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ABSTRACT

Motivation: The development of new high-throughput genotyping
products requires a significant investment in testing and training
samples to evaluate and optimize the product before it can be
used reliably on new samples. One reason for this is current
methods for automated calling of genotypes are based on clustering
approaches which require a large number of samples to be analyzed
simultaneously, or an extensive training dataset to seed clusters.
In systems where inbred samples are of primary interest, current
clustering approaches perform poorly due to the inability to clearly
identify a heterozygote cluster.
Results: As part of the development of two custom single nucleotide
polymorphism genotyping products for Oryza sativa (domestic
rice), we have developed a new genotype calling algorithm called
‘ALCHEMY’ based on statistical modeling of the raw intensity data
rather than modelless clustering. A novel feature of the model is
the ability to estimate and incorporate inbreeding information on a
per sample basis allowing accurate genotyping of both inbred and
heterozygous samples even when analyzed simultaneously. Since
clustering is not used explicitly, ALCHEMY performs well on small
sample sizes with accuracy exceeding 99% with as few as 18
samples.
Availability: ALCHEMY is available for both commercial and
academic use free of charge and distributed under the GNU General
Public License at http://alchemy.sourceforge.net/
Contact: mhw6@cornell.edu
Supplementary information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
The number of single nucleotide polymorphisms (SNPs) that can
be genotyped in a single experiment has increased exponentially
in the past 5 years, with costs per data point declining at the
same time (Kim and Misra, 2007; Maresso and Broeckel, 2008).
This technological advance has been critical to the design and
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execution of cost-effective genome wide association studies
(GWAS) in humans and other well-studied systems (Hirschhorn and
Daly, 2005; McCarthy et al., 2008). While most ‘catalog products’
offered by companies such as Illumina andAffymetrix are developed
for human genotyping, the underlying technologies of the assays
themselves and the manufacturing methods which produce such
high-density products should be transferable to most diploid systems
of interest and are currently being adapted for domesticated plants
and animals.

The development of a custom genotyping product is still an
expensive process, especially if re-sequencing for SNP discovery
must be performed. Even with a sufficient SNP database on hand,
the development of a working assay may require dozens or even
hundreds of samples to be run in order to identify which array
features are working reliably and which simply do not perform well
in the multiplexed environment. Human genotyping products from
Affymetrix and Illumina, now in their fifth generation or later, are
largely free of SNPs and probes which did not ‘convert’ to working
assays, as previous generation products have identified these SNPs
empirically and they have been removed from later generation
products. However, a first generation custom product may see up
to 50% of the intended SNP assays fail to generate accurate results,
and this may only be determined after 100 or more samples have
been run. Depending on the number of samples planned for the
entire experiment, the cost of the samples needed for development
and quality control procedures for custom genotyping products may
easily form a significant fraction of the total experiment cost.

One limitation in custom genotyping array development is the
requirement of many automated genotype calling algorithms such
as Affymetrix’s ‘BRLMM-P’ to have a large number of samples
from which three distinct clusters of genotypes (AA, AB, BB) can
be reliably identified and clearly distinguished (Affymetrix Inc.,
2006; Carvalho et al., 2007; Rabbee and Speed, 2006; Teo et al.,
2007). The methodology in many of these clustering algorithms
implicitly assumes the existence of all three clusters. Other published
methods attempt to statistically test whether or not two or three
clusters best describes the data (Liu et al., 2003). Some more
recent methods such as ‘Birdseed’ (Korn et al., 2008) require
100 or more samples with known genotypes to be assayed in
advance to ‘train’ the algorithm. The BRLMM-P algorithm can
accept training samples as ‘priors’ or can be run without priors
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for de novo calling. For well-funded studies such as the Human
HapMap (The International HapMap Consortium, 2005, 2007), it is
possible to obtain this prior information and then apply it to future
samples. In smaller projects, however, obtaining verification data
for this many samples may be prohibitive.

Another aspect of high-throughput SNP genotyping assay design
is the laboratory protocols used to prepare samples prior to the
actual genotyping step performed by the manufacturer’s system.
The Affymetrix Human genotyping products have long employed a
genome-reduction step where the genome is enzymatically digested
and the digestion products are ligated with universal adapters
followed by PCR amplification of small (<2 kb) fragments. In
principle, this method is generalizable to other genomes but may
require optimization of the restriction enzymes used and fragment
sizes amplified. An alternative, especially for systems with smaller
and less complex genomes, is to skip the complexity reduction step
and directly label a randomly digested genome or amplify with
random labeled primers. These options, and others, can only truly be
assessed by running some samples and assessing the genotype call
rates and accuracies. However, if the calling method is inaccurate
with <100 samples or requires priors from known genotype samples,
experimenting with and optimizing the sample preparation and
labeling step is simply too costly. For new and custom products, it is
desirable to have a genotype calling method which does not require
prior information or training samples and can produce accurate
results with only a few samples.

Another consideration not addressed by genotype calling
algorithms designed for human applications is the possibility that
the samples genotyped may be inbred or deficient in heterozygote
genotypes. Many animal model systems have developed panels of
inbred lines or strains that are widely used in genetic experiments
(Yang et al., 2009). Likewise, in plant systems, many research
systems and many agronomically important species have large
collections of inbred lines which form the basis of breeding programs
and large quantitative genetic studies (Buckler et al., 2009; Yu
et al., 2008). Typically, these large collections of inbred lines are
genetically and phenotypically diverse and thought to capture a large
proportion of the naturally occurring variation in these species.

Genotyping these inbred panels presents a possible problem for
automated genotype calling based on cluster analysis because the
heterozygote cluster, which is always expected for a population
in Hardy–Weinberg equilibrium (HWE) if the SNP is segregating
within the sample batch, may have very few observations or be
completely absent, for nearly all SNPs. In our experience, these
deviations from HWE result in very few or no heterozygote samples
within the batch and this confuses current software causing one
of the homozygous clusters to be declared heterozygous, or one
homozygous cluster to be split into heterozygote and homozygote
calls. This is related to the problem of requiring large batch sizes
since the main problem with analyzing only a few samples at a time
is that one or two genotype classes may be completely absent or
have too few observations for clustering analysis to reliably identify
cluster locations and boundaries.

