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Abstract: According to data from the World Health Organization, there were about 3 million deaths
caused by alcohol consumption worldwide in 2016, of which about 50% were related to liver disease.
Alcohol consumption interfering with the normal function of adipocytes has an important impact on
the pathogenesis of alcoholic liver disease. There has been increasing recognition of the crucial role of
adipose tissue in regulating systemic metabolism, far beyond that of an inert energy storage organ
in recent years. The endocrine function of adipose tissue is widely recognized, and the significance
of the proteins it produces and releases is still being investigated. Alcohol consumption may affect
white adipose tissue (WAT) and brown adipose tissue (BAT), which interact with surrounding tissues
such as the liver and intestines. This review briefly introduces the basic concept and classification
of adipose tissue and summarizes the mechanism of alcohol affecting lipolysis and lipogenesis in
WAT and BAT. The adipose tissue–liver axis is crucial in maintaining lipid homeostasis within the
body. Therefore, this review also demonstrates the effects of alcohol consumption on the adipose
tissue–liver axis to explore the role of alcohol consumption in the crosstalk between adipose tissue
and the liver.
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1. Introduction

Alcohol has long been closely associated with human culture, and in addition to its use
as a drug, drinking is also considered a form of relaxation [1]. Although the harmful effects
of excessive alcohol consumption in humans are widely understood, alcohol remains a
prevalent part of society. The global increase in alcohol consumption has led to a significant
rise in morbidity and mortality caused by alcohol-related diseases [2,3]. According to 2018
statistics from the World Health Organization (WHO), alcoholism is responsible for three
million deaths worldwide annually, accounting for nearly 14% of the total mortality rate
among individuals aged 20 to 40. Additionally, millions of people suffer from disabilities
and poor health due to alcohol-related issues [4]. Apart from causing social and psychiatric
problems, alcohol consumption is linked to over 200 diseases that affect multiple organs in
the body [5]. The organs and systems that can be adversely affected by alcohol consumption
include the liver [6], cardiovascular system [7], endocrine system [8], essential nutrient
metabolism [9], nervous system [10], and gastrointestinal tract [10]. At the same time,
alcohol-related tissue damage is also interrelated, for example, gastrointestinal or liver
damage may be related to immune system dysregulation [11]. Chronic alcohol abuse has
also been linked to the development of various types of cancer [12].
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There are numerous shared pathophysiological mechanisms underlying the tissue
and organ damage caused by alcohol consumption, including inflammation, increased
oxidative stress, abnormal post-translational protein modifications, impaired anabolic sig-
nals, upregulation of catabolic processes, and disturbances in lipid metabolism and signal
transduction pathways [12]. Ethanol first affects the mouth after drinking. Ethanol dena-
tures proteins through dehydration, enhances the permeability of the oral mucosa, breaks
down the lipid components of the epithelium, and heightens sensitivity to other harmful
compounds [13]. The gastrointestinal epithelium is the site of the first-pass metabolism of
ethanol. As a result, ethanol can have pathological effects on gut function by compromising
barrier integrity, which can trigger local and systemic inflammation as well as microbial
dysbiosis [14]. In the stomach, ethanol may cause gastric mucosal damage through different
mechanisms [15].

Muscle wasting, which results from an imbalance in protein synthesis and degradation
mechanisms, is another potential consequence of alcohol use disorder [16,17]. Alcohol
also affects neurotransmission in the brain, resulting in disorders between excitatory and
inhibitory synaptic inputs during acute drinking and changes in neural adaptations during
chronic drinking [18]. Consuming alcohol increases the risk of developing pancreatitis, but
the precise mechanism is unclear. New research suggests that fatty acid ethyl esters (FAEEs),
the product of the non-oxidative metabolism of ethanol, may bind to the intracellular
membrane, leading to a maladjusted effect [19], and increased lysosome fragility [20].
There is a well-established link between ethanol consumption and several cardiovascular
diseases. In men, an increase in alcohol consumption was positively correlated with higher
blood pressure levels [21]. In addition, ethanol consumption has been associated with a
notable risk of proarrhythmic effects. Nonetheless, low to moderate alcohol intake has
been found to protect against critical ventricular arrhythmias and heart arrest [22]. Alcohol
dehydrogenase (ADH) in the mammalian lung, along with microsomal cytochrome P450
(CYP2E1) and peroxisomal catalase, can metabolize ingested ethanol [23]. Therefore, alcohol
intake is associated with a high incidence of pulmonary inflammatory disease, which
increases pro-inflammatory factors, especially interferon gamma (γ-IFN) and interleukin
1-β (IL1-β). There are also growing concerns about the link between alcohol consumption
and increased susceptibility to infectious diseases. Alcohol consumption is a recognized
risk factor for HIV, tuberculosis, pneumonia incidence, and unfavorable therapy results.
Recent studies indicate that heavy and chronic alcohol consumption is linked to a higher
risk of contracting COVID-19 and experiencing more severe illness. Chronic or irregular
alcohol consumption can increase vulnerability to viral and bacterial pathogens and weaken
vaccine efficacy [24].

Among these organs affected by alcohol, the liver is particularly vulnerable since it
is the primary site of alcohol metabolism [25]. The metabolic breakdown of alcohol can
generate byproducts that can damage the liver, resulting in alcoholic liver disease (ALD).
ALD includes a variety of diseases, such as alcoholic fatty liver disease (simple steatosis),
alcoholic hepatitis, alcoholic liver cirrhosis, and liver cancer [26]. One of the pathogeneses
of ALD is the ectopic deposition of fat in the liver, which is the earliest response to heavy
drinking [27]. Therefore, it is necessary to study another tissue affected by alcohol with a
series of serious consequences: adipose tissue.

It is increasingly recognized that alcohol has a specific impact on adipose tissue, and
alterations in tissue function and metabolism can influence the development of other
alcohol-related diseases [28,29].

White adipose tissue (WAT) has the function of storing and distributing energy. Adi-
pose tissue is mainly composed of adipocytes. In adipocytes, adipogenesis and lipolysis
are mainly controlled by the hormone pathway [30]: elevated insulin circulating levels
suppress fat breakdown and stimulate fat synthesis during feeding, while catecholamine
signaling stimulates lipid breakdown during fasting or exercise. Therefore, stored triglyc-
erides (TGs) are in a constant flow state, and energy storage and mobilization depend
largely on hormone levels. Adipose tissue serves as a central hub in the regulation of
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energy balance, supplying energy to various organs and tissues, including the liver, bone,
myocardium, pancreas, and brain [31].

There is evidence suggesting that alcohol consumption can lead to impaired adipose
tissue function. Long-term intake of alcohol increases fat decomposition, and a small
amount of fat production decreases or remains unchanged, which will lead to the loss of
adipose tissue and the outflow of fatty acids (FAs) [32], affecting the balance of adipose
tissue. Brown fat has been a research hotspot since it was found. Long-term alcohol
consumption may increase the thermogenic activity of brown adipose tissue (BAT) [33].

In general, chronic alcohol intake affects both WAT and BAT. The consequent fat
malnutrition can result in the accumulation of fat in peripheral organs, exacerbating
the pathological effects of chronic alcohol consumption. Therefore, it is of great impor-
tance to explore the metabolic disorders and diseases of adipose tissue resulting from
alcohol consumption.

