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Alcohol dehydrogenases (ADHs) have become important catalysts for stereoselective
oxidation and reduction reactions of alcohols, aldehydes and ketones. The aim of this
contribution is to provide the reader with a timely update on the state-of-the-art of ADH-
catalysis. Mechanistic basics are presented together with practical information about the
use of ADHs. Current concepts of ADH engineering and ADH reactions are critically
discussed. Finally, this contribution highlights some prominent examples and future-
pointing concepts.
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1 INTRODUCTION—ALCOHOL DEHYDROGENASES AS
CATALYSTS FOR ORGANIC CHEMISTRY

Redox reactions constitute a central theme of organic synthesis; particularly, the conversion of
alcohols into aldehydes or ketones as well as the reverse reaction (i.e., reduction of carbonyl
compounds into alcohols) play an important role also in industrial practice (Sheldon et al., 2002;
Tojo and Fernández, 2006; Magano and Dunetz, 2012). Decades of intensive research have yielded a
vast portfolio of efficient oxidation- and reduction procedures and –catalysts. Interestingly, chemical
catalysts applicable for both, oxidation and reduction reactions are scarce. In contrast, alcohol
dehydrogenases (ADHs, sometimes also termed carbonyl reductases, KREDs) are natural redox
catalysts capable of catalysing the oxidation of alcohols and the reduction of carbonyl compounds.
This versatility together with their often high selectivity makes ADHs powerful catalysts for the redox
transformation of alcohols and carbonyl compounds. The past decades have seen enormous research
efforts dedicated to the applicability of ADHs in organic synthesis. Earlier issues such as poor
availability, narrow substrate scope or low economic attractiveness of ADH-catalyses reactions have
been solved and ADHs are increasingly used on industrial scale (Hauer, 2020; Wu S. et al., 2021).

The aim of this contribution is to present the current state-of-the-art of ADHs in organic
synthesis. It builds on and extends previous review articles covering various aspects of ADH catalysis
(Li et al., 2021c; de Gonzalo and Paul, 2021; Hollmann et al., 2021; Musa et al., 2021; Musa, 2022).

2 BASIC CONSIDERATIONS

ADHs catalyse the reversible oxidation of alcohols to the corresponding carbonyl products. Being a
redox reaction by nature, the oxidation or reduction reaction has to be accompanied by a reduction
or oxidation reaction of a stoichiometric cosubstrate. ADHs utilise nicotinamide cofactors for this
(Figure 1). The nicotinamide cofactors exist in ribose-phosphorylated [NAD(P)] and ribose-non-
phosphorylated (NAD) form; their basic physicochemical properties (e.g., redox potentials) are
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identical but, frequently, ADHs, depending on their role in the
host organism, exhibit high selectivity for one of the two forms.
As a rule of thumb, ADHs involved in anabolic pathways
generally prefer NADP while metabolically relevant ADHs
utilize NAD. As redox-cofactors, NAD(P) obviously exist in
an oxidised [NAD(P)+] and a reduced [NAD(P)H] form. In
essence, NAD(P)H and NAD(P)+ function as hydride ion
donors or–acceptors, respectively.

2.1 Catalytic Mechanism
The catalytic mechanism of ADH-catalysed transformations
comprises the binding of the starting material (alcohol or
carbonyl compound) together with the nicotinamide cofactors
to the enzyme active site followed by a hydride transfer between
cofactor and substrate (Figure 2). Some ADHs contain a metal
ion in their active site (also Fe ions), which, however,
predominantly participates in coordination of the starting
materials and does not fulfil redox activities. There are also
metal-free ADHs, does not which principally follow the same
hydride transfer mechanism (Zhou et al., 2020).

One key-feature of ADH-catalysis is the reversibility of the
reaction. Any given ADH catalyses both the NAD(P)H-driven
reduction of carbonyl compounds to the corresponding alcohol
and the NAD(P)+-driven oxidation of alcohols to the
corresponding carbonyl products.

As both the carbonyl starting material and the nicotinamide
moiety are chiral, four different stereochemical hydride transfer
pathways are possible (Figure 3) (De Wildeman et al., 2007)
Hydride transfers from the si-face of the prochiral ketone result in

(R)-configured alcohols whereas hydride attacks from the re-face
yield (S)-alcohols. In both cases the hydride transferred can stem
from either the re- or si-face of the nicotinamide ring.

ADHs catalysing hydride addition from the re-face of the
ketone (or abstraction of a hydride from (S)-alcohols) are termed
Prelog-selective ADHs whereas those ADHs attacking from the
si-face (or abstracting a hydride from the (R)-alcohol) are termed
anti-Prelog ADHs. Hence, for any given enantiopreference a set
of suitable ADHs is available (Table 1, vide infra) (Prelog, 1964)

2.2 Factors Influencing Activity/Selectivity
of ADHs.
2.2.1 Influence of the Reaction Conditions on the
Selectivity of ADH-Catalysed Reactions
The selectivity, particularly the enantioselectivity of ADH-catalysis is
predominantly determined by the geometrical composition of the active
site and the structure of the startingmaterial that control the binding of
the substrate relative to the nicotinamide cofactor (Figure 3).
Controlling this binding and the resulting selectivity is nowadays
predominantly achieved through enzyme engineering (vide infra).
There are, however, a range of other factors that may have a
significant influence on the stereoselectivity ofADH-catalysed reactions.

As early as 1986, Keinan, Lamed and coworkers reported an
influence of the reaction pH (and buffer) on the enantioselectivity
of an ADH-catalysed reduction reaction (Keinan et al., 1986).
Using the ADH from Thermus ethanolicus (TeADH) as model
enzyme, Philips and coworkers identified the so-called racemic
temperatures (TR) above and below which TeADH exhibits

FIGURE 1 | Structure and basic redox chemistry of the nicotinamide cofactors. The catalytically relevant nicotinamide moiety is highlighted. The ribose-
phosphorylated (NADP) and ribose-non-phosphorylated (NAD) forms differ in their adenine dinucleotide (AD) moiety.
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opposing stereoselectivity for a given substrate (Pham et al., 1989;
Pham and Phillips, 1990). For the reduction of 2-butanone and 2-
pentanone, for example, TR was determined to be 26oC and 77°C,
respectively. Below these temperatures, (S)-alcohols were the
predominant enantiomer whereas above TR the (R)-alcohol
was formed. The enantioselectivity increased the further away
the reaction temperature was from TR (above and below). A
positive correlation between increasing temperature and
(enantio)selectivity may appear counterintuitive as generally
lower reaction temperatures are evaluated to increase
selectivity. On condition the Curtin–Hammett principle
applies to ADH-catalysed reactions, the enantioselectivity of a
reaction (E) is the difference of the two Gibbs free energies of the
transition states leading to the (R)- and (S)-product (ΔΔGǂ) and
taking into account that ΔG is composed of an enthalpic (ΔH)
and an entropic term (TΔS): ΔΔGǂ = ΔΔHǂ–TΔΔSǂ (Eq. 1), a
racemic temperature can be defined at which the reaction occurs
non-enantioselectively (ΔΔGǂ = 0): TR = (ΔΔHǂ)/(ΔΔSǂ).

Crossing TR, the sign of ΔΔGǂ changes corresponding to a
switch in enantioselectivity (Phillips, 1992).

Also pressure has been demonstrated to exhibit a measurable
influence on the stereodiscrimination of enzymes (Patel and
Phillips, 2014). Water soluble cosolvents can also exhibit some
influence on the stereochemical outcome of ADH-catalysed
redox reactions as exemplified by various authors (Fitzpatrick
and Klibanov, 1991; Schumacher et al., 2006; Musa et al., 2007; Li
et al., 2009; Nealon et al., 2015).

It should, however, be emphasised that the influence of these
parameters generally is not pronounced enough to serve as
convenient measure to control the stereoselectivity of ADH-
reactions. Also, the molecular effect of, e.g., cosolvents today is
by far not understood yet.

2.2.2 Factors Influencing Activity/Stability
pH:ADHs generally exhibit two pH optima, one for the reductive
direction and one for the oxidation reaction. As a rule of thumb,

FIGURE 2 | Simplified catalytic mechanism of ADH reactions. Upon binding of both substrates (e.g., NAD(P)+ and alcohol; 0->1->2) a hydride transfer occurs from
the alcohol-carbon atom to the oxidised nicotinamide moiety yielding the Zn-coordinated carbonyl product and NAD(P)H (3). Both can dissociate from the active site
yielding apo-ADH (0). Alternatively, only NAD(P)H stays bound and the reduced ADH can undergo a reductive conversion (1’->2’-> 3’-> 1).
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aldehyde/ketone reduction reactions are favoured in (slightly)
acidic media whereas for the oxidation of alcohols alkaline media
are favourable (Chang et al., 2009). Nevertheless, operating ADH
reactions at neutral pH usually represents an acceptable
compromise, especially if a substrate-coupled nicotinamide
regeneration approach is used (vide infra). The pH of the
reaction mixture also can have a significant influence on the
stability of the nicotinamide cofactor: the reduced forms

(NAD(P)H) are more stable in alkaline media whereas the
oxidised forms (NAD(P)+) are more stable in acidic media
(Chenault and Whitesides, 1987).

Temperature: The rate of ADH-catalysed reactions increases
with the temperature of the reaction medium. A good
approximation for the influence of the temperature on the rate
of a chemical reaction is the Q10 = 2 value stating that the rate
doubles if the reaction temperature is increased by 10°C. As a

FIGURE 3 | Possible stereochemical courses of the hydride transfer from NAD(P)H to the ketone. Attacks from the si-face of the ketone result in (R)-alcohols (E1
and E2) whereas hydride attacks from the re-face (E3 and E4) result in (S)-alcohols.

