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Chronic alcohol consumption produces painful peripheral neuropathy for which there is no reliable successful therapy, mainly due to

lack of understanding of its pathobiology. Alcoholic neuropathy involves coasting caused by damage to nerves that results from long

term excessive drinking of alcohol and is characterized by spontaneous burning pain, hyperalgesia and allodynia. The mechanism

behind alcoholic neuropathy is not well understood, but several explanations have been proposed. These include activation of spinal

cord microglia after chronic alcohol consumption, oxidative stress leading to free radical damage to nerves, activation of mGlu5

receptors in the spinal cord and activation of the sympathoadrenal and hypothalamo-pituitary-adrenal (HPA) axis. Nutritional deficiency

(especially thiamine deficiency) and/or the direct toxic effect of alcohol or both have also been implicated in alcohol-induced

neuropathic pain. Treatment is directed towards halting further damage to the peripheral nerves and restoring their normal

functioning. This can be achieved by alcohol abstinence and a nutritionally balanced diet supplemented by all B vitamins. However, in

the setting of ongoing alcohol use, vitamin supplementation alone has not been convincingly shown to be sufficient for improvement

in most patients. The present review is focused around the multiple pathways involved in the development of peripheral neuropathy

associated with chronic alcohol intake and the different therapeutic agents which may find a place in the therapeutic armamentarium

for both prevention and management of alcoholic neuropathy.

Introduction

Alcohol is one of the most commonly used substances in

the world. After ingestion, alcohol distributes throughout

body tissues and rapidly crosses the blood-brain barrier. It

is not surprising that ethanol abuse significantly contrib-

utes to damage in a variety of tissues including liver, the

central and peripheral nervous systems, and skeletal and

cardiac muscle. Alcoholic peripheral neuropathy is a

potentially incapacitating complication of long-term

excessive consumption of alcohol characterized by pain

and dysesthesias, primarily in the lower extremities, and is

poorly relieved by available therapies [1–3]. Alcohol-

related neuropathy is associated with several risk factors,

such as malnutrition, thiamine deficiency, direct toxicity of

alcohol and a family history of alcoholism [3–6], but it is not

clear which of these plays a primary role in inducing neu-

ropathy [7]. In the early stages of alcoholic neuropathy,

patients complain of pain in the extremities, which may be

severe and has been described as burning or ‘like tearing

flesh off the bones’ and is characterized by spontaneous

burning pain, hyperalgesia and allodynia [8].

Prevalence of alcoholic neuropathy

Using the criteria for alcoholism listed in the Diagnostic

and Statistical Manual of Mental Disorders, Fourth Edition

(DSM-IV), studies employing clinical and electro-

diagnostic criteria have estimated that in the United States

neuropathy is present in 25–66% of defined ‘chronic alco-

holics’. The factors most directly associated with the devel-

opment of alcoholic neuropathy include the duration and

amount of total lifetime alcohol consumption. Neuropathy

is more prevalent in frequent, heavy and continuous drink-

ers compared with more episodic drinkers [6]. Incidence of

alcoholic polyneuropathy was found to be higher in

women compared with men [9]. The findings were sup-

ported by the results from preclinical studies by Dina et al.

[10] who also found that alcohol induced neuropathy had
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a rapid onset and greater severity in female as compared

with male rats.

Clinical symptoms associated with
alcoholic peripheral neuropathy

Clinical features of alcoholic peripheral neuropathy

develop slowly, extending over a period of months and

include abnormalities in sensory, motor, autonomic and

gait functions. Painful sensations with or without burning

quality represent the initial and major symptom of alco-

holic neuropathy [2, 4]. Sometimes, these symptoms can

be very painful and incapacitating. Later on, weakness

appears in the extremities, involving mainly the distal

parts. Progressively, the sensory and motor symptoms and

signs extend proximally into the arms and legs and finally

the gait may become impaired [11]. Progression of symp-

toms is usually gradual, continuing over months or years

[2, 4]. Electrophysiologic and pathologic findings mainly

indicate axonal neuropathy with reduced nerve fibre den-

sities. Densities of small myelinated fibres and unmyeli-

nated fibres were more severely reduced than the density

of large myelinated fibres, except in patients with a long

history of neuropathic symptoms and marked axonal

sprouting [2].Subperineurial oedema is more prominent in

thiamine deficient neuropathy, whereas segmental

de/remyelination resulting from widening of consecutive

nodes of Ranvier is more frequent in alcoholic neuropathy

[3].

Pathophysiology: different
pathways involved

The pathogenesis of alcoholic neuropathy is still under

debate. It has previously been considered in relationship to

nutritional, especially thiamine, deficiencies seen in alco-

holics. Thiamine deficiency is closely related to chronic

alcoholism and can induce neuropathy in alcoholic

patients. Ethanol diminishes thiamine absorption in the

intestine, reduces hepatic stores of thiamine and affects

the phosphorylation of thiamine, which converts it to its

active form [12]. In addition, patients with chronic alcohol-

ism tend to consume smaller amounts of essential nutri-

ents and vitamins and/or exhibit impaired gastrointestinal

absorption of these nutrients secondary to the direct

effects of alcohol. These relationships make chronic alco-

holism a risk factor for thiamine deficiency. In addition to

thiamine deficiency, recent studies indicate a direct neuro-

toxic effect of ethanol or its metabolites. Axonal degenera-

tion has been documented in rats receiving ethanol while

maintaining normal thiamine status [5]. Human studies

have also suggested a direct toxic effect, since a dose-

dependent relationship has been observed between

severity of neuropathy and total life time dose of ethanol

[6, 13]. The exact mechanism behind alcoholic neuropathy

is not well understood, but several explanations have been

proposed.These include activation of spinal cord microglia

after chronic alcohol consumption [14], activation of

mGlu5 receptors in the spinal cord [15], oxidative stress

leading to free radical damage to nerves, release of pro-

inflammatory cytokines coupled with activation of protein

kinase C [16], involvement of extracellular signal-regulated

kinases (ERKs) or classical MAP kinases [10], involvement of

the opioidergic [14] and hypothalamo-pituitary-adrenal

system [17–19]. Some other studies have indicated that

chronic alcohol intake can decrease the nociceptive

threshold with increased oxidative-nitrosative stress and

release of pro-inflammatory cytokines coupled with acti-

vation of protein kinase C (Figure 1) [10,16].Therefore,alco-

holic neuropathy may occur by a combination of the direct

toxic effects of ethanol or its metabolites and nutritional

deficiencies, including thiamine deficiency. The precise

mechanisms responsible for toxicity on the peripheral

nervous system, however, have not yet been clarified. The

amount of ethanol which causes clinically evident periph-

eral neuropathy is also still unknown.

