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Introduction
Fibrosis is the result of  the complex cascade of  cellular and molecular responses that follow tissue 

injury, progressing beyond tissue repair, to a process detrimental to organ function and culminating in 

organ failure. This is common in many chronic diseases, with scleroderma, cirrhosis, pulmonary, and 

renal fibrosis being among the most widely studied scarring disorders (1). Mucosal scarring has been 

less widely studied and is a consequence of  mucous membrane pemphigoid (MMP), a prototypical mul-

tisystem autoimmune scarring disease (2). As in many other fibrotic disorders, this scarring is associat-

ed with inflammation (1). Although the role of  autoantibody-mediated inflammation and blistering at 

the level of  the epithelial basement membrane in MMP is reasonably well understood, the pathogenesis 

of  scarring is not (3). One or more mucosal sites may be involved in MMP, with frequent and severe 

functional consequences (2). Ocular involvement in MMP (OMMP) occurs in 70% of  cases, blinding 

20% of  patients (4–6). There is no effective antifibrotic therapy. This series of  studies of  conjunctival 

scarring in OMMP aimed to identify therapies for conjunctival fibrosis and, potentially, for fibrosis at 

other mucosal sites.

OMMP was chosen for these studies, as the conjunctiva is accessible to biopsy for in vitro investi-

gations and because it is the most common cause of  cicatrizing (scarring) conjunctivitis in the UK (7) 

— and probably in all developed countries where trachoma has been eliminated. Additional causes of  

cicatrizing conjunctivitis include atopic keratoconjunctivitis (AKC), Stevens-Johnson syndrome (SJS), 

and trachoma, among others (7, 8). The morbidity of  OMMP is due to the chronic discomfort and 

loss of  vision (5) caused by both inflammation and scarring. Topical therapy is ineffective for OMMP 

(9–11), resulting in systemic immunosuppressive therapy being the standard of  care (12). However, 

immunosuppression, with its accompanying side effects and failures, has a limited effect on the pro-

Mucous membrane pemphigoid (MMP) is a systemic mucosal scarring disease, commonly causing 

blindness, for which there is no antifibrotic therapy. Aldehyde dehydrogenase family 1 (ALDH1) is 

upregulated in both ocular MMP (OMMP) conjunctiva and cultured fibroblasts. Application of the 

ALDH metabolite, retinoic acid (RA), to normal human conjunctival fibroblasts in vitro induced a 

diseased phenotype. Conversely, application of ALDH inhibitors, including disulfiram, to OMMP 

fibroblasts in vitro restored their functionality to that of normal controls. ALDH1 is also upregulated 

in the mucosa of the mouse model of scarring allergic eye disease (AED), used here as a surrogate 

for OMMP, in which topical application of disulfiram decreased fibrosis in vivo. These data suggest 

that progressive scarring in OMMP results from ALDH/RA fibroblast autoregulation, that the ALDH1 

subfamily has a central role in immune-mediated ocular mucosal scarring, and that ALDH inhibition 

with disulfiram is a potential and readily translatable antifibrotic therapy.
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gression of  scarring (6, 13) despite clinical control of  inflammation (5, 6). Development of  effective and 

well-tolerated antifibrotic therapy has been a long-term goal in this group of  diseases (5, 8, 14).

The pathogenesis of  scarring in OMMP results from chronic inflammation involving T cells, macro-

phages, DCs (15). Levels of  both proinflammatory cytokines TNF (16), IFNγ (17), IL-5 (18), IL-13 (19), 

and IL-17 (20) and the profibrotic cytokines TGFβ (21) and IL-4 (18, 22) are elevated in diseased tis-

sue. However, the mechanisms that relate this inflammatory milieu to the production of  the extracellular 

matrix (ECM) by fibroblasts, which results in scarring, have not been demonstrated (3, 23, 24). We have 

previously shown that OMMP fibroblasts maintain a profibrotic phenotype in vitro and that progressive 

fibrosis may result from inflammation coupled with the activity of  such persistently profibrotic fibroblasts 

(25). For the current series of  studies, we hypothesized that we might use gene expression to identify 

potential therapeutic targets, common to both OMMP whole conjunctiva and in vitro fibroblast cultures, 

to identify antifibrotic therapeutic targets in vitro. Furthermore, these targets could then be used to predict 

the effect of  potential therapeutic interventions in humans by extrapolation from their effect in vitro on 

OMMP fibroblast functional assays and also in vivo in a mouse model used as a surrogate for OMMP.