TABLE 1 | Selected examples for ADHs with (anti-) Prelog selectivity (de Gonzalo and Lavandera, 2021).

Prelog ADHs Anti-Prelog ADHs

Source Cofactor Source Cofactor

Horse liver (HLADH) NADH/NAD+ Lactobacillus kefir (LkADH) NADPH/NADP+

Rhodococcus ruber (ADH-A) NADH/NAD+ Lactobacillus brevis (LbADH) NADPH/NADP+

Thermoanaerobacter brokii (TbADH) NADPH/NADP+ Candida parapsilosis (CpADH) NADPH/NADP+
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result, exponential increase of the rate of ADH-catalysed
reactions with temperature is to be expected. However, also
the thermal degradation of enzymes (such as ADHs)
represents a chemical process accelerating with temperature.
Hence, the optimal temperature for an ADH should be at the
intersection of the (increasing) activity curve and the decreasing
stability curve of an enzyme (Almeida and Marana, 2019).

Solvents: The effect of solvents on the activity/stability and
selectivity of ADHs is difficult to predict. Different enzymes are
differently affected by a given solvent whereas a given enzyme
usually displays variable tolerance to different solvents. One study
on the effect of water-immiscible organic solvents on three ADHs
showed a higher or even increased stability in the presence of
ethers whereas detrimental effects were observed for aromatic
and aliphatic hydrocarbons and halogenated solvents (Villela
Filho et al., 2003). Many ADHs exhibit decreased activity and
stability in the presence of water-miscible organic solvents
(Miroliaei and Nemat-Gorgani, 2002; Gröger et al., 2003;
Schumacher et al., 2006; Li Y. et al., 2021). For instance, 1,4-
dioxane and acetonitrile have been found to negatively affect
stability and activity of LbADH but at the same time to also
reduce substrate inhibition (Schumacher et al., 2006). Especially
ADHs from thermophilic host organisms such as the ADH from
Pyrococcus furiosus tend to exhibit higher solvent-stability
compared to their mesophilic counterparts (Zhu et al., 2006b)

but also ADHs from mesophilic origins can exhibit considerable
robustness against water soluble cosolvents(Yan et al., 2021).

2.3 Sources of ADHs
ADHs are ubiquitous in all three domains of life—Archea, Bacteria
and Eukarya (Machielsen et al., 2006; Gaona-López et al., 2016;
Thompson et al., 2018). In the early days of biocatalysis, naturally
available enzymes have been used; the ADH from horse liver
(HLADH) (Batelli and Stern, 1910; Lutwak-Mann, 1938) or the
ADH from yeast (YADH) (de Smidt et al., 2008) being some
prominent examples.With the advent ofmolecular biology and the
possibility to recombinantly express enzymes of interest in well-
characterised expression hosts, this situation has changed
dramatically in the past 30 years (Bornscheuer et al., 2012).
Today, recombinant expression of almost any gene of interest
in robust and efficient expression hosts such as E. coli, S. cerevisiae
or P. pastoris is possible and has become a standard technique. This
has also made ADH production independent from seasonal
changes as faced with plant sources, ethical issues as in case of
animal-derived enzymes or fundamental issues as in case of (yet)
unculturable microorganisms (Singh et al., 2016; Bodor et al.,
2020). As a result, today, an enormous versatility of wild-type
ADHs is available, which is also reflected by the variety of enzymes
mentioned throughout this contribution. Various commercial
suppliers also offer ADHs in their portfolios (Table 2).

TABLE 2 | Selection of commercial ADH suppliers.

Supplier Examples

Almaca ADH screening KITs
Amanob Several ADHs
Biocatalystsc Phenylalanine Dehydrogenase, Mannitol Dehydrogenase
c-LEctad ADH screening KITs
Codexise ADH screening KITs
EnzymeWorksf ADH screening KITs
Evoxxg Several R- or S-selective ADHs covering aliphatic and aromatoic ketones, ketoesters and aldehydes
Geccoh ADHA (Pyrococcus furiosus)

TbADH (Thermoanaerobacter brockii)
ADHMi (Mesotoga infera)
LbADH (Lactobacillus brevis)
EhADH (Entamoeba histolytica)
GtADH (Geobacillus thermodenitrificans)
PpADH (Pseudonomas putida)
RjADH (Rhodococcus jostii)

Johnson Mattheyi 17 alcohol dehydrogenase (ADH) enzymes for the reduction of ketones and aldehydes to the corresponding alcohols. The
enzymes in this kit belong to different protein folds (i.e., short-chain ADHs, zinc-containing ADHs, aldo-ketoreductases),
both from prokaryotes and eukaryotes. Also included are enzymes identified from genomic and metagenomic samples and
engineered enzymes

Prozomixj Several ADHs and screening KITs
Sigma-Aldrichk Several ADHs including HLADH, ScADH, EcADH

ahttps://www.almacgroup.com/api-chemical-development/enzyme_kits/carbonyl-alcohol-interconversion/
bhttps://www.amano-enzyme.com
chttps://www.biocatalysts.com/enzyme-products/
dhttps://www.c-lecta.com/products-services/products/customized-enzyme-c-lections/
ehttps://www.codexis.com/biocatalytic-enzymes/#Ketoreductases15102620411641510346116617f911-9218
fhttp://www.enzymeworking.com/page98.html?_l=en
ghttps://evoxx.com/products/biocatalysis/alcohol-dehydrogenase/
hhttps://www.gecco-biotech.com/product/alcohol_dehydrogenases/
ihttps://matthey.com/en/products-and-services/pharmaceutical-and-medical/catalysts/co-reduction-kit
jhttp://www.prozomix.com/products/listing?searchby=application&searchby_application=456&category=21&x=29&y=9
khttp://sigmaaldrich.com
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The seemingly high costs of enzymes compared to “classical”
chemical catalysts remains to be a persistent myth. Indeed, the
prices found for small amounts of ADHs (and enzymes in
general) often significantly exceed those of chemical
components. It should, however, be kept in mind that enzyme
production is subject to economy of scale (Tufvesson et al., 2010).
Enzymes produced at small scale, where labour and equipment
costs dominate the cost structure of enzyme production, tend to
range at 10.000 € kg−1 and higher. However, if produced at scale,
enzyme costs can go as low as 250 € kg−1. Furthermore, the cost
contribution of a (bio)catalyst to the final product significantly
depends on the catalyst’s performance in the chemical
transformation of interest. For example, an ADH produced at
large scale will be economically feasible to produce pharma
products if approx. 20–30 kg product can be obtained per kg
of ADH. An enzyme produced at smaller scale will have to
generate one ton of product per kg of enzyme to meet the
maximal cost contribution allowable for pharma products.

The formulation of the ADH catalyst is directly linked to its
cost. Especially in the academic literature, often highly purified
ADHs are reported. Enzyme purification, however, also in times
of affinity tags still represents additional efforts and costs that can
easily add up to more than five times of the enzyme fermentation
costs (Tufvesson et al., 2010). Therefore, the majority of
commercialised ADH preparations are crude cell extracts
rather than purified ADHs. Provided that none of the
“contaminating” metabolites and enzymes negatively influence
the reaction of interest, crude extracts are usually more an
advantage rather than a disadvantage as these preparations
contain the nicotinamide cofactor thereby often making
additional supplementation with NAD(P)+/NAD(P)H
superfluous. Nevertheless, a commonly observed obstacle with
crude enzyme preparations is the presence of endogeneous ADHs
from the expression host, which may exhibit activity on the target
starting material but not necessarily the desired selectivity. In
such cases (partial) purification is almost inevitable.

3 ENGINEERING OF ADHS AND ADH
REACTIONS

Despite the vast natural diversity of ADHs accessible nowadays
from commercial sources, strain collections or databases a given
wild-type ADH may not meet the requirements for cost-efficient
synthesis of the desired target product. Enzymes have evolved to
meet the needs of their host organism for survival and not the
needs of an organic chemist. Fortunately, protein engineering has
made tremendous advances in the past 20 years (Fasan et al.,
2019; Acevedo-Rocha et al., 2020). Adapted enzymes that fulfil
the needs of organic chemists can be built by directed evolution or
semi-rational design using diverse standard molecular biology
techniques, computational modelling and bioinformatics. In
directed evolution experiments, random mutations are
introduced into the parent gene; the resulting enzyme variants
are investigated and selected for improvements in the desired
property, finally serving as parents for following evolutionary
rounds. The random nature of this approach yields many variants

with mutations in irrelevant positions for the desired property
which is why huge mutant libraries have to be screened. This
makes pure random directed evolutionary approaches very time-
and resource-intensive. Smaller libraries of higher quality can be
achieved by restricting the mutation sites based on structural or
mechanistic information. This semi-rational approach needs
prior knowledge (mostly crystal structures or homology
models of the enzyme) to determine the locations for
randomisation. In turn, the library sizes (as well as the
screening efforts) are greatly reduced. Fully rational design of
improved variants using in silicomethods are yet in their infancy
(Bornscheuer et al., 2012; Hammer et al., 2017; Li et al., 2018;
Fasan et al., 2019; Yang et al., 2019; Acevedo-Rocha et al., 2020;
Bell et al., 2021).

Next to engineering the biocatalyst itself, also engineering the
reaction conditions, e.g., by adjusting the solvent composition or
immobilising the biocatalysts can have a decisive effect on the
practicability of an ADH-catalysed redox reaction.

Some selected examples of enzyme- and reaction engineering
will be discussed in the following paragraphs.

