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We introduce a representation of any atom in any chemical environment for the automatized generation
of universal kernel ridge regression-based quantum machine learning (QML) models of electronic
properties, trained throughout chemical compound space. The representation is based on Gaussian
distribution functions, scaled by power laws and explicitly accounting for structural as well as ele-
mental degrees of freedom. The elemental components help us to lower the QML model’s learning
curve, and, through interpolation across the periodic table, even enable “alchemical extrapolation” to
covalent bonding between elements not part of training. This point is demonstrated for the prediction
of covalent binding in single, double, and triple bonds among main-group elements as well as for
atomization energies in organic molecules. We present numerical evidence that resulting QML energy
models, after training on a few thousand random training instances, reach chemical accuracy for out-of-
sample compounds. Compound datasets studied include thousands of structurally and compositionally
diverse organic molecules, non-covalently bonded protein side-chains, (H2O)40-clusters, and crys-
talline solids. Learning curves for QML models also indicate competitive predictive power for various
other electronic ground state properties of organic molecules, calculated with hybrid density func-
tional theory, including polarizability, heat-capacity, HOMO-LUMO eigenvalues and gap, zero point
vibrational energy, dipole moment, and highest vibrational fundamental frequency.➞ 2018 Author(s).

All article content, except where otherwise noted, is licensed under a Creative Commons Attribution

(CC BY) license (http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5020710

I. INTRODUCTION

Ground-state properties of chemical compounds can gen-
erally be estimated with acceptable accuracy using methods
such as ab initio quantum chemistry or density functional
theory (DFT).1 However, these can be computationally expen-
sive and therefore have a limited applicability, especially for
larger systems. Alternatively, inductive machine learning of
quantum mechanical properties, i.e., quantum machine learn-
ing (QML) models, can infer properties directly or even
predict the electron density which in turn can be used to
calculate properties,2 by training on large datasets of ref-
erence property/compound pairs. QML models can have an
exceptional trade-off between predictive accuracy and com-
putational cost. For example, in 2017 we showed that QML
models can estimate hybrid DFT atomization energies as
well as several other properties of medium-sized organic
molecules with prediction errors lower than chemical accuracy
(∼0.04 eV)—multiple orders of magnitude faster than hybrid
DFT.3

The system variable defining the ground-state properties
of a given compound is its external potential, a simple func-
tion of interatomic distances and nuclear charges. However,
using this information directly to measure similarity results

a)anatole.vonlilienfeld@unibas.ch

in QML models with rather disappointing predictive power.
This can be mitigated by the transformation of system vari-
ables into “representations.” Such transformations can either
be designed by human intuition or be included in the learn-
ing problem, e.g., when using neural networks (NNs) which
include representation learning in the supervised learning task.
Letting a NN find the representation has proven to yield mod-
els with low out-of-sample prediction errors.4–6 This approach,
however, has the drawback that the representation and model
are intermingled within the NN, making it less amenable to
human understanding, interpretation, adaptation, and further
improvement. Furthermore, such machine designed represen-
tations do not necessarily lead to better QML performance than
representations designed by humans (vide infra).

There are many ways of manually encoding the 3D struc-
ture and chemical composition of a compound into a suitable
representation. For example, we can represent a compound as
a list of interatomic potentials.7–9 Another approach consists
of creating a fingerprint of the compound, transforming inter-
nal coordinates into a fixed set of numbers. For example, this
can be done by projecting the coordinates on to a set of basis
functions10 or by using the topology of the structure.11 Dis-
tributions of internal coordinates represent another systematic
approach, shown to yield well performing QML models appli-
cable throughout chemical space.12,13 Additional use of bags
containing angular and dihedral distributions has led to further
improvements in resulting QML models.3,9,14,15 Bagging
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based on atom types, however, severely hinders resulting QML
models from transferring what has been learned from one atom
type to another—a desirable feature for chemically diverse
systems.

In this work, we introduce a new atomic environ-
ment representation, with two key differences to previous
distribution-based work. (i) The representation is not binned by
atomic species. Instead, compositional information is encoded
directly into the distributions. This allows measuring not
only structural differences but also “alchemical” differences
between elements in the atomic environments. The idea of
computational alchemy, amounting to continuous interpola-
tion of Hamiltonians of two different systems, is well estab-
lished in quantum chemistry and statistical mechanics and can
be exploited for virtual exploration campaigns in chemical
space with increased efficiency.16 Recently, it has been shown
that alchemical estimates of covalent bond potentials can
even surpass generalized gradient approximated DFT accu-
racy.17 The foundation of a continuous chemical space has
been reviewed previously.12 Alchemical distance measures in
the context of QML were already exploited previously when
using the Coulomb matrix (CM),7 the Fourier series distribu-
tion based representations,18 the Faber, Lindmaa, Lilienfeld,
Armiento (FLLA) crystal representation,19 and within smooth
overlap of atomic potential (SOAP) representations.20 For this
work, we have identified a new functional form with improved
performance due to alchemical contributions to the distance
measure. (ii) We use a set of multidimensional distributions of
interatomic many-body expansions rather than several 1D bins
of internal coordinates. The distributions are built recursively
so that an m-body distribution contains the same informa-
tion as the (m ☞ 1)-body distribution plus additional m-body
information. This particular combination combines similar-
ity to the potential energy target function and compliance
with many known (translational, rotational, permutational)
invariances.

II. THEORY

In this section, we first motivate the ideas that have led
to this study. Thereafter, we discuss the functional form and
the variational degrees of freedom, which we have introduced,
as well as the resulting compound distances. Then, an anal-
ysis of the functional form is performed using the molecule
water as an example. Finally, numerical results for parameters’
optimization runs are discussed.