Here, we present evidence that aldehyde dehydrogenase family 1 (ALDH1) is upregulated in OMMP 

whole conjunctiva, in OMMP fibroblasts in vitro, and in the conjunctiva of  an established mouse model of  

severe allergic eye disease (AED) (26, 27), which also provides a surrogate for immune-mediated conjuncti-

val scarring, given our hypothesis that the scarring is the result of  the severity of  the inflammatory stimulus 

rather than the autoimmune pathogenesis in OMMP. ALDH inhibition is effective both in preventing scar-

ring in vivo in the mouse model and also in restoring normal functionality to in vitro OMMP fibroblasts. 

These studies identify ALDH/RA autoregulation in OMMP fibroblasts as a potential mechanism under-

lying progressive conjunctival scarring in this disease. A companion paper by Saban and colleagues using 

the same mouse model of  AED, first described by their group in 2012 (26, 27, 28), demonstrates that con-

junctival scarring is initiated by the key role of  DCs through paracrine production of  ALDH/RA effecting 

conjunctival fibroblasts. ALDH inhibition may be expected to slow progression of  fibrosis in both OMMP 

and also potentially in other causes of  cicatrizing conjunctivitis.

Results
OMMP and control patients. Twenty-two OMMP patients, 11 from inflamed and 11 from uninflamed eyes, 

donated biopsies for these studies. Tissue from both inflamed and uninflamed eyes was used to establish 

whether the degree of  inflammation might be associated with functional differences in explanted in vitro 

fibroblast assays. However, Table 1 shows that both the inflamed and uninflamed eyes were of  equivalent 

severity in terms of  the severity of  scarring, and it shows that the uninflamed cases had also had the disease 

for longer. The diagnosis of  MMP was confirmed by direct immunofluorescence (DIF) microscopy for all 

cases. These were matched with 17 controls for age and sex. The clinical characteristics are summarized 

in Table 1, and controls are summarized in Table 2. Figure 1 illustrates the clinical spectrum of  OMMP.

Endogenous ALDH1A3 levels in the conjunctiva of  OMMP patients are elevated. Gene expression microar-

ray of  normal and OMMP conjunctiva was carried out to identify fibrosis-associated molecules that might 

be therapeutic targets. Because we had hypothesized that there might be differences in the fibrotic process 

between inflamed and uninflamed conjunctiva due to the potential effects of  the inflammatory milieu, the 

whole conjunctival biopsies were from patients with clinical inflammation (pemphigoid inflamed [PemI]), 

patients without clinical inflammation (pemphigoid uninflamed [PemU]), and controls (C). Furthermore, 

since we had also hypothesized that in vitro fibroblast functional assays might be used to predict the effect 

of  therapeutic interventions in vivo, we carried out these gene expression microarray analyses both on whole 

conjunctiva and on primary conjunctival fibroblasts (F) cultured from additional conjunctival biopsies from 

inflamed OMMP, and uninflamed OMMP, and control eyes (F-PemI, F-PemU, and F-C, respectively). SEC13 

(Supplemental Figure 1A), CD24 (Supplemental Figure 1B), and ALDH1A3 (Figure 2, A and B) were the only 

genes with associated profibrotic functions that were upregulated in both conjunctival tissue and in cultured 

fibroblasts. Of these genes, only ALDH1A3 mRNA expression was shown by quantitative PCR (qPCR) to be 

consistently elevated in cultured OMMP fibroblasts (Figure 2C). IHC of tissue sections confirmed increased 

expression of  ALDH1A3 in OMMP conjunctiva (Figure 2D). Flow cytometry confirmed both increased 

expression of  ALDH1 and increased enzymatic activity in cultured diseased fibroblasts (Figure 2E). Fur-

thermore, the addition of  the ALDH1 inhibitor diethylaminobenzaldehyde (DEAB) to F-PemI and F-PemU 

fibroblasts decreased ALDH1 enzymatic activity (Figure 2F). Addition of  all-trans-RA (ATRA), a metabolic 

http://dx.doi.org/10.1172/jci.insight.87001
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product of  ALDH, to F-C fibroblasts enhanced ALDH activity (Figure 2F). These data show that ALDH1 is 

upregulated in both OMMP whole tissue and in OMMP fibroblasts in culture.

