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Abstract

In recent years, there has been a significant increase in the number of completely sequenced plant
genomes. The comparison of fully sequenced genomes allows for identification of new gene
family members, as well as comprehensive analysis of gene family evolution. The aldehyde
dehydrogenase (ALDH) gene superfamily comprises a group of enzymes involved in the NAD*-
or NADP*-dependent conversion of various aldehydes to their corresponding carboxylic acids.
ALDH enzymes are involved in processing many aldehydes that serve as biogenic intermediates in
a wide range of metabolic pathways. In addition, many of these enzymes function as ‘aldehyde
scavengers’ by removing reactive aldehydes generated during the oxidative degradation of lipid
membranes, also known as lipid peroxidation. Plants and animals share many ALDH families, and
many genes are highly conserved between these two evolutionarily distinct groups. Conversely,
both plants and animals also contain unique ALDH genes and families. Herein we carried
outgenome-wide identification of ALDH genes in a number of plant species—including
Arabidopsis thaliana (thale crest), Chlamydomonas reinhardtii (unicellular algae), Oryza sativa
(rice), Physcomitrella patens (moss), Vitis vinifera (grapevine) and Zea mays (maize). These data
were then combined with previous analysis of Populus trichocarpa (poplar tree), Selaginella
moellindortfii (gemmiferous spikemoss), Sorghum bicolor (sorghum) and Volvox carteri (colonial
algae) for a comprehensive evolutionary comparison of the plant ALDH superfamily. As a result,
newly identified genes can be more easily analyzed and gene names can be assigned according to
current nomenclature guidelines; our goal is to clarify previously confusing and conflicting names
and classifications that might confound results and prevent accurate comparisons between studies.
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Introduction

The aldehyde dehydrogenase (ALDH) superfamily is composed of a wide variety of
enzymes involved in endogenous and exogenous aldehyde metabolism. ALDH enzymes use
either NAD* or NADP* as a cofactor to convert aldehydes to their corresponding carboxylic
acids plus NADH or NADPH. Compounds with aldehydic functional groups are generated
as important intermediates in many catabolic and biosynthetic pathways. Moreover, the
ALDH-mediated generation of NADH/NADPH represents a major source of reducing
equivalents required for maintaining cellular redox balance.

The cytoprotective action of these enzymes during oxidative stress represents another major
function of the ALDH superfamily. Under conditions inducing oxidative stress, ALDH
enzymes act as ‘aldehyde scavengers’ by metabolizing reactive aldehydes produced as a
consequence of the oxidative degradation of lipid membranes, also known as lipid
peroxidation (LPO). Many LPO-derived aldehydes such as 4-hydroxynoneal (4-HNE), 4-
oxononenal (4-ONE) and malondialdehyde (MDA), to name a few, are potent electrophiles
and readily form adducts with physiologically vital nucleophiles such as nucleic acids and
proteins. Adduction of these molecules can cause mutations, hinder function, and lead to
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significant perturbations in homeostasis. In plants, many studies have shown that ALDH up-
regulation is a common target of stress response pathway activation. As such, there is
significant economic interest in utilizing ALDH expression to improve both growth and
quality in crops grown under harsh conditions such as poor soil quality or drought (Bartels
and Sunkar 2005).

Aldehyde dehydrogenases are found throughout prokaryotic and eukaryotic organisms, and
the ALDH superfamily is well represented within virtually all plant species. In addition,
ALDH expression is variable and widespread throughout plant tissues and also
developmentally regulated (Missihoun et al. 2011; Tsuji et al. 2003). Furthermore, plant
ALDH proteins are found in numerous subcellular compartments—including cytosol,
mitochondria, plastids (chloroplasts, chromoplasts and leucoplasts), peroxisomes and
microsomes (Missihoun et al. 2011; Mitsuya et al. 2009). Many ALDH families are highly
conserved between plants and animals. As predicted, numerous studies have shown that
these enzymes share a number of aldehyde substrates.

ALDHs play a crucial role in many catabolic and bio-synthetic pathways including carnitine
biosynthesis, glycolysis/gluconeogenesis, and amino-acid metabolism (Marchitti et al. 2008;
Sophos and Vasiliou 2003; Tylichova et al. 2010; Yang et al. 2011). ALDH expression is
also responsible for the aroma associated with fragrant rice strains such as jasmine and
basmati (Sakthivel et al. 2009). In plants, ALDH enzymes also play a role in seed
development and maturation (Shin et al. 2009). The widespread expression and multifaceted
functions of these enzymes in plants underscore their importance.

The plant ALDH superfamily contains 13 distinct families: ALDH2, ALDH3, ALDHS,
ALDH6, ALDH7, ALDH10, ALDHI11, ALDH12, ALDH18, ALDH21, ALDH22, ALDH23
and ALDH24. The ALDH10, ALDH12, ALDH21, ALDH22, ALDH23 and ALDH24
families are specific to plants, whereas the ALDH2, ALDH3, ALDHS, ALDH6, ALDH7
and ALDH18 families have mammalian orthologues. The total number of ALDH genes
within a given plant species varies greatly and appears to increase as plants became more
complex and moved from water onto land (Table 1).