A. Kernel ridge regression

In order to profit from robustness, ease of error conver-
gence, computational efficiency, and simplicity, we base our
studies preferably on kernel ridge regression (KRR) mod-
els.21–24 However, we consider this rather a question of taste
and believe that other regressors, such as neural networks, will
produce similar results if properly converged.

KRR estimates property p of query compound C as a
weighted sum of kernel basis functions placed on each of N

training compounds {Ck},

pest(C) =
N
∑

k=1

αkK(C, Ck), (1)

α = (K + λI)−1ptrain, (2)

where the solution for the weights {αk} is obtained through
linear regression with regularizer λ (typically negligibly small
because of the absence of noise in training data obtained from
quantum chemistry calculations).

Throughout this work we rely on atomistic (scal-
able) Gaussian kernels, K(C, C′) =

∑

I ∈C
∑

J∈C′ k(∆(AM (I),
AM (J))), as already used in Refs. 14 and 25–27. As such, KRR
renders the selection of a functional form which represents an
atom in its chemical environment mandatory. Obviously, this
choice is fundamentally related to our understanding of chem-
istry and is known to dramatically affect the performance of
resulting QML models, see, e.g., Refs. 3 and 9. It is for this
reason that we draw our inspiration from the fundamental laws
of quantum mechanics which specify the definition of system
(Hamiltonian) and property (observable) and which spell out
the numerical recipe which links the two.1

The genesis of this study is due to the fact that the total
potential energy, the expectation value of a compound’s elec-
tronic Hamiltonian, constitutes the central figure of merit for
convergence towards the wavefunction by virtue of the varia-
tional principle. When considering Eq. (2), it should be obvious
that the kernel (and thereby representation) is independent
of a specific property. Units and property dependence are
introduced through the regression weights only. This has also
already been demonstrated numerically for multiple proper-
ties using the same kernel.28 As such, the role of the kernel
is reminiscent of the wavefunction which can be used to pre-
dict arbitrarily many observables by evaluating the expectation
values of the corresponding operators, always using the same
wavefunction: Once the kernel is inverted, arbitrarily many
sets of regression coefficients can easily be generated pro-
vided that their corresponding property reference values are
known. The Hamiltonian’s expectation value, i.e., the potential
energy, therefore governs the shape of the wavefunction. We
therefore assume that a representation, optimized for energy
predictions only, is fundamentally more advantageous than
representations obtained by minimizing prediction errors of
some integrated observable. Consequently, the focus employed
in this study has been to identify a representation which is
inspired by the energy changes occurring due to changes in
chemical composition and covalent and non-covalent bonding.
The accuracy of quantum mechanics when predicting other
properties (observables) as expectation values of operators
depends crucially on the quality of the wavefunction. Here,
we follow a similar argument: The better the representation
the better the energy prediction, implying that energy predic-
tion errors should be minimized in the functional space of the
representation.

B. Representation

We use a set of interatomic M-body expansions AM (I)
= {A1(I), A2(I), A3(I), . . . , AM (I)} which contain up to
M-body interactions to represent the structural and chemical
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environment of an atom I in compound C. Am(I) is a weighted
sum that runs over all m-body interactions. Each element in the
sums consists of Gaussian basis functions, placed on structural
and elemental degrees of freedom and multiplied by a scaling
function ξm. Structural values encode geometrical information
about the system, such as interatomic distances or angles. As
elemental parameters, we use the period P and group G from
the periodic table. The scaling functions ξm are used to weigh
the importance of each Gaussian, based on internal system
coordinates. We now consider only the first three distributions
in AM (I) for an atom I. We have also derived, implemented,
and tested the 4-body A4(I) distributions. However, the predic-
tive accuracy improvements of resulting QML models were
found to be negligible in comparison to the 3-body expansion.
Also, the computational cost for generating large kernel matri-
ces increases substantially when going from third to fourth
order terms. We refer to the supplementary material for the
derivation.

The first-order expansion A1(I) accounts for chemical
composition (stoichiometry) and is modeled by a Gaussian
function placed on period PI and group GI in the periodic
table of element I,

A1(I) = N(x(1)
I

) = e
− (PI−χ1)2

2σ2
P

− (GI−χ2)2

2σ2
G , (3)

where x
(1)
I
= {PI ,σP; GI ,σG}, with respective widths σP and

σG. σP and σG can be seen as elemental smearing param-
eters, which control the near-sightedness of elements in the
periodic table. χ1 and χ2 represent dummy variables for the
period and group, to be integrated out when evaluating the
Euclidean distance [see Eq. (4)]. For A1(I), the scaling function
is set to unity since stoichiometry is geometry independent.
We are not aware of other representations in the literature
which employ similar distribution functions in the periodic
table.