3.1 Protein Engineering
Substrate scope enlargement. A broad substrate scope is a key
requirement for an enzyme to be an effective biocatalyst to foster
their application in organic synthesis. For instance, the secondary
alcohol dehydrogenase from the thermophilic bacterium
Thermoanaerobacter pseudoethanolicus ATCC 33223 (TeADH)
is a very robust ADH exhibiting a rather narrow substrate
scope (small substrates such as aliphatic ketones, Figure 4)
(Musa et al., 2021). By analysing the active site architecture of
wt-TeADH Phillips and co-workers identified Trp110 to interfere
with the binding of sterically more demanding starting materials.
Indeed, exchanging this amino acid residue for a smaller alanine
residue resulted in a TeADH mutant accepting much larger
substrates than the wild type while not being impaired in its
thermal stability. A further mutant of this enzyme (W110A/
I86A) accommodated even bulkier starting materials and also
influenced the stereoselectivity of the enzyme (Figure 4) (Musa
et al., 2018).

Improving/reversing enantioselectivity. Similar to the
substrate scope, the enantioselectivity of an ADH is a property
intimately linked to the geometry of the active site. The company
Codexis has for long excelled in improving enzymes for various
properties using the protein sequence activity relationship
(ProSAR) algorithm (Fox et al., 2007). Using ProSAR, they,
for example, improved the enantioselectivity of LkADH for
tetrahydrothiophene-3-one from 63% to 99.3% (Liang et al.,
2010b). By simultaneously challenging the mutant libraries
with increasing thermal- and solvent-stress, the final mutant
enzyme also showed significantly improved properties here.
Starting from wt-Thermoethanolicus brokii ADH, Reetz and
coworkers applied triple code saturation mutagenesis to
engineer it into an S- or R-selective enzyme for
tetrahydrotfuran-3-one and similar starting materials (Sun
et al., 2016). Using this enzyme Reetz and his team also
demonstrated that enantiodiscrimination of sites further away
from the carbonyl group can be achieved (Agudo et al., 2013).
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Axially chiral 4-alkylidene cyclohexanone represent an almost
impossible target for enantioselective reduction chemistry. Using
combinatorial active-site saturation test (CAST)-based directed
evolution, highly R- and S-selective mutants were obtained.

Another impressive example of engineering the selectivity of
an ADH was reported recently by Ni and coworkers (Xu et al.,
2018). (4-Chlorophenyl) (pyridin-2-yl)methanone (CPMK) is
widely recognised as “difficult” substrate due to the similar
steric demand of both substituents of the carbonyl group
impeding differentiation of the prochiral substrate faces. The
authors chose the ADH from Klyveromyces polysporus (KpADH)
exhibiting modest enantioselectivity in the reduction of CPMK
(84% ee). In a first step they identified possible amino acid
residues in the active site (using a homology model of the
enzyme) that may be involved in substrate binding. From
those, potential hotspots were identified via a combined
alanine- and tyrosine-scanning. The six hotspots were
submitted to combinatorial mutagenesis using reduced codon
alphabets. Overall, several KpADH mutants with significantly
improved enantioselectivity (99.4% ee) and increased catalytic
activity compared to the wt-enzyme were identified.

Catalytic activity improvement. Recently, Zheng and co-
workers reported engineering the ADH from Lactobacillus
kefir (LkADH) for improved activity for the synthesis of (S)-2-
chloro-1-(2,4-dichlorophenyl) ethanol [(S)-TCPE] from the
corresponding ketone starting material (Zheng et al., 2021).
wt-LkADH showed high enantioselectivity but rather poor
catalytic activity. A rational design approach was applied
based on the structural characteristics of the LkADH substrate
binding complex. Molecular docking calculations were used to
generate the binding structure of ADH and 2,2′,4′-
trichloroacetophenone (TCAP) and to identify the key
residues responsible for LkADH activity. Additionally,
molecular dynamic simulations of the LkADH-substrate
binding complex demonstrated that the substrate binding
pocket in wt-LkADH should be reconfigured to allow TCAP
to be well accommodated in the correct orientation with the 2,4-
dichlorophenyl group being located at the large binding pocket
and the chloromethyl group at the small one. Based on these
studies, three sites, specifically A94 (located at the large binding
pocket), E145 (located at the small binding pocket) and S96
(located at the loop responsible for modulating the open and

FIGURE 4 | Substrate scope enlargement and reverse enantiopreference achieved with single and dual mutants from TeSADH (Thermoanaerobacter
pseudoethanolicus secondary alcohol dehydrogenase).

Frontiers in Catalysis | www.frontiersin.org May 2022 | Volume 2 | Article 9005547

de Miranda et al. Alcohol Dehydrogenases as Synthetic Catalysts

https://www.frontiersin.org/journals/catalysis
www.frontiersin.org
https://www.frontiersin.org/journals/catalysis#articles


closed state of the binding pocket), were sequentially selected for
site mutation and subsequently combined. The enantioselective
triple mutant A94S/S96E/E145A displayed a 117- fold increase in
relative activity compared to the wild-type enzyme.

Thermal and solvent stability improvement. Next to
selectivity, robustness of a biocatalyst against hostile reaction
conditions is one of the most desired properties in biocatalysis.
Particularly, resistance against thermal inactivation and
inactivation by organic solvents is of interest for the practical
applicability of ADHs in organic synthesis.

Organic solvents can influence enzymes (ADHs) in many
different ways (Li Y. et al., 2021). Water-immiscible solvents
often inactivate enzymes at the solvent interface. The favourable
interaction of hydrophobic, inner amino acids with the apolar
organic solvent facilitates unfolding and thereby inactivation of
the enzyme. Water-miscible solvents can interact in various ways
with an enzyme and thereby influence its activity and stability: 1)
the changed polarity of the solvent can alternate pKa values and
thereby influence internal salt- or H-bridges relevant for catalysis/
structural integrity of the enzyme; 2) disrupt hydrophobic
interactions in the enzyme and 3) influence the enzyme
flexibility by displacing water molecules.

Evolution of solvent-resistance is feasible as, e.g.,
demonstrated by coworkers of the company Codexis who
engineered ADHs for broadened substrate scope and improved
solvent stability (Liang et al., 2010a; Ma et al., 2010).

Interestingly, thermal stability and resistance against co-
solvents often are correlated, possibly because of the
similarities between the two protein unfolding mechanisms (Li
S. F. et al., 2021). Nestl and Hauer pointed out the importance of
flexible surface regions for stability suggesting to focus on these
regions for improving thermal stability of an enzyme (Nestl and
Hauer, 2014).

The B value approach developed by Reetz and coworkers
addresses such regions by identifying flexible enzyme regions
based on atomic displacement parameters of crystallographic
data reflecting the smearing of electron densities due to
thermal movement (Reetz et al., 2006).

Using an in silico method to identify promising residues for
thermal stability improvement (FRESCO), Fraaije and coworkers
recently reported an impressive stabilisation of ADH-A by 45°C
without impairing the catalytic activity at ambient temperature
(Aalbers et al., 2020). This is remarkable insofar as often increases
in thermostability come with simultaneous decreases in the
mutant’s enzyme activity at ambient temperature (Machielsen
et al., 2006; Willies et al., 2010; Siddiqui, 2017).

In case of the tetrameric ADH from Leifsonia (LnADH)
engineering of amino acids involved in the subunit contact
areas proofed to be successful (Zhu et al., 2021).

3.2 ADH Immobilisation
Immobilisation has been (and remains) a very active subfield of
ADH research. The main motivation to heterogenise enzymes
including ADHs is to increase their robustness under hostile,
non-natural but industrially relevant reaction conditions such as
high reagent concentrations and elevated reaction temperatures
(Hanefeld et al., 2009; Sheldon and Pereira, 2017). Further

advantages of immobilised enzymes over their soluble
counterparts are that they can be applied in continuous
processes and/or in repetitive batch reactions, can easily be
separated from the reaction mixtures and reused. Immobilised
enzymes are also advantageous in multi-step cascade reactions if
temporally or spatially separated reaction steps are necessary.

Principally, three immobilisation principles can be
distinguished: 1) Entrapment, 2) Immobilisation to a carrier
and 3) heterogenisation via crosslinking (Figure 5).

Entrapment: Enzymes and also cells can be entrapped in both
inorganic and organic polymeric matrices. This is most
commonly achieved by preparing the carrier in the presence
of the enzymes, so that they become embedded in the matrix
lattice. Alternatively, enzymes can also be absorbed in pre-
fabricated superabsorbent polymers. As a disadvantage of
entrapment, leaching of enzymes is prone to occur, an issue
that can be addressed by providing additional covalent binding or
by increasing the protein size through cross-linking (Sheldon and
Woodley, 2018). However, because of weaker binding forces
involved in immobilisation, deactivation of the enzyme by
conformational distortions is less likely in comparison with
other approaches. Entrapment of ADHs with various gelating
materials comprising silica gels (Musa et al., 2007; Nagy-Gyor
et al., 2018; Liu et al., 2019; Nagy-Győr et al., 2019) polyvinyl
alcohol (Krasnan et al., 2016; Petrovicova et al., 2018; Yildirim
et al., 2019) poly ethyleneglycol (Schmieg et al., 2019)
superabsorbers (Heidlindemann et al., 2014; Adebar and
Groger, 2020), alginates (Milagre et al., 2005, 2006; He et al.,
2017; Nasario et al., 2019), metal organic frameworks (MOFs)
(Carucci et al., 2018; Ye et al., 2020) or liposomes (Yoshimoto
et al., 2008) has been reported.