This review highlights the latest findings on the mechanisms through which alcohol
consumption impacts adipose tissue metabolism and homeostatic function. Following an
examination of the impact of alcohol on adipose tissue mass, this review will explore the
regulation of lipid balance in lipolysis and lipogenesis.

2. Adipose Tissue

In recent years, an increasing number of studies have shown the crucial role of adipose
tissue in regulating systemic metabolic control, which extends far beyond its traditional
view as a passive energy storage organ [34]. The recognition of the function of adipose
tissue as an endocrine organ is now widely acknowledged, and ongoing research is con-
tinuously uncovering the significance of the proteins synthesized and secreted by adipose
tissue [29]. Furthermore, adipose tissue plays a vital role in glucose regulation by secreting
adipokines, such as adiponectin (ADIPO), leptin (LEP), and omentin [35]. Adipose tissue
is also important in regulating glucose homeostasis and is the primary site for glucose
utilization. The tissue microenvironment of adipose tissue can be shared by many different
cell populations, which work together to regulate metabolic activity under physiological or
pathological conditions [36].

2.1. Basic Concepts of Adipose Tissue

In lean individuals, adipose tissue typically represents about 20–28% of total body
mass, with variations largely attributed to biological sex. However, in the obese state,
adipose tissue can account for as much as 80% of total body weight [37]. The function
of adipose tissue is determined by its distribution and location within the body. Sub-
cutaneous adipose tissue lies beneath the skin and comprises the largest proportion of
adipose tissue [38]. Visceral adipose tissue is situated around several organs, especially the
kidneys (perirenal adipose tissue), the intestines (mesenteric and omental adipose tissue),
the gonads (epididymal and parietal adipose tissue), the vascular system (perivascular or
peri-epicardial adipose tissue), and the heart (epicardial and pericardial adipose tissue) [39].
Adipose tissue consists of a diverse array of cells that work together to produce and secrete
cytokines, chemokines, and hormones [40]. Adipocytes comprise around one-third of the
cells in adipose tissue, while the rest include fibroblasts, endothelial cells, macrophages,
stromal cells, immune cells, preadipocytes, and the nervous system cells [41].

As the body’s largest energy reserve, adipose tissue is closely tied to energy use and
availability. For example, both fasting and inflammation can trigger lipolysis, resulting in
the release of FAs from adipose tissue [42]. On the other hand, overconsumption of calories
enhances fat accumulation. Thus, adipose tissue mass depends on the long-term balance
between adipogenesis and lipolysis. When obesity, diabetes, and metabolic disorders occur,
adipose tissue will undergo several disease-related changes, such as increased inflamma-
tion, abnormal lipid secretion, hypoxia, increased apoptosis, and oxidative stress [43,44].
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2.2. Lipogenesis

A report from WHO states that 39% of adults over the age of 18 were overweight and
13% were obese in 2016. Obesity is classified as a chronic disease, and the prevalence of
obesity has almost trebled since 1975 [45].

Obesity serves as a risk factor for numerous non-communicable diseases, includ-
ing type 2 diabetes, cardiovascular disease, hypertension, respiratory diseases, certain
cancers, and various other diseases and disabilities [46,47]. Obesity results from an im-
balance between caloric intake and energy consumption [48]. Adipocytes store surplus
energy in the form of lipids via two processes: adipocyte hyperplasia (formation of new
adipocytes) and hypertrophy (enlargement of existing adipocytes). Both processes can lead
to greater adiposity and promote the release of FAs, peptides, inflammatory cytokines, and
adipokines [49]. Therefore, understanding the process of adipogenesis is important for the
prevention and treatment of associated disorders.

As shown in Figure 1, adipogenesis refers to the differentiation of preadipocytes similar
to fibroblasts into mature adipocytes with insulin response [50]. This process typically
comprises around six stages: mesenchymal precursors, committed preadipocytes, growth-
restricted preadipocytes, mitotic clonal expansion, terminal differentiation, and mature
adipocytes [51]. For preadipocytes to successfully differentiate into mature adipocytes,
they must undergo significant changes in structure and gene expression [50].
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Figure 1. The process of adipogenesis.

Adipogenesis depends on signaling among cells themselves and between cells and
their surroundings. Although many details of the molecular mechanisms underlying
adipogenesis remain obscure, many factors participating in this process have been rec-
ognized. Some stimuli include peroxisome proliferator-activated receptors γ (PPARγ),
CCAAT/enhancer binding protein α, β and δ (C/EBPα, C/EBPβ and C/EBPδ), single
transcription factors and activators (STATs), transcription factors sterol regulatory element
binding protein-1 (SREBP1), insulin-like growth factor I (IGF-l), macrophage colony stim-
ulating factor, FAs, prostaglandins, and glucocorticoids [50,52,53]. Newer studies have
pinpointed more factors implicated in this process, comprising krupel-like factors (KLFs),
wingless and int-1 proteins (Wnts), and various cyclins [54–56]. A series of extracellular
signals have also been found to be important, such as bone morphogenetic protein (BMP)
and transforming growth factor β (TGFβ), fibroblast growth factor (FGF), notch ligand,
proinflammatory cytokines, and hypoxia [57].

2.3. Types of Adipose Tissue

Adipose tissue is categorized as white, brown, and beige according to its morphology.
In addition, WAT can be further classified according to its location, mainly defined as
subcutaneous (located under the skin) and visceral/retinal (located in the abdominal
cavity, adjacent to internal organs) tissue. In the majority of healthy individuals, WAT is
only present in specific areas. However, in some cases, like obesity and lipodystrophy,
WAT may increase ectopically at sites of co-morbid susceptibility such as diabetes and
atherosclerosis [57]. BAT is a unique type of adipose tissue with a distinctive morphology
and function, as it contains a high density of mitochondria that impart its characteristic
brown appearance. In addition, beige adipose tissue represents a novel classification of
adipose tissue, distinct from both white and brown adipose tissue.
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2.3.1. WAT

Emerging research indicates that in response to particular stimuli, such as exercise,
cold exposure, or certain hormones, a type of adipocyte with brown-like characteristics
and positive expression of uncoupling protein-1 (UCP1) may appear and be classified as
a beige adipocyte [58]. They can accumulate in WAT, often referred to as beige or “brite”
adipocytes (brown-in-white).

WAT is a significant source of adipokines, which are peptides that serve as hormones
or signaling molecules to regulate metabolism. Up to 40% of genes expressed in adipose
tissue are not yet well-characterized, and 20–30% of these unknown genes may encode for
secreted proteins [59]. Proteins secreted by adipose tissue have been shown to have multiple
functions related to pro-inflammatory cytokines, immunity, fibrinolytic system, angiotensin
system, lipid metabolism and transport, and steroid-metabolizing enzymes. Adipose
tissue is also considered to be an important endocrine organ that produces adipokines [60].
Proteins secreted by adipose tissue exert effects on the immune, inflammatory, nervous,
cardiovascular, reproductive, hematopoietic, and skeletal systems. Adipose tissue is also
considered to be an important endocrine organ that produces adipokines [60,61].