Nutritional factors responsible for
alcoholic neuropathy (indirect
toxicity)

Contribution of metabolic pathways
The primary axonal damage and secondary demyelination

of motor and sensory fibres (especially small diameter

fibres) are considered to constitute the morphologic basis

of alcoholic damage to nerve tissue at present [20]. The

demyelination is explained as the result of a slowing down

(decceleration) of axoplasmic flow and a degradation of

the quality of biological properties of axonal enzymes and

proteins. This type of degeneration, so called ‘dying-back’,

resembles Wallerian degeneration. Ethanol and its toxic

degradation metabolites affect neuronal metabolism

including the metabolic pathways of nucleus, lysosomes,

peroxisomes, endoplasmatic reticulum and cytoplasm

[21]. Alcohol enters the blood as early as 5 min after inges-

tion and its absorption peaks after 30–90 min.The key role

in the degradation of ethanol is played by ethanol dehy-

drogenase and acetaldehyde dehydrogenase-two step

enzymatic systems by which ethanol is converted to

acetate which is further metabolized in humans. Acetalde-

hyde dehydrogenase is a mitochondrial enzyme which

undergoes a single amino acid substitution (mutation) in

about 50% of the Asian population in a way similar to the

genetic changes in sickle cell anaemia [21]. Thus, in alco-

holics with the mutated dehydrogenase enzyme, acetalde-

hyde concentrations may reach values about 20 times

higher than in individuals without the mutation. A certain

amount of acetaldehyde is not metabolized by the usual

pathways (Figure 2) and binds irreversibly to proteins
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which results in the creation of cytotoxic proteins which

adversely affect the function of nervous system cells.These

abnormal proteins influence other cell populations espe-

cially the hepatocytes where the damage to hepatic mito-

chondria results in hepatic cirrhosis with reduction of

energetic substrates in the liver.The action of these abnor-

mal proteins is explained by competition with normal pro-

teins causing the damage to function and metabolism of

the cell [22].

One of the other important issues in alcoholic indi-

viduals is the source of their calorie intake. These indi-

viduals draw the majority of calories from calorie rich

alcoholic beverages with low nutritive value. Chronic

abuse of alcohol depletes the pool of liver proteins which

are consumed for energy production and insufficient

intake of proteins only worsens this imbalance. Resulting

disturbances in protein and lipid metabolism lead to

undernourishment which adversely influences other

metabolic pathways, including those influencing the

function of the nervous system. While the central nervous

system has its own barrier systems (blood-brain barrier),

which may defy the metabolic and toxic influences and

their effect on brain functions for a significant period of

time, the peripheral nervous system lacks this protective

barrier which can contribute to the fact that peripheral

nervous system disorders are present in 12–30% of

alcohol abusers [23].

Chronic alcohol intake

Acetaldehyde

Neuropathic pain

PKC, MEK/ERK

SignalingNFκβ, Caspase3

Neuronal damage

Cytokines (TNF–α,

IL–1β, IL–6, TGF–β1)

Mitochondrial

ROS

Endogenous
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Oxidative-

nitrodative stress

Figure 1
A schematic diagram of different pathways involved in the pathophysiology of alcoholic neuropathy
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Diagram depicting metabolism of ethanol and its metabolite. CoA
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B12
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Relationship between alcoholic neuropathy and
thiamine deficient neuropathy
There is both clinical and experimental evidence of a

direct neurotoxic effect of ethanol, while some have

argued that it results from a nutritional deficiency, espe-

cially thiamine deficiency. The relationships between alco-

holic neuropathy and commonly associated nutritional

deficiencies, especially thiamine deficiency have been dis-

cussed in terms of the apparent clinical and pathologic

presentations [24, 25]. Koike et al. [26] compared the clini-

copathologic features of thiamine-deficiency neuropathy

caused by a dietary imbalance with those caused by gas-

trectomy, including strict biochemical determination of

thiamine status. Although clinical manifestations varied

widely between patients with either type of thiamine

deficiency neuropathy, overall clinicopathologic features,

including the spectrum of clinical variability, did not differ

significantly by cause. Thus, clinicopathologic features of

post gastrectomy polyneuropathy with thiamine defi-

ciency are identical to those of beriberi neuropathy, and

the results further confirmed that thiamine deficiency can

be a major cause of postgastrectomy polyneuropathy

[27]. In another clinical study by Koike et al. [28] the cause

of the thiamine deficiency was found to be associated

with gastrectomy to treat cancer in a 46-year-old man and

with dietary imbalance in a 33-year-old man. In both

patients, the upper and lower extremities showed a

rapidly progressive weakness over the course of 1 month.

Muscle weakness in the first patient progressed even after

admission to hospital and urinary retention, Wernicke’s

encephalopathy, lactic acidosis, paralytic ileus and heart

failure appeared subsequently. Clinical symptoms in both

patients showed improvement after initiation of thiamine

administration, although some residual deficit remained.