Immobilisation onto solid carriers. Solid carriers employed
for immobilisation include inorganic materials, such as silica-
based materials, kaolin or zeolites; organic materials, such as
porous acrylic resins, polystyrene polymers and water-soluble
natural polymers like cellulose and chitosan; and coordination
polymers, particularly metal-organic frameworks (Sheldon and
van Pelt, 2013). Inorganic carriers usually display high thermo-,
chemo- and mechanical stability. They are also available as
nanoparticles, including biocompatible gold nanoparticles and
iron-based magnetic nanoparticles, which can offer advantages
regarding enzyme loadings and mass transfer due to their high
surface-to-volume ratios and controllable sizes (Sheldon and van
Pelt, 2013). Some inorganic carriers, like mesoporous silica,
present uniform pore diameter, high surface areas as well as
high pore volume, so that relatively small enzymes can be
immobilised both on the surface and inside the pores. For
instance, a study on immobilisation of ADH showed that
more enzymes were distributed inside the pores of a
mesostructured cellular foam (MCFs) in comparison to
ordered mesoporous silica particles such as SBA-15, suggesting
MCF as a superior silica-based carrier for immobilisation of
ADHs and similarly sized enzymes with higher loading (Zezzi
do Valle Gomes and Palmqvist, 2017). Among organic polymers,
synthetic acrylic resins are widely employed in enzyme
immobilisation, including commercially available hydrophilic
acrylic resins with mechanical and thermal stability and
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tolerance to organic solvents and to a wide pH range. Natural
polymers have also been used and have the advantage of being
biocompatible and biodegradable. They are mostly hydrophilic
and thereby associated to a lower susceptibility to cause enzyme
deactivation in comparison to hydrophobic carriers, which may
induce detrimental conformational changes in proteins, leading
to denaturation and activity loss.

Immobilisation onto solid carrier materials may occur via
(reversible) physical adsorption based on electrostatic or
hydrophobic interactions or (irreversibly) via covalent
attachment. Physical adsorption can usually be achieved with
the use of simple protocols not requiring chemical modification
of the carrier or the enzyme. However, susceptibility to enzyme
leaching, particularly in aqueous media, limits its applicability in
most biocatalytic reactions under conditions employed in
industrial processes. Nevertheless, some example of
immobilisation of ADHs through adsorption for synthetic
purposes have been reported, including immobilisation on raw
inorganic materials, such as Al2O3 and TiO2 (Sigurdardóttir et al.,
2019), carbomethyl dextran-coated magnetic nanoparticles
(Vasic et al., 2020) and silica gel (Liu et al., 2019). Adsorption
of ADHs through ionic binding onto polymers bearing cationic or
anioninc groups has also been described (Dreifke et al., 2017).
Importantly, electrostatic adsorption is a promising strategy for
the immobilisation of negatively-charged phosphorylated
cofactors, such as NADPH, within porous materials modified
with positively charged groups (Benítez-Mateos et al., 2017;
López-Gallego et al., 2017; Velasco-Lozano et al., 2017).
Because of the reversible nature of such binding, the cofactor
molecules are allowed to diffuse across the intra-porous space
without leaving the support, thus being available for a co-
immobilised enzyme.

Recombinant enzymes bearing a His-tag, i.e., a terminal
sequence of six to nine histidine residues, can be non-
covalently immobilised on polymers containing chelating
groups loaded with metals such as Ni(II), Fe(III), Zn(II),
Cu(II) and Co(II) (Sheldon and Pereira, 2017), polymers
decorated with nitrile tri-acetic acid molecules and loaded with

Ni(II) (Ni-NTA) (Homaei et al., 2013) and controlled porosity
glass-based materials bearing chelated Fe(III), such as EziGTM

(Homaei et al., 2013; Cassimjee et al., 2014; Thompson et al.,
2019) being commonly used carriers. This strategy usually leads
to relatively high immobilisation yields in short times and also
offers the possibility of performing the immobilisation directly
from a crude cell extract, since it also serves as a purification step.
As a disadvantage, metal leaching may be an issue in large scale
processes. Examples of immobilisation of ADHs by this approach
comprehend co-immobilisation of ADH and GDH on sepharose
charged with Ni(II) to give reusable bienzymatic heterogeneous
biocatalysts with improved operational and storage stability for
bioreductions in flow reactors in semi-continuous mode (Plž
et al., 2020); immobilisation of Co(II)-containing magnetic beads
for use in minituarised packed-bed flow reactors (Peschke et al.,
2019) and co-immobilisation of ADHs together with non-ADH
enzymes in Co(II)-charged agarose microbeads (Velasco-Lozano
et al., 2020) and EziGTM (Böhmer et al., 2018) for cascade
reactions.

Attaching enzymes to a carrier via covalent bonds provides a
more stable binding in comparison to adsorption, preventing
enzyme leaching and also leading to improved chemo- and
thermostability due to multipoint attachment to the carrier. In
addition, reactive groups on the surface of carriers used for this
kind of immobilisation enable their modification by insertion of
additional moieties or polymer-coating to confer them desirable
properties such as hydrophilicity to improve enzyme stability (H.
Orrego et al., 2020) On the other hand, conformational changes
imposed to ADHs by covalent immobilisation and inappropriate
enzyme orientation, together with mass transfer limitations,
decreases activity retention and immobilisation efficiency.
Interestingly, either improvement or decrease in
stereoselectivity and even switch in enantiopreference have
been reported to be caused by conformational changes after
covalent immobilisation (Petkova et al., 2012). The covalent
bonds between the enzyme and the carriers usually involve the
reaction of nucleophilic amino acid residues on the surface of the
protein, such as lysine or cysteine residues, with electrophilic

FIGURE 5 | Immobilisation principles. (1) Entrapment of enzymes in a polymeric matrix; (2) Immobilisation of enzymes to a carrier; (3) Cross-linked enzymes
aggregates (CLEAs).
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moieties on the surface of the carrier, such as Michael acceptors
and oxirane and formyl groups (Homaei et al., 2013). Attention
must be given to the tolerance of the enzyme to the reaction
conditions required for some immobilisation procedures, such as
alkaline pH, and to possible cross-linking between particles
resulting in a lower available surface area and thereby
increasing mass transfer limitations.

Covalent immobilisation of ADHs have been achieved with
epoxy resins (Figure 6A), (Sole et al., 2019) including the
commercially available EupergitTM (Boller et al., 2002). As an
example, Truppo and co-workers (Li et al., 2015) described the
immobilisation of an ADH on a commercial amino-epoxy-
functionalised poly methacrylate resin to give a heterogeneous
biocatalyst with improved tolerance to organic solvents and good
recyclability, which could be used to perform the synthesis of 1-
(3,5-bis(trifluoromethyl)phenyl)ethenone at 50g scale.

Another commonly used method for covalent immobilisation
of ADHs (and enzymes in general) relies on the treatment of
amino-functionalised carriers with a di-aldehyde, typically
glutaraldehyde, which is then followed by reaction with lysine
residues, so that both carrier and enzymes become bonded to a
spacer through imine groups (Figure 6B). Alternatively, the use
of a carrier bearing formyl groups, such as glyoxyl-functionalised
supports (Mateo et al., 2006; H. Orrego et al., 2020) obviates the
addition of a di-aldehyde. Further reduction of the imines to
secondary aminemoieties with sodium borohydride or the milder
2-picoline borane (Orrego et al., 2018) provides a more stable
attachment between the enzymes and the carrier, though this step
is not always performed. Importantly, these immobilisation
methods require alkaline conditions, so that denaturation of
enzymes may occur. This strategy has been used to immobilise
ADHs on amino-functionalised titania nanoparticles (Ghannadi
et al., 2019), silicon carbide (Zeuner et al., 2018) and nanoporous
silica (Engelmann et al., 2020).

Similarly, ADHs have been successfully immobilised in
agarose bearing formyl groups (Mateo et al., 2006; Velasco-

Lozano et al., 2017; H. Orrego et al., 2020). For instance, Serra
and coworkers (Dall’Oglio et al., 2017) described the
immobilisation of an ADH and GDH (for cofactor
regeneration) in glyoxyl-agarose. The immobilisates were used
as a blend in a packed-bed flow reactor, which could be operated
for 15 days for continuous bioreduction of ketones with only a
slight decrease in conversion, thus demostrating the robustness of
the immobilised biocatalysts.

López-Gallego and coworkers reported a self-sufficient
heterogeneous biocatalyst by coimmobilising both enzyme and
cofactor on glyoxyl-agarose macroporous beads (Orrego et al.,
2021). After covalent immobilisation of a thermophilic (S)-2-
hydroxybutyryl-CoA dehydrogenase from Thermus thermophilus
HB27 (Tt27-HBDH), the remaining formyl groups on the carrier
allowed for a subsequent coating with polyethyleneimine (PEI) to
give a cationic layer in which NADH molecules could be
embedded and reversibly immobilised through ionic
interactions. The resulting biocatalyst could be used for ten
cycles to produce (S)-ethyl 3-hydroxybutyrate with a
productivity in the range of 0.066–0.027 g L−1 h−1 and a TTN
of 145 for NADH (in constrast to a TTN limited to 10 when
soluble, non-coimmobilised NADH was used).