In many cases, gene expansion commonly associated with increasing organismal complexity
is associated with duplication and expansion of a specific lineage or subfamily of proteins.
Gene duplication is generally accepted as the predominant evolutionary force behind
generation of new genes and subsequent gene functions. In most plant species, gene families
account for more than half of the genes within the genome (Flowers and Purugganan 2008).
A gene duplication event is generally followed by either partitioning of gene function
between the duplicated genes, known as subfunctionalization, or development of a new
function, known as neofunctionalization (Force et al. 1999). The two algae analyzed within
this study, V. carteri and C. reinhardtii, contain seven and nine ALDH genes, respectively.
Mosses and vascular plants have on average twice as many ALDH family members.

The moss P. patens separated from flowering plants and unicellular algae more than 400
million years ago (MYA) (Rensing et al. 2008). As plants moved onto land there was a
concomitant loss of many genes associated with aquatic life and expansion of genes required
for adaptation to terrestrial stressors. In addition, acquisition of many genes is coupled to
multicellular growth, vascularization, tissue distribution and differentiation, and the ability
to coordinate organismal response via hormone-signaling pathways. Expansion of ALDH
genes within these species may be due to additional protection offered against
environmental stresses encountered during the transition to terrestrial life, as well as
increasing structural and developmental complexity (Cronk 2001).
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Many plant ALDH genes respond to stress, and changes in expression occur following
exposure to a wide variety of stressors including dehydration, water logging, heavy metals,
high salinity, heat, cold, oxidative stress, ultraviolet radiation (UVR) and many others
(Chugh et al. 2011; Inostroza-Blancheteau et al. 2011; Sunkar et al. 2003). The fact that
many ALDH genes in plants are stress-responsive underscores their importance in
supporting environmental adaptability.

Increases in ALDH gene number may impart a selective advantage and enhance survival.
The increased number of ALDH genes found in higher plants is usually the result of
expansion of one or more ALDH families. For example, the moss P. patens and the
lycophyte S. moellindorttii show an increase in ALDH 10homologues. In contrast, V.
vinifera and P. trichocarpa have undergone expansion in the number of ALDHG6 family
members.

The species in this manuscript were chosen because they allow for a relatively
comprehensive look at ALDH superfamily expansion throughout plant evolution. There is a
tremendous amount of diversity in plant genome size, structural organization, and
chromosome number (Table 2). Chlamydomonas reinhardtii is a unicellular alga that
belongs to the chlorophyte group, which primarily comprises aquatic photosynthetic
eukaryotes. Volvox carteri is a multicellular green alga closely related to C. reinhardtii that
also belongs to the chlorophytes. Physcomitrella patens is a non-vascular moss that is
generally considered phyogenetically half-way between algae and seed plants—making
genomic analyses very important when drawing evolutionary comparisons between species
(Rensing et al. 2008). Selaginella moellendorttii, also known as the gemmiferous spikemoss,
is considered one of the most basic vascular plants and belongs to the lycophytes.
Lycophytes first appeared in the fossil record over 400 MY A, which makes present-day
members of this family a great resource for comparative genomics. Arabidopsis thalianais a
small flowering plant that is commonly used as a model organism in plant biology. Populus
trichocarpa represents the first tree to have its genome completely sequenced. The analysis
of many species encompassing the full gamut of plant evolution from single-celled algae to
flowering trees facilitates a comprehensive and informative comparison of ALDH evolution
and superfamily expansion.

The purpose of this manuscript is to expand upon and also consolidate nomenclature
currently found within the literature from a number of species-specific analyses in an effort
to clarify ALDH nomenclature, as well as identify new ALDH genes within these species. In
addition, recently sequenced genomes from additional species will be analyzed for ALDH
superfamily members and the identified ALDH genes named, according to approved
nomenclature guidelines.

Nomenclature

The nomenclature system for ALDH superfamily members was established in 1999
(Vasiliou et al. 1999). The system was developed according to the Human Gene
Nomenclature guidelines (http://www.genenames.org/guidelines.html) and its use is
recommended for all other species. All genes are given the same root symbol ‘ALDH’
which is followed by an Arabic numeral denoting the family. The family designation is
followed by a letter representing the given subfamily and another number signifying the
individual gene within that subfamily. The guidelines are based on pairwise alignments
between amino-acid sequences for any given set of ALDHs. Sequences that share ~40 %
identity or more fall into the same ALDH family. Sequences that share ~60 % identity or
more are grouped into the same subfamily. Gene subfamilies and numbers are designated
chronologically following their identification. Genes are italicized and capitalized, whereas
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proteins are only capitalized. Additional information relating to the ALDH gene superfamily
can be found online at the Aldehyde Dehydrogenase Superfamily Database (http://
www.aldh.org).