A2(I) is a product of A1(I) and a sum that runs over
all neighboring atoms i: A2(I) = N(x(1)

I
)
∑

i,I N(x(2)
iI

)ξ2(diI ),

x
(2)
iI
= {diI ,σd ; Pi,σP; Gi,σG}, where diI and σd correspond

to the interatomic distance at which a Gaussian is placed and

its width, respectively. ξ2 corresponds to the 2-body, inter-
atomic distance dependent, scaling function which takes the
form of the power laws discussed below. Note that letting σP

and σG approach zero is equivalent to using a radial distribu-
tion function (RDF) for each element pair. This attribute of
the representation holds for any of Am(I), i.e., σP, σG→ 0 is
equivalent to creating a separate distribution for each chem-
ical element m-tuple in Am(I). A3(I) is the logical exten-
sion from A2(I); it has a different scaling function with an
additional summation, running over all neighboring atoms
j: A3(I) = N(x(1))

∑

i,I N(x(2)
iI

)
∑

j,i,I N(x(3)
ijI

)ξ3
(

diI , djI , θI
ij

)

,

x
(3)
ijI
=

{

θI
ij
,σθ ; Pj,σP; Gj,σG

}

. Pj and Gj, similar to Pi and
Gi, correspond to the period and group of atom j. Again,
ξ3

(

diI , djI , θI
ij

)

is the (three-body) scaling function, and θI
ij

is
the principal angle between the two distance vectors ~rIi and
~rIj which span from I to i and I to j, respectively. σθ is the
width of the Gaussian placed at θI

ij
. Letting σd go to infinity

in A3 is equivalent to using a type of angular distribution func-
tion (ADF), which in one form or another has already been
used in several representations.3,14,15 A3 can therefore be seen
as a generalized ADF containing more structural information.
Figure 1 illustrates how A3(I) looks for hydrogen, carbon, and
oxygen atoms in ethanol.

The scaling functions ξ we have chosen for this work
correspond to simple power laws. They have been modified
from the leading order two- and three-body dispersion laws
by London, 1/r6, and Axilrod-Teller-Muto,29,30 1/r9. Such dis-
persion expressions were previously already used by some
of us.14 Our scaling functions, however, use different expo-
nents for the radial decay and set the C6 and C9 coefficients
to unity, as early tests indicated better performance for this
choice. For periodic systems, however, a very large cutoff
radius would be needed in order to converge the distances
between two atomic environments, when using the optimized
exponents. We have therefore augmented the scaling functions
by a previously used soft cutoff function,31 which goes to zero
at 9 Å.

FIG. 1. The three-body term (A3) as a function of radial
(d) and angular (θ) degrees of freedom in the atomic
environments of O, C, and H (circled) in ethanol. For
simplicity, we show the three-body term without ele-
mental smearing where it reduces to a number of two-
dimensional distributions for each element triple.

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-018891
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C. Distances and scalar products

In order to train and evaluate the KRR model in Eq. (1),
proper distance measures must be specified. We have found
good performance when using a weighted sum of the dis-
tances between each m-body expansion ∆(AM (I),AM (J))2

≡ ∑M
m=0 βm∆(Am(I), Am(J))2 as a distance between two atomic

environmentsAM (I) andAM (J). Here, βm is another hyperpa-
rameter which weighs the importance of each expansion order.

The distances between each distribution term are evalu-
ated as Euclidean (L2) norms, as shown in Eq. (4). ςm are
normalization constants, which ensure that all individual basis
functions integrate to 1 in the L2-norm. All integrals can be
solved analytically since they consist of a sum of Gaussian
products. The explicit form of the Am integrals for m = 1, . . ., 3
is shown in Eqs. (5)–(7). Details on how to evaluate the A3 and
A4 integrals in Fourier space can be found in the supplementary
material,

∆(Am(I), Am(J))2
=

1

ς2
m

∫
R

3m−1
d χ1· · · d χ3m−1(Am(I) − Am(J))2, (4)

1

ς2
1

∫
R

2
d χ1d χ2A1(I)A1(J) =

1
2

exp(− (PI − PJ )2

4σ2
P

− (GI − GJ )2

4σ2
G

), (5)

1

ς2
2

∫
R

5
d χ1· · · d χ5A2(I)A2(J) =

1

2
√

2
exp(− (PI − PJ )2

4σ2
P

− (GI − GJ )2

4σ2
G

)

×
nI
∑

i,I

ξ2(diI )
nJ
∑

j,J

exp(−
(djJ − diI )2

4σ2
d

−
(Pi − Pj)2

4σ2
P

−
(Gi − Gj)2

4σ2
G

)ξ2(djJ ), (6)

1

ς2
3

∫
R

8
d χ1· · · d χ8A3(I)A3(J) =

1
16

exp(− (PI − PJ )2

4σ2
P

− (GI − GJ )2

4σ2
G

)

×
nI
∑

i,I

nJ
∑

j,J

exp(−
(djJ − diI )2

4σ2
d

−
(Pi − Pj)2

4σ2
P

−
(Gi − Gj)2

4σ2
G

)

×
nI
∑

k,i,I

ξ2(diI , dkI , θ
I
ik)

nJ
∑

l,j,J

exp(−
(θI

ik
− θJ

jl
)2

4σ2
θ

− (Pk − Pl)2

4σ2
P

− (Gk − Gl)2

4σ2
G

)ξ3(djJ , dlJ , θJ
jk

). (7)

Note that third and fourth order terms become pro-
hibitively expensive to calculate directly. However, this can be
circumvented to a large extent by slightly modifying the distri-
butions and solving the angular integrals in Fourier space. Fur-
ther details about the corresponding equations and derivations
can also be found in the supplementary material.

D. Comparison to other distribution
based representations

Probably the largest difference in how A represents
nuclear configurations, when compared to many of the previ-
ously published distribution based representations, lies in the
3-body term (since A2 is a radial distribution function ifσP and
σG go to zero). In this subsection, we highlight the differences
between A3, or conventional ADF or RDF for representing the
structure of the water molecule.