Clinically, sensory disturbance and weakness, especially in

the distal part of the lower extremities, are common fea-

tures of both alcoholic and thiamine deficiency neuro-

pathies [24, 29]. Electrophysiologic and histopathologic

findings of axonal neuropathy have also been considered

as common features [2, 5, 29, 30]. These similarities have

led to a belief that these two neuropathies are identical,

and that polyneuropathy associated with chronic alcohol-

ism most likely is caused by thiamine deficiency [24, 25].

Thus, the concept of alcoholic neuropathy encompasses

both direct neurotoxicity of ethanol or its metabolites and

the concomitant effects of nutritional status, especially

thiamine deficiency.

In one clinical study, aimed at studying distinct clinico-

pathologic features of alcoholic neuropathy, 64 patients

were assessed. In 47 of these patients sural nerve biopsy

was performed, with discrimination in terms of their thia-

mine status [3].The ethanol consumption of these patients

was more than 100 g day–1 for more than 10 years. These

patients were divided into two groups based on thiamine

status. The subgroup without thiamine deficiency con-

sisted of 36 patients, while the subgroup with thiamine

deficiency consisted of 28 patients. In addition, 32 patients

with nonalcoholic thiamine deficiency neuropathy were

also evaluated for comparison.The subgroup without thia-

mine deficiency, considered to be a pure form of alcoholic

neuropathy, uniformly showed slowly progressive, sensory

dominant symptoms.Superficial sensation, especially noci-

ception, was predominantly impaired and painful symp-

toms were the primary complaint in most patients in this

group. In contrast, the neuropathic symptoms of nonalco-

holic thiamine deficiency neuropathy, considered to be

identical to beriberi neuropathy [26], were variable, but

typically were motor dominant and acutely progressive,

affecting both superficial and deep sensation. The histo-

logic features of sural nerve biopsy specimens demon-

strated small fibre predominant axonal loss as

characteristic of the pure form of alcoholic neuropathy.

Role of nutritional status other than thiamine
deficiency
Deficiency of vitamins other than thiamine may also con-

tribute to clinical features of alcoholic neuropathy. Chronic

alcoholism can alter the intake, absorption and utilization

of various nutrients (nicotinic acid, vitamin B2, vitamin B6,

vitamin B12, folate or vitamin E). Deficiencies of B vitamins

other than thiamine also may contribute to variation in

clinical features, but characteristic symptoms of multiple

vitamin deficiency were not seen in patients with thiamine

deficiency neuropathies due to gastrectomy and dietary

imbalance [26]. These clinical features include anorexia,

diarrhoea, erythematous and hyperkeratotic dermatitis,

and mental changes in pellagra (nicotinic acid deficiency),

cheilosis, glossitis, keratoconjunctivitis and dermatitis in

vitamin B2 deficiency and myelopathy in vitamin B12 and

folate deficiencies. Thus, these vitamin deficiencies were

not considered to be major causal factors of neuropathy

[26].

Behse & Buchthal [31] compared 37 Danish patients

with alcoholic neuropathy with six patients with nonalco-

holic post gastrectomy polyneuropathy.The authors noted

that Danish beer at the time of the study contained thia-

mine and vitamin B6. Thus, deficiency of these vitamins

was felt to be unlikely in Danish beer drinkers at that time

and, indeed, measured vitamin concentrations were

mostly normal. Clinical features of neuropathies in the

alcoholic and post gastrectomy patients were similar.

These two groups, however, were distinct from the stand-

point that nerve conduction velocities were slower and

sural nerve biopsy specimens revealed more segmental

demyelination in the post gastrectomy group.The authors

concluded that malnutrition, including low blood concen-

trations of B vitamins, is not a prerequisite for the develop-

ment of alcoholic neuropathy, and ethanol per se plays a

role in the pathogenesis of alcoholic neuropathy. Another

study by Zambelis et al. [32] also suggested the participa-

tion of the direct toxic effect of ethanol on the peripheral

nervous system in the pathogenesis of alcoholic neuropa-
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thy, although long standing hyperglycaemia and impaired

vitamin B12 utilization were also suggested to be involved.

Direct toxic effects of ethanol or
its metabolites (direct toxicity)

Role of acetaldehyde in alcoholic neuropathy
Ethanol can exert its harmful effects through its metabo-

lism. One possible mediator of the direct neurotoxic effect

of ethanol is acetaldehyde, a highly toxic metabolite of

ethanol with extraordinary reactivity. The mechanisms of

the toxicity for liver include production of acetaldehyde-

protein adduct formation, depletion of glutathione, micro-

tubular impairment, inhibition of DNA repair, impairment

of mitochondrial electron transport chain and stimulation

of immunologic reactivity. There is evidence that

acetaldehyde-protein adducts are present even in organs

that do not seem to produce acetaldehyde efficiently

themselves, due to lack of ADH expression [33]. In such

cases, acetaldehyde may be formed by induction of the

microsomal ethanol oxidizing system [34]. Alternatively,

acetaldehyde may reach those organs by blood flow. Given

these possibilities, the mechanisms by which acetaldehyde

has toxic effects on peripheral nerves may be similar to

those in the liver and other organs. Dose-dependent

increases in neuronal cell death were demonstrated by

incubation of neuronal cell cultures with acetaldehyde-

derived advanced glycation end-products (AA-AGE), and

the neurotoxicity of AA-AGE is attenuated by the addition

of an anti-AAAG-specific antibody [35]. These results

suggest that the neurotoxicity due to accumulation of

acetaldehyde may be associated with the pathogenesis of

alcoholic neuropathy.

Oxidative-nitrosative stress and alcoholic
neuropathy
Oxidative stress is known to play a very important role in

experimental animal models of neuropathic pain. Lee et al.

[36] suggested that reactive oxygen species are impor-

tantly involved in the development and maintenance of

capsaicin-induced pain, particularly in the process of

central sensitization in the spinal cord in rats. Padi et al.

