to the TBox, against the lhgsi$). By hypothesis, there is a model
M’ = (A, <', I') satisfying the TBox and a domain element A’ such that: € C!', for all C; € S.

Hence,5!" £ 0. Then it is easy to see that, for some 1, ..., AZ-I/ £ (). By Lemma 2.54; € A.
O

The last Lemma guarantees that, for a KB=(TBox,ABox), whkesTBox is consistent and the ABox is
consistent w.r.t. the TBox, given an individuabccurring in the ABox, it is always possible to find an
elementA of the domainA of the canonical model such théf, .., C,,} C A, whereC' (a), ..,Cp(a)
are all the assertions concernim@n the ABox. Hence, the assertions of the foff{n) can be made true
in the canonical model, by defining = A4, for such and. We have also to ensure that all the assertions
of the form R(a, b) can be made true in the canonical model by a proper choiaé afdb’.

Given anALC + T knowledge base KB=(TBox,ABox) and given an individuaéxplicitly men-
tioned in the ABox, we writer(a) to denote the set of concepts of whiglis an instance, i.eg(a) =
{C € LkB | C(a) S ABOX}.
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Lemma 2.7. Let KB=(TBox,ABox) be an4LC + T knowledge base, where the TBox is consistent and
the ABox is consistent w.r.t. the TBox, and Jet = (A, <, I) be a canonical model as in Definition 2.8.

The following properties hold:
1. given an individuak explicitly mentioned in the ABox, there exist$ € A such thar(a) C A;

2. if R(a,b) € ABOX, there exist4d, B € A such that(i) o(a) C A, (i) o(b) C B and,(éi7) for all
VR.C € A (resp. for all-3R.C' € A), we have thaC € B (resp.—C € B).

Proof:
1. The conclusion follows immediately from Lemma 2.6.
2. Asthe ABox is consistent w.r.t. the TBox, there must be dehd1’ = (A’ <’, I') satisfying both
the TBox and the ABox. In particular, there is a domain eleméhe A’ such thau!" € ¢, for
all C € o(a). Let us consider the s&, of all the concepts (including those ir{a)) of which a'’
is an instance. By Lemma 2.6, there must be an atbm A such thatS, C A.

Similarly, there is a domain elemeift € A’ suchthab!’ e ¢!, forall C' € o(b). Let us consider
the setS), of all the concepts (including those dr{b)) of which b!" is an instance. By Lemma 2.6,
there must be an atol € A such thatS, C B.

Finally, sinceR(a, b) €ABox, then it must be thaiu’',b”') € R”'. Letus consider anyR.C € A.
It must be that in the modeWt’, o/’ € (VR.D)"". Then, it must be that’ € D”. Hence,D € S,
andD € B. This proves our thesis, as we have found two atomB8 € A satisfying condition 2

above.
O

We can now define a moddél’ of a KB:

Definition 2.9. Given anALC + T knowledge base KB=(TBox,ABox), where the TBox is consisten
and the ABox is consistent w.r.t. the TBox, and given the o&® modelM = (A, <, I) of Definition
2.8, we define the modeWt’ = (A, <, I’) wherelI’ extendsI as follows: 1. by properly assigning to
each individuala of the ABox an elementd € A, call it o', such that (i)o(a) C A and (ii) for all
R(a,b) € ABox and for allVR.C' € A (resp. -3R.C' € A) we haveC € B (resp. ~C € B), where

B =", and2. by adding(a’’,b"") € R! for eachR(a,b) € ABOX.

It is easy to see that the addition of a p&if’,b'") to R!" for eachR(a,b) € ABox preserves the
properties of the extension function in the model. In pattic

Lemma 2.8. Let KB=(TBox,ABox) be an4LC + T knowledge base, where the TBox is consistent and
the ABox is consistent w.r.t. the TBox, and I&t’ = (A, <, I’) be the model of Definition 2.9. Given
A€ AandB € A, thenif(A,B) € R andA € (VR.C)!' (resp.A € (-3R.C)!"), then alsd3 € C”'
(resp.B € (-C)1).

Proof:

We distinguish two cases. (A, B) € R, i.e. A andB are alreadyR-related in the canonical model of

Definition 2.8: this means that, for allR.C' € A (resp. for all-3R.C € A) we have thaC' € 5 (resp.

—~C' € B). By construction ofM’, we can conclude tha@ € C*' (resp.B € (-C)'). 2. (A,B) € R/,

while (4, B) € R!": (A, B) has been added tB8'" in step 2 of the construction o¥1’ to satisfy some

R(a,b) € ABox. In such a case, the conclusion follows immediatlejofes from part 2. of Lemma 2.7.
O
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We are able to prove that:

Theorem 2.2. Given anALC + T knowledge base KB=(TBox,ABox), where the TBox is consisten
and the ABox is consistent w.r.t. the TBox, the modél = (A, <, I’) of Definition 2.9 satisfies KB.

Proof:
First of all, Lemmas 2.3 and 2.8 show th&tis an extension function in the sense of Definition 2.1.
Moreover, Lemma 2.4 shows thatis an irreflexive and transitive relation and satisfies theatmess
condition. We have to show that both the TBox and the ABox atisfiable inM’:
e TBox: for eachC' = D € TBox, we have to show that, for each € A, if A € C!' then also
A € D!. Supposed € C!". By construction, we have thét € A. SinceA is saturated, we have
also thatD € A and, by construction of the model, ¢ D!’, and we are done;
e ABox: we have to show that, for each(a) € ABox and for eachR(a,b) € ABox, a’’ € C!" and
(a’’,b"") € RY. This follows by the construction of1’ in Definition 2.9.
a

We conclude with a complexity analysis dfCC + T

Theorem 2.3. Given anALC + T knowledge base KB=(TBox,ABox), the problem of decidingsfat
ability of KB is EXPTIME-complete.

Proof:

First, we prove that the problem of deciding satisfiabilifyk@ is in EXPTIME. If KB is satisfiable,
we can build a model as defined in Definition 2.9. hdie the length of the string representing KB: the
cardinality of the languag€ i 5 (Definition 2.6) isO(n), then the number of different sets of formulas
of Lxpis O(2™). Also the size ofdt(Lx ) is O(2"™). The size of each set of formulas At (Lx ) is
O(n).

The construction of the canonical model in Definition 2.9tstaith (Step 1) the definition of a do-
mainA containingO(2") atoms, and the definition of the binary relaticngandR’s onAt(Lx 5). The
definition of each of these relations requires, at mo$2") steps. Indeed, the construction introduces at
mostO(2") x O(2") pairs(A, B) for eachR! (where the different roles are at ma@3tn)), and the same
for <o. Observe that the iterative step (Step 2) requires at i0¢2t) iterations, since each iteration
removes at least one atom frafn Moreover, each iteration requires at me§R") steps. It is easy to
see that also (Step 3) and the assignment of a domain eleoneach individual occurring in the ABoX,
as done in Definition 2.9, require at ma@g{2") steps.

The standard DLALC is EXPTIME-complete [1]. Since our logiglLC + T extendsALC, it
immediately follows that the problem of deciding satisfiiépiof KB is EXPTIME-hard. O

Let us finally consider other standard reasoning tasks fa. [@iven a KB, we consider:
e concept satisfiability: given a concept is there a model of KB assigning a non empty extension
to C?
e subsumption: given two concepfsandD, is C more general tha® in any model of KB?

e instance checking: given an individualand a concepf’, is a an instance o€ in any model of
KB?
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Theorem 2.4. In ALC + T, given a KB=(TBox,ABox), the problems abncept satisfiabilitysubsump-
tion and ofinstance checkingre EXPTIME-complete.

