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Abstract 

 

Alcohol alters the expression of Soluble N-Ethylmaleimide-Sensitive Factor Attachment Protein 

Receptors (SNAREs) and spontaneous γ-Aminobutyric Acid (GABA) release via activation of 

the transcription factor Heat Shock Factor 1 (HSF1) 

 

Florence P. Varodayan 

 

Many synapses within the central nervous system are highly sensitive and responsive to ethanol. 

Although the regulation of postsynaptic receptors by alcohol is well studied, the mechanisms 

underlying the presynaptic effects of alcohol to alter neurotransmitter release remain relatively 

unexplored. This dissertation addresses whether alcohol-induced changes in transcriptional 

activity can promote synaptic vesicle fusion and therefore, neurotransmitter release. To identify a 

transcriptional pathway by which ethanol can regulate neurotransmitter release, we first 

investigated the effects of acute alcohol on the expression of genes encoding for synaptic vesicle 

fusion machinery proteins that form the soluble N-ethylmaleimide-sensitive factor attachment 

protein receptors (SNAREs) complex. The proteins in this complex reside on the vesicle 

membrane (synaptotagmin 1 and synaptobrevin/vesicle-associated membrane protein, which is 

also known as VAMP) and the plasma membrane (syntaxin 1 and synaptosomal associated 

protein of 25 kDa, which is also known as SNAP-25), and their interactions within the SNARE 

complex trigger vesicle fusion and neurotransmitter release. We found that ethanol treatment of 

mouse cortical neurons increased the mRNA and protein expression levels of a subset of SNARE 



  

 

 

complex proteins, including synaptotagmin 1 (Syt1) and one of the isoforms of synaptobrevin, 

VAMP2, but not the other isoform, VAMP1. The gene induction of Syt1 and Vamp2 by alcohol 

occurs via activation of the transcription factor heat shock factor 1 (HSF1), while HSF1 

transcriptional activity had no effect on Vamp1 mRNA levels. We then investigated whether 

ethanol altered neurotransmitter release in cortical neurons, using whole-cell voltage clamp 

electrophysiology. We found that alcohol increased γ-aminobutyric acid (GABA) release via 

HSF1, but had no effect on glutamatergic synaptic vesicle fusion. Collectively, these data 

indicate that alcohol induction of HSF1 transcriptional activity triggers a specific coordinated 

adaptation in GABAergic presynaptic terminals that ultimately results in increased GABA 

release. This molecular mechanism could explain some of the transient changes in synaptic 

function that occur after alcohol exposure, and may underlie some of the enduring effects of 

chronic alcohol drinking on local circuitry.  
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Introduction
1
 

Alcohol is an anxiolytic and sedative drug that has a variety of effects on human behavior and 

physiology. Drinking alcohol can either be beneficial or negative for adult health, with moderate 

drinking associated with a lower incidence of cardiovascular problems and higher levels of 

alcohol use linked to liver and kidney disease. In addition, chronic heavy drinking can lead to 

problems of physical dependence and tolerance that result from physiological adaptation to the 

drug and are broadly similar to those associated with addiction to other drugs of abuse.  

 

Despite the negative social and health effects of alcoholism, people have consumed the drug for 

thousands of years (Li et al., 1977). Until recently, however, the mechanisms by which alcohol 

affects the central nervous system (CNS) were poorly understood and its actions were considered 

to be “non-specific” in nature. Recent advances in neuroscience have led to significant progress 

in our understanding of the neural basis of alcohol intoxication and alcoholism (Chandler et al., 

1998; Faingold et al., 1998). In particular, the earlier notion that alcohol exerts its effects purely 

on membrane lipids has been shown to be inconsistent with the experimental evidence 

accumulated during the last twenty years.  

 

Instead, the recent progress of research in cellular and molecular neuroscience has resulted in 

some remarkable advances for alcohol research, most notably the identification of a number of 

candidate target molecules within the CNS that are sensitive to levels of alcohol relevant to acute 

human intoxication. Advances in our understanding of the mechanisms of neuronal excitability 

                                                           
1
 Part of this introduction was adapted from the published review listed below. I am grateful to Leonardo Pignataro 

and Neil Harrison for their contributions to the ideas, text and figures of this chapter. 

Pignataro L, Varodayan FP, Tannenholz LE, Harrison NL (2009) The regulation of neuronal gene expression by 

alcohol. Pharmacology and Therapeutics 124(3), 324-335. 
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and synaptic transmission have shown that ethanol interacts with a variety of neurotransmitter 

systems, including glutamate (Crowder et al., 2002; Lovinger et al., 1989; Valenzuela and 

Cardoso, 1999; Woodward, 2000), dopamine (Brodie et al., 1990; Budygin et al., 2001; Gessa et 

al., 1985; Imperato and Di Chiara, 1986), adenosine (Dar et al., 1983; Diao and Dunwiddie, 

1996), and -aminobutyric acid (GABA) (Cagetti et al., 2003; Charlton et al., 1997; Follesa et 

al., 2004a; Follesa et al., 2004b; Sanna et al., 2003; Wu et al., 1995). The actions of ethanol on 

these systems lead to widespread fluctuations in neurotransmission and may converge to produce 

the varied behavioral effects of acute alcohol ingestion. 

 

As far as the effects of chronic alcohol intake are concerned, a consensus has formed in the field 

that the development of alcohol tolerance and dependence result from alterations in brain 

structure and function over time. Synapses are generally regarded as the most sensitive sites of 

ethanol action within the CNS, and considerable evidence suggests that over time the transient 

molecular changes that accompany a single alcohol exposure can persist, as individual neurons 

respond to each and every alcohol exposure in a systematic and coordinated manner (Koob, 

2006; Nestler, 2001). This remodeling of synaptic connections after chronic alcohol exposure is 

likely to depend upon changes in gene expression, initiated by each alcohol presentation (Koob, 

2006; Mulligan et al., 2006; Nestler, 2001; Wilke et al., 1994). In this respect, the adaptations to 

alcohol resemble to some extent the brain plasticity that is known to occur during long-term 

exposure to other drugs of abuse, such as cocaine and heroin (Koob, 2004; Nestler, 2005). Brain 

areas of interest to researchers in the field are therefore those associated with the brain’s reward 

system (ventral tegmental area, nucleus accumbens) as well as the circuits associated with 
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higher-order cognitive processes, such as decision making and impulse control (prefrontal 

cortex), levels of arousal (thalamus) and anxiety (amygdala). 

 

The profound adaptations that lead to alcohol abuse and dependence, however, presumably result 

from a complex chain of events that is initiated in the brain of the drinker long before a state of 

dependence is reached. Several studies have shown that even a brief exposure to alcohol can 

modify the expression of a variety of genes in animal models (Bachtell et al., 1999). For 

example, it has been demonstrated in several strains of mice that a single exposure to low doses 

of ethanol can induce the expression of immediate-early genes (IEGs) such as c-fos (Demarest et 

al., 1999; Eisenman et al., 2002; Hitzemann and Hitzemann, 1997; Zoeller and Fletcher, 1994). 

These immediate-early genes encode nuclear proteins with transcriptional activity, which in turn 

regulate the expression of many other genes. The activation of these transcription factors may be 

the earliest events in a sequence of changes in gene expression that ultimately result in functional 

alterations of critical brain circuitry. These functional changes may underlie some aspects of the 

behavioral tolerance and adaptation that occur in the advanced stages of chronic alcoholism. 

 

Short-term effects of a single alcohol exposure 

Alcohol is an anxiolytic and sedative drug that has a variety of dose-dependent effects on human 

behavior and physiology. Low blood alcohol concentration (BAC) levels of 0.01-0.08 g%, which 

are equivalent to an ethanol concentration of 2-17 mM, are associated with mild euphoria, 

increased confidence and assertiveness, anxiety relief and some disinhibition (Koob and Le 

Moal, 2006; Naranjo and Bremner, 1993). A BAC level of 0.08 g% is set as the limit after which 
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driving is not allowed across the United States (Freeman, 2007), and a non-dependent 170 pound 

male would need to consume 4 standard size drinks within 1 hour to reach this limit, while a 140 

pound female would need 3 drinks in one hour to reach a BAC of 0.08 g% (NHTSA, 1992). 

More moderate BAC levels of 0.08-0.15 g% (17-33 mM ethanol) lead to pronounced mood 

swings and significant disinhibition, as well as impaired judgment, cognition and motor function 

(Koob and Le Moal, 2006; Naranjo and Bremner, 1993). To reach the upper limits of this range, 

a non-dependent 170 pound male would need to consume over 6 drinks and a 140 pound female 

would need to consume 5 drinks in one hour, which are levels commonly defined as binge 

drinking (Wechsler et al., 2002).  

 

Even heavier bouts of drinking can cause emotional instability, ataxia (including staggering and 

slurred speech), hypnosis (including impaired sensory response and reaction time), and memory 

impairments, which are the hallmarks of BAC levels in the range of 0.15-0.30 g% (33-65 mM 

ethanol) (Koob and Le Moal, 2006; Naranjo and Bremner, 1993). At the higher end of this BAC 

range, the individual may experience post-intoxication “blackouts”, where they are unable to 

remember events that occurred during the intoxication period. The actions of alcohol as a general 

anesthetic emerge at the extremely high BAC levels of 0.30-0.40 g% (65-87 mM ethanol), and 

many of the individuals who drink heavily enough to reach these BAC levels will enter a coma 

(Koob and Le Moal, 2006; Naranjo and Bremner, 1993). Finally, the lethal dose of alcohol for 

50% of the non-dependent population (LD50) is 0.40-0.50 g% (87-109 mM ethanol), though 

some long-term alcoholics routinely tolerate extremely high blood alcohol concentration levels 

of over 100 mM ethanol (Urso et al., 1981). Therefore, the behavioral and physiological effects 

of a single alcohol exposure vary in a dose-dependent manner, ranging from mild levels of 
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euphoria and anxiolysis to coma and death. In addition to these behavioral and physiological 

effects of alcohol drinking, a single alcohol exposure can also alter molecular pathways within 

brain cells and some of these changes may contribute to the development of alcohol abuse and 

dependence disorders (Koob, 2006; Mulligan et al., 2006; Nestler, 2001; Wilke et al., 1994).    

 

Physiological adaptation to alcohol 

In the case of alcohol dependence, it is presumed that alcohol intake induces a series of 

functional changes that can profoundly alter the activity of the nervous system, and that these 

changes are manifested both psychologically and physiologically in the alcoholic patient. This 

process occurs in two stages, as with the development of addiction to other drugs (Koob et al., 

1998). The initial behavioral changes are subtle and manifest as alterations in decision making 

by the individual, leading to increased alcohol intake and frequency of drinking. These initial 

functional changes may then be consolidated so that the CNS becomes “hard-wired” for a drug-

seeking state that is maintained over a long period. As heavier drinking becomes routine, 

eventually more profound physiological changes occur that lead to a state of enhanced CNS 

excitability, perhaps in order to counteract the depressant actions of alcohol on the brain. 

Extreme examples of this process of physiological adaptation to alcohol are observed in the 

biology of alcoholic individuals. Some long-term alcoholics routinely tolerate extremely high 

blood alcohol concentrations of over 100 mM, which would cause severe intoxication, profound 

sedation or death in naïve individuals (Urso et al., 1981). The intense withdrawal symptoms seen 

in long-term alcoholics also provide strong evidence for the extensive nature of these 

adaptations; normal CNS activity simply becomes impossible when alcohol is withdrawn from 
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the chronic drinker, indicating a state known as physical dependence. In addition, the physical 

manifestations of alcohol withdrawal syndrome (delirium tremens, extreme anxiety, 

hyperalgesia, autonomic activation, physical irritability, and seizures) strongly suggest a shift 

towards increased neuronal excitability in the alcoholic brain (Veatch and Gonzalez, 1996). The 

development of extreme behavioral tolerance to alcohol and the intense withdrawal symptoms 

observed in abstinent alcoholics reveal that the brain undergoes significant functional adaptations 

in order to cope with the continued presence of the drug. It is likely that some of this systemic 

adaptation to chronic alcohol intake stems from the accumulation and persistence of individual 

molecular changes that accompany each and every single alcohol exposure (Koob, 2006; Nestler, 

2001).  

 

The key circuitry that governs the development of alcohol dependence  

The transition from alcohol use and abuse to dependence is often associated with changes in 

brain circuitry thought to control motivational state and higher-order cognitive processing (Koob 

and Le Moal, 2008). Non-dependent individuals tend to exhibit occasional impulse control 

behaviors, such as increased tension prior to drinking and gratification upon drinking, while 

chronic alcoholic patients often act compulsively by engaging in repetitive cycles of anxiety and 

stress prior to drinking and relief upon drinking (APA, 1994). This progressive shift from 

positive reinforcement to negative reinforcement largely involves the opponent systems of the 

mesolimbic reward circuitry and the extended amygdala, with overarching “top-down” control 

on these limbic systems exhibited by the prefrontal cortex (PFC) (Koob and Le Moal, 2005). 
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In the early stages of alcohol use, a drinker encounters the positive reinforcing effects of alcohol, 

such as mild euphoria and anxiety relief. These hedonic emotions are thought to result from 

changes in the brain’s natural reward system and are considered strong motivation for future 

drinking episodes. At the core of the mesolimbic circuitry underlying the reward system is the 

dopaminergic medial forebrain bundle that projects from the ventral tegmental area (VTA) to the 

nucleus accumbens (NAc) and PFC (blue straight arrows, Introductory Fig. 1)(Koob, 2005). 

GABAergic neurons in the VTA also project to the NAc and PFC (red straight arrows, 

Introductory Fig. 1), and the VTA receives innervation from GABAergic neurons in the NAc 

(red straight arrows, Introductory Fig. 1) and glutamatergic neurons in the PFC to complete the 

circuit (green straight arrows, Introductory Fig. 1).  

 

Early studies determined that intoxicating doses of alcohol increased the firing rate of 

dopaminergic neurons in the VTA, leading to an increase in dopamine release in the NAc 

(Brodie et al., 1990; Di Chiara, 1998; Gessa et al., 1985). Furthermore, rats genetically selected 

for alcohol-preferring behaviors (P rats) self-administered ethanol directly into the VTA (Gatto 

et al., 1994) and infusion of GABAA receptor antagonists into this region blocked this alcohol 

intake (Nowak et al., 1998). It is thought that alcohol acts in the VTA to decrease GABAergic 

interneuron activity and thereby disinhibit dopaminergic neurons, leading to increased dopamine 

release in the NAc and PFC.  Excessive dopamine release in the PFC impairs cognitive function 

in rodents and monkeys (Arnsten and Goldman-Rakic, 1998; Murphy et al., 1996; Zahrt et al., 

1997) and could explain the disinhibition experienced by individuals engaging in a single 

drinking exposure (BAC levels 0.08-0.15 g%) (Koob and Le Moal, 2006; Naranjo and Bremner, 

1993). 
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As drinkers continue these patterns of high alcohol intake, they will then enter a negative 

reinforcement state where the motivation to drink stems from a need to ward off the aversive 

effects of withdrawal. At this stage, the recruitment of brain and hormonal stress systems, termed 

the antireward system as it limits reward, lead to a shift in the reward set point and the 

appearance of a negative affective state. The extended amygdala, comprising the central nucleus 

of the amygdala (CeA) and the bed nucleus of the stria terminalis (BNST), is central to this 

process as it builds associations between previously neutral stimuli and reward or aversion 

(Holland and Gallagher, 2004). The CeA and BNST contain reciprocal innervations for GABA 

(red wavy arrows, Introductory Fig. 1) and neuropeptide transmitters, such as corticotropin-

releasing factor (CRF) and neuropeptide Y (NPY) (yellow wavy arrows, Introductory Fig. 1) 

(Gilpin, 2012; Kash, 2012). In addition, the extended amygdala receives significant 

glutamatergic projections from the PFC and hippocampus (green wavy arrows, Introductory Fig. 

1), and dopamingeric and serotonergic inputs from the VTA, lateral hypothalamus and brainstem 

(blue wavy arrows, Introductory Fig. 1). The extended amygdala also sends inhibitory efferents 

back to the lateral hypothalamus, VTA and various lower brainstem regions (red wavy arrows, 

Introductory Fig. 1) (Gilpin, 2012; Heimer and Alheid, 1991; Kash, 2012).  

 

As an individual develops alcohol dependence, the extended amygdala circuitry may become 

compromised. This leads to a shift in brain reward thresholds (i.e. decreased reward valence), as 

seen in alcohol dependent rats withdrawn for a few hours to two days (Schulteis et al., 1995). 

This shift to the negative affective state is accompanied by decreased dopamine and serotonin 



9 

 

 

neurotransmission in the NAc (Weiss et al., 1996), and decreased GABA and opioid 

transmission in the CeA of alcohol dependent animals experiencing withdrawal (Koob, 2003). 

The compensatory depletion of dopamine stores and hypersensitivity of dopamine receptors in 

the PFC (Fadda et al., 1980) leads to an increased dopaminergic reward response to subsequent 

alcohol administration in alcoholic patients, as well as feelings of craving and loss of control  

(Koob and Le Moal, 2006; Modell and Mountz, 1995; Modell et al., 1990; Modell et al., 1993; 

Naranjo and Bremner, 1993). 