[37], demonstrated that chronic administration of minocy-

cline when started early before peripheral nerve injury

could attenuate the development of neuropathic pain by

inhibiting pro-inflammatory cytokine release and oxida-

tive and nitrosative stress in mononeuropathic rats. Naik

et al. [38] suggested the involvement of oxidative stress in

experimentally induced chronic constriction injury of the

sciatic nerve model in rats. Endoneural oxidative stress

leads to nerve dysfunction in rats with chronic constriction

injury [39]. A significant decrease in the activity of anti-

oxidant enzymes (superoxide dismutase and catalase) and

an increase in lipid peroxidation were observed in sciatic

nerves of diabetic rats with established neuropathic pain

[40]. ROS triggers second messengers involved in central

sensitization of dorsal horn cells [41] or they activate spinal

glial cells which in turn play an important role in chronic

pain [42]. Reduced glutathione is a major low molecular

weight scavenger of free radicals in cytoplasm. Depletion

of glutathione increases the susceptibility of neurones to

oxidative stress and hyperalgesia [43, 44].

Nitric oxide is also implicated in neuropathic pain [45,

46]. It sensitizes spinal neurones and contributes to sensi-

tization of central neurones by disinhibition [47].Moreover,

unfettered production of nitric oxide coupled with defi-

cient superoxide dismutase leads to production of perox-

ynitrite, which is several times more potent than its parents

in terms of tissue toxicity. Ethanol is oxidized to acetalde-

hyde by cytochrome P450, which increases reactive

oxygen species, with concomitant changes in redox

balance [48, 49]. Rats given chronic ethanol show

enhanced production of oxidative markers, such as

thiobarbituric acid reactive substances, hydrogen peroxide

and OH- like species [50]. Studies have suggested that

chronic ethanol increases oxidative damage to proteins,

lipids and DNA [51, 52]. Bosch-Morell et al. [53] demon-

strated that chronic ethanol promotes oxidative stress in

rat peripheral nerve. The amount of malondialdehyde, a

lipid peroxidation product, increases in the sciatic nerves

of rats fed an ethanol-containing diet, when compared

with pair-fed animals. Moreover, glutathione content and

glutathione peroxidase activity in this same tissue

decrease in ethanol-fed vs. pair-fed rats, suggesting the

probable involvement of alcohol induced oxidative stress

in the pain like state associated with chronic alcohol

intake. Recently, we have also found a significant increase

in lipid peroxide concentrations and marked decrease in

reduced glutathione, superoxide dismutase and catalase

activity in the sciatic nerve of rats with hyperalgesia and

allodynia given alcohol (10 g kg-1 orally) for 10 weeks [54,

55]. Thus, following ethanol intoxication, the balance

between pro-oxidants and anti-oxidants is disturbed to

such an extent that it results in the oxidative damage of

biomolecules, such as fats, proteins or DNA, finally leading

to cell injury and thus alcoholic neuropathy.

Molecular mechanisms involved in
alcoholic neuropathy

Role of protein kinases in alcoholic neuropathy
Protein kinase C (PKC) is a family of protein kinases consist-

ing of approximately 10 isozymes. PKC is involved in recep-

tor desensitization, modulating membrane structure

events, regulating transcription, mediating immune

responses, regulating cell growth and in learning and

memory. These functions are achieved by PKC mediated

phosphorylation of other proteins [16]. Apart from above

function, over-activation of epsilon form of protein kinase

C (PKCe) is known to be involved in mediating neuropathic
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pain, such as pain induced by cancer chemotherapy (vinc-

ristine) [56] and diabetes [57]. PKC and protein kinase A

(PKA) are both known to be important in nociceptor func-

tion [57–59]. There are several studies suggesting the

involvement of protein kinases in alcoholic neuropathy.

Dina et al. [16] maintained rats on a diet to simulate chronic

alcohol consumption in humans and found mechanical

hyperalgesia by the fourth week which was maximal at 10

weeks. Thermal hyperalgesia and mechanical allodynia

were also present with decreased mechanical threshold of

C-fibres.The hyperalgesia was acutely attenuated by intra-

dermal injection of nonselective PKC or selective PKCe
inhibitors injected at the site of nociceptive testing.

Western immunoblot analysis indicated a higher level of

PKCe in dorsal root ganglia from alcohol-fed rats, support-

ing a role for enhanced PKCe second messenger signalling

in nociceptors contributing to alcohol-induced hyperalge-

sia [16]. Miyoshi et al. [15] found that a significant decrease

in the mechanical nociceptive threshold was observed after

5 weeks of chronic ethanol consumption in rats.This hype-

ralgesia was significantly attenuated by repeated i.p. injec-

tion of (S)-2,6-diamino-N-[[1-(oxotridecyl)-2-piperidinyl]

methyl] hexanamide dihydrochloride (NPC15437), a selec-

tive PKC inhibitor, once a day for a week after 4 weeks of

ethanol treatment. Moreover, phosphorylated PKC was sig-

nificantly increased in the spinal cord following chronic

ethanol consumption. These findings constitute direct

evidence that spinal PKC plays a substantial role in the

development and maintenance of an ethanol-dependent

neuropathic pain-like state in rats.

PKA and PKCe signalling is also known to play a highly

sexually dimorphic role in alcoholic neuropathy [10]. In

gonad-intact female rats, Walsh inhibitor peptide

(WIPTIDE), both a PKCe inhibitor as well as a PKA inhibitor,

injected intradermally at the site of nociceptive testing

after establishing alcohol induced hyperalgesia, signifi-

cantly inhibited hyperalgesia. Following ovariectomy,

alcohol failed to induce hyperalgesia in female rats while

oestrogen replacement reinstated alcoholic neuropathy in

the female rats.The PKA inhibitor,WIPTIDE, also attenuated

alcohol-induced hyperalgesia in oestrogen-replaced

female rats. In addition, the magnitude of analgesia

induced by a PKCe inhibitor was greater in female as com-

pared with male rats. However, in male rats, a PKCe inhibi-

tor, but not a PKA inhibitor, attenuated alcohol-induced

hyperalgesia [10]. The mechanism underlying the sexually

dimorphic contribution of PKA and PKCe to pain associ-

ated with alcohol-induced neuropathy remains to be

determined.