ALDH identification and nomenclature has been reported previously by a number of groups
for various plant species. The Arabidopsis thaliana and Zea mays ALDH superfamilies were
described in 2004 and 2010, respectively, according to the nomenclature system detailed
above (Jimenez-Lopez et al. 2010; Kirch et al. 2004). The Oryza sativa ALDH superfamily
was originally described in 2009 and revised according to nomenclature guidelines outlined
above in 2010 (Gao and Han 2009; Kotchoni et al. 2010). Original descriptions of the
ALDH families have appeared for the moss P. patens and the algaes C. rein-hardtii and
Ostreococcus tauri (Wood and Duff 2009), and in V. vinifera (Zhang et al. 2012).

In this report, we compile nomenclature information from the above-mentioned publications
and use the information to classify a number of newly identified genes within these species.
In addition, this information was combined with homology-based searches to identify and
name ALDH genes within four as-yet-not-studied species—.S. moellindorttii, S. bicolor, P.
trichocarpa and V. carteri. The prefixes ‘arth’ (A. thaliana), ‘chre’ (C. reinhardtii), ‘hosa’
(Homo sapiens), ‘orsa’ (O. sativa), ‘phpa’ (P. patens), ‘potr’ (P. trichocarpa), ‘semo’
(Selaginella moellindorttii), ‘sobi’ (Sorghum bicolor), ‘vivi’ (Vitis vinifera), ‘voca’ (V.
carteri) and ‘zema’ (Z. mays) are used for clarification when referring to ALDH proteins or
genes found within different species. ALDH genes and associated sequence information
used for analyses are listed in Tables 3, 4, 5, 6,7, 8,9, 10, 11, 12.

ALDH2 family

The ALDH?Z gene family comprises mitochondrial and cytosolic enzymes that exhibit
relatively broad substrate specificity (EC 1.2.1.3) (Marchitti et al. 2008). Studies have
shown that ALDH?2 family proteins are physiologically active as homo-tetramers (Marchitti
et al. 2008). The first plant ALDH2 family members were initially identified as genes that
restored fertility in plants; a mutation was identified that causes cytoplasmic male sterility
(CMS) and subsequently grouped with other fertility-restorer (RF) genes (Skibbe et al.
2002). However, RF genes are classified by function, not homology, and are therefore not
necessarily evolutionarily related. The Z. mays ALDH genes originally identified as RF
genes were named RFZA, RF2B, RF2C and RF2D; however, the genes were renamed
ALDHZ?B1, ALDH2B6, ALDH2C2 and ALDH2C3, respectively, by Skibbe et al. in 2002
(Cui et al. 1996; Skibbe et al. 2002). RF2A, RF2B, RF2C and RF2D were also
independently renamed ALDHZ2B2, ALDHZ2B5, ALDH2C1 and ALDHZ2CZ, respectively, by
Jimenez-Lopez et al. in 2010 after a comprehensive analysis of the entire Z. mays ALDH
gene family by comparing structural 3-D conformations and specific epitope domain/
cavities/tunnels found among many well-characterized ALDH crystal structures. Jimenez-
Lopez et al. also used naming criteria corresponding to guidelines proposed by the ALDH
Gene Nomenclature Committee (AGNC) (Jimenez-Lopez et al. 2010). This nomenclature
scheme has therefore taken precedence over previous systems. Similarly, a number of
ALDH genes identified in Arabidopsis have undergone a variety of nomenclature changes.
Li et al. identified three Arabidopsis ALDH genes which were named ALDH1a, ALDH?a
and ALDH?Zb (Li et al. 2000). The same genes were originally named AtALDHZ2, AtALDH1
and AtALDH3, respectively, and then renamed according to approved nomenclature as
ALDH2C4, ALDH?B4 and ALDHZ2B?7 (Skibbe et al. 2002).

ALDH?2 family members in plants metabolize acetaldehyde generated as a consequence of

ethanolic fermentation (op den Camp and Kuhlemeier 1997; Wei et al. 2009). Metabolism of
acetaldehyde produces acetate, which is subsequently used for CoA synthesis via acetyl-
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CoA synthase activity; this pathway is known as the ‘pyruvate dehydrogenase (PDH)
pathway’. In Arabidopsis, mitochondrial ALDH2B4 was shown to be the predominate
ALDH isoform contributing to this reaction (Wei et al. 2009). Another study found that
transgenic expression of the ALDH2B4 homologue identified in Chinese wild grapevine
prevents mildew infection, although the exact means by which expression protects against
pathogen infection is not yet understood (Wen et al. 2012). Studies characterizing a recently
identified plant ALDH, ALDH2C4, suggested this enzyme plays a role in biosynthesis of
ferulic acid and sinapic acid, important compounds contributing to cell wall strength
(Grabber et al. 2000; Nair et al. 2004).

The plant ALDH?2 family is relatively diverse and includes four distinct subfamilies, namely
ALDH2B, C, D and E (Fig. 1). The ALDH2 family expanded significantly during evolution
of terrestrial plants and the number of ALDH2 family members varies substantially between
species. Two aquatic algae species that we have analyzed, V. carteri and C. reinhardltii, each
contain a single ALDH2E family member; these genes compared between the two species
encode proteins that share 69.2 % sequence identity and 79.0 % similarity. The algae
ALDHZ2E proteins share, on average, a higher degree of sequence homology to ALDH2B
proteins than ALDH2C or ALDH2D. The lycophyte S. moellindorftii genome contains four
ALDHZB and two ALDHZD family members, whereas the moss P. pafens contains only two
ALDH?ZB genes. Lycophytes are considered a basal vascular plant; many novel
physiological systems and pathways developed during evolution of mosses to lycophytes.
For example, gibberellin-signaling pathways, which control aspects of growth and
development, do not exist in P. patens but are present in .S. moellindorffii (Aya et al. 2011).
It is possible that expansion of the ALDH?2 family occurred in concert with, or as a result of,
novel pathway development when basal land plants evolved into basal vascular plants.