Proof:

The problem otoncept satisfiabilitgan be reduced to the problem of satisfiability of KB'=(TB&kBox’),
where ABox’=ABoxU{C(a)}, with a not occurring in ABox, therefore itis EXPTIME-complete. &h
problem ofconcept satisfiabilityextends the problem of satisfiability of a KB, therefore itHXP-
TIME-complete. Concerning the problemssafosumptiorand ofinstance checkinget us consider the
complementary problem of deciding whether KB«, wherex is eitherC' C D or C(a), respectively.
These problems can be reduced to the problem of verifyingalisfiability of KBU {—a}?, which is
EXPTIME-complete. It follows that subsumption and inst&awcbecking are 0-EXPTIME-complete,
then they are EXPTIME-complete since-EXPTIME=EXPTIME (see Chapter 7 in [22]). O

3. A Tableaux calculus forALC + T

In this section we present a tableau calculus for decidiegsttiisfiability of a knowledge base. Given a
KB (TBox,ABox), any concrete reasoning system should mtexthe usual reasoning services, namely,
satisfiability of the KBconcept satisfiabilitysubsumptionandinstance checkinglt is well known that
the latter three services are reducible to the satisfiglufien KB.

We introduce a labelled tableau calculus for our ladi€C + T, which enriches the labelled tableau
calculus forALC presented in [7]. The calculus is calld*“c+T and it is based on the notion of
constraint system\We consider a set ofariablesdrawn from a denumerable sgt 74£¢+T makes use
of labels which are denoted with, y, z,.... Labels represent either a variable or an individual of the
ABOX, that is to say an element 6f U V.

A constraintis a syntactic entity of the form &, yory < xorx : C,whereR is a role and
C' is either an extended concept or has the fatmD or —[J-D, whereD is a concept. The ABox of
an ALC + T-knowledge base can be translated into a set of constrainesptacing every membership

assertion”'(a) with the constraint: : C' and every role:Rb with the constraint Ly (Definition 3.1).
Atableau is a tree whose nodes are péits U), where:

e S contains constraints (dabelledformulas) of the forme : C or x £, yory < x;

e U contains formulas of the for@ = D’ representing subsumption relatiafis_ D of the TBox.
L is a list of labels. As we will discuss later, this list is usadrder to ensure the termination of
the tableau calculus.

A node (S | U) is also called aonstraint systemA branch is a sequence of nod&s | Uy), (S2 |
Ua),...,(Sn | Up)..., where each nodéS; | U;) is obtained by its immediate predeces$6y_; |
U;_1) by applying a rule ofA“¢+T, having(S;_; | U;_1) as the premise an(b; | U;) as one of its
conclusions. A branch is closed if one of its nodes is an intgta@f (Clash), otherwise it is open. We say
that a tableau is closed if all its branches are closed.

Given a KB, we define itsorresponding constraint systess follows:

%In casex has the formC' C D, for ~a- we mean(C 11 —D)(b), givenb not appearing in the KB.
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Definition 3.1. (Corresponding constraint system)
Given anALC + T-knowledge baséTBox,ABox), we define itorresponding constraint systeffi |

U) as follows: S = {a : C' | C(a) € ABoz}U{a - b | aRb € ABoz}andU = {C C D’ | C C
D € TBoz}.

Definition 3.2. (Model satisfying a constraint system)

Let M = (A, <, I) be a model as defined in Definition 2.4. We define a functiomhich assigns
to each variable o’ an element ofA and assigns every individual € O to o’ € A. M satisfies (i)
x : C undera if a(x) € C1, (i) « L,y undera if (a(x),a(y)) € R and (iii) y < x undera if
ay) <m a(z). A constraint systenS | U) is satisfiable if there is a modél and a functiony such
that M satisfies undetv every constraint irt and that, for allC’ C D € U and for allx occurring insS,
we have that itv(z) € CZ, thena(z) € DI.

It can be easily shown that:

Proposition 3.1. Given anALC + T-knowledge base, it is satisfiable if and only if its corresgiag
constraint system is satisfiable.

Therefore, in order to check the satisfiability of (TBox,ABowe build its corresponding constraint
system(S | U) and then we us@A“C+T to check the satisfiability ofS | U). In order to check a
constraint systemsS | U) for satisfiability, our calculugA~‘+T adopts the usual technique of applying
the rules until either a contradiction is generated (Clastg model satisfyindS | U) can be obtained
from the resulting constraint system.

In order to take into account the TBox, we use a techniquentdlding similar to the one described
in [7]. Given a node/S | U), for each subsumptiod’ C D’ ¢ U and for each labet that appears in
S, we add toS the constraintc : —~C' L D. As mentioned above, each formulaC D is equipped by
the list L of labels in which it has been unfolded in the current braridfis is needed in order to avoid
multiple unfolding of the same subsumption by using the sk&hel, generating non-termination in a
proof search.

Before introducing the rules &A%¢+T we need some more definitions. First, as in [7], we assume
that labels are introduced in a tableau according to an iogler, that is to say ify is introduced in the
tableau, themr: < y for all labelsz that are already in the tableau.

Given a tableau nodéS | U) and a labelr, we defines((S | U),z) = {C | z : C € S}.
Furthermore, we say that two labelsandy are S-equivalent writtenz =g v, if they label the same set
of concepts, i.eqg((S | U),x) = a((S | U),y). Intuitively, S-equivalent labels can represent the same
element in the model built by the rules 8H<+T. Last, we defines)’,, = {y : =C,y : O-C | z :
O0-C € S}. Sé”_)y is used in order to propagate both the argumefitof a boxed formulda1—-C and the
boxed formuldd—C itself, due to transitivity.

The rules of A“C+T are presented in Figure 1. Rulgs™), (v~), and(0)~) are calleddynamic
since they introduce a new variable in their conclusionse ®ther rules are callestatic We do not
need any extra rule for the positive occurrences ofthgperator, since these are taken into account by
the computation o{S*g]c‘{,y. Intuitively, when the rule(C]™) is applied tox : -J-D generating a new
labely such thaty < z, then, for each: : O-C in S, the rule propagates the boxed formula by adding
(i) its argumenty : -C and (ii) y : (0—C since< is transitive.
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S,x:—-=C|U
(S,z:C,x:-C|U) (Clash) ( 0) (-)
(S,z:C|U)
(S,x:T(C) | U) o (8,2 ~T(C) | U) (T)
(S,z:C,z:0-C | U) (S,xz:~C|U) (S,z: -0-C | U)
(S,2:VR.C,x <5 y | U) (8,2 :3R.C|U) .
R (V") R 3 y new
(S,z:VR.C,x — y,y:C|U) ity:C¢s (S,2:3R.C,x — y,y:C | U) if Az <z s.t. 2 =g,3rc T and
v ﬂus.t.xquSandu:CGS
<S,£L’ : =VR.C | U> v_) J new <S,CL’ . —\HR,C7{[ i) Yy | U> (3_)
(S,ac:—\VR.C’,aci»y,y:—\C\U) if/ﬂz<%s.t.zES,z:ﬁVR,Cxand (Sx:ﬂHR.Cxi»yy:—\CﬂU)
Aust.z —ueSandu:-CeS ’ ’ ’ ify:-C¢8
S,z :-0-C|U _ S|U,cc DF
< %) M ?D S £ D7) ——— (Unfold)
(S,z:-0-Ciy <z,y:C,y:0-C, 82, |U) y new (S,z:~CUD|UCLC D"")
if P2 < st 2 =g,.0-0 T and if z occurs in S and x & L
Bust. {fu<z,u:Cu: D—\C sM 1cs

Figure 1. The calculug*¢+T . To save space, we omit the standard rules fand.

The side conditions on the rulést), (V—), and(CJ™) are introduced in order to ensure a terminating
proof search, by implementing the standatdckingtechnique described below. The rulesiofcc+T
are applied with the followingtandard strategyl. apply a rule to a labet only if no rule is applicable
to a labely such thaty < z; 2. apply dynamic rules only if no static rule is applicablgnis strategy
ensures that the labels are considered one at a time aagaodime ordering<. Consider an application
of a dynamic rule to a labet of a constraint systemS | U). For all (S’ | U’) obtained from(S | U)
by a sequence of rule applications, it can be easily shown(thao rule can be applied ifS” | U’)
to a labely s.t. y < z and(ii) o((S | U),z) = o((S" | U'),z). The calculus so obtained is sound
and complete with respect to the semantics described in iDefir8.2. In order to prove this, we first
introduce the notion ofvithess

Definition 3.3. (Witness)

Given a constraint systerft | U) and two labelsc andy occurring inS, we say that is a witness of
y if the following conditions hold: 1z =g y; 2. x < y; 3. there is no labet s.t. z < z andz satisfies
conditions 1. and 2., i.ez is the least label satisfying conditions 1. and 2. wxkt. We say that, is
blockedby x in (S | U) if y has witness:.