 

The PFC plays a critical role in managing the responses of the mesolimbic circuitry and extended 

amygdala, and alcohol exposure can lead to frontal cortical dysfunction that reduces “top-down” 

inhibitory response control on these limbic systems (Abernathy et al., 2010; Jentsch and Taylor, 

1999). As the PFC has high functional and structural adaptability, alcohol intake is able to affect 

immediate goal-directed behavior, as well as mediate future cognitive processing. For example, 

acute alcohol administration causes immediate PFC-mediated cognitive deficits such as 

decreased performance in spatial recognition and planning tasks (Weissenborn and Duka, 2003) 

and poor decision making in a gambling task (George et al., 2005). Furthermore, alcoholic 

patients suffer from deficits in executive function that depend on the PFC and show reduced 

cortical matter. In particular, alcohol-dependent patients showed deficits in gambling tasks 

similar to patients with ventromedial PFC lesions (Bechara et al., 2001) and poor performance in 

the Wisconsin Card Sorting Task that correlates with reduced glucose metabolism in the medial 

PFC (Adams et al., 1993). These patients also show reduced gray matter in the dorsolateral PFC 

(Jernigan et al., 1991) and reduced cortical white matter, especially in the frontal lobe (de la 

Monte, 1988; Pfefferbaum et al., 1997). Therefore, the characteristics of the PFC that make it 
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especially suited for higher-order cognitive processing, such as its high structural and functional 

adaptability, also make the PFC prone to the addictive effects of alcohol as its mediation of goal-

directed behavior is influenced by past alcohol experiences (Abernathy et al., 2010; Jentsch and 

Taylor, 1999). 

 

Actions of alcohol on the synapse 

The synapse is the crucial structure within the CNS that allows a neuron to transmit a chemical 

signal to another neuron, forming a brain circuit. Signal transmission between these neurons can 

be excitatory, inhibitory or modulatory, depending on the neurotransmitter released from the 

presynaptic terminal and the receptors expressed on the postsynaptic terminal. The chemical 

synapse is comprised of three main compartments: synaptic vesicles recruited to the presynaptic 

active zone, the synaptic cleft, and the postsynaptic specialization within a dendritic spine, each 

of which play a key role in mediating the type and amount of information transfer (Introductory 

Fig. 2). 

 

Within the presynaptic terminal, synaptic vesicles are loaded with neurotransmitter, transported 

to the active zone and fused with the plasma membrane to release their contents into the synaptic 

cleft (Sudhof, 1995). A variety of proteins embedded in the vesicle membrane mediate these 

processes, including neurotransmitter transporters and proton pumps that load the vesicle by 

active transport (step 1, Introductory Fig. 2). The vesicle is trafficked through the interactions of 

its membrane proteins with the actin cytoskeleton and is tethered near the release site by the 

vesicle membrane protein synapsin (step 2, Introductory Fig. 2) (Shupliakov et al., 2011). The 
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synaptic vesicles are docked within the active zone by the interactions among a complement of 

proteins, including soluble N-ethylmaleimide-sensitive factor attachment protein receptors 

(SNAREs) which are located both on the vesicle membrane (v-SNAREs: synaptobrevin/vesicle-

associated membrane protein, which is also known as VAMP) (blue, Introductory Fig. 2) and the 

target plasma membrane (t-SNAREs: syntaxin 1 and synaptosomal associated protein of 25 kDa, 

which is also known as SNAP-25) (green and red, respectively, step 3, Introductory Fig. 2). 

During docking, the vesicle membrane protein synaptotagmin 1 (yellow, Introductory Fig. 2) 

binds to VAMP and plasma membrane phospholipids (Martens et al., 2007). This pulls the two 

membranes into closer proximity and promotes helical zippering between VAMP, syntaxin 1 and 

SNAP-25 (step 4, Introductory Fig. 2). When an action potential reaches the presynaptic 

terminal, the membrane depolarization opens voltage-gated calcium channels and calcium enters 

the terminal. The calcium ions bind to synaptotagmin 1, causing a conformational change across 

the SNARE complex, directly triggering vesicle fusion and neurotransmitter release (step 5, 

Introductory Fig. 2). Membrane proteins, such as synaptophysin, are also involved in the rapid 

endocytosis of vesicles to replenish the readily releasable pool of vesicles (Kwon and Chapman, 

2011). 

 

Released neurotransmitter traverses across the synaptic cleft by diffusion and binds to 

neurotransmitter receptors contained within the postsynaptic specialization (step 6, Introductory 

Fig. 2). The postsynaptic specialization contains a specific complement of neurotransmitter 

receptors, ion channels, signaling proteins, and scaffolding proteins, which define the 

postsynaptic neuronal response. This entire postsynaptic specialization can exist within a 

dendritic spine, a small membranous protrusion from the dendrite that creates a compartment 
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based on its physical shape (Harris, 2001). The shape of the spine defines a chemical 

microdomain where large rapid rises in signaling molecules can occur in response to 

neurotransmitter release, leading to alterations in the sensitivity of the postsynaptic neuronal 

response (Kasai et al., 2003). Given the importance of the entire synaptic structure to normal 

CNS function, the effects of alcohol on any particular step of neurotransmission can alter 

neuronal communication and may lead to compensatory changes within the synapse and across 

local circuits.   

 

Actions of alcohol on postsynaptic terminal structures 

Given the diversity of proteins comprising the synaptic structure, it is not surprising that the 

effects of alcohol are highly variable, depending on the length of alcohol exposure, cell type and 

brain region. One consistent finding, however, is that alcohol reduces the number of postsynaptic 

specializations and spines. Post mortem studies of cortical tissue from alcoholic patients showed 

reductions in the density of dendritic spines on layer V pyramidal neurons (Ferrer et al., 1986) 

and reduction of dendritic arborization in layer III pyramidal neurons (Harper and Corbett, 

1990). Similar morphological changes have been observed in the rat hippocampal CA1 region in 

withdrawn animals that consumed alcohol for five months (McMullen et al., 1984). Reductions 

in spine density are generally considered to reflect decreases in synapse number (Moser et al., 

1994), and may result from reorganization of the actin cytoskeleton (Bonhoeffer and Yuste, 

2002). For example, it has been observed in rat hippocampal cultures that withdrawal after two 

days of 50 mM ethanol treatment decreased spine number, as indicated by a reduction in 

colocalized filamentous actin (F-actin) and post-synaptic density protein-95 (PSD95) staining, in 
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addition to decreasing the size of retained dendritic spines (Carpenter-Hyland and Chandler, 

2006). As postsynaptic densities and spines define the functional capabilities of the neuron to 

receive neurotransmission signals, the effects of alcohol exposure on the postsynaptic 

specializations alter neuronal communication and thus, local circuitry. 

 

Actions of alcohol on presynaptic terminal structures 

Relatively little is known about how ethanol regulates presynaptic terminal structures, but a few 

studies indicate that alcohol administration may alter presynaptic terminal number. Detailed post 

mortem analysis of the brains of heavy drinkers showed consistent loss of the presynaptic 

marker, synaptophysin, in layers I and II of the frontal cortical area 10 of Brodman (Brun and 

Andersson, 2001). In addition one month of chronic intermittent ethanol exposure in rats reduced 

the number of presynaptic terminals in the CA3 region of the hippocampus, while one month of 

continuous treatment caused an increase in hippocampal dentate gyrus subgranular presynaptic 

terminals (Lundqvist et al., 1994). Finally, four days of chronic 25-100 mM ethanol treatment of 

primary hippocampal rat culture also increased the number of clusters labeled with synapsin and 

synaptophysin, representing either an increase in the total number or presynaptic terminals or an 

expansion of cluster, and thus presynaptic terminal, size (Carpenter-Hyland et al., 2004). These 

effects of alcohol to alter the presynaptic terminal represent a pathway by which alcohol may 

affect neuronal communication and thus, local circuitry. 
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Actions of alcohol on postsynaptic terminal functions 

In addition to the effects of alcohol on postsynaptic specializations, acute alcohol exposure also 

alters postsynaptic terminal function by directly affecting the function of individual proteins, 

such as ligand-gated ion channels. In particular, direct application of alcohol regulates, within 

seconds to minutes, the function of ligand-gated γ-aminobutyric acid receptors (GABAARs) and 

the family of ionotropic glutamate receptors, including α-amino-3-hydroxyl-5-methyl-4-

isoxazole-propionate receptors (AMPARs) and N-methyl-D-aspartate receptors (NMDARs). 

Chronic alcohol exposure, on the other hand, often leads to changes in ligand-gated ion channel 

expression and localization profiles, as the postsynaptic terminal compensates for the acute 

effects of the drug.  

 

The effects of alcohol on GABAA receptors 

Although the behavioral effects of alcohol present a complex picture, many of its actions are 

shared by other drugs that modulate the actions of GABA; for example, the benzodiazepines 

produce a similar spectrum of anxiolytic, hypnotic and sedative effects as alcohol (Koob, 2004). 

For this reason, it has long been hypothesized that ethanol achieves some of its behavioral effects 

via regulation of the GABAA receptor. The GABAAR is a member of the cys-loop ligand-gated 

ion channel superfamily and mediates both fast inhibitory synaptic transmission and a form of 

tonic extrasynaptic inhibition in the central nervous system (Farrant and Nusser, 2005; Olsen and 

Sieghart, 2008; Olsen and Sieghart, 2009). The GABAAR is a heteromeric assembly of five 

subunits (α1-6, β1-3, γ1-3, δ, ε, π and θ) that is encoded by nineteen genes. The most common 
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GABAARs contain two α, two β and either a γ2 or δ subunit with the specific subunit 

composition conferring properties of localization and ligand sensitivity on the receptor. The 

α1β2γ2 GABAARs are the most abundant across the CNS, and are highly expressed within the 

cortex, hippocampus, amygdala, basal ganglia, thalamus, brainstem and cerebellum (Sieghart 

and Sperk, 2002). These synaptic receptors have a moderate affinity for GABA and mediate 

phasic inhibitory currents in the presence of high concentrations of GABA. While δ-containing 

GABAARs are highly expressed in similar brain regions, like the cerebellum, dentate granule 

layer of the hippocampus, some cortical areas, thalamus, and the striatum (Sieghart and Sperk, 

2002), the subunit partners with the α4 subunit (Korpi et al., 2002; Sur et al., 1999), or in the 

cerebellum with α6 (Jones et al., 1997; Pirker et al., 2000) to form extrasynaptic receptors 

(Nusser et al., 1998). As these receptors exhibit a high affinity for GABA, (Saxena and 

Macdonald, 1994; Wohlfarth et al., 2002), they are activated by the ambient levels of GABA 

present outside the synaptic cleft and generate a basal tonic inhibitory current (Mody, 2001). 

 

Acute alcohol generally potentiates GABAAR function in the presence of the agonist GABA, 

with enhanced receptor activity observed in tissue preparations from the cerebellum (Allan and 

Harris, 1986), dorsal root ganglion (Nakahiro et al., 1991; Nishio and Narahashi, 1990), cortex 

(Allan and Harris, 1986; Reynolds and Prasad, 1991; Reynolds et al., 1992; Suzdak et al., 1986), 

hippocampus  (Aguayo, 1990; Reynolds and Prasad, 1991) and spinal cord (Ticku et al., 1986). 

This ethanol enhancement of channel activity occurs at both synaptic and extrasynaptic 

GABAARs and is thought to be mediated by either increased probability of the channel opening 

(Zhou et al., 1998) or increased affinity of the agonist for the receptor (Tonner and Miller, 1995; 

Welsh et al., 2009). These effects of alcohol on GABAARs are linked to changes in protein 
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phosphorylation by protein kinase C (PKC). Ethanol enhancement of synaptic γ2-containing 

GABAARs is specifically mediated by the PKCε subunit (Qi et al., 2007), while alcohol 

potentiation of tonic currents in the cerebellum (Hanchar et al., 2005), hippocampus (Wei et al., 

2004), and thalamus (Jia et al., 2007) is dependent on PKCδ activity (Choi et al., 2008). As 

enhanced GABAAR function will increase neuronal inhibition, these potentiating actions of acute 

alcohol on GABAARs may underlie some of the anxiolytic, sedative and ataxic properties of the 

drug. 

 

Many of the effects of acute ethanol treatment on the GABAergic system are tolerated after 

chronic ethanol exposure, leading to a decrease in the intoxicating effects of the drug. Decreased 

GABAAR function after chronic ethanol treatment has been observed in the cortex (Morrow et 

al., 1990; Sanna et al., 2003), nucleus accumbens (Szmigielski et al., 1992) and spinal cord 

(Mehta and Ticku, 1988; Ticku et al., 1986). As the total number of GABAARs does not change 

during this long-term exposure, GABAAR functional tolerance may derive from changes in the 

expression profiles of distinct GABAAR subunits (Grobin et al., 1998). Investigation of this 

question has led to contradictory results with two exceptions: one to eight hours of ethanol 

exposure modestly decreased expression of the gene encoding the α1 subunit (Gabra1), while 

the α4 subunit gene (Gabra4) shows a remarkable degree of induction (Cagetti et al., 2003; 

Devaud et al., 1997; Devaud et al., 1995; Liang et al., 2007; Liang et al., 2008; Liang et al., 

2006; Petrie et al., 2001; Sanna et al., 2003). Similarly, alcohol increases the surface expression 

of the GABAAR α4 and γ2 subunits and decreases α1 and δ subunits, leading to a situation where 

newly-formed α4βγ2 GABAARs may “crowd” α1βγ2 GABAARs out of the synapse to alter 

GABAAR sensitivity to ethanol (Liang et al., 2007). These changes in GABAAR subunit 
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composition are also observed in chronic intermittent ethanol treated rats (Liang et al., 2007), 

suggesting that they play a role in homeostatic adaptation to the continued presence of the drug. 

As the GABAergic system mediates inhibition across the CNS, both through phasic 

neurotransmission and by creating a tonic tone, the effects of alcohol this system are likely to 

play a role in the development of alcohol use disorders and the hyperexcitability experienced by 

alcoholics experiencing withdrawal. 

 

The effects of alcohol on ionotropic glutamate receptors 

The excitatory neurotransmitter L-glutamate acts on NMDA and AMPA receptors to mediate 

most fast excitatory synaptic transmission. The NMDAR exists in the brain as a heteromeric 

complex composed of the essential NMDAR1 (NR1) subunit in combination with NMDAR2 

(NR2A-D) subunits, although additional NMDAR3 (NR3A-B) subunits have been reported 

(Cull-Candy et al., 2001). The stoichiometry of the receptor is a tetramer of two NR1 and two 

NR2 subunits. Selective splicing of NR1 transcripts and the differential expression of NR2 

subunits leads to the generation of multiple receptor isoforms with distinct regional distributions 

and biophysical and pharmacological properties. NMDAR activation requires simultaneous 

binding of two co-agonists, glutamate and glycine, and the receptor is also “gated” by virtue of a 

voltage-dependent block by Mg
2+

 (Mayer and Westbrook, 1984; Nowak et al., 1984). Removal 

of the Mg
2+

 block by membrane depolarization allows influx of Na
+
 and Ca

2+
, leading to 

additional depolarization and generating a slow excitatory postsynaptic potential (EPSP) in the 

neuron (Forsythe and Westbrook, 1988).  
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Acute ethanol exposure inhibits the excitatory action of glutamate at postsynaptic NMDA 

receptors (Calton, 1998; Criswell et al., 2003; Hoffman et al., 1989; Loftis and Janowsky, 2003; 

Lovinger et al., 1989; Martin et al., 1995; Nie et al., 1994; Roberto et al., 2004b; Tabakoff and 

Hoffman, 1996; Tsai and Coyle, 1998; Woodward, 1999) and there are differences in the ethanol 

sensitivity of the receptor based upon its subunit composition. The effects of acute alcohol 

treatment tend to be more potent in NR1/NR2A or NR1/NR2B receptors than in NMDARs 

containing NR1/NR2C (Chu et al., 1995; Masood et al., 1994). In contrast, chronic ethanol 

treatment increases NMDAR function (Cebere et al., 1999; Gulya et al., 1991; Läck et al., 2007; 

Smothers et al., 1997), particularly enhancing the current mediated by NR2B-containing 

receptors (Floyd et al., 2003; Kash et al., 2009; Roberto et al., 2005; Roberto et al., 2004b). 

These effects of chronic ethanol treatment are accompanied by increased NR2B mRNA and 

protein expression (Follesa and Ticku, 1995; Hu et al., 1996; Kash et al., 2009; Roberto et al., 

2005; Snell et al., 1996), suggesting that changes in subunit composition of NMDARs may 

contribute to the increased functional response. Changes in the subcellular localization of 

NMDARs may also underlie some of the effects of chronic ethanol on receptor function, as 

ethanol exposure increased the trafficking of preexisting NR2B-containing NMDARs to 

dendritic spines (Carpenter-Hyland et al., 2004). These changes in NMDAR expression and 

localization presumably offset the effects of acute ethanol and may be one of the mechanisms 

that contribute to hyperexcitability during alcohol withdrawal (Hendricson et al., 2007; Nelson et 

al., 2005).  

 

Much less is understood about the effects of alcohol on AMPA receptors, which contain four 

potential subunits (GluR1-4) arranged in two sets of identical dimers. Acute alcohol inhibits 



19 

 

 

AMPAR function (Akinshola et al., 2001; Akinshola et al., 2003; Dildy-Mayfield and Harris, 

1992; Nieber et al., 1998), but this inhibition is much less potent compared to the inhibition of 

NMDAR function (Frye and Fincher, 2000) and does not appear to be dependent on the subunit 

composition (Lovinger, 1993). The effects of chronic ethanol treatment on AMPARs are also not 

well characterized, with some groups reporting evidence of increased AMPAR subunit 

expression (Chandler et al., 1999) and function (Läck et al., 2007; Netzeband et al., 1999), while 

other studies identified no changes (Smothers et al., 1997). This variation may be attributed to 

the ethanol exposure model employed and brain region of interest studied. As glutamatergic 

neurotransmission is central to the process of synaptic plasticity (Kauer and Malenka, 2007), 

learning and memory (McEntee and Crook, 1993), and higher-order cognition (Watson et al., 

2009), the effects of alcohol on this system may play an important role in the development of 

alcohol use disorders.           