CLEAs: CLEAs are prepared through precipitation of the
enzymes as physical aggregates in aqueous media, without
disturbing their tertiary structure, with the aid of salts or non-
ionic polymers or by the addition of an organic water-soluble
solvent (Sheldon, 2019; Sheldon et al., 2021). The enzyme
molecules in the aggregates are then covalently cross-linked by
the addition of a di-aldehyde. Typically, ammonium sulphate is
used as an aggregant and glutaraldehyde as a cross-linking agent.
They can be added together in the enzyme solution, since physical
aggregation takes place much faster than the cross-linking
reaction. As an advantage, immobilisation through CLEAs do
not require a carrier, thus resulting in lower cost and in high
productivities and space-time yields in comparison to previously
discussed strategies, since “activity dilution” due to the addition

FIGURE 6 | Immobilisation of enzymes on solid carriers via covalent bond. (A) Attachment of enzymes to epoxy resins; (B) Attachment of enzymes to carriers
bearing formyl moieties.
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of a large amount of non-catalytic ballast is avoided. In addition,
CLEAs are especially effective to improve stability of multimeric
enzymes, have low susceptibility to enzyme leaching and usually
present good diffusional properties due to their high porosity.
Low mechanical robustness and the difficult to produce particles
with uniform and suitable size, however, account for their
disadvantages (Sheldon, 2019; Sheldon et al., 2021). An
example of immobilisation of ADHs by producing CLEAs was
provided by Shao and coworkers (Wu K. et al., 2021) who
succeeded thereby in improving storage and thermo- and
chemostability as well as tolerance to pH of a mutant short-
chain dehydrogenase of Novosphingobium aromaticivorans. The
immobilisate was used for the bioreduction of a chloroketone to
give a chiral intermediate of the drug atazanavir with high
stereoselectivity and a space-time yield of 226.6 g L−1 day−1

keeping 85.3% of conversion after being reused for six batches.
Two or more different enzymes can be immobilised in a single

CLEA to give the so-called combi-CLEAs. This approach has
been employed for the obtaining of bi-enzymatic immobilisates,
including magnetic combi-CLEAs (Chen et al., 2018) bearing the
main ADH and the cofactor regenerating enzyme (Ning et al.,
2014; Zhang J. et al., 2020; Xu et al., 2020). As an example, Su et al.
(2018) described the preparation of combi-CLEAs comprised of
ketoreductase and GDH enzymes embedded with magnetic
Fe3O4 nanoparticles and their use in the obtaining of 1.98 g of
enantiopure ethyl (S)-4-chloro-3-hydroxybutyrate from its
corresponding ketoester in 15 h with a TTN of NADH of
11.880. The bifunctional biocatalyst presented improved
chemo- and mechanical stability, showing better recyclability
than the non-magnetic combi-CLEAs.

3.3 Reaction Medium Engineering
Today, mostly aqueous reaction media are used for ADH-
catalysis. Despite common perception, water is a sub-optimal
solvent for many biocatalytic reactions. Many of the reagents of
interest are rather hydrophobic and therefore rather poorly
water-soluble. Today, a very common way around this
challenge still is to utilise rather dilute reagent concentrations
in the reaction mixtures (Holtmann and Hollmann, 2022). As a
result product titres of less than 10 g L−1 and less are the rule
rather than the exception in biocatalysis. This is unsustainable
both from an economic (Huisman et al., 2010) and an
environmental (Ni et al., 2014) point of view. Therefore,
increasing the reagent concentrations represents a prime target
en route to environmentally benign and economically attractive
ADH-catalysed reactions.

Fortunately, in recent years, the pioneering works by Klibanov
and coworkers are receiving a renewed interest from the research
community (Zaks and Klibanov, 1984, 1985; Dordick et al., 1986).
As early as the 1980s these authors demonstrated the applicability
of various enzyme classes in non-aqueous media. Next to a larger
choice of solvents and the increased solubility of the reagents of
interest, non-aqueous media also offer advantages with respect to
enzyme stability (especially at elevated temperatures). In case of
ADH-catalysis the immobilisation of the nicotinamide cofactor
within the ADH active site induced by the non-aqueous
surrounding also eliminates a range of water-related

inactivation mechanisms. Therefore, the number of ADH-
reactions occurring in non-aqueous or micro-aqueous media is
steadily increasing (de Gonzalo et al., 2007; Jakoblinnert et al.,
2011; Musa and Phillips, 2011; Kara et al., 2014b; Heidlindemann
et al., 2014; Spickermann et al., 2014; Popłoński et al., 2018).

In cases where non-aqueous reaction media are not
straightforward to implement (e.g., because of issues with
biocatalyst stability or –formulation) multiphase reaction
systems offer an attractive alternative to improve the reagent
payloads. Slurry-to-slurry reactions, for example, apply
dispersions of solid, poorly water soluble reagents in aqueous
(biocatalyst-containing) media. Provided the affinity of the
enzyme for the starting material is sufficiently high (KM in the
range of the equilibrium solubility or lower) the rate of the
biocatalytic transformation is not impaired severely. An
elegant example was reported by researchers from Codexis
converting a very poorly starting ketone (solubility <0.5 g L−1)
into the corresponding (not much more soluble) alcohol product;
using the slurry-to-slurry concept substrate loadings of up to
100 g L−1 were converted efficiently into the desired product at
200 kg-scale (Liang et al., 2010a). An attractive feature of slurry-
to-slurry reactions is of course that in principle a simple filtration
step suffices for product isolation.

More commonly, two liquid phase systems are applied. Here, a
hydrophobic, water-immiscible organic phase serves as substrate
reservoir and product sink at the same time (Figure 7). 2LPS
exhibit a range of advantages over simple monophasic reaction
media): First, they enable overall higher reagent loadings and
thereby increase the economic attractiveness and reduce water
wastes. Furthermore, product separation from the catalysts is
principally straightforward after phase separation (Wu et al.,
2009; Kara et al., 2013c; Ou et al., 2019). Second, water-
reactive substrates and products can (to some extent) be
protected in the organic layer from, e.g., hydrolysis. Another
attractive feature is that, in some cases the organic solvent can
help to control the selectivity of multi-step reactions. For
example, whole cell-catalysed oxidations of primary alcohols
can be plagued by (undesired) overoxidation of the desired
aldehyde due to the presence of endogeneous aldehyde
dehydrogenases. This issue has been addressed using the 2
LPS approach, e.g., by Bühler et al. (2002), Bühler et al.
(2003), Bühler and Schmid (2004) and Molinari et al. (1997),
Gandolfi et al. (2001). In the presence of hydrophobic organic
phases, the intermediate, hydrophobic aldehydes were efficiently
extracted into the organic layer and were thereby not available for
aldehyde-dehydrogenase-catalysed overoxidation to the acids.

3.4 Cofactor Regeneration
Ever since ADHs have moved into the focus of biocatalysis,
cofactor regeneration strategies have been investigated
(Chenault and Whitesides, 1987). The majority of ADHs
considered today depend on either nicotinamide cofactor,
either the non-phosphorylated (NAD+/NADH) or the
phosphorylated (NADP+/NADPH) cofactor (Figure 1).
Commercial nicotinamide cofactors are rather expensive,
making their use in sub-stoichiometric amounts and in situ
regeneration of the active redox state mandatory. Over the
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decades (Chenault and Whitesides, 1987), a broad variety of in
situ regeneration systems has been developed, which has been
reviewed extensively (Wichmann and Vasic-Racki, 2005; Kara
et al., 2014a; Zhang and Hollmann, 2018). Therefore, in this
contribution we focus on the most relevant ones with a particular
focus on practicability and environmental impact.

3.5 Regeneration of Reduced Nicotinamide
Cofactors
The so-called substrate-coupled regeneration approach
represents a very simple approach to regenerate NAD(P)H in
ADH-catalysed reduction reactions (Wichmann and Vasic-
Racki, 2005; Kara et al., 2013a). In this approach, an
oxidisable cosubstrate (frequently isopropanol) is added to the
reaction mixture enabling an overall biocatalytic variant of the
Meerwein-Ponndorf-Verley reduction (Figure 8).

From a practical point-of-view this approach is very attractive as
the production enzyme at the same time also serves as regeneration
enzyme and that—in principle—the nicotinamide cofactor can stay
bound to the enzyme active site. The latter is of interest for
circumventing solvent-related degradation of the cofactor
(Chenault and Whitesides, 1987) and enables using the enzyme
under non aqueous conditions. Since the ADH reaction is reversible,
the same approach can also be used to promote ADH-catalysed
oxidation reactions (e.g., using isopropanol as cosubstrate).

On the downside, the reversibility of the reaction results in a
rather unfavourable equilibrium of the overall reaction.
Chemically, the substrate/cosubstrate couple is very similar to
the product/coproduct couple (essentially consisting of an alcohol
and a carbonyl compound) resulting in an equilibrium constant
around one. To shift the equilibrium to the desired side, Le
Chatelier measures such as the removal of one product from the
reaction mixture can be taken. But most frequently, the

FIGURE 7 | The two liquid phase system (2LPS) approach combining an organic phase (hydrophobic solvent containing the reagents in high concentrations) and
an aqueous (biocatalyst-containing) reaction phase.
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FIGURE 8 | Substrate-coupled reduction of carbonyl groups (aldehydes, ketones) to the corresponding alcohols using a sacrificial alcohol cosubstrate (such as
isopropanol) as stoichiometric reductant.

FIGURE 9 | Smart Cosubstrates to turn ADH-catalysed reduction kinetically and thermodynamically irreversible.

FIGURE 10 | Selection of some common enzyme-coupled NAD(P)H regeneration approaches.
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cosubstrate is used in significant (more than 20-fold) excess to
shift the equilibrium. “Smart cosubstrates” represent an
interesting solution to this thermodynamic challenge. Kara
et al., for example, developed a system comprising lactonisable
diols as ‘smart cosubstrates’ (Figure 9) (Kara et al., 2013b; Zuhse
et al., 2015; Huang et al., 2018).

“Smart cosubstrates” enable a dramatic reduction in the
cosubstrate loading for several reasons: on the one hand, the
lactone coproduct is very unreactive for thermodynamic and
kinetic reasons. On the other hand, as the “smart cosubstrate” is
oxidised twice by the ADH, only 0.5 equivalents are needed to
obtain full conversion of the substrate.