In the development of two SNP genotyping products for cultivated
rice (Oryza sativa), we encountered both problems, particularly that
posed by the lack of heterozygosity in our largely inbred sample
collection. To address this, we developed a custom genotype calling
algorithm called ALCHEMY, specifically designed to perform
de novo calling without prior information and to perform reliably on

Fig. 1. Density plot of log intensities across allAallele probes for one sample
(black solid line) and fit of Gaussian mixture distribution (gray dashed line).

small numbers of samples while still gaining in accuracy and call
rates when multiple samples are available for simultaneous analysis.

2 APPROACH
The central idea behind the ALCHEMY algorithm is that the
summary raw intensities for each channel (allele) is a mixture
distribution composed of a signal component and a noise component.
When an allele is present, an intensity value drawn from the ‘signal’
component is observed. If the allele is not present, the intensity value
observed is drawn from the ‘noise’ component. Conceptually, under
this model, a diploid organism with an AA genotype would have
a signal observation on the A channel and a noise observation on
the B channel, and likewise but reversed for a BB genotype. The
heterozygous genotype AB would produce signal on both channels.
The opposite, noise observed on both channels, indicates an assay
failure (no call). This may occur for many reasons, but the two most
likely reasons are complete lack of the genomic region (deletion)
in the sample, or polymorphism within the flanking sequence which
causes non-allele-specific interference with primer or probe binding.

As shown in Figure 1, these signal and noise modes are readily
identified visually and reasonably well approximated by the fit of a
Gaussian mixture distribution. Let µsA and µnA be the means of the
signal and noise distributions for the A channel, respectively, and
σ2

A be their common variance. Let π(AA) be the prior probability of
observing an AA genotype. Then, using Bayes rule, the posterior
probability of AA, AB, BB or no call (NC) given the observed
intensities xA and xB, is

P(AA|xA,xB)= P(xA|µsA ,σ2
A)P(xB|µnB ,σ2

B)π(AA)
P(D)

P(AB|xA,xB)= P(xA|µsA ,σ2
A)P(xB|µsB ,σ2

B)π(AB)
P(D)

P(BB|xA,xB)= P(xA|µnA ,σ2
A)P(xB|µsB ,σ2

B)π(BB)
P(D)

P(NC|xA,xB)= P(xA|µnA ,σ2
A)P(xB|µnB ,σ2

B)π(NC)
P(D)

(1)

where the likelihood terms of the form P(xA|µsA ,σ
2
A) is given by

the Gaussian density function. P(D) represents the total probability
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of the data which is calculated by summing the numerators of all
four cases above. For the prior terms, let pj be the frequency of the
A allele at SNP j in the population, fi be the inbreeding coefficient
for sample i, and zj be the probability that an individual sample for
SNP j may fail entirely. Let π be specified by the HWE genotype
frequencies adjusted for inbreeding and the random possibility of
unexplained assay failure:

π(AA)= (p2
j (1−fi)+pjfi)(1−zj)

π(AB)=2pj(1−pj)(1−fi)(1−zj)

π(BB)= ((1−pj)
2(1−fi)+(1−pj)fi)(1−zj)

π(NC)=zj

(2)

We take as the genotype call the genotype with highest posterior
probability. This framework not only provides a conceptually simple
means to call genotypes derived directly from first principles
and easily verified properties of the data, but also provides an
easily understood quality metric for each call. In many other
methods, quality metrics are available but their scale is not well
defined or easily understood. The posterior probability produced by
the ALCHEMY model may be taken directly as the (subjective)
probability that the call is correct. In practice, a threshold for this
probability of correctness is set and all calls which are below this
threshold are taken as ‘no calls’. This allows a simple trade-off
between completeness of the dataset produced and accuracy.

The signal and noise means, as well as SDs, for each channel,
are estimated across samples for each SNP independently. This
is performed using the expectation–maximization (EM) algorithm.
Likewise, the A allele frequency is initially set to a random value
drawn from Beta(7,7)/1.052+0.025 which gives a value of pj in
the range of (0.025–0.975) with a mean of 0.5 and most of the
mass in the mid-frequency range. This parameter is then updated via
EM in tandem with the channel parameters. Similarly, the nuisance
parameter zj (probability of an assay failing for a individual at SNP j)
is also estimated via EM in tandem with the model parameters
and A allele frequency, with initial values being proposed from the
Beta(1,20) distribution. Worthy of note is that the prior distribution
π is different for each sample due to the dependence on fi. This
parameter may be specified by the user for each sample or estimated
from the data via EM, as described below.

The above discussion, for purposes of clarity, illustrates the
central idea behind ALCHEMY and is an accurate description of
the initial implementation of the algorithm. However, a few further
observations from the data improve the calls obtained and the
accuracy of the posterior probabilities associated with these calls.
Namely, it is easily seen that the tails of the two components of
the mixture distribution in Figure 1 are heavier than a Gaussian
distribution. Thus, the distribution is better modeled as a mixture
of Student’s t distributions. Secondly, it is readily seen (data not
shown) that intensity values on the two channels are correlated,
particularly for heterozygotes. Rather than take the product of the
two channel likelihoods as given above, which is correct only if the
two channels are independent, we model both channels together as a
bi-variate t-distribution with the correlation between the intensities
on each channel being derived from the ratio of signal and noise
mean intensity values as described below. Thus, the numerators
in Equation (1) [for P(AA) shown below, other cases omitted] are

given by

P(AA|xA,xB)=

(1−ρ2)
1
2

2πσAσB

(
1+ q2

A +q2
B −2ρqAqB

v(1−ρ2)

) −(v+2)
2 π(AA)