Topical application of  disulfiram decreases ocular surface inflammation of  mice with AED and protects them from 

conjunctival fibrosis in vivo. There is currently no animal model of  OMMP. An established mouse model of  

AED conjunctivitis (26, 27) was assessed for the presence of  conjunctival fibrosis, which was found both to 

be present and to progress after sensitisation, mimicking the process in OMMP. This model was then used 

as an OMMP surrogate for the evaluation of  ALDH-mediated profibrotic activity both in vitro and in vivo.

In vivo topical eye drops of  ovalbumin (OVA) were applied, with or without disulfiram, to the ocular 

surface of  previously OVA-sensitized mice over 7 days, and both inflammation and fibrosis were scored 

daily. In vitro mouse primary conjunctival fibroblasts were explanted and cultured to validate the role of  

Table 1. Clinical characteristics of ocular mucous membrane pemphigoid (OMMP) patients.

IDA Age Sex Race Eye Disease yearsB TauberC 

Right eye

Tauber 

Left eye

Treatment at time of 

biopsyD

Previous treatments

INFLAMED MMP PATIENTS (n = 11) (Inflammation score ≥ 5 on a scale from 1–4 for each bulbar quadrant, with a maximum score of 16)

SP4 81 M WE RE 4 IId IIIc(5) IId IIIa(2) Topical steroid Dapsone, mycophenolate, 
entropion surgery right eye

SP5 73 F W RE 16 IIc IIIa (1) IIc None Azathioprine

SP6 65 M W RE 3.5 IIb IIIb(4) IId IIId(3) Sulfasalazine Mycophenolate, 
cyclophosphamide,  

rituximab

SP8 82 F W RE 4 IId IIIa(1) Not biopsied Topical glaucoma Mycophenolate

SP10 71 F W LE 1 I IId IIIc(4) None Prednisolone

SP12 57 F BF Both 5 Enucleated IIb None None

SP15 76 F W Both 2 IId IIId(6) IId IIId(6) Topical steroid Dapsone 

SP21 54 M W RE 9 IIc IIa(2) NDD Mycophenolate, 
dapsone, 

prednisolone

Mycophenolate

SP22 87 M W Both 1 IId IIIb(3) IId IIIb(2) Topical glaucoma Doxycycline

SP23 73 F W LE 6 ND IIb IIIa(1) None None

RI23 37 F W RE 1 IIc IIIa (2) IIc IIIb (2) None None

UNINFLAMED MMP PATIENTS (n = 11) (Inflammation score 4 or less on a scale from 1-4 for each bulbar quadrant with a maximum score of 16)

SU2 64 F W Both 1.25 IIa IIIb IIa IIIb None Sulphamethoxypyridazine, 
Prednisolone

SU6 51 M AG Both 0.75 IIe IIIc(4) IId IIId(2) Cyclophosphamide, 
topical steroid 

None

SU8 58 F W RE 21 IIc IIIa IIc IIIa Lubricants Mycophenolate

SU10 62 M W RE 3 IIb IIIc(4) IIb IIIc(3) Dapsone None

SU15 67 M W LE 12 ND IId IIIb(3) Dapsone, 
mycophenolate

Cyclophosphamide, 
prednisolone 

SU18 73 F W LE 2 IIb IIIa(1) IIa Topical steroid None

SU19 81 F W LE 25 IIb IIIa(1) IIc IIIb(2) Dapsone, 
methotrexate

None

SU22 92 M W RE 1 IV I Mycophenolate None

RU13 70 F W RE 11 IIc IIIb (2) IIc IIb (2) Mycophenolate Prednisolone,  
mycophenolate,

RU14 64 M A RE 8 IIa IIIa (1) IIa IIIa (1) Mycophenolate Azathioprine, prednisolone

RU18 83 F W RE 9 IIc IIIb (2) IIc IIIb (2) None Mycophenolate,  
sulfasalzine, dapsone