The reversibility issue of ADH-catalysed reduction reactions
is also frequently solved via the so-called enzyme-coupled
NAD(P)H regeneration approach (Figure 10) (Wichmann
and Vasic-Racki, 2005; Kara et al., 2013a) Here, a second,
irreversible NAD(P)+-dependent oxidation reaction is used
to regenerate the reduced nicotinamide cofactor. The most
popular enzyme systems right now are glucose-dehydrogenase
(Sorgedrager et al., 2008; Liang et al., 2010b; Huisman et al.,
2010; Gong et al., 2017; Chen et al., 2021) and formate
dehydrogenase (Shaked and Whitesides, 1980; Seelbach
et al., 1996; Gröger et al., 2004; Jiang et al., 2020). Very
recently, Vincent and coworkers reported significant
advances in the use of hydrogenases (Reeve et al., 2012;

Reeve et al., 2017; Zor et al., 2017; Zhao et al., 2021)
enabling H2 as cosubstrates.

3.6 Regeneration of Reduced Nicotinamide
Cofactors
Regeneration of oxidised nicotinamide cofactors. Similarly to
reductive ADH reactions, also for oxidative ADH processes, a
range of enzyme- and substrate coupled approaches have been
reported. The enzyme-coupled approach principally suffers from
the same thermodynamic challenges as discussed above. Kroutil and
coworkers therefore devised a “smart cosubstrate” approach based on
α-halo substituted ketones as sacrificial electron acceptors (Lavandera
et al., 2008b; Kurina-Sanz et al., 2009). The corresponding vic-halo
alkanols are thermodynamically stabilised through intramolecular
H-bonds thereby efficiently shifting the overall equilibrium.

In contrast to the regeneration of the reduced nicotinamide
cofactors, the opposite reaction (regeneration of NAD(P)+ from
NAD(P)H) is not plagued by regioselectivity issues and the
aromatic NAD(P)+ can be formed. This is also why “chemical”
regeneration systems represent a viable alternative to enzymatic
counterparts. The preferred stoichiometric electron acceptor is
molecular oxygen because of the high thermodynamic driving
force of O2 reduction on the one hand and because of the
favorable byproducts (H2O or H2O2, which is generally

FIGURE 11 | Selection of ADH-catalysed reductions of methyl ketones. [a] Geotrichum candidum acetone preparations (Nakamura and Matsuda, 1998), [b]
LbADH (from Lactobacillus brevis) (Schubert et al., 2001), [c] LkADH (from Lactobacillus kefir) (Simon et al., 2014), [d] ADH from the commercial ADH screening KIT
’Chiralscreen OH′ (Nagai et al., 2018), [e]ADH-A (López-Iglesias et al., 2015), [f] LbADH (Albarrán-Velo et al., 2020) [g] RasADH (from Ralstonia sp.) (Bandeira et al.,
2020), [h] RsADH (from Rhodococcus sp.) (Rosen et al., 2006).
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dismutated into O2 and H2O). Amongst the enzymatic NAD(P)+

regeneration systems, clearly the so-called NAD(P)H oxidases
dominate (Riebel et al., 2002; Riebel et al., 2003; Jiang and
Bommarius, 2004; Park et al., 2011; Gao et al., 2012; Dias
Gomes et al., 2019; Anderson et al., 2021). But also some
monooxygenases (at first sight unexpected) can be used for
the regeneration of NAD(P)+ exploiting the (usually

undesired) uncoupling reaction (Holtmann and Hollmann,
2016). For example, flavin-dependent monooxygenases (Ni
et al., 2016) and ene reductases (Pesic et al., 2019) or heme-
enzymes (Holec et al., 2016; Jia et al., 2017) can be used as
NAD(P)+ regeneration catalysts.

Amongst the chemical NAD(P)+ regeneration catalysts redox-
active dyes such as ABTS (Schröder et al., 2003; Aksu et al., 2009)

FIGURE 12 | Selection of chiral α-functionalised alcohols obtained via stereoselective reduction of the corresponding ketone. [a] SmADH from Stenotrophomonas
maltophilia (Yang et al., 2020), [b] engineered LkADH (from Lactobacillus kefir) (Zheng et al., 2021), [c] ScADH (from Saccharomyces cerevisiae) (Ankati et al., 2008), [d]
(Wang et al., 2019), [e] YOL151w: Yeast ADH expressed in E. coli (Nowill et al., 2011), [f] (Zhang et al., 2018) [g] (Gonzalez-Martinez et al., 2019) [h] (Fischer and
Pietruszka, 2012) [i] TbADH (from Thermoanaerobacter brokii) (Bisterfeld et al., 2017), [j] LbADH (from Lactobacillus brevis)(Holec et al., 2015). [k] engineered
LkADH (from Lactobacillus kefir), (Berkessel et al., 2007), [l] overexpressed ADH-A (from Rhodococcus ruber) (Borzecka et al., 2013 ).

FIGURE 13 | Bienzymatic cascade to transform α-chloroketones into β-substituted chiral alcohols combining stereoselective ADH-catalysed reduction of the
chloroketone with a halohydrin dehalogenase (Hhe)-catalysed substitution of the chlorine with a nucleophile (occurring via an intermediate epoxide).
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or quinoid dyes such as Meldola’s blue (Kochius et al., 2012;
Könst et al., 2013; Kochius et al., 2014) and others can be used.
Most frequently used are the natural flavin cofactors (riboflavin,
flavin adenine mononucleotide and flavin adenine dinucleotide)
(Jones and Taylor, 1973; Jones and Taylor, 1976; Boratynski et al.,
2010; Piantini et al., 2011; Boratynski et al., 2013), whose
photoresponsiveness can be exploited to dramatically
accelerate the oxidation of NAD(P)H to NAD(P)+ (Gargiulo
et al., 2011; Rauch et al., 2017).

4 ADH-CATALYSED REDUCTION
REACTIONS

The stereoselective reduction of prochiral ketones is by far themost
popular application of ADHs in organic synthesis. Especially in the
synthesis of pharmaceutically active ingredients, ADHs are very
popular due to their high selectivity (Raynbird et al., 2020). In the
past years, thousands of publications have appeared reporting an
ADH-catalysed ketoreduction reaction. Therefore, an exhaustive
coverage of this vast literature landscape is not possible, and we
restrict this passage to some representative examples and
interesting concepts.

Ketones comprising one large and one small substituent at the
carbonyl group are very common substrates for ADH-catalysed
reductions. Especially methyl ketones are popular starting materials
and a broad range of aliphatic (Sinha and Keinan, 1997), aromatic
(Hamada et al., 2001; Stampfer et al., 2002; Hummel et al., 2003;
Gonzalez-Martinez et al., 2019; Bandeira et al., 2020), and
conjugated ketones (Schubert et al., 2001; Sgalla et al., 2007;
Albarrán-Velo et al., 2020; González-Granda et al., 2021) have
been reported. Figure 11 shows a representative selection of chiral
alcohols obtained from the reduction of methyl ketones.

Very recently, some of us proposed an extension of the ADH-
catalysed stereoselective ketone reduction by a generation of the
ketone starting material from non-functionalised starting
materials (Xu et al., 2022). For this, we combined the
peroxygenase-catalysed “through oxidation” of several
alkylbenzenes to the corresponding acetophenones followed by
the enantioselective reduction into the desired R- or S-alcohols.
Instead of the peroxygenase also P450 monooxygenases (Both
et al., 2016) or (photo)catalytic oxyfunctionalisation (Zhang et al.,
2017; Gacs et al., 2019; Zhang et al., 2019; Albarrán-Velo et al.,
2021) have been reported.

α-functionalised ketones represent another important class of
ADH-starting materials (Figure 12). The resulting halohydrin
products represent versatile building blocks via nucleophilic
substitution reactions of the halides giving access to, e.g., epoxides
(intramolecular substitution), amino alcohols or hydroxyl nitriles.
Next to the often very high stereoselectivity of the reduction reaction
another advantage of ADH-catalysis is that reductive dehalogenation
reactions, frequently observed with transition metal catalysts, is
generally not an issue (Erian et al., 2003; Mori et al., 2004).

Several aryl, benzyl and alkyl chlorohydrins (Hanson et al.,
2005; Poessl et al., 2005; Berkessel et al., 2007; Schrittwieser et al.,
2009a; Schrittwieser et al., 2009b; Zheng et al., 2021), and, to a
lesser extent, bromo-(Mangas-Sánchez et al., 2011) and
fluorohydrins (Borzecka et al., 2013) have been synthesised on
(semi-)preparative scale.

The large repertoire of halohydrins derived from ADH-
catalysed reduction of the corresponding ketones (Figure 12)
also includes propargylic chlorohydrins (Schubert et al., 2002)
and compounds bearing functional groups such as esters (Yang
et al., 2020), amino-protected groups (Patel, 2001; de Miranda
et al., 2015) and heteroaryl moieties (Borzecka et al., 2013).
Importantly, some relevant chlorohydrins have been produced
by ADH in practical scale, such as the enantiopure ethyl
(S)-chloroacetoacetate (Yang et al., 2020), a chiral synthetic
intermediate of the “blockbuster” drug atorvastatin, and (S)-2-
chloro-1-(2,4-dichlorophenyl) ethanol (Zheng et al., 2021), an
intermediate of the antifungal agent luliconazole.

In addition of halo-substituted alcohols also ß-azido- (Edegger
et al., 2006a; Cuetos et al., 2013), ß-nitro alcohols (Tentori et al., 2018;
Wang et al., 2019) and ß-nitrile alcohols (Ankati et al., 2008) are
accessible. Reduction of α-hydroxy carbonyls results in chiral vicinal
diols (Kihumbu et al., 2002; Wachtmeister et al., 2014; Kulig et al.,
2019; Muschallik et al., 2020). Chiral 2,2,2-trifluoro-1-arylethanols
are important motifs in medicinal chemistry and drug development
and therefore have also extensively been investigated as targets for
ADH-catalysis (Rosen et al., 2006; Hussain et al., 2008; Adebar et al.,
2019; Gonzalez-Martinez et al., 2019).