By the strategy on the application of the rules described@lamd by Definition 3.3, we can prove the
following Lemma:

Lemma 3.1. In any constraint systerS | U), if = is blocked, then it has exactly one witness.

Since all the rules are invertible, we can assume that tseyely one single tableau (there can be several
that only differ as far as the labels’ names are concernadprder to prove the completeness of the
calculus, we need to introduce the notion of saturated bhratrdormally speaking, this is a branch in
which all the rules of the calculus have been applied as msigfossible. More formally:
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Definition 3.4. (Saturated Branch)

A branchB=(Sy | Uy), (S1 | U1),...,(S; | U;),... is saturatedif the following conditions hold: 1. for
all C T D™ and for all labels: occurring inB, eitherz : =C orz : D belong toB; 2. if z : T(C) occurs
in B, thenz : C' andx : O-C occur inB; 3. if x : =T (C') occurs inB, then eitherr : =C or x : =[0-C

occurs inB; 4. if x : =0O-C occurs inB, then either there ig such thaty < =,y : C, y : O-C, and
SM_ occur inB or x is blocked by a witness, and there ig/ such thaty < w, y : C, y : O=C, and

T—Y

SM_ occurinB; 5. if  : 3R.C occurs inB, then either there ig such thatr RN y andy : C occur

w—y
in B or x is blocked by a witness), andw RN y andy : C occur inB; 6. if x : VR.C andz RN Y
occur inB, alsoy : C occurs inB; 7. forz : =VR.C and forz : =3R.C the condition of saturation is
defined symmetrically; 8. for the boolean rules the condit saturation is defined in the usual way.
For instance, ift : C'M D occurs inB, alsox : C' andx : D.

By following the strategy on the order of application of thies outlined above and by Lemma 3.1, the
following Proposition holds:

Proposition 3.2. Any open branch can be expanded into an ogsnratedbranch.

In order to show the completenessf£¢+T, given an open, saturated brarBhwe explicitly add to
B the relationy < z if x is blocked andv is the witness of andy < w occurs inB. Before proving the
completeness, we prove the following Lemma:

Lemma 3.2. In the tableau, there is no open brarilcontaining an infinite descending chain x5 <
r1 < Zg.

Proof:
The only way to obtain an infinite descending chainz, < 1 < xy would be to have either (i) a loop
or (ii) an infinite set of distinct labels. We can show thattihei (i) nor (ii) can occur. As far as (i) is
concerned, suppose for absurd that there were a loop, tttas#y there is an infinite descending chain
r<u<---<y <---<y <z Therelationx < u cannot have been inserted in the branch by the
rule (O7), that can only introduce in the branch relatians: « wherez is a new label. Hence; < u
must have been introduced becausis blocked by some witness, andz < w occurs inB. Notice,
however, that in this case: 1. < w has been introduced k{1 ~) applied to somev : -[0-C, hence,
x : [O-C occurs inB; 2. it can be easily proved that also for gJland foru, we have thai; : O0-C
andwu : O-C belong toB; 3. sincew is a witness ofu, alsow : —=C0~C' occurs in the brancB, which
contradicts the hypothesis thatwas open. Concerning (ii), suppose there were an infiniteethekng
chain< --- < x;--- < xy. Each relation must be generated by@—C' that has not yet been used in
the chain, either by an application of the rglé~) to -O0-C'in x;_1, or by an application of the rule
(O07) to -O-C in the witnessw of z;_;. Indeed, if-C0-C had been previously used in the chain, say in
introducingz; < z;_1, for eachr; suchthatr; < --- < x;, z; : 0-C'isin B, hencer; : -[J-C cannot
be inB, otherwiseB would be closed, against the hypothesis. Notice howevertiigaonly formulas
—[O-C that appear in the branch are derived fraifC') appearing in the initial constraint system. Since
the number of sucl'(C) is finite, it follows that also the number of possible differe-CJ-C is finite,
and the infinite descending chain cannot be generated.

O
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With the above propositions at hand, we can show that:

Theorem 3.1. (Soundness and CompletenessBf£C+T)
Given a constraint systefib | U), it is unsatisfiable iff it has a closed tableau.

Proof:
As usual, the soundness can be proven by induction on thathefighe closed tableau fdiS | U). By
considering each rule @A“C+T it can be easily shown that if the premise is satisfiables §atileast)
one of its conclusion. The theorem follows by contrapositio

Concerning the completeness, we show the contrapositee that if the tableau is open, then the
starting constraint system is satisfiable. An open tableatains an open branch that by Proposition 3.2
can be expanded into an opsaturatedbranch. From such a branch, callBt we define a canonical
modelM = (Ap,<’,I) where: Ap = {x : z is a label appearing iB}; <’ is the transitive closure
of relation < in B; I is an interpretation function s.t. for all atomic concepts A’ = {z such that
x : A occurs inB}. I is then extended to all conceptsin the standard way, according to the semantics

of the operators. For role namés R! = {(z,y) : eitherx &, y occurs inB or z is blocked andv is
the witness oft (by Lemma 3.1 suchy exists) ancdw £, y occurs inB}. We can show that:

e < isirreflexive, transitive, and satisfies the Smoothnesdi@ion. Irreflexivity follows from the
fact that the relatior< is either introduced by rulé{~) between a label already presenBiand a
new label or is explicitly added in case some —[]—C' is on the branch and is blocked. In this
case, suppose by absurd that x is added, this means thatis blocked byw, thusw : =O0-C
belongs toB, as well ast < w,x : C,z : O-C belong toB, but this contradicts the fact thBt
is open (bothr : =[0-C andx : O-C occur). Transitivity follows from definition ok’. The
Smoothness Condition follows from transitivity ef together with the finiteness of chains af
deriving from Lemma 3.2.

o for all conceptsC we have:(a)if = : C occurs inB, thenz € C; (b) if z : ~C occurs inB, then
x € (=C)!. We reason by induction on the complexity @f If C is a boolean combination of
concepts, the proof is simple and left to the reader.

If C'is 3R.D, then by saturation, either % y, y : C occur inB or w £, y, y : C occur inB,
for w witness ofz. In both cases(x,y) € R’ by construction, and by inductive hypothesis
y € C!, hence (a) follows. (b) can be proven similarly to the foliogvcase (a).

If CisVR.D, then by saturation, for all s.t. £, y occurs inB, alsoy : D occurs inB, and the
(a) holds by the inductive hypothesis. (b) can be provenlaiiyito the previous case (a).