P(D)

qA = xA −µsA

σA
qB = xB −µnB

σB

(3)

where xA,xB,µsA ,µnB ,σA,σB are as defined previously and ρ is
the correlation between channels, and v the degrees of freedom
of the bi-variate t-distribution. As before, signal and noise means
(µsA ,µsB ,µnA ,µnB ) and the common SDs (σA,σB) of each channel’s
signal and noise mixture distribution are estimated from the data,
but ρ (for each genotype case) is determined via a simple heuristic
and v is a fixed parameter that may be adjusted by the user (see
Section 4). Finally, for the Affymetrix and Illumina technologies
considered here, the intensity level is typically proportional to the
amount of allele present and thus the signal on either channel is
reduced for heterozygotes compared with homozygotes. To account
for this, we used a reduced value for µsA and µsB in the likelihood for
P(AB). These reduced values may be either a fixed proportion of the
homozygote signal levels or estimated from the data if a sufficient
number of heterozygotes are observed at an SNP.

3 ALGORITHM
Input: the input to ALCHEMY is the summary intensity values for the A

allele and B allele channels, for all SNPs interrogated by the assay. Prior
to running ALCHEMY, the actual raw data that is platform dependent is
converted into these summary intensities. For Affymetrix arrays which have
multiple probes per allele per SNP, the log intensity values for each allele
are averaged across probes to create a single summary value. For Illumina
GoldenGate, intensity values are already summarized as one number for each
allele as outputted from BeadStudio. The log of the raw (not normalized)
intensity is used.

Normalization: to adjust for variations in signal and noise intensities due to
differences in sample DNA concentration and other sample-specific effects,
the observed intensities for the A and B allele channels for all SNPs for a
sample are pooled and a bimodal Gaussian mixture model is fit to the data
to estimate signal and noise means across all SNPs for the sample as well
as a common variance. These parameters are determined for all samples and
the values tm (target midpoint) and td (target difference) are determined
by the average across samples of the respective quantities (µs +µn)/2 and
µs −µn. To adjust an individual intensity x, we calculate xnorm = (xorig −
(µs +µn)/2)td/(µs −µn)+tm, where µs and µn are the signal and noise
means determined from fitting the Gaussian mixture for the sample. This
adjustment results in every sample having the same signal and noise means
estimated from fitting the bimodal Gaussian mixture model on the normalized
intensity values, but the common variance parameter of the mixture model
may vary between samples.

EM starting distribution: the normalization procedure results in every
sample having a common signal and noise mean when intensity values for
all SNPs are fit to a bimodal Gaussian mixture. These common values are
used as means for Gaussian proposal distributions to generate starting values
to seed the EM procedure. Initially, the average of the common SD for each
sample’s bimodal fit from the normalization procedure divided by 2.5 is used
as the SD of the proposal distributions, but if many proposals fail to result in
EM convergence, this variance is increased to allow less typical parameters
to be proposed.

EM: for each SNP, random values for the parameters
µsA ,µnA ,µsB ,µnB ,σ2

A,σ2
B are drawn from the distribution described
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in the step above. Values for pj and zj are proposed from their starting
distributions as described in the Section 2. Given these values, the probability
of each possible genotype call (AA, AB, BB and no call) is calculated via
Equation (3). The call with maximum posterior probability is assigned and
then the maximum likelihood estimates of the model parameters, assuming
these genotype calls, are computed, including the A allele frequency pj

and probability of assay failure zj . Using these new parameters, genotype
call probabilities are recomputed followed by re-estimation of the model
parameters. This continues in an iterative fashion until the genotype call
for each sample remains fixed across successive iterations. The genotype
call with maximum posterior probability is the final call produced by the
algorithm and the posterior probability itself a quality metric which may be
subjectively interpreted as the probability that the genotype call is correct.

EM estimation of inbreeding coefficient: an estimate or prior belief for
the inbreeding coefficient for each sample may be specified as input to the
program and in this case this value will be used when calculating the prior
distribution (π) in Equation (2) and posterior probabilities via Equation (3).
Alternatively, ALCHEMY can estimate the inbreeding coefficient for each
sample via EM. In this case, a randomly selected user-specified number
of SNPs are called via the full ALCHEMY algorithm, initially with random
values selected for the inbreeding coefficient. These initial values are sampled
from a Gaussian distribution with a mean value that may be specified by
the user for each sample, or for all samples without individually specified
values by a command line parameter. If neither a command line default
mean nor individually specified inbreeding coefficient starting value means
are specified, the starting value distribution mean is set to 0.0. The SD of
this starting value distribution is fixed in the program at 0.25, and invalid
values [outside (−1.0, 1.0)] are truncated at the valid range endpoints.
Given the genotype calls produced by ALCHEMY, the heterozygosities for
each sample are computed (Hobs) and compared with the heterozygosity
expected (Hexp) given the allele frequency at each SNP (estimated from
the current genotype calls) assuming HWE. A new inbreeding coefficient is
estimated by f =1−Hobs/Hexp. Using the new inbreeding coefficient values,
genotype calling is repeated for the subset of SNPs. Iteration stops when the
improvement in the total likelihood of the data no longer improves or a preset
maximum number of iterations is exceeded. EM is performed for a user-
specified number of random starting points and the inbreeding coefficients
which produced the maximum total likelihood across all samples are retained
and used for the final, full ALCHEMY run on all SNPs.