Biopsies were obtained from patients with MMP confirmed by direct immunofluorescence (DIF) microscopy, which is required for the gold standard 

diagnosis of MMP(47). Most patients donated biopsies from both eyes. The biopsy site was the bulbar conjunctiva in all patients. The degree of scarring 

in the OMMP conjunctiva was measured using the Tauber scoring system(48) in which minimal subconjunctival scarring is scored as Stage I, progressing 

through increasing degrees of lower conjunctival fornix reduction (Stage IIa–d) and horizontal involvement by symblepharon (Stage III a-d [n] ), where [n] 

is the number of symblephara, to a frozen globe (Stage IV). The patients were matched for age and sex with 17 controls (median age 78, range 54-93 years, 

7 Male:10 Female). ASubject ID, Byears from disease onset, CTauber score measures the degree of lower fornix scarring, Dtopical lubricants not included, 
Eethnic white, Fblack, GAsian.

http://dx.doi.org/10.1172/jci.insight.87001
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ALDH in mouse fibroblast function using some of  the same in vitro assays used in our studies on human 

OMMP fibroblasts, which are described below.

There was increased expression of  ALDH1 in the conjunctiva of  mice treated with OVA (Figure 3A). 

Disulfiram administration decreased ocular surface inflammation (Figure 3B) and prevented conjunctival 

fibrosis in OVA-treated mice (Figures 3, C and D). Explanted fibroblasts from the conjunctiva of  disul-

firam-treated, OVA-challenged mice showed increased levels of  contraction and proliferation compared 

with those obtained from OVA-challenged mice treated with vehicle (Figure 3E).

These data suggest that ALDH-mediated conjunctival fibrosis mechanisms exist in vivo in this mouse 

model of  AED-mediated fibrosis. Furthermore, there is similar fibroblast functionality between conjuncti-

val fibroblasts from OVA-treated mice and OMMP fibroblasts in vitro: explanted cultured mouse conjunc-

tival fibroblasts display the same abnormalities, in two functional assays, as those found in in vitro human 

OMMP and control fibroblasts (described in the next section and in Figure 4). These data demonstrate that 

this AED mouse model may be used as a surrogate for the study of  the mechanisms of  inflammation-relat-

ed conjunctival fibrosis in humans.

Primary conjunctival fibroblasts from OMMP patients maintain a fibrotic phenotype in vitro and can be used 

as an in vitro scarring model. F-PemI and F-PemU fibroblasts were shown to maintain increased ALDH1 

activity in vitro (Figure 2, E and F). It was hypothesized that if  F-PemI and F-PemU fibroblasts maintained 

differences from F-C fibroblasts in in vitro functional assays, then these assays might be used in an in vitro 

model to evaluate the role of  ALDH1 on fibroblast dysregulation in vivo, both in humans and in the mouse 

model, and to predict the effect of  potentially therapeutic interventions. The in vitro fibroblast assays cho-

sen were collagen production and secretion, matrix contraction, proliferation, and α-smooth muscle actin 

(αSMA) expression, all cellular activities commonly associated with fibrotic responses.

Compared with control fibroblasts (F-C fibroblasts) both groups of  OMMP fibroblasts (F-PemI and 

F-PemU) showed a significant increase in collagen production by ELISA (Figure 4A). Western blotting 

for COL1 (Figure 4B) confirmed increased matrix protein expression in F-PemI compared with F-C 

fibroblasts. Although there was a trend for increased COL1 expression in F-PemU compared with F-C 

Figure 1. Ocular mucous membrane pemphigoid (OMMP): Clinical spectrum and morbidity. (A) Acute inflammation resulting in conjunctival scarring after 

4 months. (B) Same eye as shown in A after partial control of inflammation with cyclophosphamide and prednisolone. (C) More advanced scarring resulting 

in restricted lid and eye movement and secondary corneal drying (arrow) due to reduced rewetting by the lids. (D) In-turning lower lid (entropion) and lash 

abrasion (trichiasis) in an inflamed (pemphigoid inflamed [PemI] phenotype) eye with resolution of inflammation (pemphigoid uninflamed [PemU] phe-

notype) in the same eye shown in E but 2 years after initial immunosuppressive treatment with cyclophosphamide and prednisolone, followed by dapsone 

for maintenance of inflammation control. (F) End-stage OMMP with the lids fused to the globe (frozen globe or ankyloblepharon) and extreme dryness 

leading to surface keratinization.