If C'isO0-D andz : O-D occurs inB, letz; <’ z, then there is;; < y < --- < u < x, where
each relation has been introduced either By ) or by the completion described before Lemma
3.2. Observe that, in both cases; =D andu : C0-D are added td, since they belong to the
conclusion of the first application ¢f1~) generating:. For the same reason, further applications
of (O7) introducey : =D andy : O-D. Therefore, alsa; : =D occurs inB. By inductive
hypothesisz; € (—D)!, hencex € (J-D)!. If z : =0-D, then by saturation there igs.t.

y < z,y : D andy : O0-D occur inB. By definition of<’, we have thay <’ x and, by inductive
hypothesisy € D! andy € (O-D)?. It follows thatz € (-0-D)’.
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(z:T(A),z: S| T(A) C T T(S)C A T(S) C -1 (T
(z: Az :0-Az:5]|...) (Unfold)
(z:-T(A)UT,z: Az:0-A,2: 5| T(A) CTE ) .
()
(:-T(A),z: Az:0-A,z:5]|...) () <.’IIZT4IIA4.’EZD“A,I:S‘“.>( ) (Unfold)
(x:mAx: A (x:-0-A,z:0-4,...]...) (x:=T(S)U=T,x: T,z :O-A,z:S,... | T(S)C =T )"
(Clast) (Clash) ()
as as (x:=T(S),z:0-A,z:85,...]...) (e Tz T,...|...)
-G 16 (T7) (Clash)
(x:=S,z:8,...]...) (z:=0-S,z:0-4,...]...) ,_~
(Clash) W:Sy:0-8y:-A ‘ ~(E7)
y:Sy: YA L] ) Unfold
(y:ﬂT(S)uA,y:S,y;mﬂs,y:ﬂA,“.|T(S)QAM,M>( +)
(y:=T(S),y: Sy :0-5,...]...) e <y:ﬁA7y:A,--A\A--)<U)
. (T7) (Clash)
(y:=S,y:S,...]...) (y: =0=8,y:0-S,...]...)
(Clash) (Clash)

Figure 2. A closed tableau showing tHB{Adult) = —Student can be inferred from the TBo(T (Adult) C
TaxPayer, T (Student) T Adult, T(Student) T —TazPayer}. To save space, we usé for Adult, T for
TaxPayer, andsS for Student.

If C'is T(D) andz : T(D) occurs inB, by saturation, botlr : D andz : O0-D occur inB,
hence by inductive hypothesisc D! andz € (O-D)!, and by Proposition 2.5; € (T(D))’.
If  : =T(D) occurs inB, then by saturation alse : =D occurs inB or x : =[J-D occurs inB.
By inductive hypothesis either ¢ D’ or 2 ¢ (O-D)’. In both cases, by Proposition 2.1, we
conclude that: € (=T(D))”.

e forall C C D € U and all labels, eitherz € (-C)! orz € D!, i.e.,C! C D!. By saturation,
eitherz : ~C' occurs inB or z : D occurs inB. The property follows by inductive hypothesis.

e M satisfies the starting constraint system: this is an imned@nsequence of the previous points.

0

As an example, Figure 2 shows a derivatiof Y-+ T of the fact thafl'( Adult) C —Student can be in-
ferred from the TBoX T (Adult) C TazPayer, T (Student) T Adult, T(Student) C —TazPayer}. In
order to do so7A£C+T checks whether the KB whose TBox is the one above and whose A@tains
an individualz which is both a typicalddult and aStudent (i.e., ABox={T (Adult)(x), Student(z)})

is unsatisfiable. In detailA“¢+T tries to build a closed tableau for the constraint systermeeor
sponding to the KB, namelyz : T(Adult),z : Student | T(Adult) C TazPayer®, T(Student) C
Adult®, T (Student) C —TazPayer?).

Let us conclude this section by analyzing termination andmlexity of 74%¢+T_ In general, non-
termination in labelled tableau calculi can be caused bydifferent reasons: 1. some rules copy their
principal formula in the conclusion(s), and can thus be péag over the same formula without any
control; 2. dynamic rules may generate infinitely-many labereating infinite branches.

Concerning the first source of non-termination (point 1§, ¢imly rules copying their principal for-
mulas in their conclusions a&*), (37), (Unfold), (v~), (3*), and(Z~). However, the side condi-
tions on these rules avoid multiple applications on the stormaula. Indeed, (Unfold) can be applied
to a constraint systemS | U,C = D) by using the labek only if it has not yet been applied to
x in the current branch (i.ex does not belong td)). Concerning(V*), the rule can be applied to
(S,x : VR.C,z RN y | U) only if y : C does not belong t&'. Wheny : C'is introduced in the branch,
the rule will not further apply ta: : VR.C'. Similarly for (37), (3), (v™), and(Od").

Concerning the second source of non-termination (poin&)¢an prove that we only need to adopt
the standard loop-checking machinery knowrblxking which ensures that the rulés™), (v—), and
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(O7) do not introduce infinitely-many labels on a branch. Tharnkshe properties ofJ, no other
additional machinery would be required to ensure termamatindeed, we can show that the interplay
between rule$T ) and(CJ~) does not generate branches containing infinitely-manydabe

Let us discuss the termination in more detail. Without thie stonditions on the rule§i*) and
(v™), the calculusTA“¢+T does not ensure a terminating proof search. Indeed, givenstraint
system(S | U), it could be the case th&B™) is applied to a constraint : 3R.C' € S, introducing

a new labely and the constraints A, y andy : C. If aninclusionT(3R.C') C D belongs toU,
then (Unfold) can be applied by using thus generating a branch containipg —T(3R.C), to which
(T™) can be applied introducing : =C0—(3R.C). An application of((J™) introduces a new variable
z and the constraint : 3R.C, to which (37) can be applied generating a new label (Unfold) can
then be re-applied o' (3R.C') C D by usingu, incurring a loop. In order to prevent this source of non
termination, we adopt the standard techniquélotking the side condition of th¢31) rule says that
this rule can be applied to a nodg, = : 3R.C' | U) only if = is not blocked. In other words, if there is a
witnessz of x, then(3") is not applicable, since the condition and the strategyyrtigt the(3*) rule
has already been applied 10 The same fofv—) and(CJ™).

As mentioned, another possible source of infinite brancloesdcbe determined by the interplay
between rule§T~) and (). However, even if we had no blocking ¢al™) this could not occur,
i.e., the interplay between these two rules does not ganbrahches containing infinitely-many labels.
Intuitively, the application of 0~) to = : =00-C addsy : 0-C' to the conclusion, so thdfl'~) can
no longer consistently introduge: —[J=C. This is due to the properties of (no infinite descending
chains of< are allowed). More in detail, if (Unfold) is applied B(C) C D by usingz, an application
of (T™) introduces a branch containing: -[J—C'; when a new labej is generated by an application
of (™) onz : -0-C, we have thay : O-C is added to the current constraint system. If (Unfold)
and(T™) are also applied td'(C') C D on the new label;, then the conclusion wheng: -O0-C'is
introduced is closed, by the presenceyof (0-C'. By this fact, we would not need to introduce any
loop-checking machinery on the application(@f~). A detailed proof of termination of the calculus
without blocking on(CJ~) can be found in [15]. However, in this paper we have introduc®cking
also on(J~) for complexity reasons.

Theorem 3.2. (Termination of TA£C+T)
Let (S | U) be a constraint system, then any tableau generatgd¥§*7 is finite.

Our calculusTA¢+T gives a (suboptimal) nondeterministic-exponential tinegision procedure for
ALC + T

Theorem 3.3. (Complexity of A£C+T)
Given anALC + T-knowledge base (TBox,ABox), checking whether it is satfsié by usingl4~¢+T
isin NEXPTIME.

Proof:

We first show that the number of labels generated on a braretmm®st exponential in the size of KB.
Letn be the size of a KB. Given a constraint systésn| U), the number of extended concepts appearing
in (S | U), including also all the ones appearing as a subformula afratbncepts, i€)(n). As there
are at mos(n) concepts, there are at ma@g{2") variables labelling distinct sets of concepts. Hence,
there areD(2") non-blocked variables if.
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Let m be the maximum number of direct successors of each variabie S, obtained by applying
dynamic rulesm is bound by the number &fR.C' conceptsQ(n)) plus the number of\VR.C' concepts
(O(n)) plus the number of:C]-C conceptsQ(n)). Then, there are at mo&t(2™ x m) variablesin S,
wherem < 3n. The number ofndividualsin ABox is bound byn too, and each individual has at most
m direct successors. The numberaelsin S is then bound by)((2" + n) x m), hence byO(22").

For a given label:, the concepts labelled hy introduced in the branch (namely, all the possible
subconcepts of the initial constraint system, as well abatbd subconcepts) afe(n). According to
the standard strategy, after all static rules have beerneabfa a labek: in phase 1, no other concepts
labelled byz can be introduced later on a branch. Hence, the labelleceptsmintroduced on the branch
is O(n) for each label, and the number of all labelled concepts obthrch isO(n x 22). Therefore,

a branch can contain at most an exponential number of afiplsaof tableau rules.