2.3.2. BAT

Adipose tissue appears brown stemming from the fact that it is more vascularized and
contains more mitochondria which have cytochromes that give the color. The adipocytes
that make up BAT are multi-compartmental; these cells are polygonal and range in size
from 15 to 50 µm [62]. BAT has the same progenitor cells as skeletal muscle, that is,
brown adipocytes originate from precursor cells of small cell tissue rather than white
adipocytes [63].

BAT differs from WAT in its role as a heat generator, rather than an energy store,
through the process of energy expenditure [64]. To better regulate body temperature, brown
adipose tissue is distributed in the superficial and deeper layers of the body. Superficially,
BAT is distributed in the interscapular, cervical, and axillary regions, while more deeply, it
is present in the perirenal, periaortic, inguinal and pericardial BAT [63]. BAT is particularly
evident in the neonatal period [65]. Cold exposure and overconsumption of food stimulate
the growth and metabolic activity of BAT, which declines with advancing age [66]. In
some cases, for example, higher concentrations of thyroid hormones, bile acids, natriuretic
peptides, and retinoids have been shown to increase the abundance of brown adipocytes
within WAT [67].

2.3.3. Beige Adipose Tissue

New research indicates that a beige brown adipocyte-like adipocyte with positive
UCP1 expression may be induced by various stimuli, including exercise, exposure to cold
or certain hormones [58]. They can accumulate in WAT, often referred to as beige or “brite”
adipocytes, which exhibit characteristics of both brown and white adipocytes.

Despite sharing morphological features with brown adipocytes, such as the presence
of multiple lipid vacuoles, beige adipocytes are anatomically distinct and located differ-
ently [68]. Beige adipocytes are predominantly situated in the subcutaneous regions of
WAT, in contrast to brown adipocytes, which are primarily located in the aforementioned
superficial regions [69,70].

Brown and beige adipocytes originate from separate embryonic precursors [71]. Stud-
ies using transgenic mice indicate that beige adipocytes arise from the Myf5-negative
lineage [72]. Despite ongoing debate regarding their precise origin, two hypotheses have
been put forward: the first proposes that beige adipocytes arise from white adipocyte
precursors that undergo transdifferentiation in response to environmental stimuli, such as
cold exposure. The second suggests that mature white adipocytes can undergo transdiffer-
entiation through contact with appropriate stimuli [73]. Finally, both mechanisms may be
correct, that beige adipocytes are produced through distinct pathways depending on the
environment, genetic background, and adipocyte location [74].
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3. Effects of Alcohol Consumption on WAT

In rats exposed to alcohol, adipose tissue mass decreased [75] and glucose uptake by
adipocytes reduced [76], while FAs uptake by hepatocytes increased [77]. This results in
an excess of FAs being transported to the liver as triglyceride deposits. Long-term ethanol
consumption disturbs the lipid homeostasis of the adipose tissue–liver axis, leading to the
accumulation of free fatty acids (FFAs) in both hepatocytes and mesenteric adipose tissue,
and thus, triggering metabolic disorders [78]. Hence, it is imperative to comprehend the
mechanisms by which ethanol influences lipid synthesis and catabolism in adipose tissue to
prevent and treat alcohol-related ailments. Ethanol affects lipid synthesis and lipolysis by
influencing various factors in the adipose tissue of rodents and humans, which are shown
in Table 1 and Figure 2.

3.1. Alcohol Consumption and Lipolysis in Adipose Tissue
3.1.1. Lipolysis

In instances of low metabolic fuel and/or heightened energy demand, such as during
periods of fasting, physical activity, and exposure to cold temperatures, adipocytes engage
in the catabolic process of lipolysis to mobilize their triglyceride stores and supply periph-
eral tissues with fuel [91]. The hydrolysis of triglycerides by lipase, known as lipolysis, is a
tightly controlled biochemical process that generates glycerol and FFA through enzymatic
hydrolysis [34]. Then, aquaporin-3 (AQP3) and aquaporin-7 (AQP7) promote glycerol ef-
flux from adipose tissue and FFA are transported under the action of FA transport proteins
(FATPs) [92,93]. Adipocyte triglyceride lipase (ATGL), hormone-sensitive lipase (HSL),
and monoacylglycerol lipase (MGL) collaboratively catalyze the stepwise hydrolysis of
triglycerides (TG) into diacylglycerol (DAG) and monoacylglycerol (MAG). Each step will
release an FFA, and the last step is MGL to release the glycerol backbone of the last FFA.
These decomposition products can be re-esterified in adipocytes or released into circulation
for use by other tissues [80], such as the liver for gluconeogenesis (glycerol) and oxidative
phosphorylation of muscle or other oxidized tissues [94].

Table 1. Effects of alcohol consumption on various factors in adipose tissue of rodents and humans.

Factors Effects on Adipose Tissue
Changes with Alcohol Abuse

(Plasma Chronic Alcohol)

Rodent Human

Adiponectin Sensitizes to insulin, increases adipocyte mass
and reduce adipose inflammation

↓
[79]

↑
[80]

Leptin Suppression of appetite,
promotion of energy expenditure

↑
[81]

↑
[82]

Resistin Stimulate lipolysis and FA
release, suppress adiponectin

↑
[83]

↑
[84]

Chemerin Adipogenesis and adipocyte
differentiation

↑
[85]

↑
[85]

NE/EP Important regulators of lipolytic activity ↑
[86] NR

FGF21 Inhibits lipid accumulation ↑
[87] NR

IL-6, TNF-α Inflammatory cytokines ↑
[78]

↑
[59]

Adipose tissue mass and
adipocyte size — ↓

[88]
↓

(↑ in VAT and ↓ in SAT)
[89]

Triglyceride degradation — ↑
[76] NR

Pathogenic effects Insulin resistance
[78]

Glucose intolerance
[90]

EP, epinephrine; FGF21, fibroblast growth factor 21; IL-6: interleukin-6; NE, norepinephrine; NR, not reported;
SAT, subcutaneous adipose tissue; TNF-α, tumor necrosis factor alpha; VAT, visceral adipose tissue.
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zyme A carboxylase; ACD, acyl-CoA dehydrogenase; acetyl-CoA, acetyl coenzyme A; ACL, ATP
citrate lyase; ADIPO, adiponectin; ADIPOR, ADIPO receptor; AGPAT, 1-acylglycerol-3-phosphate
acyltransferase; AMPK, AMP-activated protein kinase; AQP, aquaporin; β-AR, β-adrenergic recep-
tor; ATGL, adipocyte triglyceride lipase; CD36, cluster of differentiation 36; CM-TG, chylomicron-
triglyceride; CPT1, carnitine palmitoyltransferase 1; CYP2E1, cytochromeP450; DAG, diacylglycerol;
DGAT, diacylglycerol acyltransferase; DHAP, dihydroxyacetone phosphate; EP, epinephrine; FA, fatty
acid; FASN, lipase fatty acid synthase; FATP, fatty acid transport protein; FGF21, fibroblast growth fac-
tor 21; Glyceraldehyde-3-P, glyceraldehyde-3-phosphate; CM-TG, chylomicron-triglyceride; GLUT4,
glucose transporter protein 4; GPAT3, glycerol-3-phosphate acyltransferase 3; Gs, GTP-binding
protein; GSH/GSSG, glutathione/oxidized glutathione; 4-HNE, 4-hydroxynonenal; HSL, hormone
sensitive lipase; IRS, insulin receptor substrate; LEP, leptin; LEPR, leptin receptor; LPL, lipoprotein
lipase; MAG, monoacylglycerol; Malonyl-CoA, malonyl coenzyme A; MEF2, myocyte enhancer
factor 2; MGL, monoacylglycerol lipase; NE, norepinephrine; PDE, phosphodiesterase; PI3K-Akt,
phosphatidylinositol-3-kinase-protein kinase B; PKA, protein kinase A; PLIN, lipid droplet-coated
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protein; PNMT, phenylethanolamine N-methyltransferase; PP1, protein phosphatase 1; PP2A, protein
phosphatase 2A; PPARα, peroxisome proliferator activated receptors α; PTEN, phosphatase and
tensin homolog; RXR, retinoid X receptor; SNS, sympathetic nervous system; SOCS3, suppressors of
cytokine signaling 3; STAT3, signal transducer and activator 3; TG, triglyceride; UCP1, uncoupling
protein-1; VLDL, very low density lipoprotein.