ALDH3 family

Studies in mammals have shown that ALDH3 homologues are found within both the cytosol
and mitochondria (EC 1.2.1.5) (Marchitti et al. 2008). Bioinformatic analysis of plant
proteins predicts diverse subcellular localization— including cytosol, chloroplasts and
endoplasmic reticulum (Jimenez-Lopez et al. 2010; Kirch et al. 2004; Stiti et al. 2011).
Expression of many of the genes within this family is believed to be regulated by the
abscisic acid (ABA) stress-response pathway. The plant ALDH3 family has diverged
significantly into six subfamilies, namely ALDH3E, 3F, 3H, 31, 3J and 3K.

The three A. thaliana ALDH isoforms—ALDH3F1, ALDH3H1 and ALDH3I—show
distinct expression and response patterns. For example, ALDH3I1 expression is restricted to
leaves and responds to treatment with ABA exposure, salinity, dehydration, heavy metals,
oxidants and pesticides (Kirch et al. 2001; Stiti et al. 2011; Sunkar et al. 2003). ALDH3H1
was also found to be stress-responsive and constitutively expressed at low levels throughout
tissues. A complex expression pattern of ALDH3H1 gene locus, regulated by gene-splicing
or alternative promoters, may be responsible for the abundance of ALDH3H1 (Missihoun et
al. 2012). In contrast, ALDH3F1 expression does not change in response to any of the
treatments listed above (Kirch et al. 2004). Based on very distinct expression and response
patterns noted in A. thaliana, it was suggested that ALDH3 isoforms have evolved as a
consequence of functional specialization within specific tissues and subcellular organelles
(Kirch et al. 2004).

ALDH3 proteins make up one of the most expanded and diverse groups of plant ALDH
gene families (Fig. 2). Z. mays, O. sativa and P. patens genomes each contain five ALDH3
homologues. Sorghum bicolor and V. vinifera each contain four ALDH3 members, whereas
S. moellindorttii, A. thaliana and P. trichocarpa each contain two, three and six ALDH3
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genes, respectively. It had previously been reported that the unicellular algae C. reinhardtii
lacked ALDH3; our analyses also were not successful in identifying an ALDH3 homologue
within the C. reinhardtii genome. Furthermore, the colonial algae V. carterilacks ALDH3—
suggesting that expansion and diversification of the ALDH3 gene family occurred in
conjunction with the evolutionary movement of aquatic plants onto land.

ALDHS5 family

The ALDHS gene family is made up of succinic semialdehyde dehydrogenases (SSADHs;
EC 1.2.1.24), which catalyze the conversion of succinic semialdehyde (SSA) to succinate
during the last step of y-aminobutyrate (GABA) catabolism. ALDHS participates in the
GABA ‘shunt’ pathway found in bacteria, plants and animals—which allows these
organisms to metabolically bypass the tricarboxylic acid pathway. GABA in mammals plays
a very important role as a neurotransmitter. In plants, GABA is associated with pollen—pistil
interactions, herbivore deterrence, oxidative stress and hypoxia (Fait et al. 2008; Palanivelu
et al. 2003). ALDHS in Arabidopsis was found to be localized to the mitochondria and is
also predicted to be a mitochondrial protein in other plant species (Bouche et al. 2003; Gao
and Han 2009). ALDHS5 mutations in plants have been show to cause enhanced
accumulation of reactive oxygen intermediates and cell death in response to light and heat
stress (Bouche et al. 2003). Recently, it was also shown that SSA or its derivatives affect
adaxial-abaxial polarity and thus leaf patterning (Toyokura et al. 2011).

ALDHS orthologues were identified in all species with the exception of V. carteri (Fig. 3a).
We identified an unknown ALDH gene within the V. carteri genome that was
phylogenetically most similar to members of the ALDHS5 gene family; pairwise comparisons
revealed less than 35 % sequence identity with other family members. Moreover, the
encoded protein is predicted to contain a truncated ALDH domain and is therefore
considered to be a pseudogene. The ALDHS gene identified in the other algae species
analyzed in this study, C. reinhardtii, is predicted to encode a protein exhibiting significant
sequence divergence from the terrestrial plant species and was placed into a new subfamily,
namely ALDHSG. All other newly identified ALDHS genes from P. trichocarpa, S.
moellindortfii and S. bicolor showed a high degree of sequence identity to previously
identified genes that currently make up the ALDHSF subfamily and were named
accordingly.