As ADF, we use A3 with the limit σd → ∞ and we
model RDF by A2. Furthermore, no scaling function (ξ2 = ξ3

= 1) is used and we let σP and σG go to zero since we
only examine how representations distinguish structural differ-
ences among different geometries of the water molecule. This
results in A3 and ADF being

∑

i,I N(diI ,σd)
∑

j,i,I N(θI
ij
,σθ )

and
∑

i,I

∑

j,i,I N(θI
ij
,σθ ), respectively, for each element triple

and RDF being
∑

i,I N(diI ,σd) for each element pair.

Figure 2 shows how the distance measure between two
water molecules changes as one distorts the geometry of one
of them away from its equilibrium structure. Both, RDF and
ADF result for oxygen as well as for H in large configurational
domains with substantially zero distance to the minimum,
implying a severe lack of sensitivity. A3 by contrast produces
a qualitatively meaningful picture with a single well-defined
well around the minimum.

We have also studied the performance for modeling the
energy of the water molecule. In Fig. 3, the training error
for atomization energies is shown for a linear kernel KRR
model with A3, ADF, RDF, or RDF + ADF as representa-
tions. The linear kernel is used as a difficult test in how
far representations can model a nonlinear property, such as
the energy, in terms of linear basis functions. The errors are
significantly lower when using A3 instead of the other repre-
sentations, including RDF + ADF. Generally, potential energy
surfaces of a three-atom system cannot be decomposed into
a sum of functions of only one internal coordinate (internu-
clear distance d or angle θ). That is, E(d, θ) , E(d) + E(θ).
Using an ADF, an RDF, or a linear combination of the two
however would result precisely in such a model, as well as
most force fields. This also explains the relatively large errors
for these representations as well as the unreliable performance
of pair-wise potentials when it comes to distorted molecules.

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-018891
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-018891
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-018891
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FIG. 2. Heat maps of normalized L2 distances, using three different (not yet
scaled) representations (RDF, ADF, and our new representation). The color
code from black to white indicates normalized distance, ranging from 0 to 1,
respectively. The distances are measured between a reference water molecule,
in equilibrium geometry (cross), and a distorted water molecule. Distances
are measured separately for the oxygen (left) and hydrogen atoms (right).
The distorted water molecule is generated by uniformly stretching both OH
bonds (dOH1 = dOH2 = l) and bending the HOH angle (φ) of the reference
molecule. The relevant equations for the three representations are given in
Sec. II D.

A3 on the other hand does not decouple distances and angles
and can, by construction, model any three-body potential.

These observations give insight as to why our new rep-
resentation performs better than the other distribution based

FIG. 3. Heat maps depicting the signed atomization energy error of a water
molecule using the same coordinate system as in Fig. 2. The errors correspond
to linear kernels in KRR fitted to DFT calculated energies (PBE/def2svp). Four
representations have been used: Top left: our new A3. Top right: radial distri-
bution function (RDF) for each element pair. Bottom left: angular distribution
function (ADF) for each element triple. Bottom right: RDF + ADF. The train-
ing data consist of an equidistant grid of 50 × 50 points along l and φ within
the range of the figures.

representations: Using ADF’s and RDF’s as representations
one might be able to capture slices of the many-body picture,
the fact that there is a linear mapping between An and a n-body
potential energy surface, however, appears to make it easier to
improve the performance also for non-linear kernels.

E. Optimization

1. Hyperparameters

The use of our representation in combination with KRR
yields multiple hyperparameters. While one could, in princi-
ple, attempt to optimize all of them, using several datasets, and
efficient optimizers, such as gradient, Monte Carlo, genetic, or
simplex methods, we have found that the problem is sensitive
only to a small subset of parameters. As such, the exact choice
of many hyperparameters is not critical for the out-of-sample
errors, and resulting models perform typically well as long
as values are used which have a similar order of magnitude.
Unless otherwise specified, the following hyperparameter val-
ues have been used: σP = σG = 1.6, σd = 0.2 Å, σθ = π
black, β1 = 2, β2 =

√
8, β3 = 1.6. For the water cluster and the

protein-side chain-side chain interaction (SSI) dataset there is
no to little variation in chemical composition, and no elemental
smearing has been used.

2. Scaling power law parameters

We have screened radial exponents n2 and n3 for

the scaling functions ξ2(diI ) =
1

dn2
iI

and ξ3(diI , djI , θI
ij
)

=

1 − 3 cos(θI
ij
) cos(θi

Ij
) cos(θj

iI
)

(diI djI dij)n3
, using atomization energies

for a subset of the QM9 dataset in order to identify the optimal
exponents. Corresponding learning curves are shown in Fig. 4.
First, we have screened ξ2, usingA2 as a representation, yield-
ing the lowest offset for n2 = 4. Keeping this exponent for ξ2

fixed, we then proceeded to screen the exponent ξ3 in A3. We
found that n3 = 2 corresponded to the best exponents for ξ3.
We have used these values throughout this work, and unless
something else is specified, the optimal scaling functions
read

FIG. 4. Optimization of exponents in scaling power laws. Left: Out-of-sample
MAE for atomization/formation energy predictions as a function of training
set size on the QM9 dataset. Learning curves are generated using KRR with
A2 as a representation. The legends indicate the exponent n2 used in the scal-
ing power law, ξ2(d). Right: Out-of-sample MAE for atomization/formation
energy predictions as a function of training set size on the QM9 dataset. Learn-
ing curves are generated using KRR with A3 as a representation. The legends
indicate the exponent n3 used in the scaling power law, ξ3(d).
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FIG. 5. Changes in out-of-sample MAE as a function of uniform Gaussian
width (σP and σG) used for elemental smearing. Results for energy predic-
tions in the OQMD (left) and QM9 (right) datasets, respectively. Legends
indicate the training set size.