An interesting application of the ADH-catalysed reduction of α-
haloketones was established by Kroutil and coworkers (Figure 13)
(Schrittwieser et al., 2009a) In the first step ADH-catalysed
reduction of α-chloro ketones gave access to enantiomerically
pure β-chloro alcohols. The latter are substrates for halohydrine
dehalogenases (Hhe’s) which reversibly dehalogenate them into
epoxides. Utilising the reversibility of this step and shifting the
equilibrium by an excess of alternative nucleophiles (such as azide
or cyanide) a range of optically pure β-azido- and β-cyano-alcohols
could be obtained in 50mg scale.

A very unconventional conversion of α-substituted carbonyl
compounds was developed by Hyster and coworkers (Emmanuel
et al., 2016; Biegasiewicz et al., 2018). Upon illumination with
blue light, ADH-bound NAD(P)H can serve as single electron
donor. In case of α-halo- or α-acetoxy-substituents, serving as
leaving groups, light-induced dehalogention or deacetoxylation
reactions have been observed (Figure 14).

Dicarbonyl starting materials have found significant attention
in the past years as substrates for ADH-catalysed reduction
reactions (Figure 15).

FIGURE 14 | Photoenzymatic reductive dehalogenation of α-substituted
carbonyl compounds.
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α-hydroxy acids have been synthesised from the
corresponding keto acids (Zhu et al., 2006a; Pennacchio et al.,
2008; Applegate et al., 2011; Burns et al., 2017). Starting from 1,2-
diketo compounds, selective monoreduction to the
corresponding α-hydroxyketone is challenging due to the
frequently observed overreduction to the dialcohol (Hoyos
et al., 2008; Monsalve et al., 2010; Pal et al., 2015)
necessitating reaction engineering approaches to maximise the
yield in the desired monoreduction product (Muschallik et al.,
2020). Some new ADHs showing some potential for the selective
monoreduction have been identified recently (Shanati et al.,
2019). Similarly, β-hydroxy esters are accessible via various
ADHs (Hummel et al., 2003; Muller, 2005; Zadlo et al., 2016;
Wang et al., 2020) as well as ß-hydroxy ketones (Ludeke et al.,
2009). The bioreduction of 1,4-diketones has been investigated
for a long time already (Haberland et al., 2002a; Haberland et al.,
2002b; Katzberg et al., 2009; Muller et al., 2010; Mourelle-Insua

et al., 2018). Similar to 1,2-diketones, selective monoreduction so
far has been achieved via kinetic control of the overall reaction.

α-substituted ß-diketones are prone to in situ racemisation of
the enolisable C-H bond. This opens up the possibility of
generating two chiral centers at the same time in a single ADH-
catalysed reduction step provided the ADH exhibits
stereoselectivity for both positions, i.e., preferentially converting
one substrate isomer and performing the carbonyl reduction
reaction stereoselectively (Ji et al., 2001; Kalaitzakis et al., 2006;
Kalaitzakis and Smonou, 2010b; a; Giovannini et al., 2011;
Kalaitzakis and Smonou, 2012; Méndez-Sánchez et al., 2019).

ɣ- and δ-ketoesters are attractive targets for ADH-catalysed
reduction reactions as the corresponding alcohols easily (often
spontaneously) undergo intramolecular esterification. The
resulting lactones are common motifs in natural products
(Korpak and Pietruszka, 2011; Fischer and Pietruszka, 2012;
Classen et al., 2014; Díaz-Rodríguez et al., 2014; Kumru et al.,

FIGURE 15 |Representative examples of products obtained from ADH-catalysed reduction of dicarbonyl compounds. [a]BcADH (from Bacillus clausii) (Muschallik
et al., 2020), [b] AAR (acetylacetoinreductase) (Di Carmine et al., 2018), [c] commercial ADH (Burns et al., 2017), [d] KRED-119: commercial ADH (Kalaitzakis et al., 2006),
[e] LbADH (from Lactobacillus brevis) (Wolberg et al., 2000), [f] ADH-A (from Rhodococcus ruber) (Méndez-Sánchez et al., 2019), [g] CaADH (from Clostridium
acetobutylicum) (Applegate et al., 2011), [h] Baker’s yeast (Katzberg et al., 2009), [i] RasADH (from Ralstonia) (Díaz-Rodríguez et al., 2014), [j] ADH-T (from
Thermoanaerobacter sp.) (Kumru et al., 2018).
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2018; Borowiecki et al., 2020). Starting from synthetically easily
accessible substituted conjugated ketoesters bienzymatic cascades
comprising ene reductases (ERs) and ADHs enable access to a
broad range of chiral ɣ-butyrolactone products (Figure 16)
(Korpak and Pietruszka, 2011; Classen et al., 2014; Brenna
et al., 2015).

α,β-unsaturated carbonyl groups are popular starting
materials for ADH-ER-cascades. Successful realisation of such
cascades critically depends on the suitable selection of selective
ADHs as principally both, the α,β-unsaturated starting material
and the saturated carbonyl compound can be converted by
ADHs. Hence, utilising unselective ADHs results in complex
product mixtures (Paul et al., 2013) necessitating sequential
arrangement of the individual reduction steps. Using the
“right” combination of selective ADHs and ERs, however,
enables efficient one-pot one-step cascades (Brenna et al.,
2012a; b).

Finally, the reduction of so-called “bulky-bulky”-ketones,
i.e., sterically very demanding starting materials, are worth
discussing here. These substrates have been a challenge for
stereoselective reductions mediated by ADHs for quite some
time. Nevertheless, some useful enzymes have been reported
comprising the ADHs from Sphingobium yanoikuyae (SyADH)
(Lavandera et al., 2008a; Cuetos et al., 2012; Man et al., 2014),
Ralstonia sp. (RasADH) (Lavandera et al., 2008a; Cuetos et al.,
2012; Man et al., 2014), Sporobolomyces salmonicolor (SsADH)
(Zhu and Hua, 2006; Li et al., 2009; Li et al., 2010; Chen et al.,
2012) Kluyveromyces polysporus (KpADH) (Xu et al., 2018)
Clostridium acetobutylicum (CaADH) (Applegate et al., 2011),
hydroxysteroid dehydrogenases (Zhu et al., 2006a; Ferrandi et al.,
2020) and enzymes from Kluyveromyces marxianus (Li et al.,
2019) or Kluyveromyces polysporus (Xu et al., 2018; Zhou et al.,
2020). A selection of bulky ketones reduced by ADHs is given in
Figure 17.

FIGURE 16 | Bienzymatic cascade transforming conjugated ketoacid esters into lactones. In the first step, an ene reductase (ER) catalysed the reduction of the
conjugated C=C-bond followed by ADH-catalysed keto reduction and acid-catalysed intramolecular lactonisation. For reasons of simplicity, enzyme cofactors and
absolute stereochemistries have been omitted.

FIGURE 17 | Chiral alcohols synthesised through ADH-catalysed asymmetric reduction of "bulky-bulky" ketones. [a] SsADH (from Sporobolomyces salmonicolor)
(Zhu and Hua, 2006), [b] KpADH (mutant of the ADH from Kluyveromyces polysporus) (Xu et al., 2018), [c] CuADH (from Candida utilis) (Hanson et al., 2014), [d] 7-
αHSDH (from Bacteroides fragilis) (Zhu et al., 2006a), [e] (Dai et al., 2013) [f] CaADH (from Clostridium acetobutylicum) (Panigrahi et al., 2015), [g] KRED: evolved ADH
from the company CODEXIS (Liang et al., 2010a).
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Reduction of aldehydes. In contrast to the reduction of ketones,
aldehyde reductions are far less popular, which can largely be attributed
to the fact that generally the reduction of an aldehyde group does not
result in the formation of a chiral centre (chiral alcohol).

Nevertheless, some interesting applications of ADH-catalysed
aldehyde reduction have been reported. Gröger and coworkers,
for example, established an organo/biocatalytic cascade to access
(R)-pantolactone from simple starting materials (Figure 18)
(Heidlindemann et al., 2015) The ADH-step partially
functioned as kinetic resolution thereby upgrading the
comparably poor optical purity of the organocatalytic product.

Hall and coworkers reported an ADH-catalysed, overall
redox-neutral cascade reaction transforming dialdehydes into
lactones (Tishchenko-type reaction, Figure 19) (Tassano et al.,
2020).

Also starting from dialdehydes Zhang et al. established an
elegant synthesis of optically pure cyclic diols by combining the
pyruvate decarboxylase (PDC)-catalysed aldol-type ring closure
and ADH-catalysed reduction of the intermediate cyclic α-
hydroxy ketone (Figure 20) (Zhang et al., 2018).

ADHs often not only exhibit enantioselectivity with respect to
the hydride transfer (yielding R- or S-alcohols) but can also
discriminate between enantiomers at other positions. This has,
for example, been exploited for the kinetic resolution of racemic
aldehydes such as binaphthyls (Kawahara et al., 1988), biaryls
(Yuan et al., 2010; Staniland et al., 2014) or ferrocenes (Yamazaki
and Hosono, 1988). Aldehydes bearing a chiral centre in α-
position represent attractive targets for stereoselective ADH-
catalysed reduction especially under α-racemising conditions.
Particularly the dynamic kinetic resolution of profene
aldehydes to enantiomerically pure profene alcohols has been
investigated by several groups (Giacomini et al., 2007; Friest et al.,
2010; Rapp et al., 2021).