http://dx.doi.org/10.1172/jci.insight.87001
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Figure 2. Aldehyde dehydrogenase (ALDH) is upregulated in the conjunctiva of OMMP patients compared with control patients. (A) ALDH1A3 mRNA 

expression in conjunctival biopsies from control patients (Cont., n = 5), inflamed OMMP patients (PemI, n = 5), or noninflamed (after immunosuppressive 

treatment) OMMP patients (PemU, n = 5). (B and C) ALDH1A3 mRNA expression in primary conjunctival fibroblasts obtained from Cont. (primary cultured 

fibroblasts from controls [F-C], n = 4) compared with fibroblasts from pemphigoid inflamed (F-PemI, n = 4) or pemphigoid uninflamed (F-PemU, n = 4) 

from the microarray and qPCR. The microarray was carried out in duplicate and the qPCR in triplicate. (D) Representative immunohistochemical stain-

ing for ALDH1A3 in Cont. (n = 3), PemI (n = 3), and PemU (n = 3). Arrows indicate positive staining for ALDH1A3. ALDH1A3-positive staining was scored 

on a scale of 0–5 for each tissue section from these tissue samples, with 5 being highest level of ALDH1A3-positive staining. 40× magnification. (E) 

Flow cytometry analysis of mean fluorescence intensity (MFI) of ALDEFLOUR (an ALDH1 substrate that only fluoresces once it has been metabolized by 

ALDH) in F-C (n = 3), F-PemI (n = 3), or F-PemU (n = 3) fibroblasts. (F) MFI of ALDH activity of F-PemI (n = 3) and F-PemU (n = 3) fibroblasts treated with 

diethylaminobenzaldehyde (DEAB) or F-C (n = 3) fibroblasts treated with retinoic acid. Error bars represent mean ±SEM. *P < 0.05 and ****P < 0.00005 as 

calculated using one-way ANOVA with Bonferronni correction

http://dx.doi.org/10.1172/jci.insight.87001
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Figure 3. Topical application of disulfiram decreases ocular surface inflammation of mice with ovalbumin-induced conjunctivitis and protects them from 

conjunctival fibrosis in vivo. (A) Expression of ALDH1 in mouse conjunctiva. (B) Ocular surface inflammatory score in ovalbumin-treated (OVA-treated) mice 

(n = 5) treated daily with topical eye drops containing disulfiram or vehicle for a 7-day antigen challenge period. Naive mice (n = 5) without OVA challenge 

were also monitored in the same manner throughout the challenge period. (C) Representative histological staining for collagen (MSB, dark blue) and inflam-

matory infiltrate (H&E) of whole eye sections from naive mice (n = 5) and OVA-challenged mice (n = 5) treated with either disulfiram (300 μM) or vehicle. 

Arrows and lines indicate di�erences in collagen accumulation in the MSB panel and visual changes in cellular infiltrate in the H&E panel. (D) Quantitation 

of fibrosis for naive, OVA + vehicle, and OVA + disulfiram groups (n = 5). The histology images were scored on a scale of 0–5 for each tissue section from 

these tissue samples, with 5 being highest intensity of MSB staining. (E) Primary conjunctival fibroblasts (n = 5 mouse cultures) were explanted from naive 

mice and OVA-challenged mice treated with disulfiram or vehicle. Fibroblasts were assessed for contractility (left panel) and proliferation (right panel). Scale 

bars: 100 μm. Error bars represent mean ±SEM. *P < 0.05, ***P < 0.0005, ****P < 0.00005 as calculated using one-way ANOVA with Bonferroni correction.

http://dx.doi.org/10.1172/jci.insight.87001
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fibroblasts, this did not achieve the statistical significance seen in ELISA. Figure 4, C–E, shows low-

er levels of  contraction and proliferation and less organized αSMA compared with controls. Western 

blotting for αSMA showed no difference in expression between F-C, F-PemU, and F-PemI (Figure 4F), 

demonstrating that the organizational change shown by immunofluorescence (Figure 4E) was not asso-

ciated with altered αSMA levels (see Supplemental Figure 4 for full uncut gels). There was similar func-

tionality, and αSMA organizational change, in fibroblasts from inflamed and uninflamed OMMP con-

junctiva. These data confirmed that F-PemI and F-PemU fibroblasts maintain a profibrotic phenotype 

in vitro and that these assays could be used to assess the potential role of  profibrotic proteins, including 

ALDH1, in OMMP.