Lipolysis of adipose tissue is a finely controlled process [95], which is regulated by
various hormones, including adrenocorticotropin hormone (ACTH), epinephrine (EP),
norepinephrine (NE), and insulin [96].

3.1.2. β-Adrenergic Receptor Pathway

Catecholamines (EP and NE) are terminal mediators of the sympathetic–adrenergic
system, primarily secreted from the adrenal medulla through the sympathetic nervous
system (SNS) activation, which are thought to be important regulators of lipolytic activity
in major extra-lipidic signal [97]. SNS is activated by sending signals in the brain through
FGF21 [98]. Catecholamines are known to exert their physiological effects through bind-
ing to β-adrenergic receptors (β-ARs) (subtypes β-1-3-ARs), which are predominantly
expressed in adipose tissue [99]. After binding to ARs in adipose tissue, catecholamines
stimulate the activity of the stimulatory GTP-binding protein (Gs) [100], increasing intracel-
lular cyclic adenosine monophosphate (cAMP) concentrations. cAMP can be converted by
ATP under the action of the adenylate cyclase (AC) [101].

Based on these facts, it has been found that chronic alcohol abuse causes lipolysis
by increasing SNS activity and stimulating the release of circulating NE and EP, thereby
activating the β-AR. Alcohol exposure leads to an approximately four-fold increase in EP
release and an approximately two-fold increase in NE release in mice. This is consistent
with the clinical observation that shows an increase in blood catecholamine levels with
alcohol consumption [86]. In addition, a positive correlation was observed between plasma
EP concentrations and mRNA levels of phenylethanolamine N-methyltransferase (PNMT),
the main enzyme involved in adrenal EP synthesis. The activity of PNMT is heavily
influenced by adrenal glucocorticoids. To investigate further, plasma corticosterone levels
were measured in WT mice, and it was found that alcohol exposure significantly increased
these levels. This observation provides an explanation for the elevated plasma EP levels [87].
Elevated EP and NE activate lipolysis by promoting β-AR activation, but no differences
were found in β-AR expression induced by chronic overeating alcohol exposure [102].

However, a study conducted in vitro showed very different results. Chronic ethanol
exposure affects the G-protein signaling pathway associated with β-ARs in cells. Dur-
ing the experiment, for a period of 4 weeks, rats were provided with a liquid diet that
consisted of 35% of the total calories in the form of ethanol. Lipolysis was measured in
adipocytes that were isolated from epididymal fat by glycerol release (with or without
agonist) within 1 h. Ethanol feeding reduced β-AR-stimulated lipolysis [103]. The initial
peak of cAMP accumulation was inhibited following ethanol consumption, and the basal
cAMP concentrations in the adipocytes, did not differ from the control group [104].

The impairment of β-AR signaling in adipocytes due to chronic ethanol consump-
tion occurs at least at two distinct sites. Firstly, chronic ethanol consumption leads to an
increase in the activity of phosphodiesterase 4 (PDE4), resulting in reduced cAMP accu-
mulation [105]; secondly, protein kinase A (PKA)-mediated phosphorylation of perilipin A
and HSL, two proteins localized to the lipid droplets of adipocytes, is impaired. As a result,
ethanol inhibits the β-adrenergic stimulation of lipolysis [104]. Since the available findings
are conflicting on the effects of ethanol feeding on β-AR-stimulated lipolysis [106], there
may be other reasons for ethanol-stimulated lipolysis.

3.1.3. Endoplasmic Reticulum Stress Pathway

One of the identified causes is endoplasmic reticulum (ER) stress. Recent research
has shown that ER stress could induce lipolysis in adipose tissue, which contributes to
an increase in circulating FFA and the accumulation of fat in other organs, such as the
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liver [107]. The ER plays a crucial role in various cellular functions, including protein
synthesis and folding, lipid synthesis, and the formation of nascent lipid droplets [99,100].
Lipolysis under ER stress occurs in conjunction with elevated cAMP production and PKA
activity, leading to increased phosphorylation of HSL, which in turn results in lipolysis in
adipose tissue [107].

Evidence suggests that the cAMP signaling pathway is the main pro-lipolytic pathway
in WAT. Catecholamines stimulate β-AR to activate Gs, and cAMP is stimulated by Gs
proteins to generate PKA. PKA phosphorylation has two main targets, including HSL (the
main lipase responsible for triglyceride hydrolysis) and lipid droplet-coated protein (PLIN).
PLIN is a coating protein that adheres to the surface of lipid droplets [108]. In unstimulated
adipocytes, PLIN acts as a barrier against lysis because it sits on the surface of lipid droplets
and prevents HSL from interacting with lipid droplets [109]. PKA phosphorylates HSL
at the site of the Ser 660, which is essential for its activation and translocation [110]. HSL
activation thereafter fueled the catalyzation of TG hydrolysis into monoglycerides [111],
whereby lipolysis occurs. Although alcohol exposure did not affect HSL and PLIN mRNA
levels in mice, it markedly enhanced HSL serine 660 phosphorylation and elevated PLIN
protein levels [87].

As a key protein in the modulation of fat mobilization [112], HSL is also regulated
by other factors. In addition to being activated by cAMP/PKA phosphorylation in re-
sponse to hormone stimulation, the enzyme can also be inactivated by protein phosphatase
2A (PP2A)-mediated dephosphorylation [113]. Methylation of PP2A by leucine carboxyl
methyltransferase 1 (LCMT1) activates its function. In mice that were chronically fed an
alcohol-containing diet, studies have demonstrated a decrease in the sialylation degree
of the PP2A enzyme. This was indicated by a reduction in the S-adenosylmethionine/
S-adenosylhomocysteine (SAM/SAH) ratio, ultimately resulting in uninhibited HSL activa-
tion and increased lipolysis. As a result, FFAs are released from adipose tissue at a higher
rate [114].

Recently, the role of another lipase, ATGL, has also received much attention [115].
The substrate of ATGL is TG, which is the rate-limiting enzyme for lipolysis in adipose
tissue [116]. Unlike HSL, ATGL is not directly phosphorylated by PKA, and its function
depends on the activation of PLIN [117]. Evidence shows that alcohol exposure could
increase the mRNA and protein levels of ATGL [88].