ALDH6 family

Members of the ALDH6 gene family are also known as methylmalonyl semialdehyde
(MMS) dehydrogenases (EC 1.2.1.27). These enzymes facilitate reactions associated with
both valine and pyrimidine catabolism. To date, ALDH6 homologues are the only ALDH
superfamily members to use coenzyme A (CoA) as a cofactor; they catalyze the CoA-
dependent conversion of MMS to propionyl-CoA (Marchitti et al. 2008). Studies have also
shown that ALDH6 enzymes are capable of metabolizing malonate semialdehyde to acetyl-
CoA and revealed up-regulation of ALDHG6 in rice by treatment with the plant hormones
auxin and gibberellin (Marchitti et al. 2008; Oguchi et al. 2004). Unfortunately, the exact
functions of the ALDHG6 family in plants are yet to be thoroughly elucidated.

All plant species analyzed herein contain at least a single ALDH6 gene (Fig. 3b).
Furthermore all plant ALDHG6 orthologues identified share >60 % sequence identity and
therefore fall into the same subfamily, namely ALDH6B. In P. trichocarpa and V. vinifera,
ALDH6 has undergone a series of gene duplications resulting in four and three copies,
respectively. Recent studies indicated that ALDH6B3 and ALDHG6BS5 are the result of a
tandem duplication event in V. vinifera (Zhang et al. 2012). The third V. vinifera ALDH6
isoform identified, ALDH6B7, is predicted to encode a protein with 1031 amino acids—
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making it approximately twice the size of other ALDH6 family members. It does, however,
share a very high degree of sequence identity. To date, there is no EST or cDNA sequence
data for ALDH6B7 which verify whether the predicted sequence accurately reflects the full-
length peptide so it is possible that there might be errors in gene prediction.

Microarray studies, however, have found ALDH6B7 to be up-regulated, along with
ALDHG6B3, after long-term salinity and dehydration treatments, which provides support for
physiological function (Zhang et al. 2012). ALDH6B3 and ALDH6B4 from P. trichocarpa
are predicted to encode proteins that share >94 % sequence identity—supporting a relatively
recent gene duplication event. The remaining P. trichocarpa isoforms share ~70 % sequence
identity with one other, as well as the other plant homologues, and their physiological
function has yet to be determined.

ALDH7 family

Members of ALDH7 family (EC 1.2.1.31) are also known as Al-piperideine-6-carboxylate
dehydrogenases (P6CDH), a-aminoadipic semialdehyde dehydrogenases or antiquitins. The
ALDH?7 gene family is highly conserved throughout evolution. A high degree of
conservation observed between evolutionarily distant species implies that physiological
function may also be conserved. Studies examining plant ALDH7 expression have identified
responsiveness to a wide variety of insults, and expression is thought to function as a part of
general stress-response pathways. ALDH7B up-regulation occurs in response to many
stressors including ultraviolet radiation, dehydration, increased salinity, low temperature,
heat shock and ABA treatment (Kotchoni et al. 2006; Rodrigues et al. 2006).

A recent study also found that ALDH7B in O. sativa is required for seed viability and
maturation (Shin et al. 2009). Mutant seeds accumulate malondialdehyde and yellow
pigment named oryzamutaic acid A, a product of aminoadipic semialdehyde polymerization
(Shen et al. 2012; Shin et al. 2009). Unfortunately, studies have yet to look at the
comprehensive substrate specificity of plant ALDH7 homologues. A study in rice found that
purified ALDH7B was capable of metabolizing MDA, acetaldehyde and glyceraldehyde
(Shin et al. 2009). Analysis of ALDH7B from Z. mays and P. sativum shows that both
enzymes exhibit highest rates with aminoadipic semialdehyde followed by
guanidinobutyraldehyde. Human ALDH7A1 has wider substrate specificity than both maize
and pea enzymes (Kopecny et al. unpublished). In mammals, ALDH7A1 was shown to have
relatively broad substrate specificity and was found to play a major role in metabolizing
aminoadipic semialdehyde, betaine aldehyde,and manylipid peroxidation-derived aldehydes.
Human ALDH7A1 shares slightly less than 60 % amino-acid identity with plant ALDH7B
ortho-logues. The high degree of identity suggests that orthologous proteins might
metabolize the same physiological substrates; however, further studies will be needed to
confirm this supposition.

Similar to other ALDH gene families, ALDH?7 proteins are highly conserved between
individual plant species (Fig. 3c). Surprisingly, both algae analyzed in this study lack an
ALDH?7 gene. It is uncertain whether the gene has been lost through evolutionary pressure
or gene deletion within these species. Vitis vinifera and P. trichocarpa contain two ALDH7
genes. Vitis vinifera ALDH7B4 and ALDH7D] are located on chromosomes 11 and 9,
respectively; the two genes share ~57 % sequence identity and 69 % similarity. ALDH7D1
shares between 50 and 57 % identity with other plant ALDH7B proteins. There is currently
no information relating to the function or up-regulation of ALDH7DI in plants.
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ALDH10 family