ξ2(diI ) =
1

d4
iI

,

ξ3(diI , djI , θ
I
ij) =

1 − 3 cos(θI
ij
) cos(θi

Ij
) cos(θj

iI
)

(diI djI dij)2
.

(8)

3. Alchemical smearing

Parameters associated with the elemental smearing have
a strong effect on the predictive power of the QML models.
We have screened the corresponding values of σP and σG

using energy prediction errors for the open quantum materials
database (OQMD) and QM9 dataset for different training set
sizes. These two datasets have been used due to their (rela-
tively) high (OQMD) and low (QM9) chemical diversity in
terms of number of differing elements in the dataset. The opti-
mal alchemical Gaussian widths vary only slightly across the
two sets, as shown in Fig. 5. A circular Gaussian with width
σP = σG = ∼1.6, which amounts to ∼90% overlap between
neighboring elements, corresponds to a relatively deep well
with minimal mean absolute error (MAE) for the OQMD
dataset, no matter the training set size. The fact that the optimal
width stays constant with respect to training set size is benefi-
cial: the elemental smearing can be optimized using relatively
small training sets and can then be applied to larger training
sets. Comparing the MAE from a model with σP = σG = 0.1
(which in practice is equivalent to zero overlap between dif-
ferent atomic types), using the optimal σP = σG lowers the
MAE by ∼9.9% for the OQMD dataset at 100 training sam-
ples, which increases up to ∼34% when 1k training samples
are used. Prediction errors for the QM9 dataset indicate similar
behavior, yet much less pronounced. For the largest train-
ing set (1000 molecules), the optimization well becomes very
shallow, consistent with the lack of compositional diversity
in QM9.

Unsurprisingly, datasets with higher chemical diversity
benefit more from using the optimized elemental widths. It
may therefore not always be beneficial to include any elemental
overlap, especially for datasets with low elemental diversity,
as it is computationally more expensive to do so.

III. DATASETS

We have used multiple datasets to benchmark out-of-
sample accuracy of energy predictions of our model. These

datasets include organic molecules, crystals, biomolecular
dimers, water clusters, and main-group diatomics. Some of
the datasets are high-quality, have already been published,
and are in widespread use. Additional low quality datasets
have been generated, merely in order to accumulate additional
evidence for the relative improvement of the new represen-
tation. Since test set predictions are always close to zero by
construction, we exclusively report prediction errors as out-of-
sample errors (averaged through cross-validation) with respect
to reference validation numbers. All errors reported corre-
spond to at least 10 cross-validation runs for each training set
size.

The reader should note that we only report errors of ML
models trained on individual datasets. Simultaneous training
on several datasets would introduce significant noise (due to
the datasets originating from different levels of theory) and
thereby hamper an unequivocal comparative analysis of the
results. For future applications and models generated within
multi-fidelity ML frameworks,32 pooling the various datasets
to train a single ML model might be more desirable.

A. Organic molecules: QM9

The QM9 dataset33 corresponds to hybrid DFT34 based
structures and properties of 134k organic molecules with up to
nine atoms (C, O, N, or F), not counting hydrogen. SMILES
strings of these molecules correspond to a subset of the GDB-
17 dataset.35 The 3k organic molecules, which fail SMILES
consistency tests,33 were removed before use, i.e., structures
where the SMILES strings of the relaxed structure differ from
the original GDB-17 SMILES strings.

A random subset of 22k molecules was selected from
QM9 for training and testing. 2k molecules were used for
testing and up to 20k molecules were used for training.

The datasets were sampled differently from QM9 in
Sec. IV B when we investigated how excluding elements
from the training set affected the out-of-sample predictions.
In total, two tests sets were used, each associated with two
training sets. The first test set consisted of molecules contain-
ing nitrogen, and the second test set consisted of molecules
containing oxygen. The two training sets associated with the
first test set consisted of molecules containing nitrogen or not,
respectively. The two training sets associated with the sec-
ond test set consisted of molecules containing oxygen or not,
respectively.

B. Organic molecules: QM7b

Due to widespread use, we also included the more estab-
lished QM7b dataset.36 QM7b was also derived from GDB.37

It contains hybrid DFT (PBE038,39) structures and properties
of ∼7k organic molecules with up to seven atoms (C, O, N,
S, or Cl), not counting H. We have drawn at random up to 5k
molecules for training and 2k molecules for testing.

C. Biomolecular dimers: SSI

For intra-molecular and non-equilibrium interactions, we
used a subset of 2356 neutral dimers from the recently pub-
lished SSI dataset.40 The SSI dataset is a collection of dimers
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mimicking configurations of interacting amino-acid side
chains as observed in a set of 47 high-resolution protein crystal
structures. The energies correspond to the DW-CCSD(T∗∗)-
F12 level of theory.41

D. Water cluster

We also include a dataset which we calculated for 4000
structures containing 40 water molecules, drawn from an
NVE-molecular dynamics (MD) trajectory of a water droplet,
simulated at 300 K, treated with the TIP3P potential42 as
implemented in CHARMM C41a1.43 For each structure, a
single-point energy was calculated at the DFT level using
the PBEh-3c method.44 Additional details, as well as the full
dataset, can be found in the supplementary material.

E. Solids: OQMD

We have used the Inorganic Crystal Structure Database45,46

subset corresponding to the OQMD by Wolverton and co-
workers.47,48 This dataset has already been used to develop and
benchmark random forest based QML model (Voronoi).49 The
dataset consists of ∼30k crystal structures and formation ener-
gies, calculated using high-throughput DFT with generalized
gradient approximation (GGA + U). We have used a random
subset consisting of 3k structures with less than 40 atoms in
the unit cell and formation energies lower than 5 eV/atom for
training and testing. 1k crystals were used for testing and up
to 2k crystals were used for training.