Alcohol exposure also inactivates adiponectin phosphatase 1 and upregulates phos-
phatase and tensin homolog (PTEN), and suppressors of cytokine signaling 3 (SOCS3)
proteins in mice, leading to an increased release of FAs [88]. Therefore, hyperlipidemia rep-
resents a significant functional impairment in WAT resulting from chronic ethanol exposure.

As these enzymes, which are important in the process of lipolysis, are affected to
varying degrees by alcohol, the above findings could partly explain the reduction in
adipose tissue mass caused by alcohol.

3.1.4. Insulin Signaling Pathway

The insulin signaling pathway is also an important pathway that affects lipolysis. Insulin
inhibits lipolysis and promotes fat storage [118]. Insulin can stimulate phosphodiesterase-3B
(PDE3B) activity by activating Akt and inhibit lipolysis by decreasing PKA. However,
adipocytes obtained from rats fed a chronic alcohol diet did not exhibit any alterations
in PDE3B activity, mRNA, or protein [32], whereas PDE3B activity was reduced in mice
after intake of alcohol (20% w/v in drinking water) for 5 weeks, suggesting that the effects
of this mechanism are not yet clear [119]. Insulin-induced phosphorylation of protein
phosphatase 1 (PP1) leads to the subsequent dephosphorylation of HSL, thereby disrupting
lipolysis [120,121]. Chronic alcohol intake inhibits PP1 phosphorylation [122], suggesting
that alcohol may be a mechanism to overcome insulin-mediated inhibition of lipolysis.
The results showed that both chronic and acute alcohol exposure enhanced the process of
lipolysis, so the potentially enhanced insulin action observed in the chronic alcoholism
group may inhibit lipolysis, but this inhibitory effect may be masked by other stimuli.
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3.1.5. PPAR Signaling Pathway

PPAR is predominantly distributed in WAT and plays a critical role in regulating
adipose expansion and obesity [123]. Ethanol exposure downregulates the PPARγ gene
in the adipose and reduces WAT mass, thereby inducing inflammation [124]. Through
experimental studies, it has been observed that feeding mice with ethanol for a duration
of 8 weeks led to a significant decrease in body weight. Measurements of adipocyte
diameter indicated that the consumption of ethanol resulted in a significant reduction
in the size of adipocytes [88]. Previous research has provided evidence that activating
PPAR has a protective effect against alcoholic fatty liver disease. This activation has been
found to stimulate the secretion of lipocalin and activate the hepatic lipocalin-SIRT1-AMP-
activated protein kinase (AMPK) signaling pathway [125]. It was found that ethanol feeding
significantly reduced PPAR-mRNA levels in adipose tissue, leading to adipose dysfunction
and dysregulation of lipid homeostasis in the WAT liver axis, further promoting the
development of alcoholic fatty liver [124]. AMPK is another important target of ethanol. The
activation of AMPK is mediated through the metabolic modification and phosphorylation
of a specific amino acid residue, Thr172, located within the alpha subunit of the AMPK
protein [126]. Reduced activity of AMPK was observed after chronic-alcohol consumption,
consistent with reduced phosphorylation of acetyl coenzyme A (acetyl-CoA) carboxylase
(ACC) [127]. Due to the inhibitory effect of AMPK activation on lipolysis in adipose tissue,
the decrease in AMPK levels associated with alcohol consumption may contribute to an
increase in lipolysis. In addition, research has demonstrated that PPAR-γ is capable of
trans-activating ATGL [128], with mRNA levels up-regulated four-fold in ethanol-fed
mice [124]. At present, the expression of PPAR-γ and ATGL genes in WAT is controversial.
The consumption of ethanol resulted in a reduction in the expression of PPAR-γ in WAT.
However, it concurrently led to an increase in the expression of the ATGL gene. The
result suggests that the expression of the ATGL gene appears to be regulated by a complex
interplay of multiple factors. Insulin has a negative regulatory effect on the ATGL gene, and
the elevation of ATGL mRNA levels in adipose tissue has been linked to insulin deficiency
or insulin resistance [129].

3.1.6. An Important Regulator: FGF21

FGF21 (fibroblast growth factor 21) has been identified as an additional regulator
of adipose tissue lipolysis. It stimulates lipolysis independently of the catecholamine-
activated pathway and inhibits lipid accumulation via PPARγ and C/EBP. FGF21, an
energy-responsive adipokine, is exclusively secreted by WAT in response to feeding, glucose
uptake, fatty acid synthesis, and activation of PPARγ [130]. The expression of FGF21 in
plasma and epididymal white adipose tissue (eWAT) is upregulated in response to chronic
binge alcohol consumption. Interestingly, in mice lacking FGF21, the alcohol-induced
increase in lipolysis is effectively prevented. This suggests that FGF21 plays a crucial
role in mediating the alcohol-mediated increase in lipolysis. In addition, alcohol-induced
FGF21 knockout (KO) mice showed less reduction in eWAT mass compared with wild-type
animals. Zhao et al. [86] concluded that in wild-type and non-KO mice, FGF21 promotes
alcohol-induced lipolysis via activating the β-adrenergic pathway based on increased
plasma acetylacetonate amine concentrations instead of insulin concentrations. As this
directly contradicts the above findings [104], the role of FGF21 in alcoholism remains an
area that needs further study, and its significance as a metabolic regulator is expected to
continue expanding.

3.2. Alcohol Consumption and Lipid Synthesis in Adipose Tissue

In contrast to lipolysis, adipogenesis occurs during periods of excess energy in
adipocytes. Although alcohol has a greater effect on lipolysis than on lipogenesis, it
does regulate several parts of the lipogenesis pathway.
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3.2.1. Accumulation of Lipids

Adipocytes have two primary mechanisms for lipid accumulation. The first process
occurs during normal daily feeding, where adipocytes uptake dietary lipids in the form
of FFA from the circulation. This uptake is facilitated by the enzyme lipoprotein lipase
(LPL) [131]. Adipocytes secrete LPL and transport it to nearby capillaries, catalyzing the
hydrolysis of FFA by circulating triglyceride-containing lipoproteins [132–134]. These
lipoproteins include chylomicrons (CMs), which are produced in the small intestine, and
very low-density lipoprotein (VLDL), which is synthesized by the liver. The enzymatic
action of LPL enables the release of FFAs from these lipoproteins for uptake and storage
within adipocytes [34]. Additionally, adipocytes can take up glucose, which is converted
into glycerol and used as subsequent esterification of FAs. The last stage in TG synthesis,
the re-esterification of circulating FFAs, is mediated by diacylglycerol acyltransferase
(DGAT) [135]. The second mechanism involved in lipid accumulation is de novo lipogenesis
(DNL), which includes de novo synthesis of FAs from acetyl-CoA and esterification of these
FAs into glycerol backbone to produce TGs. DNL can occur under fasting and feeding
conditions [34]. By utilizing the DNL enzymes ACC1 and fatty acid synthase (FAS), this
process converts acetyl-CoA to palmitate, which can subsequently undergo elongation and
desaturation to form a variety of other FA species [136].