 

Actions of alcohol on presynaptic terminal functions 

Only over the past decade have researchers observed that alcohol can stimulate neurotransmitter 

release. Acute application of ethanol increases GABA release in the CA1 region of the 

hippocampus (Carta et al., 2003), NAc (Crowder and Weiner, 2002), cerebellum (Carta et al., 

2004), CeA (Roberto et al., 2003), VTA (Theile et al., 2008) and substantia nigra pars reticular 

(Criswell et al., 2008).  In these experiments, GABA release increased rapidly with ethanol 

administration and recovered following drug washout. A parallel study conducted in vivo showed 

a similar increase in GABA release in the VTA of mice injected intraperitoneally with ethanol 

one day prior to electrophysiology recording (Melis et al., 2002). In addition, Roberto et al. 



20 

 

 

(2004) reported an increase in GABA release within the CeA of chronically ethanol-treated rats, 

which was further increased upon acute application of ethanol. This suggests that the chronically 

ethanol-treated animals did not develop tolerance to the acute effects of ethanol on GABA 

release, and that separate mechanisms underlie the increases in GABA release that accompany 

acute and chronic alcohol exposures.  

 

The mechanisms underlying acute ethanol enhancement of GABA release are not yet fully 

elucidated, but consistent pathways involving G-protein coupled receptors (GPCRs) and protein 

kinases are emerging. In cerebellar interneurons, increased GABA release after ethanol 

application is mediated via activation of both the adenylyl cyclase (AC)/protein kinase A (PKA) 

and phospholipase C (PLC)/PKC pathways and internal calcium store release (Kelm et al., 2007; 

Kelm et al., 2008; Kelm et al., 2010). In addition, PKCε activity in the CeA leads to CRF 

binding to the CRF1 receptors on presynaptic GABA terminals to stimulate neurotransmitter 

release (Bajo et al., 2008; Nie et al., 2004). These GPCR-mediated pathways provide for a 

relatively fast GABAergic neuronal response after acute alcohol administration, but the enhanced 

GABA release that occurs after chronic ethanol exposure is likely to be regulated by longer-

lasting changes in gene expression.  

 

There have been relatively few studies investigating the effects of alcohol on glutamate release. 

One study, however, determined that acute alcohol administration increased glutamate release in 

the VTA via activation of presynaptic dopamine D1 receptors (Xiao et al., 2008). Other groups 

have found ethanol inhibition of glutamate release in spinal motor neurons (Ziskind-Conhaim et 
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al., 2003) and hippocampal neurons (Maldve et al., 2004; Moriguchi et al., 2007). As a whole, 

these studies have found that various models of alcohol administration can alter neurotransmitter 

release across multiple cell types, both in vitro and in vivo, suggesting that these effects of 

alcohol on the presynaptic terminal may play a critical role in neuronal adaption to the drug. 

 

Molecular mechanisms of synaptic gene regulation by alcohol 

Neuronal gene expression is constantly modulated in a precise, coordinated manner throughout 

development, and in response to external stimuli. In the simplest level of gene regulation, 

activators and repressors bind to their corresponding elements relatively near the transcription 

start site and either physically promote or inhibit local transcription. In addition, these regulation 

factors can bind to more distant cis-elements to promote gene expression within specific 

neuronal populations and silence genes in non-neuronal cells (Quinn, 1996). As the promoter 

sequences of eukaryotic genes contain multiple transcription factor binding sites, different 

signaling pathways can converge in a coordinated manner to regulate gene expression. 

Therefore, the complement and relative positioning of these diverse elements define the 

promoter architecture, and presumably determine how a given promoter responds to the many 

transcription factors in the cell. 

 

Despite numerous studies on the effects of alcohol on gene expression by alcohol, the 

mechanisms of action are known for only a few alcohol-responsive genes. In the rest of this 

section, we will summarize studies in which detailed analysis of the gene promoter regions have 

identified cis-elements and transcription factors mediating ethanol induction of gene expression. 
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These signaling pathways are likely to be generalizable to a subset of other alcohol-responsive 

genes, suggesting that a single alcohol exposure can lead to a coordinated transcriptional 

response.  

 

Alcohol regulation of gene expression via neuron-restrictive silencer element (NRSE)/repressor 

element-1 (RE-1)  

As discussed earlier, detailed investigation into the effects of ethanol on NMDA subunit 

expression has revealed that the NR2B subunit is highly regulated by ethanol (refer to earlier 

section: The effects of alcohol on ionotropic glutamate receptors). Analysis of the regulatory 

sequence of the mouse NR2B gene (Grin2b) has uncovered five highly conserved putative 

neuron-restrictive silencer element (NRSE) binding sites between –1407 and –2741 bp 

(Introductory Fig. 3) (Qiang et al., 2005). The NRSE, also known as repressor element-1 (RE-1), 

has been identified as a key regulator in eukaryotic gene regulation (Ogbourne and Antalis, 

1998) that blocks the expression of numerous neuronal-specific genes in non-neuronal cells 

(Chong et al., 1995; Kraner et al., 1992; Mori et al., 1992; Mori et al., 1990; Paquette et al., 

2000; Schoenherr and Anderson, 1995). Other examples of this type of non-neuronal repression 

include the silencing of genes that encode the voltage-dependent sodium channel (Chong et al., 

1995), the synaptic vesicle membrane protein synapsin I (Li et al., 1993), the m4 muscarinic 

acetylcholine receptor (Wood et al., 1996) and the glutamate receptor subunit GluR2 (Huang et 

al., 1999). Several studies have shown that this type of transcriptional repression of neuron-

specific genes can be mediated by the neuron-restrictive silencer factor (NRSF)/repressor 

element-1 silencing transcription factor (REST) binding to the NRSE (Bessis et al., 1997; Chong 
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et al., 1995; Huang et al., 1999; Palm et al., 1998; Palm et al., 1999; Schoenherr and Anderson, 

1995; Wood et al., 1996). Specifically, NRSF interacts with the NRSE2 and 3 binding sites of 

the NR2B gene to repress expression (red box, Introductory Fig. 3) (Qiang et al., 2005), and 100 

mM ethanol treatment for five days reduced NRSF expression in neurons and increased NR2B 

promoter activation (Qiang et al., 2005). As the NRSF/NRSE transcriptional repression system is 

widely utilized throughout the genome  (Schoenherr and Anderson, 1995), it is likely that alcohol 

exposure disinhibits the expression of several other alcohol-responsive genes as well.   

 

Alcohol regulation of gene expression via cAMP-response element (CRE) and its complementary 

binding protein (CREB) 

The alcohol sensitivity of two other alcohol-responsive genes, tyrosine hydroxylase (TH) (Gayer 

et al., 1991) and dopamine β-hydroxylase (DBH) (Hassan et al., 2003) has been found to be 

governed by cyclic AMP (cAMP)-response element (CRE) binding sites. The enzymes encoded 

by these two genes are critical for neurotransmitter synthesis (dopamine and norepinephrine, 

respectively) and are therefore, of obvious importance to the neuropharmacology of alcohol. 

Specifically, deletion analysis of the 5’-proximal region (–262 to –142 bp) of the human DBH 

gene revealed that alcohol induction of the gene is controlled by a pathway involving the 

interaction of the complementary binding protein (CREB) with CRE sites. These findings have 

been extended to a wider set of alcohol-responsive genes that contain CRE sequences within 

their promoter regions, including TH (Hassan et al., 2003) and Grin2b (Klein et al., 1998; Rani et 

al., 2005). Ethanol regulation of Grin2b expression is specifically mediated by the CRE site 

located in the upstream region –410 to –403 bp (blue oval, Introductory Fig. 3) (Klein et al., 

1998). Mutation of this site prevents interaction with CREB, and abolishes the stimulatory effect 
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of chronic ethanol treatment on Grin2b expression (Rani et al., 2005). In addition, ethanol 

treatment is known to increase levels of activated CREB by mediating its Ser133 

phosphorylation via environmental-regulated kinase (ERK) (Rani et al., 2005). Therefore, 

alcohol induces a subset of neuronal alcohol-responsive genes via the CRE/CREB transcriptional 

system, allowing for a coordinated gene response to the presence of the drug.  

 

Alcohol regulation of gene expression via specificity protein 1 (Sp1) and activator protein-1 

(AP-1)  

Ethanol treatment also regulates the expression of genes encoding several classes of molecular 

chaperones and proteins that bind to nascent polypeptides to facilitate correct folding (Hsieh et 

al., 1996; Miles et al., 1991; Miles et al., 1994; Wilke et al., 2000). In particular, ethanol 

increased heat shock cognate protein 70 (Hsc70, also known as Hsp73) gene expression in 

neuroblastoma-glioma hybrid cells (NG108-15 cells) (Miles et al., 1991). Hsc70 is a member of 

the heat shock protein (Hsp) family, and has 85% identity with human Hsp70. The promoter of 

the Hsc70 gene has three putative specificity protein-1 (Sp1) transcription factor-binding sites 

localized at –263, –173 and –67 bp upstream from the transcription initiation site and 

overlapping with two sets of heat shock regulatory elements (HSE) (Introductory Fig. 4). In 

particular, the Sp1 site located at –67 bp is necessary for Hsc70 gene sensitivity to ethanol (red 

oval, Introductory Fig. 4) and increased expression of Sp1 transcription factor enhanced the 

transcriptional response induced by alcohol (Wilke et al., 2000). Further studies revealed that the 

Sp1 site is not sufficient for Hsc70 gene regulation by alcohol and that the sequence context of 

the gene’s promoter region may contribute to its alcohol sensitivity (Wilke et al., 2000). The 
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overlap of two HSE sites with the Sp1 site at –67 bp suggests that Sp1 may interact with the 

transcription factor heat shock factor 1 (HSF1) to confer the observed ethanol sensitivity of the 

Hsc70 gene. 

 

The NR2B promoter also includes 4 Sp1 sites in the region approximately –504 to –18 bp (Klein 

et al., 1998) and an activator protein-1 (AP-1) consensus sequence from –1107 to –1084bp 

(Introductory Fig. 3) (Qiang and Ticku, 2005). Chronic five day treatment of neurons with 75 

mM ethanol increased the binding activity of the AP-1 complex to its cis-acting element and 

enhanced the activity of the promoter construct. As a variety of dimerized c-Fos, FosB, c-Jun, 

JunD and pCREB proteins comprise the AP-1 family (Qiang and Ticku, 2005), the mechanism 

by which alcohol stimulates AP-1 binding to its promoter element is presently unknown. It is 

likely that ethanol changes the expression and/or phosphorylation of the proteins involved, 

thereby affecting the ratios of the different dimers in the AP-1 complex and providing alcohol 

with several avenues by which to regulate genes containing these Sp1 and AP-1 sites. 

 

Alcohol regulation of gene expression via alcohol response element (ARE) and heat shock factor 

1 (HSF1) 

As previously described, α4 mRNA and protein levels are altered by acute and chronic ethanol 

administration and subsequent withdrawal (refer to earlier section: The effects of alcohol on 

GABAA receptors). Our laboratory has identified that alcohol induces Gabra4 gene expression 

by activating the transcription factor HSF1 (Pignataro et al., 2007). The Gabra4 gene has no 

functional heat shock elements (HSE) and instead we found that HSF1 induces transcription by 
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binding to a novel cis-element on the gene, termed the alcohol response element (ARE) (red box, 

Introductory Fig. 5). This 11-base pair sequence, located at the end of exon 2, is extremely 

similar to a consensus sequence found in a subset of C. elegans genes that respond to ethanol 

treatment [tCTGcGTCtCt, where uppercase letters indicate absolute conservation and lower case 

letters denote a degree of degeneracy at the position] (Kwon et al., 2004). Mutation of the ARE 

or neuronal transfection with a dominant negative HSF1 mutant gene completely abolished 

sensitivity of Gabra4 to ethanol (Pignataro et al., 2007). In addition, acute exposure to alcohol 

also rapidly increases the transcription of genes known to be HSF1-responsive, including the 

heat shock protein (Hsp) genes Hsp27, Hsp40, Hsp70, Hsp90 and Cryab (Pignataro et al., 2007). 

Collectively, these data indicate that a single ethanol exposure can induce HSF1 transcriptional 

activity to trigger a subset of neuronal alcohol-responsive genes. The activation of HSF1, as well 

as the other transcription factors discussed in this section, may be an early event in a sequence of 

changes in gene expression that ultimately result in functional alterations of critical brain 

circuitry. These functional changes may underlie some aspects of the behavioral tolerance and 

adaptation that occur in the advanced stages of chronic alcoholism. 

 

In general, researchers within the alcohol field have struggled to link these effects of alcohol on 

gene transcription with many of the adaptations that present after alcohol administration. We 

reasoned that a careful study of the effects of alcohol on the gene expression of SNARE complex 

proteins might reveal a molecular mechanism that can explain the ability of alcohol to alter 

GABA release. To address this hypothesis and identify a transcriptional pathway by which 

ethanol can regulate neurotransmitter release, we first investigated the effects of acute alcohol on 

the expression of genes encoding for synaptic vesicle fusion machinery proteins. We then 
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addressed whether ethanol alters neurotransmitter release in cortical neurons, using whole-cell 

voltage clamp electrophysiology. We envision that a mechanism by which alcohol induces the 

gene expression of SNARE complex proteins to stimulate neurotransmitter release could explain 

some of the transient changes in synaptic function that occur after alcohol exposure, and may 

underlie some of the enduring effects of chronic alcohol drinking on local circuitry. 
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Introductory Figure 1: Diagram of a rodent brain illustrating key brain circuitry 

underlying the development of alcohol dependence  
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Introductory Figure 1: Diagram of a rodent brain illustrating key brain circuitry 

underlying the development of alcohol dependence  

A sagittal section of a representative rodent brain illustrating the pathways implicated in the 

reinforcing actions of alcohol. At the core of the mesocorticolimbic circuitry underlying the 

reward system is the dopaminergic medial forebrain bundle that projects from the ventral 

tegmental area (VTA) to the nucleus accumbens (NAc) and PFC (blue straight arrows). 

GABAergic neurons in the VTA also project to the NAc and PFC (red straight arrows,), and the 

VTA receives innervation from GABAergic neurons in the NAc (red straight arrows) and 

glutamatergic neurons in the PFC to complete the circuit (green straight arrows).  

 

As an individual develops dependence, the antireward system limits reward through its actions in 

the extended amygdala, comprising the central nucleus of the amygdala (CeA) and the bed 

nucleus of the stria terminalis (BNST). The CeA and BNST contain reciprocal innervations for 

GABA (red wavy arrows) and neuropeptide transmitters, such as corticotropin-releasing factor 

(CRF) and neuropeptide Y (NPY) (yellow wavy arrows). In addition, the extended amygdala 

receives significant glutamatergic projections from the PFC and hippocampus (green wavy 

arrows), and dopamingeric and serotonergic inputs from the VTA, lateral hypothalamus and 

brainstem (blue wavy arrows). The extended amygdala also sends inhibitory efferents back to the 

lateral hypothalamus, VTA and various lower brainstem regions (red wavy arrows).  
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Introductory Figure 2: Neurotransmission at the chemical synapse 
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Introductory Figure 2: Neurotransmission at the chemical synapse 

The chemical synapse is comprised of three main compartments: synaptic vesicles recruited to 

the presynaptic active zone, the synaptic cleft, and the postsynaptic specialization within a 

dendritic spine, each of which play a key role in mediating the type and amount of information 

transfer. Within the presynaptic terminal, synaptic vesicles are loaded with neurotransmitter, 

transported to the active zone and fused with the plasma membrane to release their contents into 

the synaptic cleft. A variety of proteins embedded in the vesicle membrane mediate these 

processes, including neurotransmitter transporters and proton pumps that load the vesicle by 

active transport (step 1). The vesicle is trafficked through the interactions of its membrane 

proteins with the actin cytoskeleton and is tethered near the release site by the vesicle membrane 

protein synapsin (step 2). The synaptic vesicles are docked within the active zone by a 

complement of SNARE complex proteins which are located both on the vesicle membrane (v-

SNAREs: synaptobrevin/vesicle-associated membrane protein, which is also known as VAMP) 

(blue) and the target plasma membrane (t-SNAREs: syntaxin 1 and synaptosomal associated 

protein of 25 kDa, which is also known as SNAP-25) (green and red, respectively). During 

docking, the vesicle membrane protein synaptotagmin 1 (yellow) binds to VAMP and plasma 

membrane phospholipids. This pulls the two membranes into closer proximity and promotes 

helical zippering between VAMP, syntaxin 1 and SNAP-25 (step 4). When an action potential 

reaches the presynaptic terminal, the membrane depolarization opens voltage-gated calcium 

channels and calcium enters the terminal. The calcium ions bind to synaptotagmin 1, causing a 

conformational change across the SNARE complex, directly triggering vesicle fusion and 

neurotransmitter release (step 5). Released neurotransmitter traverses across the synaptic cleft by 

diffusion and binds to neurotransmitter receptors contained within the postsynaptic specialization 

(step 6).  
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Introductory Figure 3: Location of regulatory elements in the NR2B gene (Grin2b) 



33 

 

 

Introductory Figure 3: Location of regulatory elements in the NR2B gene (Grin2b) 

 Schematic diagram and relative location of the 5 putative NRSE sites present in the mouse 

Grin2b gene. The boxes with the numbers 1-5 represent the location of these elements. Below 

are the sequence and the specific location of each of these elements with the consensus 

nucleotides indicated in bold letters. Grin2b also poses an AP-1 and a CRE site proximal to the 

transcription initiation site as indicated in the diagram. The specific location and consensus 

sequence is indicated in the box below the promoter diagram. Adapted from (Pignataro et al., 

2009). 
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Introductory Figure 4: Organization of the Hsc70 promoter region  
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Introductory Figure 4: Organization of the Hsc70 promoter region  

The diagram presents the relative position of regulatory elements in the rat Hsc70 gene. This 

gene contains 3 putative Sp1 sites, 4 overlapping HSE sites, two inverted CCAAT boxes and a 

TATA box. The specific sequences and location of all these sites is indicated in the boxes below 

the graph with the consensus sites shown bold letters. Adapted from (Pignataro et al., 2009). 
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Introductory Figure 5: Diagram of the ARE regulatory element essential for the ethanol 

sensitivity of the Gabra4 gene  
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Introductory Figure 5: Diagram of the ARE regulatory element essential for the ethanol 

sensitivity of the Gabra4 gene 

Schematic of the Gabra4 gene, containing the cis-element ARE binding site for HSF1. The ARE 

sequence, shown in bold and underlined, is aligned to the consensus sequence found in ethanol 

sensitive genes in C. elegans. Adapted from (Pignataro et al., 2009). 
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Materials and methods 

The Columbia University Institutional Animal Care and Use Committee approved all protocols 

involving the use of experimental animals in this study. 