Reduction of acids. Carboxylic acids cannot be reduced by
ADHs; the carboxylate group is thermodynamically and
kinetically inert towards serving as hydride acceptor from
NAD(P)H. Carboxylate reductases (CARs) circumvent this
limitation by activating the carboxylate group as thioester
(Winkler, 2018). Inspired by this strategy, we have evaluated
the general possibility of reducing (chemically synthesised)
thioesters with common ADHs (Figure 21) (Younes et al., 2017).

FIGURE 19 | Tishchenko-type dismutation of dialdehydes by ADH-
catalysed redox-neutral conversion of dialdehydes into lactones.

FIGURE 18 | Cascade reaction combining organocatalytic (L-histidine-catalysed aldol reaction) C-C-bond formation and ADH-catalysed aldehyde reduction
followed by acid-catalysed lactonisation to form (R)-pantolactone.

FIGURE 20 | Combination of pyruvate decarboxylase-catalysed aldol-type ring closure of dialdehydes with ADH-catalysed reduction of the α-hydroxyketone
intermediate.
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5 ADH-CATALYSED OXIDATION
REACTIONS

The oxidation of an alcohol to the corresponding carbonyl
group is accompanied by the destruction of a (potential)

chiral centre rather than the generation of one as in case of
carbonyl reduction reactions. This seeming limitation has for a
long time limited ADH-oxidation reactions to the kinetic
resolution of racemic secondary alcohols. Some examples are
shown in Figure 22.

FIGURE 21 | ADH-catalysed reduction of carboxylic acids activated as thioesters.

FIGURE 22 |Representative examples of chiral alcohol oxidation products derived from the kinetic resolution of racemic alcohols or the desymmetrisation ofmeso-
diols. [a] ADH-A (from Rhodococcus ruber) (Stampfer et al., 2002), [b] CpADH (from Candida parapsilosis) (Matsuyama et al., 2001) [c] (Edegger et al., 2006b) [d] via
intramolecular lactonisation, HLADH: horse liver ADH (Irwin and Jones, 1977a; Irwin and Jones, 1977b) [e] 2,3-butanediol dehydrogenase from Bacillus subtilis (Zhang
et al., 2013), [f] (Holec et al., 2015).
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FIGURE 23 | Bienzymatic deracemisation of racemic alcohols using two enantiocomplementary ADHs.

FIGURE 24 | Examples of redox-neutral cascades involving ADH-catalysed alcohol oxidation reactions. (A) combining monooxygenase-catalysed hydroxylation
with ADH-catalysed alcohol oxidation; (B) combining ADH-catalysed alcohol oxidation with monooxygenase-catalysed Baeyer-Villiger oxidation; (C) concurrent lactone
formation comining monooxygenase-catalysed Baeyer-Viliger oxidation with ADH-catalysed oxidative lactonisation.
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The intrinsic limitation of kinetic resolution reactions of
having a theoretical yield of only 50% (provided the catalyst
exhibits high enantioselectivity) can be overcome making use of
the meso-trick. Here, a prochiral meso-alcohol is oxidised
completely to (ideally) one product enantiomer. Obviously, the
scope of this approach is rather limited tomeso-starting materials.
A more general approach to obtain enantiomerically pure
alcohols has been proposed by Kroutil and coworkers by
combining two enantiocomplementary ADHs (one for the
kinetic resolution of the racemic alcohol and the other one for
the stereoselective reduction of the ketone intermediate into the
desired alcohol enantiomer). If both ADHs also exhibit
exclusivity for either the phosphorylated and non-
phosphorylated nicotinamide cofactor, the overall reaction can
be conducted as a one-pot one-step reaction (Figure 23) (Voss
et al., 2008a; Voss et al., 2008b; Voss et al., 2010).

ADH-catalysed oxidations also play a key role in various
multi-step cascades valorising simple starting materials into
more complex products. For example, monooxygenase-
catalysed hydroxylation reactions of non-functionalised C-H-
bonds yield alcohols that can further be converted into the
corresponding ketones (Figure 24A) (Müller et al., 2013;
Staudt et al., 2013; Tavanti et al., 2017a; Tavanti et al., 2017b).
Similarly, starting from alcohols, redox-neutral ADH-
monooxygenase cascades producing lactones are possible
(Figure 24B) (Schmidt et al., 2015a; Schmidt et al., 2015b;
Scherkus et al., 2016; Scherkus et al., 2017; Wedde et al.,
2017). Also combining both approaches has been
demonstrated by Opperman and coworkers (Pennec et al., 2015).

An interesting convergent cascade combining Baeyer-Villiger
monooxygenase-catalysed synthesis of lactones with ADH-
catalysed cofactor regeneration yielding the desired lactone as

(co-)product has been proposed by Kara and coworkers
(Figure 24C) (Bornadel et al., 2016; Huang et al., 2017).

Other cascades involving ADH-catalysed alcohol
oxidations have also been reported in combination with
ene-reductase-catalysed C=C-bond reductions (Gargiulo
et al., 2012; Oberleitner et al., 2013), transaminase-catalysed
(Tauber et al., 2013; Corrado et al., 2021) or amine reductase-
catalysed (Tavanti et al., 2017a; Dennig et al., 2019) reductive
aminations or obtaining the alcohol via hydratation of an
existing C=C-bond (Koppireddi et al., 2016; Zhang W.
et al., 2020; Cha et al., 2020).

As far as primary alcohols are concerned, ADHs generally
catalyse the selective oxidation to the aldehyde stage. Further
oxidation generally does not occur as the aldehyde proton is not
abstractable as a hydride. If desired, this situation can be changed
by transiently converting the aldehyde into its corresponding
gem-diol (preferentially by adjusting the reaction pH to alkaline
values). The latter does contain a hydridically abstractable
H-atom and therefore can also be oxidised to the
corresponding acid (Figure 25) (Könst et al., 2012).

6 ENVIRONMENTAL CONSIDERATIONS

Biocatalytic reactions are frequently labelled as “green”
(i.e., environmentally benign). To substantiate this claim,
arguments such as enzymes being bio-based and bio-
degradable (in contrast to transition metal catalysts), the mild
reaction conditions (in contrast to frequently high reaction
temperatures needed for chemical reactions) and the use of
water as reaction medium (in contrast to organic solvents
generally used in chemical reactions) are used.

FIGURE 25 | Oxidation of aldehyde-gem-diols to the corresponding acid. Under enolising conditions the reaction can also be performed as dynamic kinetic
resolution of chiral α-substituted aldehydes. This strategy also allows for the full oxidation of alcohols to carboxylic acids as recently demonstrated by Paradisi and
coworkers (Contente et al., 2020).
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Such qualitative arguments, however, are too short-sighted.
First of all, one should be aware that any chemical
transformation, irrespective if it is enzyme-catalysed or based
on “traditional” chemical technologies, represents an
environmental burden. Reactions consume energy to heat/cool
and stir/pump the reaction mixtures, which still causes
greenhouse gas emissions albeit indirectly and not always
obvious for the user. The production of enzymes consumes
resources and also biocatalytic reactions generate wastes
(Tieves et al., 2019). Finally, water can be considered as green
solvent only until after its usage as then it is generally
contaminated with reactants and cannot be simply disposed
into the environment and has to be considered as waste
(Holtmann and Hollmann, 2022). Overall, a chemical
transformation does not per se turn environmentally if
performed using an enzyme catalyst.

Enzymatic reactions can exhibit significant environmental
benefits (i.e., they can be greener) over traditional chemical
syntheses. But it is not enough just to repeat the boilerplate
arguments mentioned above. A quantitative, comparative
assessment of the environmental impact of alternative routes is
necessary to claim greenness. Ideally, such comparisons include
the entire production chain from raw materials to the final
product, as full life cycle assessments typically aim at (Eissen
et al., 2009; Tufvesson et al., 2012). The extensive data basis
required for such LCAs usually significantly goes beyond the
possibilities of lab researchers. Therefore, simplified mass-based
metrics such as Sheldon’s E-Factor (Sheldon et al., 2022) (E for
Environmental) and its derivates (Sheldon, 2017; 2018) represent
a doable compromise to compare different synthetic routes based
on their waste generation.

We encourage the readers of this contribution to utilise the
E-Factor to assess the wastes generated in their own reactions
and to utilise the result as a starting point for further
improvements. In other words, an honest E-Factor analysis
will reveal the real issues of a given reaction instead of
perceived ones and can serve as a guiding principle to plan
new experiments. A “bad” E-Factor can be a good starting point
for improvements.

7 CONCLUSIONS AND FUTURE OUTLOOK

Alcohol dehydrogenases can nowadays be considered as
established catalysis in organic synthesis. ADHs enable the

selective oxidation of alcohols (and aldehydes) as well as
reduction of aldehydes and ketones on preparative scale under
mild reaction conditions.

Limitations stressed in the past such as limited substrate
scope, limited stability or their dependence on costly
nicotinamide cofactors have been solved in the past
decades. Protein engineering has become a standard
technique to tailor the substrate scope, selectivity and
stability of a given ADH. Also ADH stability under non-
natural conditions (such as high reagent concentrations or
elevated temperatures) does not represent a preparative hurdle
any more as, e.g., engineered ADH mutants are available and/
or reaction engineering measures (such as immobilisation of
the enzymes) can be utilised.

So far, ADHs have been valued mostly for their
enantioselectivity giving access to optically pure chiral fine
chemicals and pharmaceutical intermediates. We do expect
that the scope of ADH-catalysis will expand also to the
synthesis of commodity and bulk chemicals. The tighter cost
requirements for such products will necessitate to focus more on
performance indicators such as space-time yields, final product
titres and turnover numbers of the enzymes and cofactors. Given
the rapid development of ADH catalysis in the past, we are
convinced that soon ADHs will have become indispensable
catalysts for all chemical synthesis routes.
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