The satisfiability of a KB can thus be solved by defining a pdoce which nondeterministically
generates an open branch of exponential size (in the siz8pfKe problem isin NEXPTIME.

O

4. Extensions ofALC + T for Reasoning about Typicality

Logic ALC + T allows one to reason monotonically about typicality. AfC + T we can consistently
express, for instance, the fact thtalian fencerstypically are not people’s favorite, thaalian fencer
olympic championgypically are people’s favorite, and thiglian fencer olympic champions taking part
to a reality showtypically are not people’s favorite.

What about the typical properties of an individudtlo that we know being an italian fencer, who
won the gold medal at an olympic competition and who has beenhqd a reality show? Of course,
if we know thataldo is a typical instance of the conceplulianFencer M OlympicGoldMedalist M
dTakePart. RealityShow, i.e., if the ABox contains the assertion

() T(ItalianFencer M OlympicGoldMedalist 1 3 TakePart. RealityShow)(aldo)

then, inALC + T, we can conclude thatLoved ByPeople(aldo). However, in absence of (*),
—LovedByPeople(aldo) cannot be derived by the logic itself given the nonmonotowiture ofT.

The basic monotonic logiglLC + T is then too weak to enforce these extra assumptions, so that w
need an additional mechanism to perform defeasible infexen

We propose two alternatives. The first one, introduced i, [$3ased on a nonmonotonic comple-
tion of a knowledge base. The second one, presented in [drajsts of a “minimal model” semantics for
ALC + T whose intuition is that minimal models are those that maséntypical instances of concepts.

4.1. Completion of a knowledge base

In general, we would like to infer that individuals have th@perties which are typical of the most
specific concept to which they belong. To this purpose, waendedficompletion of the knowledge base
which adds to the ABox, for each individualoccurring in the ABox, the assertion thais a typical
instance of the most specific concépto which it belongs.
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Definition 4.1. (Completion of a Knowledge Base)

The KB (TBox,ABox’) is the completion of the KB (TBox,ABoxj ABox’ is obtained from ABox by
adding to it, for all individual namesin the ABox, the assertio' (C1...McC5)(a), whereCy, ..., C;

are all the concept€’; such that: (1); is a subconcept of any concept occurring in (TBox,ABox); (2)
C; does not contaifT’; (3) a is an instance of’;, i.e.,C;(a) is derivable inALC from (TBox,ABOX).

For instance, assuming that:

ItalianFencer(aldo)
OlympicGoldMedalist(aldo)
ITakePart. RealityShow (aldo)

are the only assertions concernialgo derivable from the KB, the completion above would add:
T (ItalianFencer M OlympicGoldMedalist 1 3 TakePart. RealityShow )(aldo)

to the ABox, adtalianFencer M OlympicGoldMedalist 13 TakePart. RealityShow is the most specific
concept of whichuldo is an instance. From this, we can concludediGC + T thataldo is not a people’s
favourite.

The completion addS'(C; M ... 1 C;)(a) by considering eacltt;(a) derivablein ALC from
the KB, rather than considering onty;(a) in the ABox. This is needed, for instance, to infer that
aldo is not loved by people from the KB containinalianFencer T Y HasChild.ItalianFencer,
ItalianFencer(mario), and HasChild(mario, aldo).

Notice that the completion of the ABox only introdua®$n) new assertionI'(C; 1...1MCj)(a),
one for each named individualin the ABox. Furthermore, the size of the asseriofC, I1...MC})(a)
is O(n?) asCh,...,C; are all distinct subformulas of the initial formul&(n)), and eaclC; has size
O(n). Hence, after the completion construction, the size of tBei&Kpolynomial inn. Moreover, for
each individual: (O(n)) and for each concegt (O(n)), we have to check whethé&f(a) is derivable
in ALC from the KB, which is a problem in EXPTIME. Hence, the comjgetconstruction requires
exponential time and produces a KB of size polynomial in the ef the original one:

Theorem 4.1. The problem of deciding satisfiability of the knowledge bagier completion is EXP-
TIME-complete in the size of the original KB.

It is worth noticing that, given a consistent KB, its comjdatmight be inconsistent. Suppose the ABox
contains the information:

LovedByPeople(aldo)

This would not cause an inconsistent completion of the KBegd, in such a casétalianFencer M
OlympicGoldMedalistM3 TakePart. RealityShow M Loved By People would be the most specific concept
of which aldo is an instance, so that the assertion:

T (ItalianFencer M OlympicGoldMedalist M TakePart. RealityShow M Loved ByPeople)(aldo)

would be added in the completion of the KB. This does not atimiwfer that—Loved ByPeople(aldo).
Hence, no inconsistency arises. However, if the KB contains



22 L. Giordano, V. Gliozzi, N. Olivetti, G.L. Pozzato / Extemsof Description Logics for Reasoning About Typicality

T(FootballTeam) T ¥V HasMember. Rich
T(FencingTeam) C Y HasMember.—Rich
FootballTeam (juventus)
FencingTeam(schermaTorino)
HasMember (juventus, alex)
HasMember(schermaTorino, alex)

we can observe that KB is consistent, whereas its complétictuding also:

T(Football Team ) (juventus)
T (FencingTeam)(schermaTorino)

is not. In this case, we can consider two alternatives:

e given an inconsistent completion, we can choose to keepriti@al KB rather than the completed
one;

e we could consider all maximal consistent KBs (extensiohaj tan be generated by adding, for
all individuals, the relative most-specific concept asstiomg. We could then perform either a
skeptical or a credulous reasoning with respect to suchmsixtes.

The completion process presents some difficulties. Foames, it is not clear how to take into account
implicit individuals, as well as it is not clear whether aralahthe completion has to take into account
concept instances that are inferred from previous tygicalssumptions introduced by the completion
itself. In order to deal with the last one, we would need soimd kf fixpoint definition.

4.2. Minimal model semantics forALC + T

As an alternative to the completion process described abex@ropose another approach: rather than
defining an ad-hoc mechanism to perform defeasible infeienc making nonmonotonic assumptions,
we strengthen the semantics of the logic by proposing a naininodel semantics. Intuitively, the idea
is to restrict our consideration to models that maximisécgignstances of a concept.

In order to define the preference relation on models we takarddge of the modal semantics of
ALC + T: the preference relation on models (with the same domaideised by comparing, for
each individual, the set of modal (or more precidehed) concepts containing the individual in the two
models. Given a KB, we consider a finite gt of concepts occurring in the KB, the typicality of whose
instances we want to maximize. This is similar to circunsan (see [4]), where we must specify a
set of minimized predicates. The maximization of the seypical instances will apply to individuals
explicitly occurring in the ABox as well as to implicit indiuals. We assume that the €&t contains
at least all concept§' such thafI'(C') occurs in the KB.

We have seen thatis a typical instance of a conceft(a € (T(C))!) when it is an instance af
and there is not another instance@freferred tas, i.e. a € (C M O-C)!. In the following, in order
to maximize the typicality of the instances @f we minimize the instances ef J—~C'. Notice that this
is different from maximising the instances @ C). We have adopted this solution since it allows to
maximise the set of typical instances@fwithout affecting the extension @f (whereas maximising the
extension ofT'(C') would imply maximising also the extension ©f.
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We define the seMlD:; of negated boxed formulas holding in a model, relative todbcepts in
Lr. Given amodeM = (A, <, I), let Mz = {(a,-0-C) | a € (-O0-C)!, witha € A, C € L7}.
Let KB be a knowledge base and Jéf be a set of concepts occurring in KB.