4 METHODS
SNP arrays: we designed two multiplexed high-throughput SNP genotyping
products for use in genotyping a collection of inbred lines of O.sativa
(domestic rice). The first product is an Illumina 1536 SNP GoldenGate
Oligo Pool Assay (OPA) (Fan et al., 2003) intended for use in breeding
applications. The second product is an Affymetrix 44 100 SNP GeneChip
(Matsuzaki et al., 2004) designed through the company’s custom genotyping
program. This higher density array is intended both for direct use in GWAS
in rice as well as a pilot array for designing a much higher density Affymetrix
GeneChip. The vast majority of SNPs for both products were selected from
the OryzaSNP project’s Perlegen resequencing of 20 diverse O.sativa inbred
lines (McNally et al., 2009), selected to represent four of the five major
rice subpopulations plus one line from the aromatic/Group V subpopulation
(Garris et al., 2005). For both arrays, SNPs were chosen primarily to obtain
uniform density across the entire genome and to maximize informativeness
both within and between the four major subpopulations for which multiple
lines were resequenced in the OryzaSNP project. As only one line was
resequenced in the Aromatic/Group V subpopulation, SNPs private to this
subpopulation were not available for selection. Additionally for the 44 100
SNP array, SNPs were chosen to minimize pairwise linkage disequilibrium.

Samples: at the time of writing, both products have been utilized on
a much larger number of samples than that which is presented in this
article, as part of an ongoing effort. For the purposes of illustration of

ALCHEMY and for consistency and comparability between the datasets,
a subset of 166 samples were selected that were run on both the Illumina
and Affymetrix platforms with some samples run multiple times on one or
both platforms. Counting replicate assays, a total of 200 Affymetrix 44K
assays and 184 Illumina 1536 assays are used. In the Affymetrix dataset,
22 samples were run at least twice. In the Illumina dataset, seven samples
were run at least twice. The sample selection includes the two rice reference
genome lines ‘Nipponbare’ (temperate japonica) and ‘9311’ (indica), as well
as the Nipponbare × 9311 F1, run in several replicates on both platforms.
An additional 30 lines have Illumina Genome Analyzer II short-read re-
sequencing data which can be used to verify genotype calls. The remaining
samples are all inbred domestic rice varieties representing all five major
subpopulations of O.sativa (Garris et al., 2005) and are representative of a
typical sample collection of interest in this system.

QC filtering: as with any new genotyping product, a number of intended
SNP assays fail to convert to working assays in the multiplexed environment
for reasons which cannot always be determined. All results presented here
for the two rice arrays exclude up front SNPs which did not convert to
working assays, to the best of our ability to determine. For both Illumina
and Affymetrix rice arrays, we excluded SNPs which were inconsistent
with Mendelian transmission across 33% or more of our control trios, and
also excluded SNPs which had call rate of 67% or less. Since these SNPs
are determined empirically from ALCHEMY or the vendor’s software, we
required that a SNP fail one or both of these criteria for both ALCHEMY and
the vendor’s software (Beadstudio or BRLMM-P) in order to be excluded.
Thus, the exclusion list does not bias analyses in favor of either ALCHEMY
or the vendor’s software.

For the Illumina 1536 GoldenGate OPA, 93 SNPs were inconsistent
with Mendelian transmission for both ALCHEMY and BeadStudio analyses
in >33% of the possible trios formed from the Nipponbare, 9311 and
Nipponbarex9311 F1 replicate samples and were excluded from all analyses.
In addition, 21 SNPs were found to produce low call rates (<67%) in
both BeadStudio and ALCHEMY analyses and were also excluded. The
remaining 1422 SNPs (92.6% conversion rate) were evaluated for accuracy,
concordance and call rates in this study.

For the Affymetrix 44 100 SNP array, 1850 SNPs were inconsistent with
Mendelian transmission in both ALCHEMY and BRLMM-P analyses for
>33% of control trios. Additionally, 755 SNPs produced low call rates
(<67%) in both BRLMM-P and ALCHEMY analyses and were excluded
from all analyses. A total of 41 495 SNPs were evaluated for accuracy
and concordance in this study (94.0% conversion rate). For both Illumina
and Affymetrix, the SNPs excluded by these criteria were excluded from
both ALCHEMY and the vendor’s software when computing accuracies,
concordances and call rates.

For HapMap analyses, no exclusion of SNPs based on empirical measures
of accuracy or call rate was performed under the presumption that the
Affymetrix 500K Mapping GeneChip is a mature product containing SNPs
already known to work with the manufacturer’s system. However, since
ALCHEMY presently does not handle hemizygosity due to male/female
differences in sex chromosome copy number, all non-pseudo-autosomal
X-chromosome SNPs were excluded from both ALCHEMY and BRLMM-P
analyses. Additionally, two SNPs (SNP_A-1919896 and SNP_A-4299916)
were excluded because the HapMap validation data contained genotypes
that were inconsistent with the two alleles defined for these SNPs, indicating
these SNPs may be tri-allelic.

Run-time options: ALCHEMY has very few run-time options or
parameters other than input specification parameters that can be adjusted
to improve performance and this is considered a feature rather than a bug or
weakness (see Section 6). All analyses presented in this article used identical
settings for these parameters, except for the proposal distribution means
for inbreeding coefficients. For per-sample inbreeding coefficients, proposal
distribution means were provided for each inbred sample as 0.95 and for
F1 samples −0.5 was specified. As described, these values are means of
starting point distributions for EM-estimated inbreeding coefficients for each

2955

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/26/23/2952/220569 by U
.S. D

epartm
ent of Justice user on 16 August 2022



[15:57 3/11/2010 Bioinformatics-btq533.tex] Page: 2956 2952–2960

M.H.Wright et al.

sample. The EM step for estimating inbreeding coefficients for both Illumina
1536 and Affymetrix 44K rice arrays was performed for 10 random starting
points on 1536 SNPs (whole array for Illumina, a random subset of SNPs
for Affymetrix) and iterated until convergence. This step was also performed
for the Human HapMap analysis, except a random subset of 5000 SNPs was
used and the mean of the starting point distribution was set to 0.0 for all
samples.

The degrees of freedom of the bi-variate t-distribution was set to 12 for
all analyses. The sensible range for this ALCHEMY parameter is roughly
5–15. Similar results as those presented here are obtained at any setting
in this range, though in general lower values produce slightly increased
accuracies with decreased call rates, and higher values produce slightly
reduced accuracy and higher call rates.