ALDH inhibition decreases collagen production, increases matrix contraction and proliferation, and increases 

αSMA expression of  OMMP fibroblasts in vitro. To evaluate whether the ALDH1 family and/or other ALDH 

families are involved in the profibrotic phenotype, the effect of  ALDH inhibition on OMMP fibroblasts 

was assessed. The ALDH inhibitors, DEAB and disulfiram, were used. DEAB is a competitive substrate 

for the ALDH1 family (29), whereas disulfiram is an irreversible inhibitor of  ALDH families 1–3 (29), 

The inhibitory effect of  disulfiram is mediated by its metabolic product diethyldithiocarbamate (DDTC, 

also known as ditiocarb) and its downstream metabolites (29, 30). We also used the assays described in 

Figure 4 to evaluate whether mimicking the effect of  enhanced ALDH activity in F-C fibroblasts — by 

addition of  the ALDH1 metabolite ATRA — would induce a profibrotic phenotype similar to that of  

OMMP fibroblasts. Treatment of  F-PemI and F-PemU fibroblasts with DEAB and disulfiram significantly 

reduced collagen levels, as shown by ELISA (Figure 5A); enhanced contraction and proliferation; and 

altered αSMA organization (Figure 5, C–E) compared with F–C fibroblasts. In contrast, addition of  RA 

to control fibroblasts (F-C) significantly increased collagen production, and decreased rates of  contraction 

and proliferation and altered αSMA organization (Figure 5, A and C–E). The effect of  DEAB, disulfiram, 

and RA was dose dependent (Supplemental Figure 2, A–C) with DEAB 1 × 10–5 M, disulfiram 1 × 10–7 

M, and RA 1 × 10–2 M being the most effective dose. Western blotting was used to confirm the results 

demonstrated by ELISA for cell-associated collagen levels in response to treatment with disulfiram shown 

in Figure 5B and for F-C fibroblasts with ATRA in Supplemental Figure 3B. This confirmed the findings 

by ELISA for the effect of  disulfiram on collagen levels in F-PemI and for ATRA on F-C. However, disul-

firam had no effect on collagen levels in F-PemU. These data suggest that the raised levels of  the ALDH1 

subfamily, and/or ALDH1A3, in the conjunctiva of  OMMP patients may directly contribute to scarring 

by inducing profibrotic fibroblast functions. qPCR for COL1A2 and COL1A3 (Supplemental Figure 3A) 

showed no differences in mRNA expression between F-C, F-PemU, and F-PemI both for basal levels and 

for fibroblasts treated with disulfiram and ATRA, showing that the effects of  ALDH/RA are unlikely to 

be due to a translational or posttranslational effect on COL gene expression.

Overall, these data in human OMMP fibroblasts in vitro and in an in vivo mouse model provide 

proof  of  concept that disulfiram may be repurposed for the therapy of  conjunctival scarring in OMMP in 

inflamed and possibly in the uninflamed OMMP conjunctiva.

Discussion
These studies were designed to identify and validate therapeutic targets for the treatment of  conjunctival 

fibrosis in OMMP patients. We have shown both that ALDH1 is upregulated in OMMP whole conjunctiva 

and fibroblasts, and also that OMMP fibroblasts have higher ALDH activity than controls. In addition, 

ALDH is upregulated in the conjunctiva of  an established AED mouse model, in which we show the pre-

viously unappreciated onset of  fibrosis and which demonstrates that this mouse model may be used as a 

Figure 4. Primary conjunctival fibroblasts from OMMP patients maintain a fibrotic phenotype in vitro. (A) Concentration of collagen from ELISA and 

Sircol assays from F-C (n = 4), F-PemI (n = 4), and F-PemU (n = 4) fibroblasts. (B) Basal COL1 levels were also measured by Western blotting for F-C  

(n = 3), F-PemU (n = 3), and F-PemI (n = 3); the densitometry shows significant di�erences for F-PemI compared with F-C fibroblasts. There is a trend for 

a di�erence between F-PemU and F-C, but this was not statistically significant. (C) Area contracted at 72 hours by F-C (n = 4), F-PemI (n = 4), or F-PemU 