Definition 4.2. (Preferred and minimal models)
Given a modelM = (A, <uq, In) of KB and a modelV = (A, <7, Ly) of KB, we say thatM
is preferred to\V with respect to 7, and we writeM <., N, if the following conditions hold:

o Apm=ApN;

o« MZ c N
A model M is aminimal modeffor KB (with respect toLr) if it is a model of KB and there is no a
model M’ of KB such thatM’ <. M.

Let us now define whenguery F' is minimally entailed inALC + T,,,;, from a KB. A queryF' is either
an inclusionC C D or a membership formul&@'(a):

Definition 4.3. (Minimal Entailmentin ALC + T,,:)
A query F' is minimally entailed from a knowledge base KB with respectt if it holds in all models

of KB minimal with respect taCr. We write KB |:£T F.

min

While the original ALC + T is monotoni¢ ALC + T,,.;, iS nonmonotonic Consider the following
example. Let KB contains:

T (ItalianFencer) C —LovedByPeople
ItalianFencer(aldo)
SlimPerson(aldo)

and letCr = {ItalianFencer, SlimPerson }. We have that:
KB |:é7;n —LovedByPeople(aldo)
Indeed, there is a unique minimal model of KB on the doma&ia- {aldo}, in which aldo is an instance
of T'(ItalianFencer) (as well as an instance @f(SlimPerson)), and hence-Loved ByPeople holds in
aldo. Observe that Loved ByPeople(aldo) is obtained in spite of the presence of the irrelevant ptgper
StimPerson(aldo).
Consider also the knowledge base KB’ obtained by adding tah€Eormula:

T (ItalianFencer M SlimPerson) C Loved ByPeople

and letCr = {ItalianFencer, SlimPerson, ItalianFencerNSlimPerson}. From KB’, = Loved ByPeople
(aldo) is not derivable any more. Instead, we have that:

KB’ =£7  LovedByPeople(aldo)

min
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KB’ has a unique minimal model on the domain= {aldo, gianni}, in which aldo is an instance of
T (ItalianFencer M SlimPerson) and T (SlimPerson), but is not an instance & (ItalianFencer) (as
there isgianni, such thayyianni < aldo andItalianFencer holds atgianni). This example shows that,
in case of conflict (heregldo cannot be both a typical instance GtilianFencer and ItalianFencer M
SlimPerson), typicality in the more specific concept is preferred.

In [12] we have also defined a tableaux calculus for computmgimal entailment and we have
provided an upper bound on the complexity of the resultirgjclo checking if a query is minimally
entailed from a KB is irco-NExpNP,

5. Related works

Several nonmonotonic extensions of DLs have been propostx iliterature. In the following, we try
to summarize the main approaches proposed in the literatMesconclude this section by providing a
comparison with the KLM framework.

5.1. Nonmonotonic extensions of DLs

In [2] it is proposed the extension of DL with Reiter’s defdolgic. Intuitively, a KB comprises, in addi-
tion to TBox and ABox, a finite set of default rules whose pgeiisites, justifications, and consequents
are concepts. Default rules are used in order to formaliméofypical properties. Concerning the KB
about the Italian fencer of the Introduction, the directaatiog by normal (open) defaults would be:

TtalianFencer : —~Loved ByPeople TtalianFencer M OlympicGoldMedalist : Loved ByPeople

—LovedByPeople LovedByPeople

TtalianFencer M OlympicGoldMedalist 1 3 TakePart. RealityShow : —LovedByPeople

—LovedByPeople

The same authors have pointed out that this integration s/ to both semantical and computational
difficulties, both caused by an unsatisfactory treatmempei defaults via Skolemization. Skolemiza-
tion of the ABox and of the consequents of default rules igladeén order to capture some intuitive infer-
ences. For instance, given the above defaults and AB¢x HasChild. ItalianFencer(mario)}, the in-
tuitive conclusion(x) 3HasChild.— Loved ByPeople (mario) could not be deduced by default. Skolem-
ization of ABox yields to ABox'= {HasChild(mario, giacomo), ItalianFencer(giacomo)}, where
giacomo is a new Skolem constant. Then, the closed defaults obthinatstantiating open defaults with
giacomo are applicable and allow to conclu@e). However, Skolemization may lead to counterintuitive
inferences. As an example, let us consider ABex {3HasChild.(ItalianFencer M Bold)(mario)}
and ABox = {3HasChild.(ltalianFencer M Bold)(mario),3HasChild.ItalianFencer (mario)}.

It is easy to see that ABgxand ABox are logically equivalent. Skolemization leads to ABox
{HasChild(mario, giacomo), (ItalianFencer M Bold)(giacomo)} and ABo¥, = { HasChild (mario,
paolo), (ItalianFencer M Bold)(paolo), HasChild(mario, antonio ), ItalianFencer(antonio)}. Con-
sider the open default:

TItalianFencer : —=Bold

- Bold
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This default rule does not fire fafiacomo and paolo, since their being intalianFencer M Bold is
inconsistent with the justificatiomBold. On the contrary, this default rule fires fantonio, since his
being anltalianFencer is consistent with the justification. Therefo(ex) 3HasChild.—Bold(mario)

is a default conclusion of ABdx whereas it is not of ABdx In our setting, neither ABaxnor
ABoxy can be used to infefxx) in ALC + T. Consider the modeM = (A, <,I), whereA =
{mario”, ivo’, adelmo®}, adelmo’ < ivo’ andI is as follows: ItalianFencer! = {ivo!, adelmo'},
Bold! = {ivo'}, HasChild" = {(mario’, ivo’)}. We have thatT(ItalianFencer))! = Min.
(ItalianFencer!) = {adelmo}, thereforeM is a model for the KB whose ABoX3 HasChild.
ItalianFencer(mario), AHasChild.(ItalianFencer MBold)(mario)} and whose TBox£T (
ItalianFencer) T —Bold}. However,3HasChild.—~Bold(mario) does not hold inM. Notice that
this also occurs if we refer to the minimal entailmeéaf? of ALC + Ty, SinceM is also a minimal
model for the mentioned KB. For further examples about séiceifficulties arising when integrating
DLs with open defaults, we refer to Section 3 in [2].

The treatment of open defaults via Skolemization may alad te an undecidable default consequence
relation, even if the underlying logic is decidable. Fostieason, [2] proposes a restricted semantics for
open default theories, in which default rules are only aaptd individuals explicitly mentioned in the
ABoOX.

The extension of DLs with Reiter’'s default, even if resgittto explicitly mentioned individuals,
presents a further drawback, namely it inherits from gdneéefault logic the difficulty of modeling
inheritance with exceptions giving precedence to moreifipelefaults in a direct way. For instance, the
above formulation of the KB does not allow to infer corredtig expected conclusions, as it does not give
priority to more specific information. Consider, for instan the preceding KB containing the default
rules above and whose ABox contaiftalianFencer(aldo) as well asOlympicGoldMedalist(aldo).
Such a terminological default theory has two extensions,aamtaining-Loved ByPeople(aldo) and the
other Loved ByPeople(aldo); the semantics does not allow to prefer the second one, iohithe most
specific default was applied. This behaviour representdtia aspect in the general context of default
logic, however it is more problematic in a DL framework whéine emphasis lies on the hierarchical
organization of the concepts. To attack this problem, osettvdmpose a priority on default application
or to find a smarter (but ad hoc) encoding of defaults givirigrity to more specific information. This
has motivated the study of extensions of DLs with priortizkefaults [23, 3, 6, 5].

To give a brief account, in [23] the author introduces anmsiten of DLs to perform default inheri-
tance reasoning, a kind of default reasoning specificallgread to reason in presence of a taxonomy of
concepts. This formalism allows for defaults+— D as well asC' — R.D, whose intuitive meanings
are: “if a is an element of” and the assumption thatis an element oD is consistent, then assume
thata is aD” and “if a is an element of® andb is related toa by the roleR and the assumption that
b is an element oD is consistent, then assume that a D", respectively. Specificity is handled by
defining, for a given KB=(TBox,ABox) and an individualoccurring in the ABox, a preference relation
= kB,, OVEr atomic concepts. As pointed out by the author, theioglat 5 , can be seen as “the taxon-
omy induced by the strict and defeasible information, atbgr”, belonging to the KB. Extensions are
computed by means of a fixpoint construction which takes agtmount the relatiork kg . Intuitively,
given a defaulC — D, for all C'(a) belonging to the extension under constructibra) is added to the
extension unless this leads to a contradiction or there @eaeptE such thattl <gp, C, C Akp,. E
and either (i)E — F is also a default of the theory anid 1 F')(a) is inconsistent or (il — R.F'is a
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default of the theory,R(a,b) is in the ABox and the addiction of botl(a) and F'(b) leads to an
inconsistency. Similarly for defaults of the for@+— R.D.