F. Solids: Elpasolites

We have also tested our representation for the elpasolite
crystal structure dataset.19 This dataset consists of ∼10k elpa-
solite structures and DFT (PBE50) formation energies. The
crystals correspond to quaternary main group elemental com-
position with all elements up to bismuth (39 in total). We have
used a random subset of 7k structures, with up to 6k and 1k
structures for training and testing, respectively.

G. Main group diatomics

To test the predictive power for alchemical interpola-
tion, we have also included a set of previously published
DFT (PBE50) results for single, double, and triple bonds
among main-group diatomics saturated with hydrogens.17 The
training/test splits are generated differently, as explained in
Sec. IV B.

IV. RESULTS AND DISCUSSION

Using learning curves (generally resulting in straight lines
when recorded on log-log plots due to their inverse power law
relationship51), we first present numerical results which indi-
cate the predictive power of our QML model for atomization
and formation energies in various datasets. When available
for the same dataset, we also compare to other QML mod-
els in the literature. Thereafter, the alchemical extrapolation
capacity is demonstrated for predicting covalent bonds in
molecules with elements that were not part of training. Finally,

log-log plots of learning curves for nine electronic ground-
state properties of organic molecules (QM9) are reported and
discussed.

A. Energies of molecules, clusters, and solids

Figure 6 displays the performance overview for energy
predictions on six different datasets (QM9, QM7b, SSI, water,
elapsolites, OQMD). Mean absolute out-of-sample energy pre-
diction errors are shown as a function of training set size.
The results indicate remarkable performance for all datasets,
indicating a well-working QML model yielding systematic
improvement with increasing training set size. The learning
curves also indicate out-of-sample MAEs which are consis-
tently lower, or similar, than previously published models in
the literature. For QM9, the MAE reaches the highly coveted
chemical accuracy threshold (1 kcal/mol or ∼0.043 eV for
enthalpy of formation) with only 2k training points on the QM9
dataset. Previously published QML models had to include an
order of magnitude more training molecules to reach such
accuracy. This is similar to the amount of training molecules
necessary when using the Coulomb matrix representation in
conjunction with semi-empirical or DFT based baselines in
order to estimate electron correlated energies, as demonstrated
in 2015 with the ∆-ML model.52

For QM9, atomic Spectral London Axilrod-Teller-Muto
(aSLATM)14 and SOAP multi-kernel model20,53 reach a per-
formance nearly as good as our QML model. aSLATM, how-
ever, performs worse for the SSI and the water cluster. The
SOAP multi-kernel QML model, however, performs an expan-
sion in kernel function space acting on the distance for which
all degrees of freedom have already been integrated out. As
such it is, strictly speaking, not the same as an improved rep-
resentation, but rather an improved regressor. Note that single
kernel based SOAP QML models perform significantly worse.
The reader should take notice however that in the SOAP learn-
ing curve results presented in Fig. 6, the ∼3k structures which
had failed the SMILES consistency test, were included. As
such, these QML models are not exactly comparable, and the
SOAP results are still likely to slightly improve if these faulty
structures were to be removed. One should also note that the
SOAP results shown for QM7b correspond to the multi-kernel
SOAP kernel.20,54

Other models presented correspond to the Coulomb
matrix (CM),7 bags of bonds (BOB),8 Bonds and Angles
based Machine Learning (BAML),9 Histogram of Distances,
Angles, and Dihedrals (HDAD),3 Spectral London Axilrod-
Teller-Muto (SLATM), aSLATM,14 crystal representation
by Faber, Lindmaa, Lilienfeld, Armiento (FLLA),19 sine
matrix,55 and many-body tensor representation (MBTR).15

We also compared to QML models which are not based on
KRR, such as the message passing neural network model (enn-
s2s),5 and a Voronoi-tessellation based random forest model
(Voronoi).49

The MAE of our new QML model is consistently the low-
est for all datasets and large training sets. For the set of 4000
non-equilibrium water clusters, there is a noticeable differ-
ence between the global (CM, BOB, and SLATM) and the
atomic representations (i.e., aSLATM and the new model we
introduce in this work): The global models exhibit very little

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-018891
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FIG. 6. Learning curves for atomization/formation energy predictions corresponding to various QML models. Out-of-sample MAE is shown as a function of
training set size for molecules (QM9 and QM7b), protein side-chain dimers (SSI), liquid water (H2O)40 snapshots (Water cluster), and crystalline (OQMD and
elpasolites) datasets.

learning at first, only for larger N the learning curves begin
to turn downward. The atomic models, however, our new rep-
resentation based QML model as well as aSLATM, improve
rapidly with increasing training dataset size. We believe that
sorting and crowding in the global representations make it dif-
ficult to accurately account for the purely geometrical changes
in structures that contribute to total energy variations.

Impressive predictive power is also observed for the
OQMD dataset, a structurally and compositionally very
diverse set of solids. Our new model has a lower out-of-sample
MAE for all N when compared to the sine matrix representa-
tion on the OQMD dataset. The offset of the learning curve
of our new model is larger than that of the Voronoi-based

random-forest model.49 However, the learning rate of our
QML model is significantly steeper, surpassing the Voronoi
model already at just ∼250 training samples. Results for a
solid state variant of the CM, designed for use in periodic
systems, have also been included (SineMatrix).55 It has a sim-
ilar slope as the Voronoi model, but a substantially larger
offset.