 

Cortical neuronal cell culture 

Cortical neurons were cultured from mixed gender embryonic day 17-18 C57BL/6 mice (Harlan 

Laboratories, Indianapolis, IN; Charles River Laboratories, Wilmington, MA) as previously 

described (Huettner and Baughman, 1986) with modifications (Ma et al., 2004; Varodayan et al., 

2011). Lower density cortical cultures for immunohistochemistry experiments were also 

established and maintained using techniques similar to those used for hippocampal neurons 

(Banker and Goslin, 1991).  

 

Ethanol and heat stress treatments 

Cortical neurons were cultured for 7 - 21 days in vitro (DIV) and then exposed to ethanol, heat or 

vehicle Dulbecco’s phosphate-buffered saline control (Invitrogen, Carlsbad, CA) for a specific 

time (15 minutes - 24 hours). Ethanol (final concentration 10 - 150 mM; Sigma-Aldrich, St 

Louis, MO) was added directly to the culture medium. Cells were subjected to heat stress by 

transferring them to an incubator set at 42
o
C for a period of 1-2 hours.  
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Quantitative real-time polymerase chain reaction (qPCR) analyses of mRNA levels.  

Total RNA was isolated from cultured neurons using TRIzol (Invitrogen). cDNA was prepared 

from total RNA with the iScript cDNA synthesis kit (Bio-Rad, Hercules, CA). For cDNA 

preparation, reactions were performed in a final volume of 20 l; primers were annealed at 25
o
C 

for 5 min, RNA was reverse transcribed at 42
o
C for 90 min, followed by heat-inactivation at 

95
o
C for 5 minutes and the reaction mixtures were stored at -20

o
C. The first-strand reverse 

transcribed cDNA was then used as a template for PCR amplification using the appropriate 

specific primer pairs listed below. qPCR reactions were carried out with iQ SYBR Green 

Supermix (Bio-Rad) as previously described (Ma et al., 2004). In preliminary experiments, the 

Syt1 and Vamp2 cDNA concentrations were normalized against Actb, Gapdh and 18S [gene 

encoding ribosomal protein 18S] cDNA (QuantumRNA Internal Standards, Ambion, Austin, 

TX) within the same sample. For subsequent work, the cDNA concentration for the gene of 

interest was normalized against the concentration of Actb cDNA within the same sample, and the 

results were finally expressed as a percentage of increase versus the control (untreated neurons or 

neurons treated with vehicle). In each experiment, the average values of triplicate samples were 

used for each data point.  

 

qPCR primers 

The following primers (and acquisition temperatures) were used for qPCR:  

Actb (82
oC) forward (5’-TCATGAAGTGTGACGTTGACATCCGT-3’), reverse (5’-

CCTAGAAGCATTTGCGGTGCACGATG-3’);  
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Gapdh (77
oC) forward (5’-AACTTTGGCATTGTGGAAGG-3’), reverse (5’-

ACACATTGGGGGTAGGAACA-3’);  

Snap25 (75
oC) forward (5’-CAACTGGAACGCATTGAGGAA-3’), reverse (5’-

GGCCACTACTCCATCCTGATTAT-3’);  

Stx1a (77
oC) forward (5’-TCCAAGCTAAAGAGCATTGAGC-3’), reverse (5’-

GGCGTTGTACTCGGACATGA-3’);  

Syp1 (77
oC) forward (5’-GAGAGAACAACAAAGGGCCAA-3’), reverse (5’-

CGGCACATAGGCATCTCCT-3’);  

Syt1 (70
oC) forward (5’-CACCGTGGGCCTTAATTGC-3’), reverse (5’-

TGTTAATGGCGTTCTTCCCTC-3’);  

Vamp1 (72
oC) forward (5’-AGCATCACAATTTGAGAGCAGT-3’), reverse (5’-

GATGGCACAGATAGCTCCCAG-3’);  

Vamp2 (76
oC) forward (5’-GCTGGATGACCGTGCAGAT-3’), reverse (5’-

GATGGCGCAGATCACTCCC-3’). 

 

Immunoblotting 

Relative protein abundance was determined by immunoblotting, as previously described (Jia et 

al., 2005). Cellular fractions (40-100 mg of protein) were isolated with the NE-PER Nuclear and 

Cytoplasmic Extraction Reagents (Pierce Biotechnology, Rockford, IL) and incubated with the 

following antibodies: rabbit polyclonal anti-Syt1 (1:1500, Synaptic Systems, Goettingen, 
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Germany), rabbit polyclonal anti-HSF1 (1:500, Cell Signaling Technology, Danvers, MA), 

rabbit polyclonal anti-phosphorylated HSF1 (pHSF1, 1:4000, Enzo Life Sciences, Farmingdale, 

NY), rabbit polyclonal anti-VAMP1 (1:500, Synaptic Systems), mouse monoclonal anti-VAMP2 

(1:2000, Synaptic Systems), mouse monoclonal anti--tubulin (1:5000, clone  DM1A, Sigma-

Aldrich), and rabbit polyclonal anti-eIF4E (1:2500, Cell Signaling Technology). Images were 

acquired with a refrigerated Chemi 410 CCD camera, the Biospectrum imaging system (UVP, 

Upland, CA), and the VisionWorks LS software (UVP). Digital images were quantified with 

ImageJ 1.36b (NIH, Bethesda, MD), with gel lanes selected and their signals transformed into 

peaks. The area under each peak (gray value) was transformed into an optical density (OD) value 

using the function: OD = Log10 (255 / (255 – gray value)). The OD values were normalized to 

the -tubulin or eIF4E internal standards to compensate for variations in protein loading and 

transfer. 

 

Immunocytochemistry 

Lower density cultures were used for immunocytochemistry experiments. Immunostaining was 

performed with a rabbit polyclonal anti-Syt1 antibody (1:200, Synaptic Systems) and a mouse 

monoclonal anti--tubulin antibody (1:10000, clone DM1A, Sigma-Aldrich). Cells were 

mounted with ProLong Gold anti-fade reagent containing the nuclear stain DAPI (Molecular 

Probes, Eugene, OR). Images were acquired with an inverted Zeiss Axiovert 200 confocal 

microscope (LSM 510 META; Carl Zeiss Meditech, Thornwood, NY) equipped with diode (405 

nm), argon (458, 477, 488, 514 nm), HeNe1 (543 nm) and HeNe2 (633 nm) lasers. 
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RNA interference experiments 

RNA interference experiments were performed with presynthesized small interference RNA 

(siRNA), consisting of a pool of 3 target-specific 20 - 25 nucleotide siRNAs designed to knock 

down the expression of a particular gene. Cultured cortical neurons were transfected with Hsf1 

siRNA or control siRNAs (Santa Cruz Biotechnology, Santa Cruz, CA). Control experiments 

were performed with scrambled 20 - 25 nucleotide siRNAs, which do not degrade any known 

mRNA (Pignataro et al., 2007). Transfection was performed with TransFectin (Bio-Rad) as 

follows: siRNA (0.33 g) was added to OPTI-MEM (50 l; Invitrogen) for 5 min and then 

combined with a mixture of TransFectin (2.6 l) and OPTI-MEM (50 l) for an additional 20 

min. The culture medium was removed and replaced with 100 l of transfection medium and the 

neurons were incubated for 1 hour at 37
o
C. Cells were washed once and the transfection medium 

was replaced with conditioned medium; neurons were maintained for another 24 hours prior to 

ethanol or heat treatment.  

 

Constitutively active and inactive heat shock factor 1 (Hsf1) constructs 

We used a constitutively active form of HSF1 (Hsf1-act, BH-S), as well as a dominant-negative 

mutant form of HSF1 (Hsf1-inact, AV-ST). Hsf1-act has a long deletion of amino acids 203 - 

315 in the regulatory domain of HSF1, while the dominant-negative mutant form of HSF1 has a 

deletion of amino acids 453 - 523 located in the transcription activation domain (Zuo et al., 

1995). Both constructs were generated by Dr. Richard Voellmy (University of Miami) and 

cloned into pcDNA3.1+ (Invitrogen). Transfections were performed as above with 1 g of DNA 
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and 9 L of nupherin (Enzo Life Sciences), and sister cultures were transfected with the empty 

pcDNA3.1+ vector as sham controls. 

 

Electrophysiology recordings 

Whole-cell voltage clamp patch recordings were used to determine the effects of ethanol on 

excitatory and inhibitory miniature postsynaptic currents (mPSCs). After ethanol exposure for 4-

8 h, cells were washed once with new media to remove ethanol before being incubated in an 

external solution containing: 124 mM NaCl, 2.5 mM KCl, 2 mM MgSO4, 1.25 mM NaH2PO4, 2 

mM CaCl2, 26 mM NaHCO3, and 10 mM glucose (all Sigma), at 310 mOsm and pH 7.4. mPSCs 

were recorded in the presence of extracellular tetrodotoxin (TTX; 100 nM; Tocris, Bristol, UK), 

with excitatory events (mEPSCs) isolated using extracellular SR 95531 hydrobromide (gabazine; 

20 µM; Tocris) and inhibitory events (mIPSCs) isolated using extracellular 2,3-Dioxo-6-nitro-

1,2,3,4-tetrahydrobenzo[f]quinoxaline-7-sulfonamide (NBQX; 10 µM; Tocris) and D-(-)-2-

Amino-5-phosphonopentanoic acid (D-APV; 30 µM; Tocris). Patch pipettes were pulled on a 

Flaming/Browning micropipette puller (Sutter Instrument Company, Novato, CA) from thinwall  

glass (World Precision Instruments, Saratosa, FL) with a resistance of 3-6 MΩ. The pipettes 

were filled with an internal solution containing: 140 mM CsCl, 4 mM NaCl, 1 mM MgCl2, 0.05 

mM EGTA, 2 mM ATP-Mg
2+

, 0.3 mM GTP-Na
+
, and 10 mM HEPES (all Sigma), at 290 mOsm 

and pH 7.25. Membrane potentials were clamped at -70 mV and currents were recorded with an 

Axopatch 200B patch-clamp amplifier (Molecular Devices, Sunnyvale, CA).  
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Data were acquired with pClamp 10.3 software (Molecular Devices), filtered at 2 kHz and 

digitzed at 20 kHz. Each recording was a minimum of 6 minutes long, with the final minute of 

data analyzed to identify mPSCs. The mPSCs were detected using the Mini Analysis Program 

6.0.7 (Synaptosoft, Fort Lee, NJ) with threshold criteria of 5 pA amplitude for the mIPSCs 

(Cagetti et al., 2003; Liang et al., 2004) and 3 pA for the mEPSCs (Lissin et al., 1999). 

Frequency of mPSCs was determined from all automatically detected events in the 1 minute 

recording period. To assess mPSC kinetics, the recording trace was visually inspected and only 

events with a stable baseline, sharp rising phase and single peak were used.  

 

Statistical, microscopy, genome and electrophysiology analyses  

Briefly, the qPCR and immunoblot data were analyzed by one-way ANOVA followed by 

Dunnett’s multiple-comparison post-hoc tests. In these experiments, n represents the total 

number of triplicate sample values averaged into each data point, and each data point contains at 

least three biological replicates. All data are presented as mean  SEM, and the details of the 

statistical analysis are also included in the appropriate figure legends. In all cases in which 

immunoblots are shown, the blot is representative of at least three experiments with similar 

results.  

 

The analysis of Syt1 immunoreactive puncta was performed by standard methods (Carpenter-

Hyland et al., 2004) using ImageJ 1.36b software. Grayscale 8-bit calibrated-images (0.8 to 1 

mm optical section) were manually adjusted for threshold, and the area and number of Syt1 



45 

 

 

clusters present along neurites was calculated. Particles smaller than ~ 0.01 m
2
 were not 

considered to be Syt1-positive puncta and were discarded from the analysis. 

 

After quantification using ImageJ software, the data were analyzed by one-way ANOVA 

followed by Dunnett’s multiple-comparison post-hoc tests. In these experiments, n represents the 

number of cells imaged from at least three biological replicates. All data are presented as mean  

SEM and the details of the statistical analysis are also included in the appropriate figure legends. 

In all cases in which confocal microscopy images are shown, the image is representative of at 

least three experiments with similar results. 

  

For all genes analyzed, mouse genomic DNA sequence was obtained from the National Center 

for Biotechnology Information (NCBI; NIH) database. DNA sequence analyses were performed 

using Vector NTI (Invitrogen) and putative ARE sites were designated as those containing the 

ARE motif (tCTGcGTCtCt, uppercase letters indicate absolute conservation) anywhere between 

2 kb upstream of the ATG and the 3’-untranslated region.  

 

Electrophysiology numerical data were analyzed using a two-tailed unpaired t-test or by one-way 

ANOVA followed by Dunnett’s multiple comparison post-hoc tests. In these experiments, n 

represents the number of cells tested from at least three biological replicates. All data are 

presented as mean  SEM and the details of the statistical analysis are also included in the 

appropriate figure legends.  
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Chapter 1 

 

Alcohol induces synaptotagmin 1 expression in neurons  

via activation of heat shock factor 1
1
 

 

Abstract 

Many synapses within the central nervous system are sensitive to ethanol. Although alcohol is 

known to affect neurotransmitter release in specific brain regions, the effects of alcohol on the 

underlying synaptic vesicle fusion machinery have been little studied. To identify a potential 

pathway by which ethanol can regulate neurotransmitter release, we investigated the effects of 

acute alcohol exposure (1-24 hours) on the expression of the gene encoding synaptotagmin 1 

(Syt1), a synaptic protein that binds calcium to directly trigger vesicle fusion. Syt1 was identified 

in a microarray screen as a gene that may be sensitive to alcohol and heat shock. We found that 

Syt1 mRNA and protein expression are rapidly and robustly stimulated by ethanol in mouse 

cortical neurons, and that the distribution of Syt1 protein along neuronal processes is also altered. 

Syt1 gene induction is dependent on the activation of the transcription factor heat shock factor 1 

(HSF1). The transfection of a constitutively active Hsf1 construct into neurons stimulates Syt1 

gene transcription, while transfection of Hsf1 siRNA or a constitutively inactive Hsf1 construct 

into neurons attenuates the induction of Syt1 by ethanol. This suggests that the activation of 

                                                           
1
 This chapter is adapted from a manuscript published in 2011. I am grateful to Leonardo Pignataro and Neil 

Harrison for their contributions to the data and text of this chapter. 

Varodayan FP, Pignataro L and Harrison NL (2011) Alcohol induces synaptotagmin 1 expression in neurons via 

activation of heat shock factor 1. Neuroscience 193: 63-71. 
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HSF1 can induce Syt1 gene expression and that this may be a mechanism by which alcohol 

regulates neurotransmitter release during brief exposures. Further analysis revealed that a subset 

of the genes encoding the core synaptic vesicle fusion (SNARE) proteins share this property of 

induction by ethanol, suggesting that alcohol may trigger a specific coordinated adaptation in 

presynaptic function. This molecular mechanism could explain some of the changes in synaptic 

function that occur after alcohol administration, and may be an important step in the process of 

neuronal adaptation to alcohol. 
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Introduction 

Synapses are generally regarded as the most sensitive sites of ethanol action within the central 

nervous system. While the majority of research has focused on the postsynaptic effects of 

alcohol on a variety of neurotransmitter receptors (Harris, 1999; Lovinger, 1997), a growing 

body of evidence suggests that acute and chronic ethanol treatment can also directly modulate 

neurotransmitter release in a variety of different brain regions (Siggins et al., 2005; Weiner and 

Valenzuela, 2006). 

 

Electrophysiological work by several groups indicates that acute application of ethanol increases 

presynaptic -aminobutyric acid (GABA) release in the CA1 region of the hippocampus (Carta et 

al., 2003), nucleus accumbens (Crowder and Weiner, 2002), cerebellum (Carta et al., 2004) and 

the central amygdala (Roberto et al., 2003), as revealed by increases in the frequency of 

spontaneous and miniature inhibitory post-synaptic currents (IPSCs). Similar studies suggest that 

ethanol decreases glutamate release in spinal motor neurons (Ziskind-Conhaim et al., 2003). In 

addition, investigators have used confocal microscopy in hippocampal slices pretreated with the 

lipophilic dye FM1-43 to reveal the inhibition of glutamate release by ethanol (Maldve et al., 

2004). In light of these and many other studies, it is surprising that there has been little work 

directed specifically towards investigating how alcohol may regulate the expression of genes that 

encode the components of the synaptic terminal and proteins that control vesicle fusion.  