In [6] priorities among defaults are addressed by orderdauttetheories. The basic idea is to con-
sider a strict partial order on the set of defaults when cdinglextensions. However, this approach is
restricted to prerequisite-free normal defaults only. fBaicevere restriction has motivated the general-
ization of ordered default theories to normal defaults withrequisites [5, 3]. Similarly to [6], priorities
are given by an arbitrary partial order on defaults. As eedéhce with [23], priorities between defaults
are induced by the position of their prerequisites in theceph hierarchy of the TBox, then the speci-
ficity is determined by the strict information, and not by tlefaults. Intuitively, given a KB and a set
D of defaults, terminological default rules are obtained fstatiating eacld € D by all constants oc-
curring in the ABox. Letd; andds be two defaults so obtained, haviaa) and D(b) as prerequisites,
respectively: we have thdi < ds, i.e. d; has a major priority with respect t, if and only if (i) a = b,

(i) ¢ C D follows from the KB and (iii)D C C' does not follow from the KB. The consequent of a
defaultd can be added to the extensionrlifs not delayed by a preferred default, in other words if there
is nod’ < d which isactive i.e. applicable in the current set of formulas of the extamsThe authors
also describe an algorithm for computing extensions.

As for the proposal in [2], in order to avoid semantical anchpatational difficulties due to the
treatment of open defaults via Skolemization, all these@gughes adopt a semantics in which defaults are
only applied to individuals explicitly mentioned in the ABahus introducing an asymmetric treatment
of domain elements.

A more general approach is undertaken in [10], where Desmnifhogics of minimal knowledge and
negation as failure are proposed by augmenting DLs with pistemic operators, K and A, interpreted
according to Lifschitz’'s nonmonotonic logic MKNF [20, 21h particular, [10] studies the extension of
ALC, called ALCK s+, which allows to capture Reiter’s default logic, integritgnstraints, procedural
rules as well as role and concept closure. The paper prosidesnd, complete and terminating tableau
calculus for checking satisfiability aimple ALCK n-+ KBs, where in a simple KB the occurrences of
the operator K within the scope of quantifiers are limitede Thlculus uses triple exponential time in the
size of the KB. For MKNF-DLs without quantifying-in (i.e.,itht no occurrences of epistemic operators
in the scope of quantifiers), a general deductive method eatefined (see [9]), which is parametric with
respect to the underlying DL. The authors prove that thelprolof instance checking in a MKNF-DL
without quantifying-in is decidable if and only if the prelh of instance checking in the underlying
DL is decidable. In particular, for the logid LCK nr+ without quantifying-in the problem of instance
checking is EXPTIME-complete as in the non-modal case. €k#@nds the work in [10] by providing a
translation of anALC/K nr+ KB to an equivalenflat KB and by defining a simplified tableau algorithm
for flat KBs, which includes an optimized minimality check.

In both [10] and [9], the domain of epistemic interpretatide assumed to be countably-infinite
and to be the same for all interpretations. Although thisuaggion restricts the semantics of first-
order MKNF, nevertheless it allows an encoding of preratpisee defaults with an open semantics.
[10] also provides an encoding of closed defaults by traimgjahem into simpledLCK s inclusions.
Although [10, 9] introduce very general nonmonotonic Dlbeyt do not address specifically the problem
of reasoning about inheritance with exceptions, nor thélpro of specificity on which we focus in this
paper.

In [4] the authors propose an extension of DL with circunsaon. One of the motivating applica-
tions of circumscription is indeed to express prototypjmalperties with exceptions, and this is done by
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introducing “abnormality” predicates, whose extensiomigimized. The basic idea is as follows: in
order to expresT'(C) C D, the authors introduce the inclusion

C C DU Abe

where Abc is the predicate to be minimized. Concerning again the Kbheflhtroduction, one has to
introduce abnormality predicated¥;), e.qg.:

ItalianFencer C — Loved ByPeople LI Aby
TtalianFencer M OlympicGoldMedalist T LovedByPeople LI Aby
TtalianFencer M OlympicGoldMedalist M 3 TakePart. RealityShow T —LovedByPeople LI Abs

Then one has to establish which predicates are minimizeet] for variable (the so-called circumscrip-
tion pattern). The basic idea of circumscription is indeedonsider only those models where the
extension of abnormality predicates is minimal with respecet inclusion.

Circumscription patterns in [4] also allow to express pties among predicates to be minimized.
As pointed out by the authors, these priorities usually ceflee taxonomy described by the TBox and,
since the subsumption hierarchy is a partial order, presriare assumed to form a partial order, too, as a
difference with standard prioritized circumscription whiassumes a total ordering.

The authors provide decidability and complexity resultsdabon theoretical analysis. In detall, it is
shown that reasoning is decidable under the restrictiarottist concepts can be circumscribed, whereas
roles have to vary during circumscription. This also holds dxpressive DLs such a4£CZO and
ALCQQO. Allowing roles to be fixed during minimization leads to ardenidability results even in the
extension of basicl£C.

As in our approach, the extension of DLs with circumscriptavoids the restriction of reasoning
about elements explicitly mentioned in the ABox. Howevkg authors do not provide a calculus for
their logic.

5.2. Relations with KLM

We have already mentioned that the semantics of the typiagheratorT of Definition 2.1 is strongly
related with the semantics of nonmonotonic entailment ilvijireferential logid®. Let us make precise
the relation between the two logics. KLM logR is originally defined as a propositional logic, thus
we restrict our analysis to the propositional level. Theibassertions of KLM logics are positive
conditionals of the formd |~ B, where A, B are propositional formulas. In the literature, a few kinds
of languages or knowledge bases allowing conditionals baes considered: (i) a knowledge base is
a set of conditionals, this is indeed the original settingktiyM [18]; (ii) a knowledge base is a set
of conditionals and negated conditionals [19]; (iii)) a kdegdge base is or contains arbitrary boolean
combinations of conditionals (and possibly propositidoamulas) [14]. The axiomatization & for the
richer language (iii) is given by a refolmulation of KLM posdtes through the following set of axioms,
wherer po denotes validity in classical propositional calculus:

REF. A ~ A (reflexivity)

LLE. If Fpc A < B, then (A ~ C) — (B i C) (left logical equivalence)
RW. If Fpc A — B, thent (C ~ A) — (C ~ B) (right weakening)
CM.((ArB)A (A () — (AN B~ C) (cautious monotonicity)

AND. (ArB)AN(ARC)) = (Ar~BAC)
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¢ OR.(ARC)A(BRrC)) = (AVBRC)

To axiomatize the restricted languages (i) and (ii), axiomsst be suitably replaced by inference rules.
We establish here a mapping betwdeand ALC + T for the language (ii), that is a knowledge base
will be henceforth a set of positive and negative conditien@ihe most general case (iii) is problematic,
since ALC + T does not allow for disjunctions of subsumption relations.

A model M for P is defined similarly to Definition 2.3, but the language iglstly different.

Definition 5.1. (Semantics of-)
A P model M for a propositional languagé has the formM = (A, <, I) , whereA and< are as in
Definition 2.3, : VarProp — Pow(A). We define:

M A Biff Minc(AY) C BT andM |= =(A | B) iff M = AR B.
Let KB be a set of positive or negated conditionalsM = KB iff M = F for everyF' € KB.