For each SNP, EM was performed at new starting points until 50
successive new starting points fail to produce a total likelihood higher than
the maximum likelihood EM solution already observed. This stopping point
parameter may be changed on the command line and will directly effect
the total run-time of the method. For Affymetrix 44K analyses, a value of
50 produces similar run-times for ALCHEMY and BRLMM-P on the same
data on a 8 CPU system. However,ALCHEMY is a multithreaded application
and can utilize multiple CPUs while BRLMM-P cannot. Thus, ALCHEMY
is roughly eight times the computational cost of BRLMM-P in terms of
CPU-minutes at this setting. Reducing the value produces similar results but
slightly reduced accuracies and call rates. Increasing the parameter increases
accuracy and call rates but with greater and greater computational cost and
diminishing returns. Because BeadStudio is a proprietary software and not
available to us to run directly (analyses presented here were performed by the
genotyping facility), we cannot compare run-time efficiency of ALCHEMY
versus BeadStudio.

The depression in signal intensity for heterozygotes is perhaps the weakest
aspect of the model and most likely to vary between genotype products
and vendors. As separate parameters, it can be impossible to estimate
in datasets lacking significant numbers of heterozygotes, or SNPs which
are monomorphic within the sample batch or have very low minor allele
frequencies. ALCHEMY can either attempt to estimate the heterozygote
mean signal parameter for both channels or predict it on the basis of
the homozygote signal mean and noise mean. A command-line parameter
may be specified to indicate a threshold at which ALCHEMY should
attempt to estimate the heterozygote signal mean (M-step) if the number of
heterozygotes (as determined by the E-step) exceeds this threshold. Below
this threshold,ALCHEMY will set these parameters to µn +(µs −µn)/

√
2. If

a value of 0 is specified for this parameter, estimation is turned off completely.
For all analyses, this parameter was set to 5.

The most significant parameter affecting accuracies and call rates is the
threshold at which genotypes with lower posterior probability of accuracy
are declared ‘no call’. This threshold is not actually a proper parameter of
the algorithm and is applied as a post-processing filter. The ALCHEMY
algorithm always produces an AA, AB or BB genotype call in its output
even if the assay-failure case produces the highest posterior probability. In
that case, the genotype with the second highest posterior probability is the
ALCHEMY call. For all analyses, a threshold of 0.80 was used and any call
with posterior probability less than this was considered a ‘no call’.

The correlation between intensities for AA homozygotes is fixed by
the program to tan−1(µnB /µsA ) and analogously for the BB homozygote.
The heterozygote correlation is set to tan−1(µAhs /µBhs ) if µAhs <µBhs , and
tan−1(µBhs /µAhs ) if µBhs <µAhs , where µAhs is the heterozygous signal
mean of the A allele channel, and likewise for the B channel. Analogous
to the heterozygote case, the correlation between channels for the assay
failure tan−1(µnA /µnB ) if µnA <µnB , and tan−1(µnB /µnA ) if µnB <µnA . The
covariance matrix of the bi-variate t-distribution for evaluating the likelihood
and computing the posterior probabilities is determined by these correlations
and the EM estimates of the marginal variances. Setting these parameters
to fixed values is not advised and unlikely to perform well. Changing
the formulae for these parameters requires modifying the source code.

Estimating these parameters proved difficult and reduced performance on
small sample sets due to lack of information for estimating these parameters
in addition to others required by the model.

HapMap analysis: the Affymetrix Human 500K GeneChip comes as two
separate fixed arrays, the Nsp and Sty arrays, designated by the restriction
enzyme used in the sample preparation protocol. These two chips were run
separately for BRLMM-P since there is no mechanism to combine them.
For ALCHEMY, however, superior results were obtained by running the
two chips together in a single batch. Additionally, since the 270 HapMap
samples are composed of 90 samples from each of three distinct and
well-defined human subpopulations, these populations were run as separate
batches for ALCHEMY. When combined, ALCHEMY estimates positive
inbreeding coefficients as a result of the decreased heterozygosity in the
structured population compared with the expectation for a single random-
mating population. As separate batches, both slightly positive and negative
inbreeding coefficients are estimated with a mean inbreeding coefficient
near zero for all three populations. Accuracies and call rates were slightly
improved by running each subpopulation separately. While there is no need
to perform estimation of the inbreeding coefficient with these samples,
ALCHEMY was run with the estimation turned on in order to conform as
much as possible to the rice analyses.

Vendor algorithms: genotype calls produced by the ALCHEMY method
were compared with calls produced by the vendor’s software for both
Illumina and Affymetrix rice arrays as well as the Human HapMap
samples run on the Affymetrix Mapping 500K GeneChip. For Illumina
BeadStudio, analyses were performed by the genotyping facility using
the manufacturer’s recommended settings. For Affymetrix, all BRLMM-
P analyses were performed using Affymetrix Power Tools (APT) version
1.12.0-20091012 using the option ‘-a brlmm-p-plus’ to select an alternate
recommended setting which demonstrated much better performance on the
rice 44K array than the default ‘-a brlmm-p’ setting. For rice analyses, a
‘priors’ file was not available and not specified to the algorithm. Since rice
does not have sex chromosomes, the option ‘–no-gender-force’ was used to
turn off BRLMM-P features designed to handle hemizygosity in males for
X chromosome SNPs. This option was also used for the Human HapMap
samples, but all non-pseudo-autosomal X chromosome SNPs were excluded
from both ALCHEMY and BRLMM-P analyses on these samples. A ‘priors’
file was not specified for the BRLMM-P analysis of HapMap samples.

5 RESULTS
In the development of the two genotyping products, we have four
types of samples which can be used to evaluate performance of the
assays themselves and the ALCHEMY genotype calling method:
(i) reference samples, (ii) replicate samples, (iii) OryzaSNP samples
and (iv) samples which have been re-sequenced by high-throughput
short-read sequencing (Illumina GenomeAnalyzer II) to a sufficient
extent to determine the allele at a large majority of SNP sites. Except
where explicitly stated otherwise, all validations were performed
comparing either ALCHEMY or the vendor’s software (BeadStudio
and BRLMM-P) run on the entire collection of 184 Illumina assays
or 200 Affymetrix assays.