 

There are a growing number of alcohol-responsive genes, most of which have been identified 

using microarray screening and then confirmed using other approaches (Lewohl et al., 2000; 
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Mulligan et al., 2006). One such candidate alcohol-responsive gene recently identified in a 

microarray screen is the synaptic vesicle membrane protein synaptotagmin 1 (Syt1) (Pignataro et 

al., 2007). Syt1 acts as a calcium sensor within the space immediately adjacent to the site of 

synaptic vesicle fusion (Brose et al., 1992), and therefore functions as a critical intermediary in 

the process of action potential-dependent neurotransmitter release. Syt1 is expressed widely 

across forebrain, midbrain and most brainstem and spinal cord neurons (Xu et al., 2007). In the 

presence of calcium, Syt1 binds to both vesicular v-SNAREs (VAMP, also known as 

synaptobrevin) and plasma membrane phospholipids (Martens et al., 2007). This brings the two 

membranes together to promote zippering of VAMP and target plasma membrane t-SNAREs 

(SNAP-25, syntaxin 1A) to trigger vesicle fusion and neurotransmitter release. Synaptophysin 1 

regulates this process by associating with VAMP to prevent premature formation of the core 

SNARE fusion complex (Valtorta et al., 2004). 

 

As Syt1 is intimately involved in the ultimate step of synaptic vesicle fusion, it seems obvious 

that changes in its expression levels have the potential to alter neurotransmitter release. Syt1-

deficient mice show impairment in the fast synchronous component of evoked excitatory 

postsynaptic currents (EPSCs) in hippocampal neurons (Geppert et al., 1994) and attenuated 

inhibitory postsynaptic currents (IPSCs) in cortical neurons (Xu et al., 2007). The overexpression 

of Syt1 in mouse hippocampal cultures increases the probability of evoked vesicle release (Han 

et al., 2004). Since Syt1 is a key regulator of synaptic vesicle fusion, we reasoned that a careful 

study of the effects of alcohol on the regulation of Syt1 expression might reveal a molecular 

mechanism by which alcohol can affect neurotransmitter release.  



50 

 

Results 

Alcohol increases Syt1 mRNA and protein expression in cortical neurons 

Our initial experiments confirmed earlier findings from microarray work that the Syt1 gene is an 

alcohol- and heat stress-responsive gene (Pignataro et al., 2007). We found that exposure of 

cultured mouse cortical neurons to 60 mM ethanol for 1 hour produced a robust (58  3 %) 

stimulation of Syt1 mRNA levels, which was reproduced by a 42
o
C heat shock treatment for one 

hour (Fig. 1.1A). The results of ethanol treatment on Syt1 gene induction were not significantly 

different when Syt1 mRNA expression was normalized to three different internal standards, Actb, 

Gapdh and 18S [gene encoding ribosomal RNA 18S] (data not shown). Both alcohol and heat 

shock treatments also increased Syt1 protein levels (Fig. 1.1B).  

 

The ethanol concentration used in these initial experiments (60 mM) is high, but relevant to 

human exposure, as chronic alcoholics may routinely tolerate extremely high blood alcohol 

concentrations of 100 mM or above (Urso et al., 1981). Nevertheless, we wanted to examine the 

effects of ethanol exposure at concentrations more relevant to social intoxication, so we 

performed an ethanol concentration-response analysis for Syt1 mRNA levels. We found that the 

effect of ethanol (E) on Syt1 mRNA levels was concentration-dependent (Fig. 1.2A), with a 

sensitivity threshold of 20 mM and half-maximal activation at 50  1 mM; the ethanol effect 

saturated at 100 mM. These high ethanol concentrations were not toxic to the neurons, with 

short-term exposure to ethanol concentrations of over 100 mM resulting in only a modest 

increase in apoptosis (Pignataro et al., 2007). The time-course of the activation of Syt1 gene 

transcription by 60 mM ethanol was surprisingly rapid, increasing mRNA levels significantly 
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within 30 minutes of exposure (Fig. 1.2B). Syt1 gene induction further increased during 8 hours 

of exposure to 60 mM ethanol but then declined, although not to baseline levels, following 24 

hours of continuous exposure. Ethanol also increased Syt1 protein, although this effect was 

delayed relative to the effect on Syt1 mRNA, with a significant rise in protein occurring after 8-

12 hours of exposure (Fig. 1.2C).  

 

Alcohol alters the distribution of Syt1 immunoreactivity in cortical neurons 

To visualize changes in Syt1 protein localization after ethanol exposure, we performed 

immunocytochemistry and confocal microscopy on the cortical cultures. Syt1 protein is 

embedded in the synaptic vesicle membrane and, as expected, in both control and ethanol-treated 

neurons we observed punctate clusters of Syt1-positive staining along the neurites (Fig. 1.3A). 

Ethanol exposure altered the distribution of Syt1 protein, as observed in the representative inset 

figures. Quantification revealed that ethanol increased the number of identifiable Syt1-positive 

puncta per 100 µm of neurite length by 2.2-fold, and also increased the average area of the 

puncta by 1.6-fold (Fig. 1.3B). Both findings are consistent with an increase in the level of Syt1 

protein in these neurons. 

 

Alcohol activates HSF1 to induce Syt1 expression in cortical neurons 

It has been reported that ethanol and heat induce the Gabra4 gene via activation of the 

transcription factor, heat shock factor 1 (HSF1) (Pignataro et al., 2007). HSF1 transcriptional 

activation is a multi-step process, requiring translocation to the nucleus, followed by 



52 

 

trimerization and inducible hyperphosphorylation (Cotto et al., 1997). It has been demonstrated 

in primary cortical neuron culture that ethanol and heat shock can induce HSF1 nuclear 

translocation (Pignataro et al., 2007). To investigate whether HSF1 plays a similar role in Syt1 

gene induction by ethanol, we first assessed the effects of ethanol and heat on HSF1 

phosphorylation (pHSF1) and then altered HSF1 protein levels and measured changes in Syt1 

mRNA levels after ethanol exposure. We found that 2 hours of 60 mM ethanol or heat treatment 

increased the phosphorylation of HSF1 protein, as shown in the inset in Fig 1.4A. The data 

shows that the proportion of pHSF1 relative to the total expression of HSF1 is increased 

significantly by ethanol and heat, suggesting activation of this transcription factor (Fig 1.4A). As 

previous work showed that a 24 hour treatment of cortical neurons with Hsf1 siRNA produced a 

> 70% decrease in HSF1 mRNA and protein levels (Pignataro et al., 2007), we used the same 

HSF1 knock-down protocol here, and observed a reduction in Syt1 gene induction in response to 

ethanol exposure (Fig. 1.4B).  

 

To confirm the role of HSF1 in mediating Syt1 gene induction, we then transfected cortical 

neurons with a constitutively active Hsf1 construct (Hsf1-act), which is known to directly induce 

heat shock protein (Hsp) gene transcription in the absence of heat stress (Acquaah-Mensah et al., 

2001). This construct increased Syt1 gene expression to a level similar to that seen after 1 hour of 

ethanol exposure (Fig. 1.4C). Conversely, a dominant-negative Hsf1 construct (Hsf1-inact), 

which prevents the induction of Hsp gene expression (Acquaah-Mensah et al., 2001), abolished 

the effect of ethanol exposure on Syt1 mRNA levels (Fig. 1.4C). This confirmed that 

transcriptionally active HSF1 is both sufficient for stimulation of the Syt1 gene and necessary for 

the induction of this gene by ethanol. In the case of Gabra4 induction by ethanol, it was found 
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that the activated HSF1 binds to the alcohol response element (ARE) (Pignataro et al., 2007) 

identified in a subset of alcohol-responsive genes (Kwon et al., 2004; Pignataro et al., 2007). The 

Syt1 gene (Gene ID: 20979) contains multiple putative ARE sequences, including multiple repeat 

ARE-like sequences located within the promoter region and in the first and second introns (Fig. 

1.5C). 

 

Alcohol induces a subset of genes encoding synaptic vesicle proteins in cortical neurons 

To identify whether Syt1 induction by ethanol and heat stress is a specific response, we examined 

the effects of ethanol exposure on genes that code for other proteins intimately involved in 

synaptic vesicle fusion. We found that the ability of ethanol and heat stress to induce Syt1 gene 

expression is replicated among a subset of SNARE complex genes (Fig. 1.5A). We observed that 

ethanol (60 mM, 1 hour) and heat shock treatment also stimulate SNAP-25 (Snap25) and 

VAMP2 (Vamp2) gene expression, while syntaxin 1A (Stx1a), synaptophysin 1 (Syp1), and 

VAMP1 (Vamp1) were not significantly altered by either treatment. Consistent with these 

changes in mRNA levels, ethanol and heat shock also increase VAMP2 protein levels, without 

affecting VAMP1 expression (Fig 1.5B). Sequence analysis of Vamp1 (Gene ID: 22317) and 

Vamp2 (Gene ID: 22318) revealed two putative ARE sequences in each gene, but the sequences 

in Vamp1 are located far downstream in the 3’-untranslated region of the gene, while the 

candidate ARE in Vamp2 are located in the second intron, as in Gabra4 (Fig 1.5C). These 

findings demonstrate that the effects of ethanol are specific to particular synaptic machinery 

proteins, and not a generalized phenomenon across all proteins expressed at the synaptic 

terminal.  
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Discussion 

Over the last decade, several studies have demonstrated that ethanol can alter neurotransmitter 

release, especially that of GABA, in the central nervous system (Siggins et al., 2005; Weiner and 

Valenzuela, 2006). The mechanisms of these effects have received limited attention, but in the 

cerebellum, the increased release of GABA on to granule cells appears to be secondary to an 

increase in Golgi cell firing rate (Carta et al., 2004). The effects of ethanol on the synaptic 

vesicle fusion machinery that governs neurotransmitter release have remained largely unstudied, 

but a recent microarray screen identified a number of alcohol-responsive genes that encode 

synaptic proteins. In this way, Syt1 was first suggested to be an alcohol-responsive gene that is 

also sensitive to heat shock (Pignataro et al., 2007), but microarray studies can sometimes 

produce either false negative or false positive results. Our detailed analysis using qPCR 

confirmed that acute exposure to ethanol increases Syt1 gene expression in cortical neurons by 

activating the transcription factor HSF1. In addition, the effects of acute ethanol exposure on 

Syt1 transcription are time-dependent, with mRNA levels peaking around 6-8 hours, and then 

fading between 8 and 24 hours after the onset of exposure. The increase in Syt1 protein during 

acute alcohol exposure might be expected to result in changes in transmitter release from these 

neurons, and this possibility is currently being investigated. 

 

Syt1 is an alcohol-responsive gene 

There are few, if any, comparable studies available on the effects of acute alcohol in vitro or 

short-term drinking in vivo on synaptic gene expression. A post-mortem human microarray study 

found that Syt1 gene expression was decreased in the nucleus accumbens, but not the frontal 
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cortex, of alcoholic brains compared to control cases (Flatscher-Bader et al., 2005). We have not 

yet examined the effects of longer-term exposure to alcohol on Syt1 expression in the cortical 

neurons, so it is very difficult to compare our data with those collected from human brain tissue.  

 

Little information is currently available on Syt1 expression from in vivo alcohol drinking studies. 

Syt1 protein levels were reduced in the cerebellum of rat pups exposed to binge-like ethanol by 

oral-gastric intubation, but remained unchanged in the medial septum/diagonal band, cerebral 

cortex, hippocampus and brain stem (Hsiao et al., 2002). A study of rats genetically selected for 

either alcohol self-administration preference (AA) or alcohol avoidance (ANA), showed a 

decrease in Syt1 gene expression in the frontal cortex of the AA rats (Worst et al., 2005). The 

discrepancies among these sets of data and our own work are likely to stem from variations in 

model systems, brain regions of interest, and alcohol exposure paradigms. Future efforts in our 

laboratory will therefore be aimed at studying synaptic gene expression after longer term 

exposure to alcohol in the cortical neurons, and in animals engaged in short-term drinking.   

 

Increases in Syt1 protein levels after ethanol exposure may alter synaptic structure 

Alcohol exposure increased Syt1 immunoreactivity in cortical neurons, with the Syt1 

immunoreactivity seen as distinct puncta on long neurites and around the cell somata, which is a 

characteristic of synaptic regions (Gitler et al., 2004; Matthew et al., 1981). Of note, a similar 

study using 4 days of chronic ethanol treatment of primary hippocampal cultures also revealed an 

increase in the size and density of synapsin- and synaptophysin-positive clusters (Carpenter-

Hyland et al., 2004). Our findings that ethanol increases Syt1-labeled puncta number and size are 
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completely novel, and we cannot as yet determine whether these changes in immunoreactivity 

represent an increase in the number of Syt1 protein molecules per synaptic vesicle, larger 

numbers or aggregations of synaptic vesicles, or increases in synaptic vesicle size. A similar 

increase in the number of SNARE-positive clusters after the induction of long-term potentiation 

(LTP) in hippocampal synapses leads to increased glutamate release, possibly through the 

acquisition of new presynaptic terminals (Antonova et al., 2001; Bozdagi et al., 2000). 

 

A molecular mechanism underlying alcohol induction of the Syt1 gene 

The Syt1 gene shares its alcohol and heat stress-responsive properties with Gabra4, which is 

induced by ethanol when activated HSF1 binds to a specific sequence within the second intron, a 

sequence we have termed the ARE (Pignataro et al., 2007). The ARE is an 11 base pair cis-

regulatory element (tCTGcGTCtCt, uppercase letters indicate absolute conservation) that was 

first identified in a subset of alcohol-responsive genes in C. elegans (Kwon et al., 2004; 

Pignataro et al., 2007). The element is a consensus binding site for HSF1, though its sequence is 

distinct from the classical heat shock element (HSE) (Pignataro et al., 2007). The Syt1 gene 

contains multiple candidate ARE sequences, and neuronal transfection of a constitutively active 

Hsf1 construct (Hsf1-act) induces the Syt1 gene in a similar manner to ethanol exposure. Hsf1-act 

is known to induce heat shock protein genes (Hsps) in the absence of heat stress (Acquaah-

Mensah et al., 2001). Conversely, a dominant-negative Hsf1 construct (Hsf1-inact), which cannot 

induce the gene expression of heat shock proteins (Acquaah-Mensah et al., 2001), abolished the 

effect of ethanol exposure on the Syt1 gene. As transcription of the Gabra4 and Hsps genes are 

dependent on HSF1, the results of these experiments strongly suggest that Syt1 induction by 
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alcohol is mediated via the heat shock pathway, and that alcohol acts upstream of HSF1 

activation. Since the ARE is a highly conserved sequence, it is very likely that HSF1 binds many 

of these sites throughout the Syt1 gene. This raises the interesting question of whether only some 

of the HSF1-bound ARE sites are able to promote Syt1 gene transcription, and future work in the 

laboratory will address these potential position dependent effects of the ARE. 

 

The mechanism ethanol employs to activate HSF1 remains unknown. It is well established that 

heat stress triggers the formation and aggregation of misfolded proteins that are attended to by 

heat shock protein chaperones (Morimoto et al., 1998). In the process, cytoplasmically-

sequestered HSF1 is freed and translocates to the nucleus where it can act as a transcription 

factor. Other changes in the cellular environment, such as Ca
2+

 influx and acidification, can also 

induce an increase in HSF1 transcriptional activity (Mosser et al., 1990), and it is possible that 

ethanol acts indirectly through one of these mechanisms to activate HSF1. 

 

Ethanol alteration of gene expression via HSF1 has profound implications for neuronal 

physiology, as HSF1 transcriptional activity is inherently linked to improved cell survival in 

conditions of stress (Morimoto et al., 1998). More recent data, however, identifies a role for 

HSF1 in non-stressed conditions as HSF1-deficient mice have impaired adult neurogenesis and 

spinogenesis in the dentate gyrus, and aberrant affective behavior, due to the loss of HSF1 

induction of polysialyltransferase gene transcription in the hippocampus (Uchida et al., 2011). 

HSF1 also has been identified as a circadian transcription factor that induces Hsp transcription at 

the onset of nocturnal behavior and influences the period length of the mammalian clock (Reinke 
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et al., 2008). Therefore, HSF1 induction of Syt1 may be connected to the heat stress pathway or 

may represent a novel role for HSF1 modulating synaptic function.  

 

Alcohol induces a complement of SNARE genes 

Syt1 does not act alone in promoting neurotransmitter release, participating with several other 

key synaptic proteins to mediate vesicle fusion. Given the large variation in the effects of alcohol 

on neurotransmitter release that is observed across the brain, it is possible that alcohol 

differentially regulates some of these other synaptic terminal proteins. We were therefore 

interested in specifically assessing whether genes that encode other key vesicle fusion machinery 

proteins are regulated by ethanol and heat shock. We found that ethanol and heat shock also 

induced the Snap25 and Vamp2 genes, while mRNA for synaptophysin 1 (Syp1), syntaxin 1A 

(Stx1a) and Vamp1 remained unchanged under both treatment conditions.  In the microarray 

experiment conducted by Pignataro et al. (2007), similar synaptic vesicle fusion machinery genes 

were also shown to be sensitive to alcohol and heat shock, such as Vamp2 and Vamp8 (but not 

Vamp1). 

 

When considered in this light, ethanol and heat stress induction of Vamp2, but not Vamp1, is 

particularly interesting. These two genes encode distinct VAMP isoforms and are differentially 

expressed in the CNS (Nystuen et al., 2007). Vamp2 is expressed throughout the mouse brain, 

particularly in the cortex, whereas Vamp1 predominates in regions of the diencephalon and 

midbrain. Closer analysis of synaptobrevin expression in the cerebral cortex, however, found that 

VAMP1 and VAMP2 are co-expressed at axon terminals (Bragina et al., 2010). Though both 
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genes contain potential ARE sequences, the candidate ARE in Vamp2 are located in the second 

intron in a similar position as in Gabra4, while in Vamp1 the sequences are all located far 

downstream in the 3’-untranslated region of the gene. The selective induction of Vamp2, but not 

Vamp1, by ethanol, is therefore also likely to be dependent on the location of the ARE sequence. 

 

Molecular heterogeneity among synaptic terminals can be achieved through diverse SNARE 

expression and abundance, and VAMP1 and VAMP2 co-expression occurs at different rates in 

GABAergic and glutamatergic axon terminals of cortical neurons (Bragina et al., 2010). 