For the elpasolite dataset,19 with large composition diver-
sity but identical crystal structures, the learning-curve of the
FLLA representation has a slightly higher offset than our new
QML model, yet exhibits a steeper learning curve, though our
model converges toward the same slope for larger training set
sizes. We can only speculate on the reasons for such behavior.
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The FLLA representation differs qualitatively from the other
representations in this study: It does not include any explicit
information about coordinates and only encodes periodic row
and column of the elements which populate each crystal struc-
ture site. The QML model then learns to infer ground state
energies without knowing the exact configuration. This leads
to a very low dimensional model that is still unique for the sys-
tem, which might be the cause of the steep slope. This however
needs to be investigated more carefully before any conclusions
can be drawn.

B. Alchemical predictions

Our new scaled many-body expansion explicitly accounts
not only for distributions of interatomic distances and angles
but also for elemental distributions in the periodic table.
We have studied its capability to predict covalent binding
of molecules containing chemical elements which were not
present in the molecules used for training. More specifically,
we have investigated single, double, and triple bonds with
one bonding atom coming from group (IV), i.e., C, Si, or Ge.
In order to increase covalent bond order, we have varied the
valency of their bonding partner as follows: For single bonds,
group IV atoms are bound to halogens (group VII). For double
bonds, group IV atoms are bound to chalcogen atoms (group
VI), and for triple bonds, group IV atoms are bound to group V
atoms. Dangling valencies of group IV atoms have been satu-
rated with hydrogen. Similar covalent bonding potentials have
also recently been used in order to assess the predictive power
of first- and second-order perturbation theory based alchemical
predictions.17

In order to test the alchemical “extrapolation,” we trained
on the covalent bonds of all other compounds (16 curves)
which did contain neither the group IV atom nor the corre-
sponding bonding partner in question. The predictive power
for the out-of-sample molecule, as displayed in Fig. 7, is
impressive. Albeit not quantitative (chemical accuracy is

not reached), the results are semi-quantitative and certainly
provide a physically very adequate picture of the covalent
bonding in single, double, and triple bonds for main-group
atoms in periods 2–4. The fact that predictions for the central
elements H2SiS are more accurate (easier to interpolate) than
others is consistent with this interpretation. We also note that
the deviation is the worst for 2nd-row elements (due to lack
of d-orbitals they differ substantially more from 3rd and 4th
rows than 3rd and 4th rows differ from each other). Because of
poor performance, we do not compare to other representations
in this test.

We have also investigated thousands of organic molecules
in order to obtain improved quantitative statistics on the
question of how out-of-sample prediction errors of different
representations are affected when elements in the test set are
excluded from training. We tested our new model, with and
without elemental smearing (σP, σG = 1.6 and σP, σG → 0,
respectively), and we also included BOB and CM representa-
tions for comparison. Details about how the training and test
sets were selected can be found in Sec. III A.

Corresponding prediction errors [MAE, root mean
squared error (RMSE), and maximal error] for test (train-
ing) sets with (without) nitrogen or with (without) oxygen
are shown in Fig. 8. Obviously, the models perform best
when both, training and test molecules, contain the same
elements. However, even for models trained on sets without
nitrogen/oxygen and without elemental smearing, consider-
able predictive power and, maybe more importantly, system-
atic improvement with training set size is observed for our
new model. Use of elemental smearing results in a slight
improvement.

The loss in accuracy due to the absence of elements in
training is substantially worse for BOB and CM. Notably,
BOB, in general considered to be more accurate than CM,3,8

experiences a more dramatic loss than CM resulting in
BOB being worse than CM. This can be understood if one
considers the fact that BOB bags nuclear Coulomb repulsion

FIG. 7. Covalent bond potentials cal-
culated by DFT (star) and estimated
by QML (circle) for 27 main-group
diatomic molecules. Bonding occurs
between a group IV element (C: blue, Si:
green, or Ge: red) and halogens (single
bond), chalcogens (double bond), or a
group V element (triple bond). Columns
correspond to triple (left), double (mid-
dle), and single bonds (right). Rows
correspond to the period of the group
IV atom’s binding partner: 2nd period
(top), 3rd period (middle), 4th period
(bottom).
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FIG. 8. Learning curves for atomiza-
tion energy predictions using training
sets with (full lines) and without (dotted
lines) elements nitrogen (left) or oxygen
(right). All molecules were extracted
from QM9 (see Sec. III A). QML pre-
dictions have been made using our new
model, with (filled circle) and with-
out (empty circle) elemental smearing,
as well as KRR with CM and BOB
representation (following Refs. 8 and
56).

terms by element pairs, whereas the CM matrix directly
compares the Coulomb interactions without (explicit) regard
for which elements-pairs are being compared, effectively
already performing an “alchemical” comparison. This allows
the CM-based models to meaningfully interpolate even toward
elements, not part of training. Our model, however, clearly
outperforms CM and BOB: For example, its MAE reaches
chemical accuracy (∼0.03 eV) for the nitrogen lacking train-
ing set at ∼6.4k molecules (rather than at ∼1.6k training
molecules containing N). Note that CM and BOB based
KRR models are far from reaching such accuracy even
after being trained on molecules containing the element in
question!

The relatively high accuracy of our model achieved
without any of the elemental smearing, however, is surpris-
ing. We would have expected that the lack of the appropri-
ate elements in training introduces prediction errors which
can no longer be decreased through the addition of more
molecules. However, the learning curves in Fig. 8 do not
indicate any worsening of the learning rate. While possi-
ble that the expected deterioration could still be observed
for larger training sets, we do find it surprising that such
high accuracy can be reached without any elemental smearing
at all.