Members of the ALDH10 family are also known as amino-aldehyde dehydrogenases
(AMADHSs; EC 1.2.1.19) but also 4-aminobutyraldehyde dehydrogenases, 4-
guanidinobutyraldehyde dehydrogenases (EC 1.2.1.54) and also as betaine aldehyde
dehydrogenases (BADHs; EC 1.2.1.8). This family has been studied in connection to
polyamine catabolism i.e. deactivation of reactive and cytotoxic w-aminoaldehydes, such as
3-aminopropionaldehyde (APAL) or 4-aminobutyraldehyde (ABAL), which appear after
oxidation of various polyamines by plant amine oxidases (Sebela et al. 2000). Their
oxidation by AMADHSs results in a formation of the nontoxic metabolites S-alanine and -
aminobutyric acid (GABA). In recent years, studying the physiological aspects of plant
AMADHs has become attractive for economic reasons as it has been shown that an
AMADH gene mutation leads to the acetylation of free ABAL (or its cyclic form Al-
pyrroline) and accumulation of 2-acetyl- Al-pyrroline, a potent flavor component conferring
a fragrance to several rice varieties like Jasmine and Basmati or to soybean (Arikit et al.
2011; Bradbury et al. 2008).

Members of ALDH10 family have also been extensively studied for their role in stress
responses and in the production of the osmoprotectant glycine betaine (GB). GB is a major
cellular osmolyte and also acts as a molecular chaperone by helping to stabilize protein
structure and function (Allakhverdiev et al. 2008). During drought conditions, GB synthesis
and accumulation increase to counter the negative consequences of osmotic imbalance. With
this respect, higher plants can be divided into GB-accumulating plants and non-
accumulating plants (Fitzgerald et al. 2009). Interestingly, both GB-accumulating and non-
accumulating plants contain ALDH10 genes within their genomes, suggesting that the
function of these enzymes may be multifaceted. Interestingly, many ALDH10 homologues
show preference for aminoaldehyde substrates over betaine aldehyde (BAL). Numerous
studies have shown that some ALDH10 isoforms act primarily as AMADHs by
metabolizing ABAL, APAL and GBAL (Bradbury et al. 2008; Missihoun et al. 2011;
Trossat et al. 1997; Tylichova et al. 2010; Wei et al. 2009). Also data on tomato and maize
AMADHs show that all enzymes preferentially oxidize w-aminoaldehydes rather than BAL
(Kopecny et al., unpublished). Nevertheless, there are several ALDH10 members like those
from mangrove (Avicennia marina), amaranth (Amaranthus hypochondriacus) or spinach
(Spinacia oleracea) showing high activity with BAL and they are referred to BADHs
(Hibino et al. 2001; Incharoensakdi et al. 2000; Valenzuela-Soto and Munoz-Clares 1993).
From this point of view, members of the ALDH10 family can be categorized into two
groups: first one with low BADH activity and second one with high BADH activity.
Mammalian genomes do not contain ALDH10 orthologues. In mammals, ALDH7 and
ALDHO are thought to be the primary GB- and y~butyrobetaine-synthesizing enzymes
(Brocker et al. 2010; Vaz et al. 2000).

ALDH10 genes identified within most plant species share a relatively high degree of
sequence homology with one another and fall into the ALDH10A subfamily (Fig. 4a). The
primitive plants, namely algae and mosses, analyzed herein each have a single ALDHI10
gene. The ALDH10 gene identified in the unicellular algae C. reinhardtii is predicted to
encode a protein that shares ~72 % sequence identity with the gene product identified in the
colonial algae V. carteri and ~60 % identity with the other plant sequences, including those
from higher plants. Because it shares on average >60 % identity with other plant ALDH10
family members, the C. reinhardtii gene falls into the ALDH10A subfamily.

Interestingly, the gene product from V. carteri shares significantly less homology with the
other plant ALDH10 sequences. This gene therefore represents a new subfamily and was
subsequently named ALDHIOC]. Vascular plants each have two ALDHI0A genes,
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suggesting a duplication event sometime after these groups diverged. Evidence supporting a
gene duplication event is noted in P. trichocarp. The two ALDH10A genes identified in the
P. trichocarp genome, ALDHI0AS and ALDH10A9Y, reside on different chromosomes but
share common gene architecture within the surrounding chromosomal regions suggestive of
a segmental duplication event (data not shown). There is also evidence that some plant
species might carry more than two ALDH10 genes. Namely maize genome reveals presence
of three ALDH10 genes. Two of them, ALDHI0AS and ALDHI10A9 (also called
AMADH]a and AMADH1b) are paralogs and clearly duplicated.

ALDH11 family

The ALDH11 gene family represents a group of cytosolic non-phosphorylating
glyceraldehyde 3-phosphate dehydrogenases (GAPNs; EC 1.2.1.9). These enzymes catalyze
the irreversible NADP*-dependent oxidation of GAP to 3-phosphoglycerate and NADPH
(Valverde et al. 1999). This reaction is required for the glycolytic ‘bypass’’ pathway unique
to photosynthetic eukaryotes—including both plants and microalgae—which circumvents
the first substrate level phosphorylation step of glycolysis (Plaxton 1996; Valverde et al.
1999). This reaction represents the main source of NADPH utilized for mannitol
biosynthesis in many plant species (Gao and Loescher 2000).