The ‘reference’samples are the two rice lines for which assembled
genome sequence is publicly available. The first, ‘Nipponbare’, is a
temperate japonica line which has been extensively sequenced and
assembled into high-quality pseudo-molecules (Goff et al., 2002).
The second, ‘9311’, is an indica variety which has been sequenced
by Sanger whole-genome shotgun sequencing and assembled using
the Nipponbare genome sequence as a scaffold (Yu et al., 2002). Our
samples bear the same name as these reference genomes but are not
identical to the lines sequenced. As seen in Table 1, ALCHEMY calls
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Table 1. Comparison of reference lines to published genome sequence

Illumina 1536 SNP GoldenGate OPA

ALCHEMY BeadStudio

Line #a Agreementb Call rate Agreementb Call rate
(%) (%) (%) (%)

Nipponbare 7 99.6 99.0 96.4 99.6
9311c 7 95.6 98.0 93.3 98.4
NPx9311 F1d 6 93.6 96.7 91.7 99.8
Average 96.4 98.0 93.9 99.2

Affymetrix 44K GeneChip

ALCHEMY BRLMM-P

Line #a Agreementb Call rate Agreementb Call rate
(%) (%) (%) (%)

Nipponbare 7 99.1 97.6 93.2 87.1
9311c 5 96.5 96.4 89.1 87.1
NPx9311 F1d 6 94.7 92.7 90.3 84.5
Average 96.9 95.6 91.1 86.2

aNumbers reported are averages across replicate samples.
bPercentage of genotype calls which agree with published sequence presuming
homozygosity.
cThe 9311 line genotyped in this study was obtained from a different source than the
sequenced line (see text).
dGenotypes predicted from parental genome sequence assuming normal Mendelian
transmission and presuming homozygosity of the parents.

replicate the expected calls based on the Nipponbare sequence to a
high degree, but diverge from the 9311 genome sequence. However,
since we have many replicates of these samples, we find that there
is high concordance across our reference samples and it seems
likely that the differences seen between our 9311 and the genome
sequence reflect true differences, resulting from different origins of
the materials. Likewise, the F1 genotypes which we predict from
the Nipponbare and 9311 genome sequences also show differences
with the ALCHEMY calls as a consequence of the divergent 9311
lines.

Next we looked at the samples run in replicate, including the
reference samples above. In the Illumina samples, we have seven
samples run at least twice (including the 3 reference samples) with
all pairs of replicates showing an average concordance of 99.6% and
average pairwise mutual call rate (genotype called in both samples)
of 95.4% (Table 2). This is also seen in theAffymetrix samples where
22 different samples run at least twice have an average pairwise
concordance of 99.5% and average mutual call rate of 92.6%. This
indicates both the assays themselves and ALCHEMY genotype calls
are consistent across many distinct samples.

Because our SNP discovery panel was limited to 20 accessions
across five subpopulations of domestic rice and we purposely
selected SNPs that would be informative in at least 2 or more
subpopulations where possible, there are no SNPs in the panel of
lines studied here with a minor allele frequency <10%. However, it
is easy to construct a subset of samples such that a large percentage
of SNPs will have only a single observation of the minor allele
homozygote. To do this, we selected one Nipponbare control sample

Table 2. Pairwise concordance for replicate samples

Illumina 1536 SNP GoldenGate OPA

ALCHEMY BeadStudio

Line # pairs Concordance Call ratea Concordance Call ratea

(%) (%) (%) (%)

Nipponbare 21 100.0 98.4 98.5 99.3
9311 21 99.5 94.6 97.0 95.1
NB+9311-GL 15 99.5 93.7 98.4 99.4
All others 4 98.2 90.5 95.6 94.1
Average 99.6 95.4 97.8 97.5

Affymetrix 44K GeneChip

ALCHEMY BRLMM-P

Line # pairs Concordance Call ratea Concordance Call ratea

(%) (%) (%) (%)

Nipponbare 21 99.6 95.7 98.1 80.1
9311 10 99.6 92.6 98.0 79.1
NB+9311-GL 15 99.4 88.6 98.5 75.0
All others 19 99.4 92.2 97.6 77.5
Average 99.5 92.6 98.0 78.0

aCall rate in this table refers to the percentage of SNPs called in both samples of a
replicate pair. Individual sample call rates are higher.

(a temperate japonica line) and 28 lines from the Aus subpopulation
which is highly diverged from temperate japonica [FST = 0.42,
(Garris et al., 2005)]. In this collection, we expect 11 465 SNPs
to have minor allele frequency <10% and most of them only
the Nipponbare control sample will have the minor allele. In this
constructed subsample, for all SNPs, we found 99.7% agreement
with consensus Nipponbare calls from the full dataset and a call rate
of 98.0%, consistent with the results shown above. Limiting to just
those SNPs which are expected to have a low minor allele frequency
in this subsample, 99.1% of genotypes agreed with consensus
Nipponbare calls with a call rate of 98.5%.

We also looked at the concordance between ALCHEMY calls
and the OryzaSNP project’s Perlegen sequence from which these
assays were designed. Unfortunately, while the materials utilized
in our study are identical or as closely related as possible to the
original OryzaSNP lines, the Perlegen dataset contains many missing
observations and an average per-line error rate of approximately
2.9% [(McNally et al., 2009)–MBML intersect set]. Comparing
ALCHEMY genotype calls on these samples to the Perlegen
sequence confirms this with an average concordance of 96.5%
(see Supplementary Table 1).