(n = 4) fibroblasts in free-floating collagen gels. The arrows indicate the edge of the gels. (D) Proliferation measured by fluorescence intensity (counts per 

second [cps]) from F-C (n = 4), F-PemI (n = 4), or F-PemU (n = 4) fibroblasts labeled with the fluorescent CyQuant nucleotide dye. (E) Tethered collagen gels 

populated with F-C (n = 4), F-PemI (n = 4), or F-PemU (n = 4) fibroblasts were stained for αSMA (red) and nuclei stained with DAPI (blue). Each assay was 

carried out with 4 separate patient fibroblast cultures and at least 3 technical repeats. (F) αSMA levels were also measured by Western blotting and densi-

tometry for basal F-C (n = 3), F-PemU (n = 3), and F-PemI (n = 3). Error bars represent mean ±SEM. *P < 0.05; **P < 0.005; ****P < 0.00005 as calculated 

using one-way ANOVA with Bonferroni correction. Scale bar: 100 μm.
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Figure 5. ALDH inhibition 

decreases collagen production, 

increases matrix contraction 

and proliferation, and nor-

malizes αSMA organization 

of OMMP fibroblasts in vitro. 

(A) Concentration of collagen 

from F-C (n = 4), F-PemI (n = 

4), and F-PemU (n = 4) treated 

with ALDH inhibitors DEAB, 

disulfiram, or vehicle. Collagen 

type 1 was also measured in 

F-C fibroblasts treated with 

the ALDH metabolite, retinoic 

acid, or vehicle. (B) Western 

blotting for (top panel) COL1 

and COL3 basal- and disul-

firam-treated levels for F-PemI 

with densitometry panels for 

both F-PemI and F-PemU (see 

Supplementary Figure 4 for 

F-PemU gels). Lower panel 

shows COL1 basal levels for 

F-C (n = 3) and ATRA treated 

F-C (n = 3). (C) Area contract-

ed at 72 hours by F-C (n = 4), 

F-PemI (n = 4), or F-PemU 

(n = 4) fibroblasts within a 

free-floating collagen matrix 

treated with DEAB or disul-

firam compared with vehicle, 

also shown for F-C fibroblasts 

treated with retinoic acid. (D) 

Fluorescence readings (counts 

per second [cps]) from F-C (n = 

4), F-PemI (n = 4), or F-PemU 

(n = 4) treated with DEAB, 

disulfiram, or vehicle and from 

F-C fibroblasts treated with 

retinoic acid. (E) Representa-

tive images of αSMA staining 

in F-PemI (n = 4) or F-PemU 

(n = 4) fibroblasts treated 

with either DEAB (not shown) 

or disulfiram within tethered 

collagen matrices. The top 

panel shows ALDH inhibition 

increased αSMA organization 

(compare with normal F-C 

controls in Figure 4E). Retinoic 

acid treatment of F-C (n = 

4) fibroblasts in a tethered 

collagen matrix resulted in 

decreased αSMA organization 

(bottom panel), similar to that 

seen in OMMP fibroblasts 

(as shown in Figure 4E with 

F-PemI or F-PemU). Each 

assay was carried out with 4 

separate patient fibroblast cul-

tures and at least 3 technical 

repeats. Error bars represent 

±SEM. *P < 0.05, **P < 0.005, 

****P < 0.00005 as calculated 

using one-way ANOVA with 

Bonferroni correction.
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surrogate for the study of  the mechanisms of  inflammation-related conjunctival fibrosis in humans. Using 

this mouse model, topical application of  the ALDH inhibitor disulfiram was shown to decrease conjuncti-

val fibrosis in vivo. Both OMMP fibroblasts and fibroblasts from the inflamed mouse conjunctiva maintain 

a range of  profibrotic characteristics in vitro. Application of  ALDH inhibitors in vitro, to both OMMP 

fibroblasts and fibroblasts from the inflamed mouse conjunctiva, restored their functionality to that of  nor-

mal controls. The effect of  ALDH inhibition on human in vitro OMMP fibroblasts is dose dependent. 

Conversely, applying RA, a metabolite of  ALDH, to human control fibroblasts in vitro induced a diseased 

phenotype. This evidence suggests that the ALDH1 family has a central role in conjunctival scarring in 

both OMMP in humans and in immune-mediated conjunctival inflammation and scarring in the mouse; it 

also suggests that ALDH inhibition is a potential antifibrotic therapy in this setting.