A connection between MEK/ERK signaling and
alcoholic neuropathy
Extracellular signal-regulated kinases (ERKs) or classical

mitogen activated protein (MAP) kinases (also known as

MEK) are widely expressed protein kinase intracellular sig-

nalling molecules which are involved in functions includ-

ing the regulation of meiosis, mitosis and post mitotic

functions in differentiated cells. Many different stimuli,

including growth factors, cytokines, viral infection, ligands

for heterotrimeric G protein-coupled receptors, transform-

ing agents, and carcinogens, activate the ERK pathway.

There are many studies suggesting the role of MEK/ERK

signaling in inflammatory pain in male [60–63] and female

rats [64]. Dina et al. [10] evaluated the contribution of MEK/

ERK to alcohol-induced peripheral neuropathy and found

that intradermal injection of PD98059 (1 mg ml-1), a selec-

tive inhibitor of mitogen and ERK kinase and U0126

(1 mg ml-1),a specific inhibitor of ERK1/2,after establishing a

state of hyperalgesia in alcohol-fed rats of either gender,

attenuated ethanol induced hyperalgesia similarly in male

and female rats,consistent with a comparable role for MEK/

ERK signaling in chronic alcohol-induced hyperalgesia in

rats of both genders.

Role of spinal cord microglia
Spinal cord glial cells are implicated in the exaggerated

pain state created by diverse manipulations such as sub-

cutaneous inflammation, neuropathy and spinal immune

activation [65, 66]. It has been recognized that spinal cord

glial cells, astrocytes and microglia are activated by neuro-

pathic pain or peripheral inflammation [42]. Furthermore,

astrocytes and microglia are activated by such pain rel-

evant substances as substance P, calcitonin-gene related

peptide (CGRP), ATP and excitatory amino acids from

primary afferent terminals, in addition to viruses and bac-

teria [67, 68]. In a study by Narita et al. [14], 5 weeks ethanol

treatment resulted in significantly decreased mechanical

nociceptive threshold along with microglia activation in

the spinal cord of rats, implicating a role for proliferated

and activated microglia in the expression of a neuropathic

pain-like state following chronic ethanol consumption.

Role of caspases in alcoholic neuropathy
Caspases, or cysteine-aspartic acid proteases, are a family

of cysteine proteases, which play an essential role in apo-

ptosis (programmed cell death), necrosis and inflamma-

tion. Translocation of NFkb to the nucleus has been

reported to result in activation of the endogenous pro-

teolytic enzyme system caspases [69]. Consequently, the

cascade events promote further apoptosis [70]. Joseph &

Levine [71] suggested that activity in signaling pathways

that ultimately lead to apoptosis plays a critical role in the

generation of neuropathic pain, before death of sensory

neurones becomes apparent. Activator and effector

caspases, defining components of programmed cell death

signalling pathways, also contribute to pain-related behav-

iour in animals with small fibre peripheral neuropathies.

The death receptor ligand, tumour necrosis factora, and its

downstream second messenger, ceramide, also produce

pain-related behaviour via this mechanism. In two models

of painful peripheral neuropathy, HIV/AIDS therapy

(induced by the nucleoside reverse transcriptase inhibitor,

Clinical management of alcoholic neuropathy
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dideoxycytidine) and cancer chemotherapy (induced by

vincristine) peripheral neuropathy, and for pain-related

behaviour induced by tumour necrosis factor a and its

second messenger, ceramide, inhibition of both activator

(1, 2, 8 and 9) and effector (3) caspases attenuates neuro-

pathic pain-related behaviour. This suggests that these

pathways are potential targets for novel pharmacological

agents for the treatment of inflammatory as well as neuro-

pathic pain [71].

Chronic exposure to ethanol results in increased

amounts of oxidative damage; translocation of PKC, activa-

tion of PKC and NFkb, which results in DNA fragmentation

and ultimately increased neuronal death through apopto-

sis or other mechanisms that are responsible for the

behavioural deficits [72]. Izumi et al. [73] also demon-

strated that a single day of ethanol exposure in rats on post

natal day 7 results in significant apoptotic neuronal

damage throughout the forebrain after 24 h of ethanol

administration. Thus, it is quite possible that chronic

alcohol consumption is responsible for inducing neuropa-

thy by activation of the caspase cascade and may be

an important target for the treatment of alcoholic

neuropathy.

Involvement of glutamate receptors
Accumulating evidence suggests a pivotal role for

metabotropic glutamate receptors (mGluRs) in nocicep-

tive processing, inflammatory pain and hyperalgesia [74,

75]. Several mGluR subtypes have been identified in the

superficial dorsal horn of the spinal cord [76, 77] and on

primary afferent fibres [78]. Glutamate concentrations are

elevated in the superficial dorsal horn of rats after chronic

ligature of the sciatic nerve [79]. Miyoshi et al. found that 5

weeks after ethanol treatment, the mechanical nociceptive

threshold was significantly decreased and is further

reduced up to 10 weeks [80]. As supported by immun-

ostaining, the membrane fraction showed that spinal

mGluR5 concentrations in ethanol-treated rats were sig-

nificantly increased compared with those in the control

diet group. These findings support the idea that the

increased number of membrane-bound mGluR5 following

chronic ethanol consumption may lead to a long lasting

activation of neuronal protein kinase C in the dorsal horn

of the spinal cord. This phenomenon may be responsible

for the induction of the neuropathic pain like behaviour

following chronic ethanol consumption. Not only mGluRs

but ionotropic glutamate (NMDA) receptors are also

involved in alcoholic-induced neuropathic pain. Narita

et al. [14] found that the p- Ser1303-NR2B subunit protein

(subunit of NMDA receptor) in the spinal cord of rats was

significantly increased following chronic ethanol treat-

ment suggesting that PKC-dependent NR2BRs in the spinal

cord may be activated following chronic ethanol con-

sumption and may be involved in the induction of the

ethanol dependent neuropathic pain-like state.