Finally, in an effort to discover more SNPs for the production
of an even larger genotyping array, we have performed short-read
next-generation sequencing on 19 inbred rice lines utilizing the
same material as that which was genotyped. Additionally, another
11 lines have been re-sequenced by collaborating groups, in most
cases utilizing materials derived from the same original sources
as our materials. Combining these datasets and analyzing them
to determine the genotypes expected (presuming homozygosity)
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Table 3. ALCHEMY versus BRLMM-P on 270 Human HapMap Phase II
samples

ALCHEMY (%) BRLMM-P (%)

Accuracy 99.78 99.82
Call rate 98.82 99.19

Accuracy refers to the agreement between genotype calls for the respective algorithm
and HapMap Phase II published genotypes.

for these lines from the sequence data, we can compare these
expected genotypes to ALCHEMY calls. On average, we find a
high concordance (average 99.1%, call rate 96.3%) with some of the
lines having lower concordance being those derived from distinct
plant materials or having lower coverage depth in re-sequencing
(Supplementary Table 2). Taken together, these analyses broadly
validate ALCHEMY’s genotype calls across many different rice
samples.

Next, we asked whether or not ALCHEMY was over-fit to these
specific genotyping products. The vendor’s genotyping algorithms
work well for human products and other supported products, but
did not perform well ‘out-of-the-box’ on our custom arrays and
our samples as demonstrated above. In the interest of promoting
the development of new genotyping products in more systems,
we would like to have a genotyping algorithm that performs well
across a broad range of vendors, products, systems and sample sets,
requiring little or no empirical fine-tuning to obtain high-quality
data. To assess ALCHEMY’s performance on a non-rice dataset,
we obtained the publicly available HapMap Phase II published
genotypes and the Affymetrix Human 500K GeneChip .CEL files
that were run on these same samples and ran ALCHEMY and
BRLMM-P (Table 3). As expected, BRLMM-P performs very well
as it, and its predecessor BRLMM, has been developed and tuned
for Affymetrix Human Genotyping products. Although ALCHEMY
does not perform as well as BRLMM-P on Human HapMap samples,
it still performs very well even without specific tuning or trial-and-
error adjustments to improve accuracy or call rate. These results,
taken together with the results above showing strong performance
on two very different technologies, suggests ALCHEMY is a
generalized method with broad applications, especially for custom
products where fine-tuned specialized algorithms are not available.

Finally, since custom products may require optimization of
molecular techniques and protocols to obtain optimal results, we
wanted to develop a method which produced accurate and usable
results even if the total sample size was small. To demonstrate
ALCHEMY’s ability to call small sample sizes, we ran ALCHEMY
as well as the vendor’s software on a series of sample subsets and
assessed the accuracy and call rates for our three reference samples:
Nipponbare, 9311 and the Nipponbare X 9311 F1. Additionally, we
ran each of the three reference samples alone to assess performance
on a single sample. Because of the unfortunate discrepancy between
our 9311 line and the 9311 line which was sequenced, we gauge
‘accuracy’on the basis of agreement with the consensus ALCHEMY
calls for these samples across all replicates in the full dataset but
restrict ourselves to SNPs with consensus calls which are consistent
with Mendelian transmission to the F1 in the full dataset. In Table 4,
we find that ALCHEMY quickly attains >99% accuracy with as
few as 18 samples (see also Fig. 2 for a graphical representation of

Table 4. ALCHEMY versus BRLMM-P on single samples and small sample
subsets

# of samples ALCHEMY BRLMM-P

Accuracy Call rate Accuracy Call rate
(%) (%) (%) (%)

Nipponbare alone 99.2 94.9 83.2 98.2
9311 alone 98.8 96.1 80.1 98.4
NPx9311 (F1) alone 69.0 99.2 89.8 98.6

3 (full trio) 97.1 97.9 87.6 97.8
6 97.7 97.4 87.7 96.8
9 98.6 97.2 87.7 96.0

12 98.8 97.3 88.1 95.3
18 99.2 97.4 88.7 94.4
24 99.3 97.5 89.1 93.4
48 99.5 97.5 90.1 91.0
72 99.6 97.6 91.6 90.2

Table 4). Additionally, it performs very well on either homozygote
sample alone, but quite poorly on the heterozygote sample alone.
In contrast, BRLMM-P performs very poorly on any of the
three reference samples alone and poorly on small samples sizes.
BRLMM-P accuracy increases as sample size increases, as expected,
but surprisingly, call rates decline. Similar results are observed
with Illumina BeadStudio, except call rates do not decline with
larger sample size and BeadStudio performs very well on either
homozygote sample alone, but not with the heterozygote sample
alone (Supplementary Table 3).

6 DISCUSSION
The design ofALCHEMY was motivated primarily by two concerns:
(1) the poor performance of the vendor’s software on inbred sample
sets and (2) the requirement for a large number of samples to be
simultaneously analyzed to obtain accurate results. As mentioned
previously, the two concerns are related, as the main reason many
samples are required for clustering algorithms is to ensure that
each genotype cluster is well represented allowing its location and
boundaries to be well defined. Thus, if heterozygotes are rare or
absent in the data due to inbreeding, the heterozygote cluster cannot
be reliably identified even if large numbers of inbred samples are
used.

To address this, we have proposed a statistical model to describe
the raw intensity data which is the basic observation of both
Affymetrix and Illumina genotyping platforms. The model is capable
of making an inference even if only a single sample is analyzed, but
the parameters of the model are refined and optimized when several
samples are available for simultaneous inference. In addressing
concern (2), this approach is shown to be highly successful,
with ALCHEMY obtaining >99% accuracy with as few as 18
samples on the Affymetrix 44K platform, and larger number of
samples continuing to improve call rates. Additionally, the statistical
treatment of the problem permits inbreeding to be explicitly
considered and incorporated into the model in an appropriate way.
Simultaneously estimating and optimizing the inbreeding coefficient
on a per-sample basis allows both outbred and inbred samples to be
analyzed simultaneously and improves both accuracy and call rates.
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Fig. 2. Effect of increasing number of samples which are simultaneously
analyzed for ALCHEMY and BRLMM-P (Affymetrix 44K).