3.2.2. LPL and VLDL

FA transport, FA, and TG synthesis are important functions of fat storage. Ethanol
exposure stimulated lipolysis; however, functional analysis of exogenously fluorescently
labeled FAs showed that feeding ethanol for 8 weeks significantly inhibited the ability
of adipocytes to take up FAs [124]. The hydrolysis of TGs in TG-rich lipoproteins like
CMs and VLDLs is primarily mediated by the enzyme LPL, and both LPL and the VLDL
receptor are implicated in lipid uptake in adipose tissue [137]. The cluster of differentiation
36 (CD36) plays a vital role in regulating the uptake of FAs uptake at the plasma membrane
of adipose tissue [88]. FAs hydrolyzed by LPL entered the cells in response to CD36. FATP1
and fatty acid binding protein 4 (FABP4) are both associated with FA transport. Studies
have shown that ethanol feeding not only reduces LPL activity by 25% and 24% within two
and four hours, but also downregulates genes associated with FA uptake and transport
and reduces the mRNA expression of these transport-related enzymes, leading to reduced
FA uptake and transport in adipose tissue [79].

3.2.3. Glucose and AMPK/MEF2/GLUT4 Pathway

Glucose can act as another precursor substance for triglyceride synthesis in adipocytes.
Glucose in the blood needs to enter the cells to be utilized, and glucose transporter pro-
tein 4 (GLUT4), a crucial protein, plays a pivotal role in facilitating glucose utilization
within adipose tissue and skeletal muscle. GLUT4 is regulated by hypoxia, insulin, and
exercise [138,139]. GLUT4 mRNA increases during muscle contraction or incubation with
insulin in vitro [139]. We also found that, compared to endurance training alone, hypoxia
after exercise training significantly increased the GLUT4 protein and mRNA in more mus-
cles [138]. Inhibition of its expression and/or translocation can result in impaired utilization
of glucose. Research by Minokoshi et al. shows [140] that chronic alcohol consumption
reduces the expression of GLUT4 mRNA and protein levels in rat adipose tissue, which not
only reduces glucose uptake by adipocytes, but is more likely a key step in the development
of ethanol-induced insulin resistance. It is noteworthy that changes in GLUT4 expression
in adipose tissue are believed to have a significant impact on systemic insulin sensitivity,
potentially surpassing the influence of skeletal muscle and liver [141]. Insulin regulates
GLUT4 through the insulin receptor substrate (IRS)-phosphatidylinositol-3-kinase (PI3K)-
protein kinase B (Akt) pathway in adipose tissue. Early studies suggest that chronic alcohol
feeding affects the tyrosine phosphorylation of PI3K and the phosphorylation of Akt in
response to insulin stimulation [142,143]. Evidence suggests that chronic alcohol exposure
may inhibit insulin action, but plasma insulin levels were not affected [88]. However,
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there is evidence for the opposite result, with alcohol intake at low doses increasing the
phosphorylation of Akt [144], suggesting that insulin action is activated and thus Akt
stimulates glucose uptake by GLUT4. This difference may be due to different patterns of
alcohol exposure.

In addition to insulin-PI3K-Akt, GLUT4 is regulated by other factors such as my-
ocyte enhancer factor 2A (MEF2A) and MEF2D, which act as the promoters of GLUT4
transcription [145]. In one study, it was observed that chronic ethanol intake reduced
the expression of MEF2A and MEF2D at both mRNA and protein levels in rat adipose
tissue, which may contribute to the reduced expression of GLUT4 mRNA [146]. Further
studies revealed that AMPK was shown to serve as an upstream regulator of MEF2 [147].
Activation of AMPK has been demonstrated to promote the expression of GLUT4 and
facilitate basal translocation of GLUT4 in both skeletal muscle and adipocytes [148,149].
However, findings indicated that although feeding ethanol to rats did not noticeably affect
overall AMPKα protein levels, it resulted in a reduced level of phosphorylated AMPKα

(pAMPKα), suggesting that ethanol affected AMPKα activation. The inhibition of activa-
tion prevents AMPK from being transferred from the cytoplasm to the nucleus, which in
turn affects the transcriptional level of MEF2 in the nucleus, ultimately causing a reduction
in GLUT4 expression [147]. The above study proposed and confirmed the presence of the
AMPK/MEF2/GLUT4 pathway in adipose tissue, where activated AMPK upregulates
GLUT4 expression through MEF2. The inhibition of this pathway due to chronic ethanol
consumption contributes, at least partially, to impaired GLUT4 expression in adipose
tissue. This impairment subsequently leads to reduced insulin sensitivity, and compro-
mised glucose tolerance, and potentially explains the observed decline in adipose tissue
lipid synthesis.

Glucose serves as the immediate substrate for the subsequent conversion of FAs
into glycerol-3-phosphate (glycerol-3-P) or acetyl-CoA. The transported glucose generates
glyceraldehyde-3-phosphate (glyceraldehyde-3-P) in the glycolysis pathway. After that,
glyceraldehyde-3-phosphate undergoes conversion to pyruvate, which then enters the
tricarboxylic acid (TCA) cycle. The conversion of glucose to fatty acyl coenzyme A (FA-
CoA) involves the activity of multiple enzymes, and the regulation of these enzymes is
influenced by chronic alcohol consumption. Firstly, in rats and primary adipocytes from
eWAT, alcohol reduces the phosphorylation of ATP citrate lyase (ACL), which enables
the production of acetyl-CoA from citrate (a TCA cycle intermediate) [143]. Secondly,
ACC catalyzes the transformation of acetyl-CoA into malonyl coenzyme A (malonyl-CoA).
Alcohol also inhibited ACC Ser79 phosphorylation in vivo without change in vitro, and
this change increased with alcohol dose [146].

3.2.4. Transcription Factors: PPARγ and C/EBPα

Two important transcription factors, PPARγ and C/EBPα, regulate adipogenesis by
binding to lipid synthesis-associated enzymes. Mechanisms by which alcohol impacts
PPARγ and C/EBPα are included in Figure 2. Experimental results showed that chronic
alcohol feeding down-regulated the expression of PPARγ and C/EBPα in eWAT by 43%
and 74%, respectively [32]. The mitogen-activated protein kinase (MAPK) pathway plays
a role in the regulation of PPARγ, and inhibiting MAPK activity can partially reverse the
decreased PPARγ expression observed in rats exposed to alcohol. However, no changes
were observed in alcohol-cultured 3T3-L1 cells [150]. Lipin1, another PPARγ regulator, also
appeared to be reduced in the epididymal fat of chronically alcohol-fed rats, but again no
changes were observed in cultured adipocytes [151].

Lipase fatty acid synthase (FASN), which is regulated by PPARγ, can catalyze the con-
version of malonyl-CoA to FAs or FA-CoA (the active forms of FAs involved in metabolism)
in preparation for the synthesis of triglyceride [151]. Furthermore, glycerol-3-P is formed
via dihydroxyacetone phosphate (DHAP), which is transformed from glyceraldehyde-3-P.
Glycerol-3-phosphate acyltransferase 3 (GPAT3) is a crucial enzyme that initiates the initial
step of de novo TG synthesis [152,153]. GPAT3 catalyzes glycerol-3-P and FA-CoA to



Nutrients 2023, 15, 2953 13 of 24

produce lysophosphatidic acid [154]. Subsequently, FA-CoA and LPA are catalyzed by
1-acylglycerol-3-phosphate acyltransferase (AGPAT) to produce phosphatidic acid. Lipin
catalyzes the dephosphorylation of phosphatidic acid to produce DAG [155]. DGAT cat-
alyzes the attachment of the last FA-CoA molecule to MAG or glycerol-3-P after which TGs
are eventually formed. Lipase FASN and DGAT2 were significantly down-regulated in
eWAT after long-term alcohol feeding, and the synthesis of DGAT1 and SREBP1c was also
reduced, which is consistent with a reduction in tissue mass [124]. However, the expression
of other lipid-producing enzymes, such as FASN, has also been reported to be unchanged
in either cultured adipocytes or subcutaneous WAT (sWAT), suggesting that alcohol may
exert a distinct effect on lipid metabolism for lipid deposition [151].