Involvement of the opioidergic system
Narita et al. [14] found that chronic alcohol consumption

was associated with long lasting hyperalgesia during and

even after ethanol withdrawal along with opioid receptor

dysfunctioning specific for m opioid receptors (MOR), but

not delta and kappa opioid receptors. These findings

suggest that chronic ethanol treatment causes the spe-

cific dysfunction of MOR. Thus, up-regulation of cPKC

activity may, at least in part, be involved in MOR dysfunc-

tion (may be an increase in MOR phosphorylation) follow-

ing chronic ethanol treatment. This phenomenon may

explain the reduced sensitivity to morphine-induced anti-

nociception under the ethanol-dependent neuropathic

pain-like state.

Involvement of the sympatho-adrenal and
hypothalamo-pituitary-adrenal (HPA) axis in
alcoholic peripheral neuropathy
Alcohol consumption potently activates the two major

neuroendocrine stress axes, leading to the sustained

release of glucocorticoids and catecholamines [17–19].

Increased activity in the sympathetic nervous system has

been implicated in some forms of neuropathic pain [81, 82]

and glucocorticoids have been reported to exacerbate

pain in some animal models of peripheral neuropathy [83].

Dina et al. demonstrated the involvement of the

sympatho-adrenal stress axis and its final common media-

tor, epinephrine, in painful alcoholic neuropathy by

showing that adrenal medullectomy prevented and

reversed the pro-nociceptive effects of alcohol consump-

tion [84]. Moreover, they found that the hyperalgesic

phenotype in rats which had undergone adrenal medul-

lectomy by administering stress levels of epinephrine was

reconstituted. The critical contribution of stress hormones

to the pain associated with alcohol-induced peripheral

neuropathy, combined with the demonstration of stress-

induced hyperalgesia, dependent on neuroendocrine

stress axes [85, 86], suggests that the mechanisms

described in the study of Dina et al. may have implications

for other types of pain in which patients experience

repeated exposure to stress [84].

Thus, from the above discussion it is clear that stress

hormones, catecholamines and glucocorticoids, from the

sympatho-adrenal and HPA neuroendocrine stress axes,

respectively, play a very important role in initation and

maintenance of alcoholic neuropathy. The combined

actions of catecholamines and glucocorticoids, via their

receptors on sensory neurones, demonstrate a novel

mechanism by which painful alcoholic neuropathy is

induced and maintained.

Effects on axonal transport and cytoskeletal
properties
Axonal transport and cytoskeletal properties are impaired

by ethanol exposure [4]. Since alcoholic neuropathy
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manifests with length-dependent axonal degeneration,

the axonal transport system, which supplies essential pro-

teins and other cellular components, may be the primary

site exhibiting vulnerability to the toxicity of ethanol. Yer-

delen et al. suggest that alcoholic neuropathy is a primary

axonal neuropathy characterized by Wallerian degenera-

tion of the axons and a reduction in the myelination of

neural fibres [87]. An in vitro study of axonal transport

using dorsal root ganglion-sciatic nerve preparations from

the rat showed that transport was reduced following long

term ethanol feeding [88]. In vivo studies using rats have

demonstrated impairment of retrograde axonal transport

[89, 90]. Ethanol exposure reduces neurofilament protein

concentrations in primary cultured hippocampal neurones

[91]. Studies using the rat spinal cord indicate that chronic

ethanol exposure causes a reduction in neurofilament-

associated phosphatase activity and an increase in phos-

phate content of neurofilament proteins [92]. An in vitro

study using rat brain has demonstrated that phosphoryla-

tion of microtubule-associated proteins, which modulate

the functional properties of microtubules, is altered by

ethanol exposure [93]. A study using hepatoma-derived

cells has shown altered integrity of proteins associated

with microtubules following ethanol exposure [94].Altered

expression of neuronal protein 22, which interacts with

microfilament and microtubule matrices, may also be

involved in the pathogenesis of alcoholic neuropathy [95].

Thus, defects in axonal transport and cytoskeletal proper-

ties of axons may be one of the important pathways

involved in alcohol induced peripheral neuropathy.

Thus, it is clear that all the above pathways are potential

targets for novel pharmacological agents for the treatment

of alcoholic neuropathy.

Clinical management of alcoholic
neuropathy

Treatment is directed towards halting further damage to

the peripheral nerves and returning to normal functioning.

This can be achieved by alcohol abstinence, a nutritionally

balanced diet supplemented by all B vitamins, and reha-

bilitation. However, in the setting of ongoing ethanol use,

vitamin supplementation alone has not been convincingly

shown to be sufficient for improvement in most patients.

Painful dysesthesias associated with alcoholic neuropathy

can be treated using gabapentin or amitriptyline with

other over the counter pain medications, such as aspirin or

acetaminophen. However these drugs are being used only

for the management of acute pain and are ineffective in

targeting the basic pathological pathways involved in

alcoholic neuropathy.

Here we discuss a few of the therapeutic options which

are tried and could be tried for prevention and treatment

of alcoholic peripheral neuropathy.