Although not studied extensively here, the posterior call
probability produced by ALCHEMY as a quality metric can
conceivably be used directly in downstream population genetic and
quantitative genetic statistical analyses. For the rice datasets and the
Human HapMap dataset, the signal-to-noise ratio of the intensity
data is strong enough that for most SNPs there is little uncertainty
in the genotype call. However, in noisier data, incorporating the
probability of error estimated by ALCHEMY for genotype calls into
statistical analyses may allow for more accurate population genetic
inferences and improve both sensitivity and specificity of GWAS.
We caution, however, that these probabilities are subjective due to
the use of a Bayesian model and may not precisely correspond to
actual observed error rates. The Bayesian model not only presumes
the bimodal intensity distribution but also HWE (with inbreeding
adjustment) of genotype frequencies across the sample set. Violation
of either model assumption will introduce deviations between
expected error rates [formed by summing (1−p) were p is the
posterior probability of the call] versus observed error rates. This is
particularly relevant for our rice samples which come from a highly
structured population where deviations from HWE frequencies are
expected not only due to inbreeding but also from differences in
allele frequencies between subpopulations.

The results presented here show that ALCHEMY’s performance
is superior to either vendor’s standard software on the two
rice genotyping products considered. Additionally, the strong
performance on Human HapMap data suggests that ALCHEMY
may work well on a wide range of products. We have also tested
ALCHEMY on currently unpublished data from dogs in both
Affymetrix and Illumina products and found a consistent high level
of performance at or exceeding the levels reported here. While
BRLMM-P outperforms ALCHEMY on the HapMap samples, it is
important to note that we did not attempt to tune or alter ALCHEMY
for improved performance on HapMap as the purpose was to test
whether or not ALCHEMY is already over-fit to the rice genotyping
arrays for which it was developed.

Compared to many other genotype calling software packages,
ALCHEMY has relatively few options to tune its performance for
specific datasets. In part, we consider this a feature rather than
a weakness, as the multitude of tuning parameters for programs
such as BRLMM-P are bewildering to the user and potentially
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Fig. 3. Trade-off between accuracy and completeness of the dataset
generated by varying the threshold at which genotypes with lower posterior
probabilities are declared ‘no call’ and dropped from the final dataset. Note
the limited range of the y-axis.

allow the user to over-fit the model or program by trial-and-error
to the control samples for which genotypes are known, at the
expense of a potentially worse performance on samples for which
validation cannot be performed. In practice, there are four main
options that may affect accuracy of genotype calls and posterior
call probabilities: the number of degrees of freedom for the bi-
variate t distribution, whether or not to estimate heterozygote signal
means and at what number of suspected heterozygotes to use these
estimates, EM parameters such as the maximum number of iterations
and the number of starting points to try, and finally, whether or
not to use the EM algorithm to estimate inbreeding coefficients,
specify them for each sample, or set them all to 0.0 or another
fixed value. These parameters and the values used for the analyses
presented here are discussed in Section 4. All other aspects, such
as normalization, channel intensity correlation, allele frequency
estimates and estimates of per-SNP assay failure probabilities, are
automatically handled.

The most influential parameter under a user’s control is the
threshold at which a ‘no call’ is declared, but this is not actually
a direct parameter to the ALCHEMY program. ALCHEMY will
always produce an AA, AB or BB genotype call and a corresponding
‘posterior call probability’ as a subjective measure of confidence
in the accuracy of this call. Many users will simply want to use
this to filter out a subset of low-quality calls which are then
treated as missing data in downstream analyses. To demonstrate
the effect of this parameter, in Figure 3 we show accuracy of
genotype calls versus the percentage of genotypes declared ‘no
call’ (‘drop rate’) for each of the genotyping products studied. To
the extent these probabilities reflect actual frequencies of genotype
calling errors, the threshold at which to declare a genotype ‘no
call’ provides a direct but flexible trade-off between accuracy
and call rate. Different thresholds can be utilized depending on
whether or not the downstream analysis is more sensitive to missing
data or potentially inaccurate genotypes. Although our primary
motivation in developing ALCHEMY was to model inbreeding for
improved performance on our own genotyping products, the strong
performance on HapMap samples out-of-the-box with no specific
optimization of ALCHEMY’s run-time parameters including the
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threshold for declaring no calls suggests that the ALCHEMY
algorithm is robust, broadly applicable and does not require
extensive tuning to obtain good performance. We caution, however,
that despite all efforts to produce a robust algorithm, there is no
substitute for performing empirical validation utilizing Mendelian
trios, samples with known genotypes from exogenous sources and
replicate samples.

A novel feature of ALCHEMY is the use of a population genetic
model to inform the genotype calling process, allowing the explicit
handling of inbreeding and the ability to simultaneously estimate
both genotypes and inbreeding levels from the raw intensity data.
However, as mentioned above, the prior probabilities only hold for
a single population, and the presence of subpopulation structure
may result in overestimation of inbreeding coefficients. Regardless,
for genotype calling in ALCHEMY, only the reduction in expected
heterozygosity is relevant, not whether it is due to inbreeding or
population structure. The difference in allele frequencies between
subpopulations may effect the accuracy of the posterior call
probability and thus the genotype calls since the prior probability is
formulated in terms of HWE frequencies (accounting for inbreeding)
assuming a single, random mating population. In principle, however,
it is possible to extend ALCHEMY such that population structure,
and inbreeding within subpopulations, is simultaneously estimated
along with genotype calls, potentially improving the accuracy of
both analyses.

7 AVAILABILITY
ALCHEMY is written in C and developed and used under the
GNU/Linux environment. It is available free of charge for both
commercial and academic use under the terms of the GNU General
Public License version 3. Source code and documentation is
available at http://alchemy.sourceforge.net/. Source code is expected
to compile and run on any GNU/Linux platform, Mac OS X and
Unix environments with the GNU C compiler and associated tools
installed.
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