The impact of chronic alcohol exposure on eWAT and sWAT adipogenesis was ob-
served in rats. The results revealed a significant decrease in eWAT mass, while there was no
significant change in sWAT mass. Following chronic alcohol exposure, the expression levels
of adipogenic enzymes and regulatory factors in sWAT did not change significantly [75,151].

Total protein levels of ADH and CYP2E1, two key enzymes in the oxidative metabolism
of ethanol, were similar in both eWAT and sWAT. However, the expression levels of the
aldehyde scavenging enzymes, aldehyde dehydrogenase 1A1 (ALDH1A1), ALDH2 and
ALDH3A1 were higher in sWAT than in eWAT. This observation suggests that the higher
expression of these enzymes in sWAT may contribute to its relative resistance to the
detrimental effects of chronic alcohol exposure [156].

In vitro experiments clearly demonstrated that exposing eWAT or isolated 3T3-L1
adipocytes to acetaldehyde, a toxic metabolite of ethanol, significantly reduced the expres-
sion levels of PPARγ, C/EBPα, phosphorylated ACL (pACL), ACC, FASN, LPIN1, and
DGAT2. It was confirmed that different levels of aldehyde metabolizing enzymes in eWAT
and sWAT result in different chronic alcohol exposure responses. In addition, the use of the
ALDH inhibitor cyanamide further reduced some lipid-producing enzymes and regulatory
factors, but the exposure of 3T3-L1 adipocytes to ethanol did not significantly alter the
protein levels of lipid-producing enzymes and regulatory factors [157].

Overall, while the effects of chronic alcohol intake on regulators of adipogenesis may
differ between model systems (in vivo or in vitro), most findings support the possibility
that alcohol induces reductions in several regulatory proteins. Whether these reductions
lead to an overall reduction in adipogenesis is unclear, but injections of labeled TG in
chronically alcohol-fed rats did not observe significant changes in triglyceride synthesis
rates [124].

3.3. The Impact of Alcohol Consumption on Other Aspects

Apart from acting on lipolysis and lipid synthesis, alcohol also impacts the secretion
of adipokines, including ADIPO, LEP, and omentin, which all play important physiological
functions. There are few studies on omental protein, whose function is to increase insulin
sensitivity of adipocytes. We just know that excessive alcohol consumption will cause an
increase in its concentration in the plasma of people with ALD [28]. Furthermore, ethanol
also affects the oxidative decomposition of fatty acids to generate heat.

3.3.1. ADIPO

ADIPO, a 30 kDa adipokine, is primarily secreted by adipocytes and exhibits anti-
diabetic, anti-atherosclerotic, anti-inflammatory, and cardioprotective properties, making it
a valuable therapeutic molecule [158]. Chronic ethanol exposure enhances the synthesis of
CYP2E1, an enzyme responsible for ethanol metabolism, and simultaneously decreases its
degradation in the liver [159]. Chronic ethanol intake did not increase oxidative stress and
lipid peroxidation in the livers of CYP2E1 (−/−) mice [60,160], suggesting that CYP2E1
may contribute to the damage caused by ethanol exposure. Although CYP2E1 is primarily
expressed in the liver, there is also a detectable expression of CYP2E1 in adipose tissue at
relatively lower levels [90].
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After long-term exposure to ethanol, there was a reduction observed in circulating
ADIPO levels [161]. It was found that ethanol-induced the expression of CYP2E1 in rat
epididymal adipose tissue, and mediated ROS indirectly led to the decrease of ADIPO se-
cretion [162]. Subsequent evidence showed that ethanol feeding did not reduce intracellular
ADIPO, but affected the secretion of ADIPO. ADIPO undergoes post-translational modifi-
cations within the endoplasmic reticulum (ER) prior to its secretion into the extracellular
space [158]. Maintaining a balanced redox state in the ER and Golgi apparatus is crucial
for ensuring accurate post-translational modifications of proteins [163]. Measurement of
the glutathione/oxidized glutathione (GSH/GSSG) ratio serves as a valuable approach to
assessing ER functionality. In the case of high-density microsomes obtained from rats ex-
posed to ethanol, a reduced GSH/GSSG ratio of 2.9:1 was observed, indicating an elevated
level of oxidative stress following ethanol consumption [162]. The increased oxidative
stress was associated with the up-regulated expression of CYP2E1, as demonstrated by the
presence of 4-hydroxynonenal (4-HNE) protein adducts in adipocytes and an elevation in
ADIPO carbonylation [163–166]. While overexpression of CYP2E1 in 3T3-L1 adipocytes
did not affect intracellular ADIPO concentration [161], ethanol culture did lead to the inhi-
bition of ADIPO release into the extracellular medium. These results indicated that ethanol
decreased the ADIPO secretion of 3T3-L1 adipocytes that overexpressed CYP2E1 [162].

3.3.2. LEP

LEP, a 16-kDa cytokine-type peptide hormone, is predominantly released by adipocytes.
It serves as a key regulator of food intake and energy balance by interacting with its recep-
tor, LEP receptor (LEPR) [167,168]. LEP can activate LEPR signals in the hypothalamus via
multiple pathways. Among them, Janus tyrosine kinase 2/signal transducer and activator 3
(JAK2/STAT3) pathway, is regarded to be crucial to mediate the action of LEP in energy
regulation. Under the stimulation of LEP, STAT3 phosphorylates. Phosphorylated STAT3
(pSTAT3) exerts the physiological function of LEP by combining and regulating its target
gene [169]. Recent findings have indicated that ethanol suppresses the activation of the
JAK/STAT pathway, which is typically triggered by certain members of the class I cytokine
receptor family. The experimental findings indicate that alcoholics exhibit significantly
higher levels of LEP, and interestingly, ethanol inhibits the activation of the STAT3 pathway
induced by LEP. Furthermore, ethanol has been observed to influence the effects of LEP in
both peripheral tissues and the central nervous system [168,170].

3.3.3. Thermogenesis

Lipids serve as a major source of cellular energy, alongside glucose. Hepatic FA
β-oxidation is a crucial process involved in energy production. The carnitine acyl trans-
ferase (CAT) system transports long-chain FAs to mitochondria, in which carnitine palmi-
toyltransferase 1 (CPT1) serves as the key regulatory enzyme [170,171]. Hepatic CPT1
activity is inhibited and enzyme sensitivity to malonyl-CoA inhibition is increased after
alcohol feeding [172]. Acyl-CoA dehydrogenase (ACD) represents the central activities in
mitochondrial β-oxidation [173]. Long-chain, medium-chain, and short-chain FAs have
separate ACDs [174,175]. Acyl-CoA is then converted to acetyl-CoA regulated by ACD.
Ethanol feeding influences thermogenesis by inhibiting ACD gene expression [143].