Furthermore, a single cortical neuron can contain a few synapses expressing only one VAMP 

and others containing both VAMP1 and VAMP2, indicating that an individual neuron can 

segregate SNAREs to specific terminals (Morgenthaler et al., 2003). The functional significance 

of these results is that a single neuron, depending on its specific cell-type and postsynaptic 

targets, can customize a particular synapse by altering key release characteristics, such as the 

number of release sites (active zones) per synapse, the number and size of synaptic vesicles 

docked ready for release, and release probability (Atwood and Karunanithi, 2002). Therefore, a 

mechanism for differential regulation of various SNARE proteins, including the VAMP 

isoforms, by alcohol has the potential to provide the neuron with exquisite control over 

neurotransmitter release.  

 

A potential mechanism to explain some of the effects of alcohol on neurotransmitter release 

The biological implications of these findings in terms of the functional consequences of Syt1 

regulation by ethanol are unclear. Flatscher-Bader et al. (2005), noted a decrease in Syt1 gene 
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expression in the nucleus accumbens of alcoholics, consistent with studies showing a dampening 

of the mesolimbic dopamine system after chronic alcohol consumption. Our present work shows 

that acute ethanol induces Syt1 gene transcription, and it is well established that Syt1 protein 

over-expression in mouse hippocampal neurons increases the probability of neurotransmitter 

release (Han et al., 2004). This suggests a potential molecular mechanism by which the rate of 

vesicle fusion is increased, leading to an increase of neurotransmitter release during prolonged 

alcohol exposure. The specificity of this effect among variable synapses and cell types (GABA 

vs. glutamate; interneuron vs. principal cells) is obviously a key issue and remains to be 

investigated. Future experiments will be aimed at determining, using molecular and 

electrophysiological approaches, whether alcohol is able to regulate Syt1 and other key synaptic 

proteins universally or whether this effect is restricted to specific neurotransmitter profiles, 

neuronal cell types or brain regions. 
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Figure 1.1: Ethanol and heat shock alter Syt1 expression in cortical neurons 
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Figure 1.1: Ethanol and heat shock alter Syt1 expression in cortical neurons 

A, Increase in Syt1 mRNA expression after treatment for 1 hour with 60 mM ethanol (E) or 42
o
C 

heat shock (HS), as measured by qPCR. The data were normalized to Actb cDNA, and compared 

with control samples treated with vehicle using one-way ANOVA and Dunnett’s multiple-

comparison post-hoc test (n  6; F (2, 29) = 63.82; p < 0.0001). All data are mean ± SEM (*** 

significantly different at the level of P < 0.001). 

 

B, Increase in Syt1 protein after treatment with ethanol or heat shock. The graph shows the 

relative abundance of Syt1 protein in neurons exposed for 2 hours to 60 mM ethanol (E), a 42
o
C 

heat shock (HS) or vehicle control (C). The bar graph represents normalized optical density (OD) 

relative to the control sample. Ethanol and heat shock data were compared with control by one-

way ANOVA, with Dunnett’s multiple-comparison post-hoc test (n  3; F (2, 12) = 5.43; p < 

0.05). All data are mean ± SEM (* significantly different at the level of P < 0.05). 
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Figure 1.2: Ethanol increases Syt1 mRNA and protein expression 
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Figure 1.2: Ethanol increases Syt1 mRNA and protein expression  

A, Increase in Syt1 mRNA expression after 1 hour treatment with different concentrations of 

ethanol, as measured by qPCR. The data were normalized to Actb cDNA, and the ethanol-

exposed samples were compared with control samples using one-way ANOVA and Dunnett’s 

multiple-comparison post-hoc test (n  6; F (9, 70) = 49.90; p < 0.0001). The half-maximal 

activation of Syt1 was calculated as 50 ± 1 mM, and the ethanol sensitivity threshold was found 

to be 20 mM (p <  0.001). This threshold is the lowest ethanol concentration that significantly 

increased Syt1 expression above the control value and was obtained by analyzing the tail of the 

concentration-response curve with one-tailed unpaired t test. All data are mean ± SEM (** 

significantly different at the level of P < 0.01, *** P < 0.001). 

 

B, Syt1 mRNA expression increases according to the increasing time periods of 60 mM ethanol 

exposure, as measured by qPCR. The data were normalized to Actb cDNA, and the ethanol-

exposed samples were compared with control samples using one-way ANOVA and Dunnett’s 

multiple-comparison post-hoc test (n  6; F (10, 98) = 103.01; p < 0.0001). All data are mean ± 

SEM (* significantly different at the level of P < 0.05, *** P < 0.001). 

 

C, Increase in Syt1 protein after treatment with ethanol over extended periods of time. The 

representative western blot shows the relative abundance of Syt1 protein in neurons treated with 

60 mM ethanol for different time periods of exposure, or vehicle control (C). The bar graph 

represents normalized Syt1 optical density (OD) for each ethanol-exposed sample relative to the 

control sample. The data were compared with control values by one-way ANOVA with 
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Dunnett’s multiple-comparison post-hoc test (n  3; F (4, 15) = 6.14; p < 0.01). All data are 

mean ± SEM (* significantly different at the level of P < 0.05, ** P < 0.01). 
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Figure 1.3: Ethanol treatment increases Syt1-positive clusters of immunoreactivity in 

cortical neurons 
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Figure 1.3: Ethanol treatment increases Syt1-positive clusters of immunoreactivity in 

cortical neurons  

A, Visualization of cortical neurons after treatment with 60 mM ethanol (E), a 42
o
C heat shock 

(HS) or vehicle control (C). Immunocytochemistry was performed using anti-Syt1 and anti-a-

tubulin antibodies, and DAPI nuclear staining 

 

B, Increase in the number and size of Syt1-positive clusters after neurons were treated with 

ethanol. The graphs show the number of Syt1-positive clusters per 100 mm neurite length and 

the average cluster size after neurons were exposed to 60 mM ethanol (E), a 42
o
C heat shock 

treatment (HS) or vehicle control (C). The quantification was performed with ImageJ software. 

The data were compared with control values by one-way ANOVA with Dunnett’s multiple-

comparison post-hoc test (n  6; length: F (2, 20) = 3.75; p < 0.05; area: F (2, 567) = 4.98; p < 

0.01). All data are mean ± SEM (* significantly different at the level of P < 0.05, ** P < 0.01). 
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Figure 1.4: The induction of the Syt1 gene by ethanol requires transcriptionally activated 

HSF1 
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Figure 1.4: The induction of the Syt1 gene by ethanol requires transcriptionally activated 

HSF1  

A, Increase in phosphorylated HSF1 (pHSF1) protein after ethanol and heat exposure. The inset 

shows a representative Western blot of the relative abundance of pHSF1 protein in neurons 

treated with 60 mM ethanol (E) or 42
o
C heat shock (HS) for 2 hours of exposure, or vehicle 

control (C). The bar graph represents normalized optical density (OD) of pHSF1 relative to total 

HSF1 OD.  Ethanol and heat shock data were compared with control by one-way ANOVA, with 

Dunnett’s multiple-comparison post-hoc test (n  3; F (2, 6) = 10.15; p < 0.05). All data are 

mean ± SEM (* significantly different at the level of P < 0.05, ** P < 0.01). 

 

B, Knock-down of HSF1 protein inhibits Syt1 gene induction by ethanol. Pretreatment of 

neurons with Hsf1 siRNA reduced the effects of 60 mM ethanol exposure (E) on Syt1 gene 

transcription, while pretreatment with control siRNA had no effect on Syt1 gene induction by 

ethanol. The data were normalized to Actb cDNA, and the ethanol-exposed samples were 

compared with control samples using one-way ANOVA and Dunnett’s multiple-comparison 

post-hoc test (n  6; F (3, 10) = 17.50; p < 0.001). All data are mean ± SEM (*** significantly 

different at the level of P < 0.001). 

 

C, Stimulation of Syt1 gene expression by ethanol is mediated by transcriptionally activated 

HSF1. Cortical neurons transfected with a constituitively active Hsf1 construct (Hsf1-act) 

showed an increase in Syt1 mRNA expression, similar to the gene’s induction by 60 mM ethanol 

(E). Transfection of a constituitively inactivated form of Hsf1 (Hsf1-inact) reduced the effects of 



70 

 

ethanol on Syt1 gene induction. Hsf1-inact transfection alone had no effect on Syt1 expression. 

The data were normalized to Actb cDNA, and the treated samples were compared with control 

sham-treated samples using 1-way ANOVA and Dunnett’s multiple-comparison post-hoc test (n 

 6; F (4, 155) = 36.56; p < 0.0001). All data are mean ± SEM (* significantly different at the 

level of P < 0.05, *** P < 0.001). 
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Figure 1.5: Ethanol induction of SNARE gene and protein expression levels correlate with 

ARE position 
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Figure 1.5: Ethanol induction of SNARE gene and protein expression levels correlate with 

ARE position 

A, Ethanol and heat shock induce a subset of genes encoding synaptic vesicle fusion proteins. 

Snap25 and Vamp2 mRNA expression levels increased after treatment for 1 hour with 60 mM 

ethanol (E) or 42
o
C heat shock (HS), as measured by qPCR. Stx1a, Syp1, and Vamp1 mRNA 

levels were not significantly altered by either treatment. The data were normalized to Actb 

cDNA, and the treated samples were compared with control samples using one-way ANOVA 

and Dunnett’s multiple-comparison post-hoc test, (n  6; Syt1: F (2, 125) = 187.4; p < 0.0001; 

Vamp2: F (2, 160) = 85.72; p < 0.0001; Snap25: F (2, 112) = 165.3; p < 0.0001; Syp1: F (2, 125) 

= 1.03; p = 0.36; Vamp1: F (2, 152) = 1.50; p = 0.23; Stx1a: F (2, 128) = 1.61; p = 0.20). All data 

are mean ± SEM (*** significantly different at the level of P < 0.001). 

 

B, Ethanol and heat shock increase VAMP2 protein levels, but have no effect on VAMP1 

expression. The graphs shows the relative abundance of VAMP1 and VAMP2 protein in neurons 

treated with 60 mM ethanol (E) or 42
o
C heat shock (HS) for 2 hours of exposure, or vehicle 

control (C). 

 

C, Schematic representation of the Syt1, Vamp2 and Vamp1 genes reveals that the two ethanol 

sensitive genes contain alcohol response elements (ARE) in their upstream promoter regions. 

These putative regulation sites may bind heat shock factor 1 (HSF1) to mediate gene induction 

by ethanol. In Vamp1, an ethanol-insensitive gene, the ARE sequences are all located far 

downstream in the 3’-untranslated region of the gene, while the ARE in Vamp2 are located in the 
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second intron. The relative positions of the introns, exons and ARE are conserved in this 

illustration. 
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Chapter 2 

 

Alcohol alters the expression of SNAREs and spontaneous GABA release via activation of 

the transcription factor HSF1 

 

Abstract 

The synapse is known to be highly sensitive and responsive to alcohol. While alcohol regulation 

of postsynaptic receptors is well studied, the mechanisms underlying its effects on 

neurotransmitter release are relatively unexplored. To identify a pathway by which ethanol can 

regulate neurotransmitter release, we investigated the mechanism underlying the rapid gene 

induction by acute alcohol of Vamp2, but not Vamp1, in primary mouse cortical culture. These 

two genes encode for isoforms of synaptobrevin, a vesicular soluble N-ethylmaleimide-sensitive 

factor attachment protein receptor (SNARE) protein that is required for synaptic vesicle fusion. 

We found that alcohol induction of the Vamp2 gene is mediated via the transcription factor heat 

shock factor 1 (HSF1). Neuronal transfection of a transcriptionally active Hsf1 construct 

stimulates Vamp2 gene expression, while transfection of a dominant-negative Hsf1 construct 

abolishes the induction of Vamp2 mRNA levels by ethanol. These alterations in HSF1 activity 

had no effect on Vamp1 gene expression. As the Vamp2 gene encodes a major SNARE protein, 

we investigated whether acute ethanol altered neurotransmitter release in cortical neurons using 

whole-cell voltage clamp electrophysiology in the presence of tetrodotoxin (TTX) to record 

miniature postsynaptic currents (mPSCs). We found that alcohol increased γ-aminobutyric acid 
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(GABA) release via HSF1, but had no effect on glutamatergic synaptic vesicle fusion. As a 

whole, these data indicate that alcohol induction of HSF1 transcriptional activity triggers a 

specific coordinated adaptation in GABAergic presynaptic terminals. This mechanism could 

explain some of the transient changes in synaptic function that occur after alcohol exposure, and 

may underlie some of the enduring effects of chronic alcohol drinking on local circuitry.  
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Introduction 

Alcohol abuse and dependence is a major global health problem, but there is little understood 

about the neuroadaptations that underlie the development of this disease. Considerable evidence 

suggests that over time the transient molecular changes that accompany a single alcohol 

exposure can persist, as individual neurons respond to each and every alcohol exposure in a 

systematic and coordinated manner (Koob, 2006; Nestler, 2001). In particular, the synapse is 

highly responsive to alcohol, and alterations in synaptic function may lead to changes in local 

circuitry. 

 

While the mechanisms underlying the postsynaptic effects of alcohol on a variety of 

neurotransmitter receptors are well studied (Harris, 1999; Lovinger, 1997), only in the last 

decade have researchers begun to investigate the effects of acute and chronic ethanol treatment 

on neurotransmitter release (Criswell and Breese, 2005; Siggins et al., 2005; Weiner and 

Valenzuela, 2006). Acute application of ethanol increases presynaptic -aminobutyric acid 

(GABA) release in the hippocampus (Carta et al., 2003), nucleus accumbens (Crowder and 

Weiner, 2002), cerebellum (Carta et al., 2004), central amygdala (CeA) (Roberto et al., 2003) 

and ventral tegmental area (VTA) (Theile et al., 2008) as revealed by increases in the number of 

spontaneous miniature inhibitory postsynaptic currents (mIPSCs). In addition, mIPSC frequency 

is increased in the VTA of mice administered a single ethanol dose one day prior to recording 

(Melis et al., 2002) and in the CeA of chronically ethanol-treated rats (Roberto et al., 2004a). 

Despite these findings that alcohol alters neurotransmitter release, the effects of alcohol on the 
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genes that encode for synaptic vesicle fusion machinery have not been thoroughly studied and 

are not well understood.  

 

Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) play a critical 

role in neurotransmitter release. During synaptic vesicle fusion, synaptotagmin 1 binds to the 

vesicular SNARE (v-SNARE) synaptobrevin/vesicle-associated membrane protein (VAMP) and 

plasma membrane phospholipids (Martens et al., 2007). This pulls the two membranes into 

closer proximity and promotes zippering of synaptobrevin and target plasma membrane SNAREs 

(t-SNARES: SNAP-25, syntaxin 1), triggering vesicle fusion and neurotransmitter release. We 

have found that a subset of genes encoding for SNAREs are induced by acute alcohol exposure, 

including the vesicle membrane protein synaptotagmin 1 (Syt1), as well as Vamp2 and Snap25 

(Varodayan et al., 2011). 

 

In particular, our laboratory showed that acute alcohol exposure rapidly induced Vamp2 gene 

expression, but not Vamp1 (Varodayan et al., 2011). These two genes encode distinct isoforms of 

synaptobrevin, a key SNARE protein due to its essential roles in synaptic vesicle fusion (Liu et 

al., 2011; Schoch et al., 2001) and vesicle endocytosis to replenish the readily releasable vesicle 

pool (Deak et al., 2004). The two proteins, however, are not strictly redundant as VAMP2-

deficient mice die shortly after birth (Schoch et al., 2001) and mutant mice with a VAMP1 null 

mutation develop a neuromuscular wasting disease and die within two weeks (Nystuen et al., 

2007). It is possible that these outcomes are linked to differential patterns of Vamp gene 

expression throughout the body and in particular, the central nervous system. Vamp2 gene 
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expression is high throughout the rodent forebrain, particularly in the cortex, whereas Vamp1 

mRNA levels predominate in regions of the diencephalon, midbrain, brainstem and spinal cord 

(Nystuen et al., 2007; Trimble et al., 1990). Closer analysis of synaptobrevin expression in the 

cerebral cortex, however, found that VAMP1 and VAMP2 are co-expressed at different rates in 

both GABAergic and glutamatergic axon terminals, suggesting that there are underlying cell type 

specific differences in their patterns of expression (Bragina et al., 2010; Morgenthaler et al., 

2003).  

 

As synaptobrevin is intimately involved in synaptic vesicle fusion, changes in its expression 

levels may alter neurotransmitter release. The effects of increased synaptobrevin levels are not 

well characterized, but overexpression of VAMP2 increased the fusion of large dense core 

secretory vesicles to allow for neurite-like sprouting in neuronally differentiating PC12 cells 

(Shirasu et al., 2000). We reasoned that a careful study of the effects of alcohol on Vamp2 might 

reveal a molecular mechanism by which alcohol can alter neurotransmitter release.  
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Results 

Alcohol increases Vamp2 mRNA in cortical neurons 

Our initial experiments confirmed our previous findings that the Vamp2 gene is an alcohol-

responsive gene (Varodayan et al., 2011). We found that the effect of ethanol on Vamp2 mRNA 

levels was concentration-dependent (Fig. 2.1A), with the Vamp2 gene responding mildly to 

ethanol concentrations more relevant to social intoxication and strongly to the high ethanol 

concentrations similar to those measured in blood samples of chronic alcoholics (Urso et al., 

1981). The ethanol effect on Vamp2 gene expression had a half-maximal activation at 40  6 

mM and saturated at 80 mM. These high ethanol concentrations were not toxic to the neurons, as 

treatment with 100 mM ethanol caused only modest increases in apoptosis (Pignataro et al., 

2007). The time course of the activation of Vamp2 gene transcription by 60 mM ethanol was 

rapid, with Vamp2 gene expression significantly increased at 30 minutes of exposure (Fig. 2.1B). 