Benfotiamine for the treatment of alcohol
related peripheral neuropathy
Benfotiamine (S-benzoylthiamine O-monophoshate) is a

synthetic S-acyl derivative of thiamine (vitamin B1). A

deficiency of vitamin B1 in chronic alcoholics can be due

to inadequate dietary intake, reduced capacity for hepatic

storage, inhibition of intestinal transport and absorption

or decreased formation of the active coenzyme form. In

an animal study, it has been found that chronic alcohol

consumption in rats resulted in a significant depletion in

thiamine diphosphate (TDP), the active coenzyme form of

thiamine. Supplementation with benfotiamine signifi-

cantly increased concentrations of TDP and total thiamine

compared with supplementation with thiamine HCl [96].

An 8 week, randomized, multicentre, placebo-controlled,

double-blind study compared the effect of benfotiamine

alone with a benfotiamine complex (Milgamma-N) or

placebo in 84 alcoholic patients. Parameters measured

included vibration perception in the great toe, ankle and

tibia, neural pain intensity, motor function and paralysis,

sensory function and overall neuropathy score and clini-

cal assessment. Although benfotiamine therapy was

superior to Milgamma-N or placebo for all parameters,

results reached statistical significance only for motor

function, paralysis and overall neuropathy score. The

reason for better results in the benfotiamine alone group

than in the Milgamma-N group, despite the fact that the

benfotiamine dosage was equivalent, is not completely

understood. The authors hypothesized that vitamins B6

and B12 might have competed with the effects of vitamin

B1 in the Milgamma-N group [97]. In another small

Russian study, 14 chronic alcoholic men with polyneur-

opathy were given 450 mg benfotiamine daily for 2

weeks, followed by 300 mg daily for an additional 4

weeks. During the treatment the regression of neuropa-

thy symptoms, other sensor and movement disorders

were observed. The evidence of positive dynamics at

peripheral and segmental nerve system level was sup-

ported by neurophysiological data. Benfotiamine was

found to be beneficial in patients with alcoholic poly-

neuropathy [98].

Alpha-lipoic acid
Alpha-lipoic acid, the most well-researched nutrient for

peripheral neuropathy, has been used as a treatment for

peripheral neuropathy in Europe for decades. Several

studies examining the mechanism of alpha-lipoic acid

have been conducted on streptozotocin-diabetic rats with

neuropathy. Alpha-lipoic acid was found to increase

glucose uptake by nerve cells [99], nerve myo-inositol

[99, 100], glutathione concentrations [100, 101], (Na+/K+)-

ATPase activity, nerve blood flow and normalize

NAD : NADH ratios [100].

Thus, alpha-lipoic acid may have a potential in the

treatment of patients with alcoholic neuropathy.

Clinical management of alcoholic neuropathy
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Acetyl-L-carnitine
Acetyl-L-carnitine has been tested in clinical [102] and

animal studies [103] for the treatment of chemotherapy-

induced peripheral neuropathy. The decreases in nerve

conduction velocity were significantly less in groups

supplemented with acetyl-L-carnitine. In addition, acetyl-

L-carnitine did not interfere with the antitumour effects of

the drugs.

Thus, there is a need to screen acetyl-L-carnitine in both

preclinical and clinical models of alcoholic neuropathy.

Vitamin E
Vitamin E is used to refer to a group of fat-soluble com-

pounds that include both tocopherols and tocotrienols.

Treatment with vitamin E was found to be beneficial in the

treatment of patients with diabetic peripheral neuropathy

[104] and neuropathic pain in streptozotocin-induced dia-

betic rats [105]. Recently findings from our laboratory also

suggest the benefecial effects of both a-tocopherol and

tocotrienol, isoforms of vitamin E, in the prevention of

hyperalgesia and allodynia in rats administered ethanol for

10 weeks [55]. We found more potent effects with tocot-

rienol as compared with a-tocopherol [55].

Thus, there is an urgent need to screen the vitamin E

isoforms, especially tocotrienol for evaluating clinical effi-

cacy in patients with alcoholic neuropathy.

Methylcobalamin for the treatment of
peripheral neuropathy
Vitamin B12 deficiency has been associated with signifi-

cant neurological pathology, including peripheral neur-

opathy. Testing serum metabolites such as methylmalonic

acid and homocysteine can help identify clinically indi-

viduals at risk for a deficiency-associated neurological

syndrome [106]. One of the mechanisms believed to be at

play in vitamin B12 deficiency neuropathy is hypomethy-

lation in the central nervous system. Inhibition of the

B12- dependent enzyme methionine synthase results in

a fall in the ratio of S-adenosylmethionine (SAM) to S-

adenosylhomocysteine [107] and the resultant deficiency

in SAM impairs methylation reactions in the myelin

sheath. Clinical trials of methylcobalamin alone or vitamin

B12 combined with other B vitamins found overall symp-

tomatic relief of neuropathy symptoms was more pro-

nounced than electrophysiological findings [108]. Hence,

future studies are required to test the efficacy of methyl-

cobalamin in both the preclinical and clinical domain.

Myo-inositol for treatment of peripheral
neuropathy
Myo-inositol is an important constituent of the phospho-

lipids that make up nerve cell membranes. Because low

nerve myo-inositol concentrations have been observed in

the pathogenesis of diabetic neuropathy, the potential for

supplementation has been explored. Sural nerve biopsies

were conducted on 30 male subjects, 10 with type 1 dia-

betes (five with clinical signs of diabetic neuropathy), 10

with impaired glucose tolerance and 10 with normal

glucose tolerance. Nerve myo-inositol concentrations were

significantly lower in diabetics with neuropathy. Also, in

subjects with normal or impaired glucose tolerance, high

nerve myo-inositol concentrations were associated with

nerve regeneration as illustrated by increased nerve fibre

density [109]. In an animal model of experimental diabetic

neuropathy a significant decrease in motor nerve conduc-

tion velocity was observed. Supplementation with 500 mg

myo-inositol/rat/day partially prevented this decrease,

while supplementation with an analogue of myo-inositol,

D-myo-inositol-1,2,6-trisphosphate, at a dose of 24 mg/rat/

day completely prevented a reduction in nerve conduc-

tion velocity [110].