Amino-acid sequence comparisons indicate a high degree of sequence homology within the
ALDH]11 gene family (Fig. 4b). All members are categorized into the ALDH11A subfamily
with the exception of V. vinifera ALDHI11B1 previously described by Zhang and
coworkers. Interestingly, moss genomes have undergone an expansion in the number of
ALDH]11 genes. Physcomitrella patens and S. moellindortfii have five and six ALDH11
genes, respectively. It remains unclear why these species possess such a high number of
these genes or why this would provide a selective advantage.

ALDH12 family

ALDH]2 genes encode A-1-pyrroline-5-carboxylate dehydrogenases (PSCDH; EC
1.5.1.12). These enzymes play a key role in the degradation of proline (and also arginine) to
glutamate. ALDH 2 gene is widely distributed in bacteria, fungi, plants and animals. A
thoroughly studied Arabid-opsis PSCDH is localized in the mitochondrial matrix and its
expression is induced by externally supplied proline but not by the osmotic stress (Deuschle
et al. 2001, 2004; Kirch et al. 2005). The pScdh mutants are hypersensitive to proline,
arginine and ornithine and it was hypothesized that accumulation of P5C is the causative
agent of cell death induced by proline supply. Each plant species analyzed contains a single
ALDH]2 gene. The predicted protein sequences exhibited >60 % identity and therefore
belong to single subfamily, namely ALDH12A (Fig. 5a). Such a high degree of conservation
observed between evolution-arily distant species suggests that there must exist strong
selective pressure to maintain gene function. For example, the single-celled algae V. carteri
and the angiosperm A. thaliana express putative proteins that share 61 % sequence identity
and 74 % sequence similarity.

ALDH18 family

ALDH18 family contains A-1-pyrroline-5-carboxylate synthetases (PSCSs; EC 1.2.1.41 and
EC 2.7.2.11). ALDH18 genes represent the most phylogenetically distantly related ALDH
family. These enzymes are bi-functional proteins that contain an N-terminal amino-acid
kinase domain and a C-terminal aldehyde dehydrogenase domain. In mammals, ALDH18A1
facilitates ATP- and NADPH-dependent conversion of glutamate to pyrroline-5-carboxylate
(P5C), which is subsequently converted to ornithine and used for de novo biosynthesis of
proline and arginine (Marchitti et al. 2008). In many terrestrial plants, ALDH]18 is
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significantly up-regulated in response to dehydration (Yoshiba et al. 1997). ALDH18 up-
regulation is believed to increase proline synthesis and accumulation. Similar to betaine,
proline represents one of the most common, compatible osmolytes in plants; proline
accumulation also counters osmotic imbalances encountered during water stress.

The ALDH18 gene is evolutionarily conserved and represented in all green plant species
analyzed within this study (Fig. 5b). The ALDH18 genes identified in C. rein-hardtii and V.
carteri encode proteins that share ~80 % amino acid identity with each other but only 40 %
sequence identity with other family members indicating a degree of divergence between
genes found in algae and terrestrial plants. Furthermore, a gene duplication event appears to
have occurred in vascular plant genomes that is not found in the algae or moss species
analyzed. A previous study identified a third ALDHI§ gene within the Z. mays genome
(Jimenez-Lopez et al. 2010). However, reading frame analysis indicates that the gene would
translate a truncated 545-amino acid protein that lacks much of the aldehyde dehydrogenase
domain and throws any physiological activity into question. Therefore, the gene identified as
ALDH18B3 by Jimenez-Lopez et al. may represent a pseudogene, perhaps generated
through partial gene duplication.

ALDH21, 22, 23 and 24 families

The ALDH21, 22, 23 and 24 families represent relatively new additions to the ALDH gene
superfamily. To date, there is little information related to the physiological actions of these
enzymes or to expression patterns and levels in plants.

A single ALDH?2] gene was found within the S. moellindorttii and P. patens genomes.
Another study identified an ALDHZ21 homologue in the moss 7ortuia ruralis, suggesting that
expression might be restricted to primitive terrestrial plants (Chen et al. 2002). These genes
are predicted to encode proteins most closely related to the ALDH11 family members; thus
perhaps ALDH11 and ALDH21 might have related origins.

The ALDHZ22 gene family was recently identified, and little is known about specific
substrate specificities (Fig. 5¢). A recent study looking at the gene in Z. mays found
ALDH22A1 up-regulation in response to a variety of stressors—including dehydration, high
salinity and ABA treatment (Huang et al. 2008). They also found that transgenic over-
expression of ALDH22A1 elevated stress tolerance. The group also identified the protein is
localized to the plastid, whereas the ALDH22A1 protein in Arabidopsis is localized in
cytosol (Kirch et al. 2005).

The ALDH23 and ALDH?24 families are closely related and grouped phylogenetically. The
chreALDH24A1 protein sequence shares ~30 % sequence identity with each of the three
ALDH23 family members. Further research is needed in order to determine the function of
these new families and the roles they play in plant homeostasis.