There is an obvious correspondence betweemdels and4LC + T models. In the following, given an
ALC + T modelM = (A, <, I), we write M |= C C D to say thatC! C D',

Lemma5.1. (a) Let M = (A, <,I) be aP model for a propositional languagg, then the model
MT = (A, <, 1), with T(A) = Min-(A") is anALC + T model for£ that satisfies:

M = A R Biff M = T(A) C B.

(b) Let M = (A, <, I) be anALC + T model forL (the propositional variables are the concepts names),
then the modeM~ = (A, <, I), with M~ = A ~ B iff Min.(A!) C B! is aP model for £ that
satisfies:

M- EARBIiff MET(A) C B.
We can generalize this correspondence to knowledge bastkKBLbe a finite knowledge base h
KB={A4) ~B1,...,An ~ B, (Cy r D1),...,(Cy ~ Dyp)}
We define thed£C + T translation KB~ of KB as follows:
{T(A1) E By,..., T(Am) C Bm, T(C1)(i1), 7D1(in), - - ., T(Cp)(in), 7D (in) }

whereiy, ... ,i, are distinct individuals. KB and its translation KBare related as expressed in the
following lemma.

Lemma 5.2. Let KB and KB' as above. (a) LeM = (A, <, ) be aP model of KB, then there is an
ALC + T modelM™ of KB such that:

M Ar Biff Mt = T(A)C B.
(b) Let M = (A, <, I) be aALC + T model of KB* then there is & model M~ of KB such that:
M- EARrBIiff MET(A) C B.
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Proof:
(@) LetM = (A, <, I) be amodel of KB. We have in particular théd = —(C; ~ D;)forj =1,...,n;
thusMin.(C]) — Dj # @ for j = 1,...,n. Therefore there are elements € Min.(C]) — Dy, for
j=1,...,n. We defineM™ = (A, <,I), by stipulatingi} = d; for j = 1,...,n andT(4)" =
min. (A7) Itis immediate to see tha¥l = A |~ B iff M* = T(A) C B and thatM™* |= KB+,

(b) Let M = (A, <,I) be anALC + T model of KB'. It is easily seen thaM [~ T(C;) C Dj,
for j =1,...,n. Thus the modelM~ obtained by stipulating\!~ = A ~ B iff M = T(A) C B and
by omitting the interpretation of the individualgis aP model of KB. O

By the previous lemma we easily obtain the following proposithat summarizes the relation between
P and ALC + T with respect to reasoning tasks:

Proposition 5.1. Let KB be aP knowledge base and KBits translation intad£C + T. Then:
(a) for any conditionald ~ B,KB = A |~ Bin Piff KB ™ = T(A) C Bin ALC + T. Thus, (b) KB is
satisfiable irP iff KB T is satisfiable inALC + T.

This semantic correspondence betwéeand ALC + T helps to understand intuitively the relation
between the axioms & and the semantic conditions of Definition 2. We illustrate the correspondence
by means of the translatioA ~ B asT(A) C B and the axioms of:

REF.T(A) C A corresponding t¢fr — 1)

e LLE. by takingC' = T(B), we get: if-pc A < BthenT(A) C T(B). This property gives the
independence from the syntax and is implicitly satisfied ty semantics.

CM. by takingC = T(A), T(A) C B impliesT(A M B) C T(A). The other inclusion is
derivable as well. They jointly givefr — 3).

OR. by takingC' = T(A) U T(B), we getT(A U B) C T(A) L T(B). This corresponds to the
finitary version of( f1 — 4).

On the other hand there is no way to derive frenfa finitary version of) conditior{ fT — 5), since in
P we cannot express the fact that something is both a tygicahd a typicalD. This suggests that the
conditional operator is too weak to deal with the notion of typicality.

To end this section we mention that the family of KLM logicstains other interesting members,
notably the stronger logiR, known as Rational Preferential Logic. This system is ot@diby adding
to P the axiom/rule of rational monotonicity:

ArCA=(Ar-B)— ((AANB)~C)

Thatis to say, fromd ~ C' we can concludéAA B) |~ C unless we can derivé ~ —B. For a discussion
and a justification of this property we refer to the literatit9]. We also mention that many (but not
all) systems of probabilistic entailment satisfy this pdp. The semantics of rational logit is well-
understood: the rational monotonicity principle corregi®to the additional property ofiodularity of

%In this work we have given two equivalent (via the Repres@marheorem 2.1) semantical characterizationsAdfC + T,
but we have not addressed the problem of giving a full axioration of the logic of typicality. The reason is that it istraur
main concern: we are interested in reasoning with respeztkitowledge base and not in deriving abstract propertiekeof t
typicality operator. However, the problem of the axiomatiian may be posed; to deal with it, we should first ask ourshkt
kind of assertions we allow in the language: inclusion retet or arbitrary combinations of them?
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the preference relation. We could think of developing adagfi typicality built upon rational logidR
rather than the weaker preferential lodgicas we do. What is the impact of rational monotonicity to
reason about typicality? Translating the axiom into a prigpef the typicality operator we obtain:

—-(T(A)MBLC 1)impliesT(AMNB)C T(A)

Thus it is sufficient that there @neindividual that is a typicald and that has the propertfy, to conclude
thatall typical A and Bs are typicalA. For instance ifuldo is a typical italian fencer and he won a gold
medal in an Olympic competition (these might be assertinrikeé ABox), then all typical italian fencers
winning the gold medal are typical italian fencers. Thissgeather arbitrary and counterintuitive. All
of this means that the logR is too strong and unsuitable to reason about typicality.

6. Conclusions and Future Work

We have proposed an extension4£C for reasoning about typicality in the Description Logicrfre-
work. For the resulting logic, called £C + T, we have defined a calculus for deciding the satisfiability
of a general knowledge base. The calculus, calléd“+T, is analytic, terminating, and allows us to
decide the satisfiability of a knowledge baseA’C + T in nondeterministic exponential time. The
work is an extended and revised version of the preliminantrdaution presented in [13].

The basic monotonic logiglLC + T results to be too weak to perform defeasible inferences. We
have shown how to address this problem by presenting twerdift approaches. On the one hand,
we have proposed eompletionmechanism, whose objective is to complete the ABox by meéns o
typicality assumptions, in order to infer prototypical pesties of the individuals explicitly mentioned in
the ABox. On the other hand, we have developed a preferesgiimbntics. This nonmonotonic extension
of ALC + T allows for defeasible reasoning in presence of inheritavite exceptions.

We plan to extend this work in several directions. First bfthe tableau procedure we have described
can be optimised in many ways. In particular, we believe thatcalculusT4£¢+T can be made more
efficient by applying standard techniques such as caching.

From the point of view of knowledge representation, a linfibar logic is the unability to handle
inheritance of multiple properties in case of exceptions alse exampleT(Student) C —HasIncome,

T (Student) C FOwns.LibraryCard, PhDStudent C Student, T(PhDStudent) C HasIncome. Our
semantics does not support the infere@’hDStudent) = FOwns. LibraryCard, that is, PhDStu-
dents typically own a library card, as we might want to codelgsince having an income has nothing to
do with owning a library card). The reason why our semantils fo support this inference is that the
first two inclusions are obviously equivalent to the singhe @ (Student) C = HasIncome M 30wns.
LibraryCard which is contradicted b¥T'( PhDStudent) = HasIncome. To handle this type of infer-
ences we would need a tighter semantics where the trui(6f) C P is no longer a function of'(C)
andP or a smarter (and less direct) encoding of the knowledgee@bghat the same problem arises for
instance with circumscription, where we would need at leiffrent abnormality predicatefer each
pair of concept-defeasible property.

KLM logics, which are at the base of our semantics, are reéltigorobabilistic reasoning. In [16],
the notion of conditional constraint allows typicality agsons to be expressed (with a specified interval
of probability values). In order to perform defeasible mrang, a notion of minimal entailment is intro-
duced based onlaxicographic preferenceelation on probabilistic interpretations. We plan to camgp
in details this probabilistic approach to our approach ithier research.
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