These results clearly demonstrate that alchemical extrap-
olation is possible when interpolating elemental groups and
periods in the periodic table through an appropriate repre-
sentation. Since the representation is continuous in the cor-
responding compositional space, we also believe that indica-
tion is given that the calculation of alchemical derivatives is
meaningful, similar in spirit to Ref. 57.

C. Other ground state properties of molecules

Finally, we also investigated how well QML models,
based on our new representation and optimized for energies,
perform when predicting other ground-state quantum prop-
erties, part of the QM9 dataset. More specifically, we have
included atomization energies, highest occupied molecular
orbital (HOMO) and lowest unoccupied molecular orbital
(LUMO) eigenvalues as well as the HOMO-LUMO gap,
dipole moment, polarizability, zero point vibrational energy
(ZPVE), heat capacity, and the vibrational frequency of the
highest lying fundamental (ω). Results are shown in Fig. 9
and provide overwhelming evidence that resulting models
enable predictions systematically improving with training set
size, no matter what property. For comparison, we have also
included results for the aSLATM model. aSLATM results
are typically worse when dealing with extensive properties,
such as energies, polarizability, or heat-capacity. When deal-
ing with intensive properties, such as eigenvalues or dipole
moment, aSLATM is on par or even slightly better than our
model, with the exception of ω. ω corresponds to the vibra-
tional stretch frequency of CH, NH, or OH bonds, a prop-
erty with hardly any variance at all. Previously we have seen
that this property is best predicted by a random forest model
which has relatively poor performance for all other prop-
erties.3 The interpretation is that predicting this property is
much more a classification problem than a supervised learning
task.

Figure 9 also includes learning curves for the RMSE, indi-
cating a slightly higher offset (to be expected) and systematic
improvement with training set size with similar slopes as the
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FIG. 9. Learning curves for out-of-sample MAE (filled lines) and RMSE (dashed lines) as a function of training set size N for nine electronic ground state
properties in the QM9 dataset. QML predictions have been made using either a molecular kernel and BAML as representation or atomic kernels with our new
representation. The BAML representation includes bonds (MB); bonds and angles (MA); and bonds, angles, and torsional angles (MT ). Predicted properties
include atomization energy, at 0 K (U0); HOMO-LUMO gap (∆ε); HOMO eigenvalue (εHOMO); LUMO eigenvalue (εLUMO); norm of dipole moment (µ);
static isotropic polarizability (α); zero point vibrational energy (ZPVE); heat capacity at room temperature (Cv); and the highest fundamental vibrational
frequency (ω1).

mean absolute error. This is an assuring result, indicating that
also predictions for outliers improve as training set size is
increased, as already discussed in Refs. 9 and 52.

Furthermore, for Fig. 9 we have also distinguished
between two- and three-body contributions (as well as
four-body for BAML). For all properties but for ω, the
trend meets the expectation, as also already confirmed pre-
viously for BAML:9 Addition of the higher order term
systematically lowers the learning curves by a significant
amount.

V. CONCLUSION

We have introduced a universal representation of an atom
in a chemical compound for use in QML models. An atom
is represented by a sum of multidimensional Gaussians, each
term corresponding to elemental, atom-pairwise, and angu-
lar distributions and scaled by respective power laws. For the
compounds and properties studied, we have found four-body
contributions to be insignificant. Most system-independent
hyperparameters, such as exponents in scaling functions and
Gaussian widths, were found to be not critical to the preference
of resulting ML-models, as long as “reasonable” heuristics28

was used. This could, however, be explored more systemat-
ically within future work. Analytical expressions have been
derived for corresponding distances between arbitrary chem-
ical compounds. These distances can directly be used within
KRR based QML models of electronic ground state properties.
For energies of organic molecules, water clusters, amino-acid
side chains, and crystalline solids, the resulting QML models
lead to learning curves with a very low offset and steep learning
rate. For compositionally diverse systems, chemical accuracy
(∼1 kcal/mol) can now be reached using only thousands of
training instances. We have also studied the effect of explicitly
accounting for inter-elemental distances in the periodic table:
Our new QML model can produce semi-qualitatively accu-
rate covalent bonding potentials for single, double, and triple
bonds which include chemical element-pairs which were not
part of training. For thousands of organic molecules, we also
demonstrated that our model, after being trained on molecules
which do not contain nitrogen or oxygen, still outperforms
by a margin CM or BOB based models trained on molecules
which do contain nitrogen or oxygen. For various elec-
tronic ground state properties of organic molecules, numer-
ical results indicate that remarkable predictive power can be
reached.
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While the reference data used in this study has mostly
been obtained at the hybrid DFT level of theory, the steep
learning curves of our QML models suggest that it has now
become a realistic possibility to obtain a sufficiently large
training set at the post-Hartree-Fock level of theory (or from
experiment) and to use it for the training of QML models
which enable subsequent high-throughput screening efforts
with similar accuracy.

Combining our new representation with the recently
proposed QML model trained on molecular quasi-particles
representing atoms-in-molecules (also known as “am-on”
approach) might provide the possibility to generate accu-
rate models which scale with the size of a query system.14

Subsequent work will deal with forces and other properties.

SUPPLEMENTARY MATERIAL

See supplementary material for a definition of the four
body distribution (A4); derivation of the overlap integrals
where the angular parts are solved in Fourier space; and a
full description of the water cluster calculations as well as the
water cluster data.
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