Discussion and conclusion

Our understanding of how ALDH enzymes participate in plant homeostasis has greatly
expanded in recent years. However, there are still areas that are relatively unexplored and
warrant further investigation. The observation that many ALDH enzymes appear to play a
primary role in abiotic stress-response pathways suggests that these enzymes represent an
important target for increasing plant resistance to stressful conditions, such as elevated soil
salinity or dehydration; which becomes especially important when developing stress-tolerant
Ccrops.
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Materials and methods

Amino-acid sequences for plant species were obtained from the Phytozome and NCBI
websites. Phytozome.org is maintained by the Department of Energy’s Joint Genome
Institute and the Center for Integrative Genomics (Goodstein et al. 2012).

Phytozome (v8.0) and NCBI utilized the following sequences for gene prediction analyses.
Volvox carteri sequences were obtained from the Volvox v2.0 gene set, 8x genome
assembly and annotation (Prochnik et al. 2010). Selaginella moellendorttii sequences
originated from the v1.0 Dec 20, 2007 Filtered Models 3 annotation. Phytozome v8.0
includes the v1.6 gene annotation of P. patens (Lang et al. 2005; Rensing et al. 2005).
Sequences include the annotation release 10 of the A. thaliana genome release 9 from the
‘The Arabidopsis Information Resource (TAIR)’ (Lamesch et al. 2012). Phytozome v8.0
features the v4.3 release of annotations for the C. reinhardtii genome and includes the
Augustus update 10.2 (u10.2) annotation of JGI assembly v4.

The MSU Release 7.0 of the genome annotation of the Nipponbare/japonica subspecies of
O. sativa was used for gene prediction (Ouyang et al. 2007). The 5b.60 annotation
(unfiltered working set) of the maize “B73” genome v2 produced by the Maize Genome
Project was used for Z. mays gene prediction. Sorghum bicolor gene prediction was based
on the v1.0 release that includes the Sbil assembly and Sbil.4 gene set (Paterson et al.
2009). Finally, V. vinifera predictions on Phytozome.org were made using the 12x March
2010 release of the draft genome and annotation by the French-Italian Public Consortium for
GrapevineGenome Characterization (Jaillon et al. 2007).

Multiple alignments were created using the ClustalW2 program (http://www.ebi.ac.uk/
Tools/msa/clustalw2/). Phylogenetic trees were constructed using Treelllustrator software
(v0.52). Pairwise alignments of amino acid sequences were performed using EMBOSS
global alignment software using the Needleman-Wunsch algorithm (http://www.ebi.ac.uk/
Tools/psa/).
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Fig. 1.

Phylogenetic analysis of ALDH2 family members. Phylogram created using ALDH?2 protein
sequences and ClustalW?2 multiple sequence alignment software. Tree edited using
Treelllustrator (v0.52) software. The prefixes ‘arth’ (Arabidopsis thaliana), ‘chre’
(Chlamydomonas reinhardtii), ‘hosa’ (Homo sapiens), ‘orsa’ (Oryza sativa), ‘phpa’
(Physcomitrella patens), ‘potr’ (Populus trichocarpa), ‘semo’ (Selaginella moellindortfii),
‘sobi’ (Sorghum bicolor), ‘vivi’ (Vitis vinifera), ‘voca’ (Volvox carteri) and ‘zema’ (Zea
mays) are used for clarification when referring to ALDH proteins or genes found within
different species
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Fig. 2.

Phylogenetic analysis of ALDH3 family members. Creation of the phylogram, use of
Clustal W2 multiple sequence alignment software, editing of the tree, and prefix
abbreviations of genus and species are identical to that in Fig. 1
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Phylogenetic analyses of ALDHS (a), ALDH6 (b) and ALDH7 (¢) family members.
Creation of the phylogram, use of ClustalW2 multiple sequence alignment software, editing
of the tree, and prefix abbreviations of genus and species are identical to that in Fig. 1
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Fig. 4.

Phylogenetic analyses of ALDHI10 (a) and ALDH11 (b) family members. Creation of the
phylogram, use of Clustal W2 multiple sequence alignment software, editing of the tree, and
prefix abbreviations of genus and species are identical to that in Fig. 1
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Fig. 5.

Phylogenetic analyses of ALDH12 (a), ALDH18 (b) and ALDH22 (c) family members.
Creation of the phylogram, use of ClustalW?2 multiple sequence alignment software, editing
of the tree, and prefix abbreviations of genus and species are identical to that in Fig. 1
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Table 2

Genomeinformation of analyzed plant species

Species Common name Chrm number  Genomesize(Mbp) ALDH number
Arabidopsis thaliana Thale cress 5 135 16
Chlamydomonas reinhardtii ~ Unicellular green algae ND 112 9
Oryza sativa Asian rice 12 372 20
Physcomitrella patens Moss 27 480 21
Populus trichocarpa Black cottonwood 19 403 26
Selaginella moellindorftii Gemmiferous Spikemoss 27 100 24
Sorghum bicolor Sorghum 10 660 19
Vitis vinifera Common grape vine 19 300 25
Volvox carteri Colonial green algae ND 138 7
Zea mays Maize 10 3,000 22
Homo sapiens Human 23 3,000 19

ND not determined
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