Vamp2 mRNA levels continued to rise during 8 hours of 60 mM ethanol exposure and was 

further increased following 24 hours of continuous exposure. As the results of 60 mM ethanol 

treatment for 1 hour were not significantly different when Vamp2 gene expression was 

normalized to three different internal standards, Actb, Gapdh and 18S [gene encoding ribosomal 

RNA 18S] (data not shown), all qPCR experiments presented in this manuscript used Actb 

cDNA as the internal standard. 

 

Alcohol activates HSF1 to induce Vamp2 gene expression in cortical neurons 

Ethanol is known to induce a subset of alcohol-responsive genes via activation of the 

transcription factor, heat shock factor 1 (HSF1) (Pignataro et al., 2007; Varodayan et al., 2011). 
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To investigate whether HSF1 plays a similar role in Vamp2 gene induction by ethanol, we altered 

HSF1 protein levels and assessed changes in Vamp2 mRNA levels after ethanol treatment. We 

found that knock-down of HSF1 protein levels, using neuronal transfection with Hsf1 siRNA, 

decreased Vamp2 gene induction after ethanol exposure (Fig. 2.2A).  

 

Previous work from our laboratory demonstrated that Vamp1, a gene that encodes for an isoform 

of synaptobrevin, was not induced when primary cortical culture was exposed to 60 mM ethanol 

for 1 hour (Varodayan et al., 2011). As such, the knock-down of HSF1 protein using neuronal 

transfection of Hsf1 siRNA had no effect on Vamp1 mRNA levels (Fig. 2.2C). 

 

To confirm the role of HSF1 in mediating Vamp2 gene induction, we used a constitutively active 

Hsf1 construct (Hsf1-act), which encodes a transcriptionally active HSF1 protein that can 

directly induce heat shock protein (Hsp) gene transcription in the absence of heat stress 

(Acquaah-Mensah et al., 2001). Neuronal transfection of this construct increased Vamp2 gene 

expression to a level similar to that seen after 1 hour of 60 mM ethanol exposure (Fig. 2.2B). 

Conversely, a dominant-negative Hsf1 construct (Hsf1-inact), which encodes a transcriptionally 

inactive HSF1 protein, abolished the effect of ethanol exposure on Vamp2 mRNA levels (Fig. 

2.2B). These experiments reveal that HSF1 transcriptional activity directly stimulates Vamp2 

mRNA levels and mediates ethanol induction of the Vamp2 gene. In the case of the Vamp1 gene, 

altering HSF1 transcriptional activity by neuronal transfection with either Hsf1-act or Hsf1-inact 

and ethanol treatment had no effect on mRNA levels (Fig. 2.2D). 
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Alcohol increases the frequency of mIPSC events in cortical neurons 

As Vamp2 is one of several alcohol-responsive genes that encode for proteins intimately 

involved in synaptic vesicle fusion (Varodayan et al., 2011), we wanted to identify whether 

ethanol exposure altered presynaptic neurotransmitter release.  To investigate these potential 

changes, we recorded spontaneous miniature post-synaptic currents (mPSCs) in cultured cortical 

neurons treated with ethanol, using whole-cell voltage clamp electrophysiology in the presence 

of 100 nM TTX to block action potential-dependent neurotransmitter release. In these 

experiments, increased mPSC frequency indicates alterations at the presynapse leading to 

increased synaptic vesicle fusion and neurotransmitter release, while increased mPSC amplitude 

reflects an increase in postsynaptic receptor sensitivity to the released neurotransmitter, possibly 

due to changes in receptor subunit composition or the number of receptors present (De Koninck 

and Mody, 1994; Otis et al., 1994). 

 

We first evaluated the effects of 60 mM ethanol exposure for 4-8 hours on inhibitory currents 

(mIPSCs) by recording in the presence of 30 µM D-APV and 10 µM NBQX to block 

glutamatergic events. Notably, we found that ethanol increased the frequency of mIPSCs in 

neurons compared to control cells, as seen in the representative traces and bar graph (nC = 20, nE 

= 25; Fig. 2.3A upper panel, B). Ethanol had no effect on mIPSC amplitude ((nC = 120, nE = 240; 

Fig. 2.3A lower panel, C) or the rise time constant, but shortened the decay time constant. 

Details of the mIPSC kinetics are displayed in Table 1. These mIPSCs were blocked completely 

by the perfusion of 20 uM gabazine, with recovery on washout (Fig. 2.3D). 
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Ethanol exposure had no effect on frequency of excitatory currents (mEPSCs) recorded in the 

presence of 20 µM gabazine to block GABAergic events (nC = 26, nE = 24), but slightly 

increased mEPSC amplitude (nC = 183, nE = 240).  Details of mEPSC kinetics are displayed in 

Table 1. 

 

Alcohol activates HSF1 to increase mIPSC frequency in cortical neurons 

To investigate whether HSF1 transcriptional activity mediates the increased mIPSC frequency 

after ethanol exposure, we altered HSF1 protein levels and assessed mIPSC kinetics. Neuronal 

transfection of Hsf1-act to increase HSF1 activity led to an increase in mIPSC frequency to a 

level similar to that seen after ethanol exposure (nC = 16, nE = 24, nHsf1act = 25; Fig. 2.4A). 

Conversely, the dominant-negative Hsf1-inact construct abolished the effect of ethanol exposure 

on mIPSC frequency (nC = 16, nE = 10, nHsf1inact = 12, nHsf1inact+E = 16; Fig. 2.4B). These 

experiments reveal that HSF1 transcriptional activity increases GABA release and mediates 

ethanol induction of mIPSC frequency. In summary, we have shown that ethanol activates HSF1 

to increase the gene expression of a specific subset of proteins involved in synaptic vesicle 

fusion, and GABA release.    
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Discussion 

Ethanol alters GABA release throughout the central nervous system (Criswell and Breese, 2005; 

Siggins et al., 2005; Weiner and Valenzuela, 2006), but the underlying mechanisms are largely 

unknown. We recently showed that a subset of genes encoding for SNARE complex proteins is 

induced by acute alcohol exposure. In particular, we found that alcohol differentially regulates 

two genes encoding for synaptobrevin isoforms, rapidly inducing Vamp2, but not Vamp1, and we 

were therefore interested in the mechanism underlying this difference (Varodayan et al., 2011). 

Here we show that HSF1 transcriptional activity mediates ethanol induction of Vamp2 gene 

expression in cortical neurons. Since Vamp2 is intimately involved in synaptic vesicle fusion, we 

then investigated whether alcohol exposure can alter neurotransmitter release via HSF1. We 

found that ethanol activates HSF1 to increase GABA release, but has no effect on glutamate 

release.   

 

A single alcohol exposure induces SNARE gene expression 

We have previously shown that acute alcohol exposure induces gene expression of some SNARE 

proteins, including Vamp2, Syt1 and Snap25, but not Vamp1, Stx1a and Syp (Varodayan et al., 

2011). In this study, we investigated the mechanism underlying Vamp2 induction by alcohol due 

to its essential role in fast calcium-triggered synaptic vesicle fusion (Schoch et al., 2001) and its 

differential induction by alcohol compared to Vamp1.  

 

There are few, if any, comparable studies available on the effects of alcohol on Vamp2 gene 

expression. Worst et al. (2005) reported that Vamp2 mRNA levels were lower in cerebellar 
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cultures treated with ethanol. The same group compared 2 sets of rats genetically selected for 

either alcohol preference (AA and P) or alcohol avoidance (ANA and NP) and found increased 

Vamp2 gene expression in the frontal cortex of the AA and P rats (Worst et al., 2005). 

Interestingly, a recent transcriptome profiling study used tissue from alcoholic human brains 

cortices to identify Vamp2 as a hub gene that is likely to have high functional significance in 

biological processes associated with alcohol dependence (Ponomarev et al., 2012). 

 

A molecular mechanism underlying the effects of a single alcohol exposure on SNARE gene 

expression 

We found that Vamp2 gene induction by ethanol is mediated by the transcription factor HSF1 in 

cortical neurons. Specifically, increasing HSF1 activity induced Vamp2, similar to ethanol 

exposure, while a dominant-negative HSF1 abolished this effect. These changes in HSF1 

transcriptional activity had no effect on Vamp1 mRNA levels. Several laboratories have reported 

an association between alcohol exposure and HSF1-dependent gene induction, including 

microarray studies where alcohol treatment increased Hsp gene expression (Gutala et al., 2004; 

Lewohl et al., 2000; Worst et al., 2005) and our work which showed that ethanol increased Hsp 

mRNA and protein levels in neuronal cultures (Pignataro et al., 2007). In addition, we have 

previously reported that Syt1 and the gene encoding for the α4 subunit of the GABAA receptor 

(Gabra4), are induced by alcohol via HSF1. As a whole, these experiments strongly suggest that 

HSF1 transcriptional activity mediates the effects of alcohol on a subset of alcohol-responsive 

genes, including some SNARE proteins. As the SNARE proteins are intimately involved in 
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synaptic vesicle fusion, this raises the interesting question of whether the neuronal response to 

alcohol includes alterations in neurotransmitter release.  

 

A single alcohol exposure causes a wave of transient presynaptic adaptations leading to 

changes in GABA release 

Changes in GABA release after ethanol exposure have been reported in the last decade (Criswell 

and Breese, 2005; Siggins et al., 2005; Weiner and Valenzuela, 2006). We found that mIPSC 

frequency increased in cortical neurons exposed to 60 mM ethanol for 4-8 hours, indicating that 

these durations of ethanol treatment increased GABA release. The Morrow laboratory observed 

that mIPSC frequency was unchanged after cultured cortical rat neurons were exposed to 50 mM 

ethanol for 4 hours or 1-7 days (Fleming et al., 2009; Werner et al., 2011). Since our currents 

were recorded between these time points, the results as a whole suggest that the increase in 

mIPSC frequency after a single dose of ethanol is a transient neuronal adaptation that arises 

within hours and recovers within days. Additional studies have found that bath application of 

100 mM ethanol to cultured cortical rat neurons lowered the frequency of mIPSCs (Moriguchi et 

al., 2007), and that the frequency of mIPSCs in cultured hippocampal rat neurons decreased with 

4 hours of withdrawal from a short ethanol exposure (60 mM, 30 minutes), but recovered after 

withdrawal for 12 hours (Shen et al., 2011). Studies conducted in vivo also showed changes in 

mIPSC frequency across the rodent brain. Melis et al. (2002) observed an increase in mIPSC 

frequency in the VTA of mice injected intraperitoneally with ethanol one day prior to recording. 

Chronic ethanol-treated rats showed a similar increase in mIPSC frequency in the CeA and the 
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frequency was further increased by the application of ethanol, indicating that the acute and 

chronic effects of ethanol on GABA release are differentially mediated (Roberto et al., 2004a).  

 

Overall, these data define a model of presynaptic adaptations to a single dose of alcohol, where 

GABA release is dampened within minutes, but recovers by the hour. An intermediate phase of 

adaptation arises within hours and more GABA is released into the synapse, but these changes 

return to baseline levels within days. A final wave of changes in neuronal activity occurs during 

withdrawal from alcohol as GABA release is once again dampened within hours, but recovers 

within the day. These transient changes in neurotransmitter release could lead to more permanent 

synaptic modifications, especially as the cycle is repeated with multiple exposures to alcohol. 

 

A molecular mechanism underlying some of the effects of a single alcohol exposure on GABA 

release 

The mechanisms underlying the effects of intermediate durations of ethanol exposure on 

presynaptic GABA release remain largely unstudied. Our detailed analysis revealed that ethanol 

increases the number of mIPSC events via HSF1. Specifically, transcriptional activation of HSF1 

in cortical neurons increased mIPSC frequency, similar to 4-8 hours of ethanol exposure. 

Conversely, a dominant-negative HSF1 protein abolished the effect of ethanol on mIPSC 

frequency. These findings indicate that intermediate ethanol treatment of cultured cortical 

neurons increases presynaptic vesicular GABA release via HSF1, although it is likely that a 

variety of alternate mechanisms underlie the similar changes observed after different ethanol 
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exposure models and across brain regions. For example, acute ethanol application in the 

cerebellum increases the number of mIPSC events in granule cells due to an initial increase in 

Golgi cell firing rate (Carta et al., 2004) and in interneurons via activation of both AC/PKA and 

PLC/PKC pathways and internal calcium store release (Kelm et al., 2007; Kelm et al., 2008; 

Kelm et al., 2010). PKCε activity is also required in the CeA for corticotrophin releasing factor 

(CRF) to activate CRF1 receptors on presynaptic GABA terminals and stimulate release (Bajo et 

al., 2008; Nie et al., 2004). The effects of acute alcohol administration on these pathways provide 

for a relatively fast GABAergic neuronal response, but the enhanced GABA release that occurs 

after chronic ethanol exposure is likely to be regulated by longer-lasting changes in gene 

expression.  

 

A single alcohol exposure causes a wave of transient postsynaptic adaptations leading to 

changes in GABA receptor sensitivity 

The synapse is a highly responsive structure and perturbations in presynaptic activity are 

typically met with an adaptive postsynaptic response, and vice versa. We found that treatment of 

cortical neurons with ethanol for 4-8 hours shortened mIPSC decay time, an indication of 

changes in postsynaptic GABAA receptor subunit composition. A decrease in mIPSC decay time 

was also reported after rat cortical neurons were exposed to ethanol for 4 hours and 1 day, but 

these changes recovered after 2-7 days (Fleming et al., 2009; Werner et al., 2011). Using a 

similar in vivo paradigm, the Spigelman laboratory administered rats with a single ethanol dose 

and studied the effects of withdrawal in the hippocampus. The mIPSC decay time decreased 

within 12 hours of withdrawal and this effect persisted for 7 days, but recovered by day 14 
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(Liang et al., 2007). This group also found that these changes in mIPSC kinetics coincided with 

changes in the surface expression of GABAA receptor subunits. In particular, an increase in α4 

expression could cause α4βγ2 GABAA receptors to “crowd” α1βγ2 GABAA receptors out of the 

synapse, leading to changes in GABAA receptor sensitivity to ethanol (Liang et al., 2007). We 

have previously found that ethanol treatment of cultured cortical neurons increased α4 

expression (Pignataro et al., 2007), indicating that similar changes in GABAA receptor subunit 

composition and sensitivity may be occurring in our current study. Overall these data define a 

model of postsynaptic adaptation to a single dose of ethanol in which there is increased surface 

expression of a more sensitive α4βγ2 GABAA receptor within hours, and recovery within days. 

These transient changes in subunit composition could lead to more permanent synaptic 

modifications, especially as the cycle is repeated with multiple exposures to alcohol. 

 

Multiple ethanol exposures could lead to persistent adaptation at the GABA presynapse 

Overall, these data show that a single ethanol exposure can increase HSF1-mediated 

transcription of a subset of alcohol-responsive genes, including SNAREs, in a coordinated 

manner and lead to an increase in GABA release. Given the work of others, it appears that these 

functional neuronal adaptations are transient, arising over several hours and recovering within 

days. One may imagine, however, that multiple ethanol exposures could lead to persistent 

adaptation at the GABA presynapse, resulting in enduring changes in local circuitry. Although 

we have found that ethanol acts via HSF1 to alter neurotransmitter release specifically in 

GABAergic, and not glutamatergic, neurons, the specificity of this effect among variable 

synapses and brain regions is still a key issue that needs to be addressed.   
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Figure 2.1: Ethanol increases Vamp2 mRNA expression in cortical neurons 
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Figure 2.1: Ethanol increases Vamp2 mRNA expression in cortical neurons  

A, Increase in Vamp2 mRNA expression after 1 hour treatment with different concentrations of 

ethanol, as measured by qPCR. The half-maximal activation of Vamp2 was calculated as 40 ± 6 

mM. The data were normalized to Actb cDNA, and all pairs of columns were compared using 

one-way ANOVA and Dunnet’s multiple-comparison post-hoc test (n  6; F (9, 72) = 20.45; p < 

0.0001).  

 

B, Increase in Vamp2 mRNA expression after 60 mM ethanol exposure over time, as measured 

by qPCR. The data were normalized to Actb cDNA, and all pairs of columns were compared 

using one-way ANOVA and Dunett’s multiple-comparison post-hoc test (n  6; F (10, 195) = 

39.58; p < 0.0001). All data are mean ± SEM (*significantly different at the level of P < 0.05, 

*** P < 0.001). 
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Figure 2.2: Ethanol induction of Vamp2 gene requires transcriptionally activated HSF1  
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Figure 2.2: Ethanol induction of Vamp2 gene requires transcriptionally activated HSF1 

A, Knock-down of HSF1 inhibits Vamp2 gene induction by ethanol. Overnight pretreatment of 

neurons with Hsf1 siRNA reduced the effects of 60 mM ethanol exposure for 1 hour (E) on 

Vamp2 mRNA levels, while pretreatment with control siRNA had no effect on Vamp2 gene 

induction by ethanol. The data were normalized to Actb cDNA, and all pairs of columns were 

compared using one-way ANOVA and Dunnett’s multiple-comparison post-hoc test (n  6; F (3, 

44) = 13.55; p < 0.001).  

 

B, Stimulation of Vamp2 gene expression by ethanol is mediated by transcriptionally activated 

HSF1. Cortical neurons transfected with a constituitively transcriptionally active Hsf1 construct 

(Hsf1-act) showed an increase in Vamp2 mRNA expression, similar to the gene’s induction by 

60 mM ethanol for 1 hour (E). Transfection of a constituitively transcriptionally inactivated form 

of Hsf1 (Hsf1-inact) reduced the effects of ethanol on Vamp2 gene induction. Hsf1-inact 

transfection alone had no effect on Vamp2 expression. Control cultures were sham transfected 

with an empty pcDNA3.1+ construct. The data were normalized to Actb cDNA, and all pairs of 

columns were compared using one-way ANOVA and Dunnett’s multiple-comparison post-hoc 

test (n  6; F (4, 73) = 27.53; p < 0.001).  