4. Alcohol Consumption and BAT

BAT differs markedly in morphology and function from WAT. BAT is characterized by
the presence of multiple small lipid droplets arranged in multiple chambers, accompanied
by a central nucleus. In contrast, WAT typically consists of a single large lipid droplet,
housed in a single chamber, with a nucleus located towards the periphery. A distinguish-
ing feature of BAT is its abundance of mitochondria, which contribute to its heightened
metabolic rate and thermogenic capabilities. Notably, alcohol has been found to readily per-
meate BAT, as demonstrated in studies involving mice exposed to alcohol [176]. The activity
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of ADH in BAT was found to be lower compared to that in the liver, and it did not show
any significant change following a 10-day period of chronic alcohol consumption [177].

The effect of alcohol on the quality of BAT in the interscapular warehouse is inconsis-
tent because, according to different experimental conditions, the result may be no change,
increase, or decrease [178]. After subjecting male mice to 10 days of alcohol feeding [179],
male rats to 14 days of alcohol feeding [180], or mice to 5 weeks of alcohol feeding [119], no
significant alteration in BAT weight was observed. However, a reduction in BAT weight
was noted in male mice after 25 days of alcohol exposure [179]. When obese mice with a
body weight exceeding 40 g were provided with water containing alcohol for a duration
of 5 weeks, it was observed that the expected increase in BAT did not occur [119]. This
indicates that alcohol intake could impede the expansion of BAT during malnutrition. It is
worth noting that a sufficient duration of alcohol intake is necessary to induce adaptive
responses in BAT.

Similar to its effects on WAT, alcohol regulates lipolysis and lipogenesis within BAT.
Both acute and chronic alcohol consumption generally leads to a reduction in the activ-
ity of HSL, an enzyme responsible for the breakdown of fats, in BAT and primary BAT
adipocytes [176]. In addition, acute and chronic alcohol also consistently reduced cAMP
accumulation, suggesting inhibition of lipolysis by the β-AR pathway. These findings
indicate that the decrease in lipolysis induced by alcohol in BAT may contribute to the
preservation of BAT tissue mass, despite reports of reduced activity of the lipogenic enzyme
LPL in BAT with chronic alcohol consumption. On the other hand, acute alcohol expo-
sure does not seem to affect LPL activity in vivo and in vitro, suggesting that longer-term
alcohol exposure may be necessary to observe effects on LPL activity [180].

The thermogenesis of BAT is dependent on lipolysis and the availability of FFAs, which
can be utilized as a fuel source or activate UCP1 [181,182]. Additionally, BAT plays a crucial
role in lipid clearance from the bloodstream, similar to the liver. Therefore, alterations in
WAT due to alcohol-induced lipolysis may also impact BAT. Chronic alcohol increases the
lipolysis of WAT, which will enhance the utilization and uptake of FFA by BAT, thereby
improving the thermogenic capacity of BAT [183]. In individuals with obesity, this effect
may be beneficial. However, in conditions typically associated with malnutrition, the
alcohol-induced increase in thermogenesis may contribute to weight loss and potentially
worsen overall health status [184]. However, whether BAT absorbs FAs from WAT during
chronic alcohol intake remains to be determined, which highlights an interesting area for
future research.

In summary, the impact of alcohol on BAT is unclear, but our understanding of the
functional properties of BAT is significantly improved compared to what was previously
available, which could help further research. As the interscapular BAT only constitutes a
minor portion (about 20–25%) of the overall BAT, further investigations should be extended
to encompass female BAT and other BAT depots. Additionally, studies should be directed
toward assessing the potential thermogenic effects of alcohol and their potential implications.

5. Effect of Alcohol on Adipose Tissue–Liver Axis

Recent studies highlight the significant contribution of “the adipose tissue-liver axis”
in the development of ALD. The adipose tissue–liver axis refers to the two-way rela-
tionship between adipose tissue and the liver by regulating lipid metabolism. Coordi-
nation of lipid metabolism between WAT and the liver is the key to maintaining lipid
homeostasis [185,186]. Studies show that lipid homeostasis will be disrupted by chronic
alcohol consumption in the adipose tissue–liver axis [78]. Chronic alcohol consumption
triggers off lipolysis of the WAT and causes excessive release of FAs. FAs are delivered to
the liver and stored as TGs, resulting in alcoholic fatty liver, the primary and most prevalent
pathological form of ALD [187]. Studies consistently indicate that decrease secretion of
ADIPO in adipose tissue and the impaired expression of ADIPORs in the liver are one
of the pathogeneses of alcoholic hepatic steatosis. ADIPO, when present in circulation,
exerts its biological functions via binding to ADIPOR2, which is mainly expressed in the
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liver. The activated ADIPO signaling stimulates the AMPK pathway, which regulates liver
lipid metabolism via concurrently repressing DNL and facilitating β-oxidation of FAs [188].
In addition, extensive research has highlighted the impact of altered gene expression in
adipocytes on liver functions such as lipid metabolism, inflammation, and regeneration,
demonstrating the interaction between adipose tissue and the liver [28]. When the growth
hormone in mice increases, the deletion of Jak2 can significantly inhibit the accumulation
of neutral lipids and serum hepatocyte damage markers by reducing the rate of lipolysis,
which has a significant protective effect on hepatocyte damage and can improve fatty liver
to a certain extent [189]. New findings suggest that when fumarate hydratase is deficient
specifically in adipose tissue, it can help reduce liver steatosis in mice [190]. It is reported
that adipocyte-specific Fsp27 disruption could inhibit obesity induced by a high-fat diet
by promoting impaired fat storage function and increased lipolysis rate [191]. Deletion of
specific genes in hepatocytes can simultaneously influence adipogenesis, lipolysis, and in-
flammation in adipose tissue [28]. Matsusue et al. [192] found that the liver-specific deletion
of PPARγ in leptin-deficient mice resulted in reduced insulin sensitivity. Some studies sug-
gest that high-fat diet-induced increased WAT mass is suppressed by liver-specific deletion
of the NF-κB essential modulator gene [192]. Experiments showed that growth hormone-
mediated lipolysis increased due to hepatocellular specific deletion of Jak2 reduced body
fat and increased plasma FFA levels [193]. Alcohol regulated the crosstalk between adipose
tissue and the liver, but existing research mainly focused on studying the individual effects
of alcohol intake on simple adipose tissue or the liver. More research is expected to gain a
comprehensive understanding of the role of alcohol in the dynamic interaction between
adipose tissue and the liver. Future research should aim to bridge this knowledge gap and
provide insights into the complex mechanisms underlying this crosstalk.

6. Conclusions

Alcohol consumption has multifaceted effects on overall health, involving complex
interactions among different organs and tissues. Adipose tissue has emerged as a key
player in the development and progression of ALD. The impact of ethanol on the immune
response and metabolic functions of adipose tissue contributes to tissue injury and influ-
ences the regulation of alcohol consumption. Significant advances have been made in
unraveling the role of adipose tissue in alcohol-related damage. However, the precise
molecular mechanisms underlying the interplay between adipose tissue injury and the
progression of liver disease caused by alcohol consumption remain to be fully understood.
Further research is necessary to shed light on these mechanisms and provide a deeper
understanding of the complex relationship between adipose tissue and liver health in the
context of alcohol-related conditions.
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