Thus, further studies are required to find whether treat-

ment with myo-inositol can treat symptoms associated

with alcoholic neuropathy as the disease pathology also

involves nerve fibre degeneration and loss.

The application of N-acetylcysteine for
peripheral neuropathy
N-acetylcysteine, an amino acid, is a potent antioxidant

and helps to enhance glutathione concentrations.

N-acetylcysteine may have application in the prevention

or treatment of neuropathy. Rats with experimentally-

induced diabetes for 2 months had a 20% reduction in

nerve conduction velocity and 48% reduction in endo-

neurial blood flow. Both were largely corrected by

N-acetylcysteine supplementation [111]. A mechanism of

cisplatin chemotherapy-induced peripheral neuropathy

was elucidated in an in vitro mouse model. Apoptosis of

neurones was induced by cisplatin, but pre-incubation

with N-acetylcysteine completely blocked apoptosis [112].

Thus, further preclinical and clinical studies are

required to assess of this molecule in alcoholic neuropathy.

Topical capsaicin cream for the treatment of
peripheral neuropathy
Capsaicin is an active principal of the herb Capsicum offici-

nalis and is believed to stimulate afferent C-fibres (fibres in

the mechano-heat class). The initial stimulation of C-fibres

results in burning and irritation that stimulates release of

substance P and other neuropeptides.Repeated exposures

result in a diminution of the initial burning and irritation

and a long-lasting analgesic effect [113]. In a large, multi-

centre, double-blind, placebo controlled trial conducted by

The Capsaicin Study Group,277 subjects entered the study,

252 continued for at least 2 weeks and 219 completed the

8 week trial. Subjects applied 0.075% capsaicin cream (n =
100 completers) or placebo cream (n = 119 completers)

four times daily and were evaluated at 2 week intervals for

8 weeks. Pain was assessed via physician assessment as

well as a patient driven visual analogue scale. Statistically

significant improvements were noted in physician global
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assessment (69.5% vs. 53.4%), pain intensity (38.1% vs.

27.4%) and degree of pain relief (58.4% vs. 45.3%) in the

capsaicin vs. placebo groups, respectively [114].

Therefore, topical application with capsaicin may

provide symptomatic relief from neuropathic pain in

patients suffering from alcoholic neuropathy.

Antidepressants for the alleviation of
neuropathic pain symptoms
Tricyclic antidepressants (TCAs) are often the first line

drugs to alleviate neuropathic pain symptoms. They have

central effects on pain transmission and block the active

re-uptake of norepinephrine and serotonin. TCAs have

been shown to relieve various neuropathic pain conditions

in many trials [115]. In agreement with this, one recent

study has confirmed the efficacy of TCAs in central pain

[116]. The serotonin/norepinephrine re-uptake inhibitors

(SNRIs), duloxetine and venlafaxine, have a well-

documented efficacy in painful polyneuropathy [117, 118].

SSRIs have been studied in a few trials which have demon-

strated a weak analgesic effect but the clinical relevance of

these compounds is questionable [119].

Thus, treatment with TCAs may provide symptomatic

relief in patients with alcoholic neuropathy.

Anticonvulsants
Antiepileptic drugs, such as the gamma aminobutyric acid

(GABA) analogue (gabapentin), have proven helpful in

some cases of neuropathic pain. These drugs have central

and peripheral anticholinergic effects, as well as sedative

effects, and they block the active re-uptake of norepineph-

rine and serotonin. Recently, extended release gabapentin

relieved symptoms of painful polyneuropathy [120]. Lam-

otrigine was effective in relieving central post stroke pain

[121] and painful diabetic polyneuropathy [122], but

recent larger studies have failed to show a pain relieving

effect in mixed neuropathic pain [123] and painful poly-

neuropathy [124]. Valproate demonstrated varying effects

in different studies of neuropathic pain, with three studies

from one group reporting high efficacy [125–127] and

others failing to find an effect [128,129].Lacosamide,a new

anticonvulsant drug, had a small but significant pain reliev-

ing effect on painful diabetic neuropathy [130], while sub-

sequent trials have failed to find an effect, except for the

efficacy of a 400 mg dose in subgroup analyses [131, 132].

Thus, treatment with anticonvulsant drugs may provide

another therapeutic alternative for the symptomatic relief

of pain in patients with alcoholic neuropathy.

Conclusion and future perspective

Alcoholic peripheral neuropathy presents with consider-

able morbidity and can result in significant decreases in

quality of life.While conventional medicine can offer some

relief, the potential side effects or addictive nature of many

of the medications render long term use undesirable. Such

treatments, furthermore, merely mask the symptoms and

do not address the underlying pathologies. Alternative

therapies, on the other hand, are typically without side

effects and address nutrient deficiencies, oxidative stress

and other aetiological factors associated with the develop-

ment of peripheral neuropathy.

Benfotiamine, alpha-lipoic acid, acetyl-L-carnitine and

methylcobalamin are among the well-researched alterna-

tive options for the treatment of peripheral neuropathy.

Other potential nutrient or botanical therapies include

vitamin E, myo-inositol, N-acetylcysteine and topical cap-

saicin. Thus there is a need to investigate all the above

mentioned agents in animal models of alcoholic neuropa-

thy as well clinically in patients suffering from this disorder.

The use of well-researched nutrients and the possible addi-

tion of new cutting-edge treatments should decrease the

morbidity associated with peripheral neuropathy and the

side effects associated with the commonly prescribed con-

ventional pain-relieving treatments in current favour.

As yet there is no effective therapeutic intervention

available for relieving the neuropathic pain due to chronic

alcohol consumption. Thus there is a need to understand

the basic pathophysiological mechanisms involved in

alcohol induced neuropathic pain so that new therapeutic

modalities targeting disrupted molecular events can be

developed for prevention as well as clinical management

of alcoholic neuropathy.
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