 

C, Knock-down of HSF1 protein has no effect on Vamp1 gene induction by ethanol. Vamp1 

mRNA levels remain unchanged after neuronal transfection with Hsf1 or control siRNA and 1 

hour of 60 mM ethanol exposure (E). The data were normalized to Actb cDNA, and all pairs of 
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columns were compared using one-way ANOVA and Dunnett’s multiple-comparison post-hoc 

test (n  6; F (3, 47) = 0.29; p = 0.84).  

 

D, Alterations in HSF1 transcriptional activity do not alter Vamp1 gene expression. Transfection 

of cortical neurons with Hsf1-act or Hsf1-inact and treatment with 60 mM ethanol for 1 hour (E) 

had no effect on Vamp1 mRNA levels. The data were normalized to Actb cDNA, and all pairs of 

columns were compared using one-way ANOVA and Dunnett’s multiple-comparison post-hoc 

test (n  6; F (4, 58) = 0.35; p = 0.85). All data are mean ± SEM (*indicates significantly 

different at the level of P < 0.05, ** P < 0.01, *** P < 0.001, or n.s. denotes no significance). 
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Figure 2.3: Ethanol exposure increases mIPSCs in cortical neurons 
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Figure 2.3: Ethanol exposure increases mIPSCs in cortical neurons 

A, Whole-cell voltage clamp electrophysiology recordings from representative neurons show that 

ethanol increases the number of mIPSCs. The current traces in the upper panel were recorded in 

a neuron exposed to 60 mM ethanol for 4-8 hours (E) and a vehicle control neuron (C). 

Magnified representative mIPSC events from control and ethanol-treated neurons are shown in 

the lower panel. 

 

B, Ethanol increases the frequency of mIPSCs averaged across several neurons. The graph shows 

the mean frequency of spontaneous mIPSCs in neurons treated with ethanol (E) or vehicle 

control (C). The treated samples were compared with control samples using a two-tailed 

unpaired t-test (nC = 20, nE = 25; t (43) = 2.67). 

 

C, Ethanol does not alter the amplitude of mIPSCs averaged across several neurons. The graph 

shows the mean amplitude of spontaneous mIPSCs in neurons exposed to ethanol (E) or vehicle 

control (C). Details of mIPSC kinetics are displayed in Table 1. The treated samples were 

compared with control samples using a two-tailed unpaired t-test (nC = 236, nE = 670; t (904) = 

1.37; p = 0.17). All data are mean ± SEM (*significantly different at the level of P < 0.05). 

 

D, Whole-cell voltage clamp electrophysiology recordings from representative neurons 

demonstrate that the mIPSCs are generated by GABA neurotransmission. The current traces 
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were recorded in a single neuron exposed to 60 mM ethanol for 4-8 hours. The mIPSCs are 

blocked in the presence of 20 uM gabazine and recover after drug washout.   
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Figure 2.4: The increase in mIPSC frequency after ethanol exposure requires 

transcriptionally activated HSF1  
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 Figure 2.4: The increase in mIPSC frequency after ethanol exposure requires 

transcriptionally activated HSF1 

A, HSF1 transcriptional activity increases the frequency of mIPSCs averaged across several 

neurons. Cortical neurons transfected with a constituitively transcriptionally active Hsf1 

construct (Hsf1-act) showed an increase in mIPSC frequency, similar to the level seen with 60 

mM ethanol exposure for 4-8 hours (E). Control cultures were sham transfected with an empty 

pcDNA3.1+ construct (C). All pairs of data columns were compared using one-way ANOVA 

and Dunnett’s multiple comparison post-hoc test (nC = 16, nE = 24, nHsf1act = 25; F (2, 62) = 6.48; 

p < 0.01).  

 

B, HSF1 activity does not alter the amplitude of mIPSCs averaged across several neurons. The 

graph shows the mean amplitude of spontaneous mIPSCs in neurons transfected with an Hsf1-act 

construct, exposed to ethanol (E) or control sham transfected (C). All pairs of data columns were 

compared using one-way ANOVA and Dunnett’s multiple comparison post-hoc test (nC = 120, 

nE = 240, nHsf1act = 154; F (2, 511) = 1.78; p = 0.18).  

 

C, The increase in mIPSC frequency after ethanol exposure is mediated by activated HSF1. 

Transfection of a constituitively inactivated form of Hsf1 (Hsf1-inact) reduced the effects of 

ethanol (E) on the frequency of mIPSC events. Hsf1-inact transfection alone had no effect on 

mIPSC frequency, as compared to control cultures sham transfected with empty pcDNA3.1+ 

construct (C). All pairs of data columns were compared using one-way ANOVA and Dunnett’s 
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multiple comparison post-hoc test (nC = 16, nE = 10, nHsf1inact = 12, nHsf1inact+E = 16; F (3, 49) = 

11.25; p < 0.0001).  

 

D, HSF1 activity does not alter the amplitude of mIPSCs averaged across several neurons. The 

graph shows the mean amplitude of spontaneous mIPSCs in neurons transfected with an Hsf1-

inact construct, or exposed to ethanol (E) or vehicle control (C). All pairs of data columns were 

compared using one-way ANOVA and Dunnett’s multiple comparison post-hoc test (nC = 135, 

nE = 160, nHsf1inact = 71, nHsf1inact+E = 60; F (3, 422) = 5.950; p = 0.06). All data are mean ± SEM 

(*indicates significantly different at the level of P < 0.05, ** P < 0.01, *** P < 0.001, or n.s. 

denotes no significance). 
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Table 2.1: A single ethanol exposure alters mPSC kinetics 

Data are obtained from neurons exposed to 60 mM ethanol for 4-8 h and control neurons (n = 20-

26). 

 Treatment  Frequency 

(Hz) 

Amplitude 

(pA) 

Rise time 

(ms) 

Decay time 

(ms) 

mIPSC C  0.24 ± 0.05  13.0 ± 0.4  2.82 ± 0.08 16.2 ± 0.8 

 E  0.83 ± 0.19* 13.7 ± 0.3 3.02 ± 0.06 12.2 ± 0.4*** 

mEPSC C  0.17 ± 0.04  5.6 ± 0.1 0.97 ± 0.05 0.93 ± 0.07 

 E 0.20 ± 0.05 6.3 ± 0.2*** 1.17 ± 0.05** 1.08 ± 0.07 

*P < 0.05, ** P < 0.01, *** P < 0.001 vs. control neurons (two-tailed unpaired t-test). 
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Conclusion 

Summary of findings 

This dissertation provides evidence that HSF1 transcriptional activity is involved in ethanol-

induced changes in SNARE gene expression and neurotransmitter release. The data presented in 

Chapter 1 focus on the transcriptional mechanism underlying the effects of ethanol on SNARE 

genes. We found that synaptotagmin 1 (Syt1) mRNA and protein expression are rapidly and 

robustly increased after ethanol treatment of mouse cortical neurons. The induction of the Syt1 

gene is dependent on the activation of the transcription factor heat shock factor 1 (HSF1), with 

neuronal transfection of a transcriptionally active Hsf1 construct increasing Syt1 mRNA levels 

and transfection of a dominant-negative Hsf1 construct abolishing Syt gene induction by ethanol.  

Further analysis revealed that a subset of the genes encoding the core SNARE proteins share the 

property of induction by ethanol, including one of the isoforms of synaptobrevin (Vamp2), but 

not the other (Vamp1).  

 

In Chapter 2 we demonstrated that ethanol activation of HSF1 also induced Vamp2 gene 

expression and increased GABA release. Specifically, we found that ethanol activates HSF1 

transcriptional activity to rapidly induce the Vamp2 gene, but does not change Vamp1 mRNA 

levels. As Syt1 and Vamp2 encode key SNARE proteins, we investigated whether ethanol 

activation of HSF1 affected neurotransmitter release using whole-cell voltage clamp 

electrophysiology. We found that alcohol increased γ-aminobutyric acid (GABA) release via 

HSF1, but had no effect on glutamatergic synaptic vesicle fusion. Collectively, these data 

indicate that a single ethanol exposure can induce HSF1 transcriptional activity to trigger a 
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specific coordinated adaptation in GABAergic presynaptic terminals. This mechanism could 

explain some of the transient changes in synaptic function that occur after alcohol exposure, and 

may underlie some of the enduring effects of chronic alcohol drinking on local circuitry.  

 

A model for how a single alcohol exposure causes synaptic adaptations leading to changes 

in GABA release 

The experimental findings presented in this dissertation are discussed in detail within the final 

section of each chapter. In this section, we will describe an integrated model based on our 

interpretation of the data and relevant literature.  

 

A single alcohol exposure produces a profound transcriptional response with the induction of a 

variety of gene classes encoding for signaling molecules, molecular chaperones, neurotransmitter 

receptors, transcription factors and cytokines (Miles et al., 1994). Some of these changes in gene 

expression may be attributed to the actions of ethanol on the transcription factor HSF1. Ethanol 

promotes the translocation of cytoplasmically-sequestered HSF1 to the nucleus, where it acquires 

transcriptional activity in a sequential process involving trimerization, acquisition of DNA 

binding activity and inducible phosphorylation (Cotto et al., 1997). The active HSF1 then 

triggers the transcription of several alcohol-responsive genes, including SNARE proteins (Syt1 

and Vamp2), the α4 subunit of the GABAA receptor (Gabra4) (Pignataro et al., 2007), molecular 

chaperone heat shock proteins (Hsps) (Pignataro et al., 2007) and presumably several other genes 

that regulate neuronal processes. This coordinated transcriptional response may lead to changes 
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in specific neuronal functions, depending upon the classes of genes induced. In particular, 

increased Syt1 and VAMP2 protein expression may directly increase GABA release from the 

presynaptic terminal by increasing the probability of synaptic vesicle fusion. 

 

Therefore, HSF1 activation is an early event in a sequence of changes, including increased gene 

expression of a subset of SNARE complex proteins and increased GABA release, which 

ultimately result in altered neuronal communication across local circuitry. Over time, as an 

individual experiences multiple alcohol exposures, some of these synaptic adaptations may 

endure, resulting in functional alterations of critical brain circuitry. These functional changes 

may underlie some aspects of the behavioral tolerance and adaptation that occur in the advanced 

stages of chronic alcoholism. 

 

Alternative interpretations of the effects of alcohol on GABA transmission   

The evidence presented in this dissertation to support the model that alcohol activates HSF1 to 

increase GABA release was collected by recording mIPSCs under whole-cell voltage clamp in 

the presence of TTX to block action potential-dependent neurotransmitter release. In these 

experiments, each mIPSC represents a single or small group of presynaptic vesicles 

spontaneously fusing with the plasma membrane to release neurotransmitter and generate a 

postsynaptic current. Thus, increases in mIPSC frequency are generally interpreted as stemming 

from alterations at the presynapse that increase the probability of synaptic vesicle fusion (De 

Koninck and Mody, 1994; Otis et al., 1994), perhaps due to increased SNARE expression. In 

support of this model, the Sudhof laboratory has shown that Syt1 over-expression in mouse 
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hippocampal neurons increased the probability of neurotransmitter release (Han et al., 2004). A 

different method was used to measure the probability of neurotransmitter release in this study 

and the synaptic responses evoked by action potentials were compared to those elicited with 

application of hypertonic sucrose to measure the size of the readily releasable pool.  

 

Alternatively, mIPSC frequency could be increased by the extension of existing synaptic 

contacts or the formation of new functional synapses. Several imaging studies on mature 

neuronal cultures have observed the clustering of synaptic vesicles into nascent active zones, 

which exhibit evoked vesicle recycling (Ahmari et al., 2000; Friedman et al., 2000) and the 

growth of new dendritic spines within hours (Engert and Bonhoeffer, 1999; Maletic-Savatic et 

al., 1999; Toni et al., 1999). All of these studies, however, only identified these new synaptic 

structures using morphological criteria and failed to demonstrate a capacity for synaptic 

transmission. This relatively fast growth of synaptic structures is also dependent on the variety 

and abundance of free synaptic terminal proteins available for assembly, which can determine 

the amount of synaptic growth, as well as its ability to function appropriately. As a result, it is 

unclear whether several hours of alcohol treatment could increase the size or number of 

functional synapses to generate a three-fold increase in mIPSC frequency.  

 

A third potential mechanism for increasing mIPSC frequency depends completely on the 

adaptation of preexisting non-functional synapses to confer neurotransmission. These “silent” 

synapses have not been identified within the inhibitory neurotransmission system, but are 

common among glutamatergic synapses. A silent synapse contains all the essential pre- and 
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postsynaptic proteins for neurotransmission, but remains functionally silent (Gasparini et al., 

2000; Gomperts et al., 1998; Isaac et al., 1995; Kerchner and Nicoll, 2008; Voronin and 

Cherubini, 2004).  Some glutamatergic synapses are silent due to a lack of AMPARs in their 

postsynaptic specializations. The existing NMDARs cannot conduct current, even in the 

presence of glutamate, due to the channels being blocked by extracellular Mg
+
 ions. AMPAR 

recruitment to the postsynaptic specialization can “unsilence” the synapse, as the AMPARs will 

bind glutamate and generate a large enough depolarizing current to unblock the NMDARs. Other 

mechanisms of silencing glutamateric synapses are due to a low probability of glutamate release 

or insufficient concentrations of glutamate available for release (Gasparini et al., 2000; Voronin 

and Cherubini, 2004). While inhibitory silent synapses have not been identified, it is possible 

that similar silencing mechanisms are unmasked by alcohol treatment, resulting in increased 

mIPSC frequency.  

 

Potential explanations for the specificity of the effects of alcohol on GABA 

neurotransmission 

There are several potential explanations for the difference in the actions of ethanol to stimulate 

GABA release, but not affect glutamate release. As we found that ethanol also differentially 

regulates the two isoforms of synaptobrevin, rapidly inducing the Vamp2 gene, but not Vamp1, it 

is exciting to consider that these two phenomena may be related. The Vamp1 and Vamp2 genes 

are known to be co-expressed in both GABAergic and glutamatergic axon terminals of cortical 

neurons (Bragina et al., 2010), excluding the possibility that each synaptobrevin isoform is 

exclusively expressed in one particular cell type. It is quite possible, however, that GABAergic 
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and glutamatergic cortical neurons express different amounts of Vamp1 and Vamp2 mRNA 

under basal conditions, and that ethanol stimulation of the Vamp2 gene only leads to functional 

changes in the synaptobrevin protein at the GABA presynaptic terminal. In order to better 

understand the specificity of the effects of ethanol postulated by this model, it is necessary to 

measure the expression of each synaptobrevin isoform in pure GABAergic and glutamatergic 

neuronal populations under basal conditions and after ethanol exposure.  

 

An entirely different explanation for the specificity of the effects of ethanol is that the drug acts, 

either directly or indirectly, on GABA-related pathways to increase GABA release. For example, 

alcohol may specifically induce HSF1 transcriptional activity in GABAergic neurons via 

unknown actions on a cell-type specific receptor or second messenger pathway, or alcohol may 

increase vesicular GABA transporter (vGAT) activity to alter quantal size (Edwards, 2007; 

Reimer et al., 1998).  

 

Future directions 

Many interesting questions related to alcohol activation of HSF1 transcription to increase 

SNARE gene expression and GABA release remain unanswered. Understanding the mechanism 

ethanol employs to activate HSF1 is of immediate interest. HSF1 is bound to the chaperone 

proteins, HSP40, HSP70 and HSP90, in the cytoplasm of unstressed cells (Morimoto et al., 1998; 

Tonkiss and Calderwood, 2005). After heat exposure there is a general increase of misfolded 

proteins in the cytoplasm, triggering the release of HSF1 from the HSPs and its translocation into 
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the nucleus (Morimoto et al., 1998). Other changes in the biochemical environment can also 

trigger HSF1 activation, including, most notably, increased free calcium (Mosser et al., 1990). 

As Kelm et al. (2007, 2008, 2010) have determined that ethanol can release internally stored 

calcium by activating inositol triphosphate (IP3) and ryanodine receptors downstream of the 

AC/PKA and PLC/PKC pathways, experiments in the near future should examine whether 

ethanol activation of HSF1 is dependent on internal calcium release via these pathways.  

 

Overall, the data presented in this dissertation show that a single ethanol treatment of cortical 

neurons in vitro increased HSF1-mediated transcription of SNARE proteins and GABA release. 

It would be interesting to extend these findings by assessing HSF1 activity, SNARE expression 

and GABA release in mice administered with a single dose of ethanol. While it is not known 

whether ethanol exposure increases GABA release in the cortex in vivo, it has been demonstrated 

that GABA release increases in the VTA of mice administered a single ethanol dose one day 

prior to recording (Melis et al., 2002). Manipulations of HSF1 activity to demonstrate the 

mechanism underlying the actions of alcohol, could be achieved by using drugs that either 

activate or inhibit HSF1, or viral vectors that lead to the overexpression of constituitively active 

or inactive HSF1.   

 

As the functional neuronal adaptations presented in this dissertation appear to be transient, it 

would also be interesting to determine whether multiple ethanol exposures could lead to more 

enduring changes in GABA release, both in primary cortical culture and in self-administering 

mice. A similar in vivo experiment in the Siggins laboratory found increased GABA release in 
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the central amygdala of chronically ethanol treated rats (Roberto et al., 2004a). Once again, 

manipulations in HSF1 activity would provide mechanistic information about the adaptations at 

the GABA presynaptic terminal that may result in enduring changes in local circuitry.  
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