Our findings for cell-associated collagen production, demonstrated by both ELISA and Western blot-

ting, were the same for F-PemI and F-C fibroblasts. However, there was a difference for basal and disul-

firam-treated cell-associated collagen levels in F-PemU compared with F-C fibroblasts. When basal levels 

were measured by Western blotting, there was a trend for increased COL1 levels compared with F-C fibro-

blasts (Figure 4B), but the significant difference shown by ELISA (Figure 4A) was not apparent. Disulfiram 

treatment significantly reduced collagen levels by ELISA (Figure 5A) but not when these were measured 

by Western blotting (Figure 5B). We suggest that these differences are the result of  lower-detectable COL1 

expression in F-PemU compared with F-PemI, as measured by Western blotting, compared with ELISA 

because of  the potential for the ELISA — which utilized a polyclonal COL1 antibody having cross-reac-

tivity with other COL species — to detect more collagen than the Western blotting, given that COLs I, III, 

IV, VI, and VII are all found in OMMP whole conjunctiva (31). It is also important to be aware that differ-

ences in the levels of  clinical inflammation in the human OMMP conjunctiva are points in a continuum 

of  inflammation. The classification of  clinically inflamed versus clinically uninflamed utilizes a necessary 

clincal criterion such that moving the point on the scale, separating clinically uninflamed from inflamed, 

might affect the differences that we have identified between fibroblasts from uninflamed and inflamed con-

junctiva. However, the lack of  an inhibitory effect of  disulfiram on collagen production shown by the 

Western blots for F-PemU may mean that fibroblasts that are in a less inflammatory milieu (defined as 

uninflamed) in whole OMMP tissue could be less susceptible to antifibrotic therapy with ALDH inhibitors.

Our previous study on the phenotype of  OMMP fibroblasts showed increased proliferation, no dif-

ference in collagen contraction, and increased COLI production compared with control fibroblasts (32), 

whereas in the current study, although COLI was increased, there was significantly less contraction and 

reduced proliferation compared with controls. Preliminary experiments for the current studies showed that 

F-C fibroblasts showed significantly increased contraction and proliferation only for the first outgrowth of  

fibroblasts from a biopsy (the primary explant) compared with later outgrowths (33). Subsequently, only 

the primary explant was used for all F-C and F-Pem studies, whereas for the 2011 paper, a mixture of  

outgrowths from primary and secondary explants were used. We hypothesize that the relative reduction 

shown for contraction and proliferation of  OMMP fibroblasts compared with controls in the current study 

was due to the increased activity of  these parameters in the controls rather than due to a difference in the 

Table 2. CONTROLS (n = 17) (age- and sex-matched with healthy conjunctiva having surgery for cataract of Fuch’s corneal dystrophy)

ID Age Sex Race ID Age Sex Race

C01 87 F W C10 85 M W

C02 77 F W C11 86 F W

C03 64 F W C12 77 M W

C04 54 F W C13 76 F W

C05 93 F W C14 55 F W

C06 86 M W C15 84 M W

C07 74 M W C16 81 F W

C08 78 M W C17 68 F W

C09 86 M W

Control patients had healthy conjunctiva. Exclusion criteria for controls are summarised in the first section of online methods. The controls did not have 

biopsies taken for DIF and had no scarring. W, ethnic white.
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OMMP fibroblast phenotype for which increased collagen secretion, arguably the most important charac-

teristic of  profibrotic cells, was demonstrated in both studies.

The ALDH superfamily, especially the ALDH1 family and its metabolite RA, has been shown to be 

important in immunity, inflammation, and scarring, for which the evidence is given below. The 18 enzymes 

in the ALDH superfamily irreversibly catalyze endogenously and exogenously produced aldehydes to car-

boxylic acids. ALDH1A3 is one of  the ALDH1 subfamilies of  ALDHs, which includes ALDH1A1 and 

ALDH1A2 — for which retinal is the preferred substrate — and which oxidize retinal to RA. This subfami-

ly is irreversibly inhibited by disulfiram. Whereas the ALDH1 family is intimately involved with Vitamin A 

metabolism, ALDH2 is the key enzyme in alcohol metabolism (29). All-trans-RA (ATRA) and 9-cis-RA are 

the metabolically active derivatives of  Vitamin A that regulate diverse processes including cellular differen-

tiation, apoptosis, embryonic development, reproduction, and vision in addition to their role in immunity, 

where they have effects on both the innate and adaptive immune systems (34). RA deficiency is generally 

associated with a defective immune response, particularly to infection (34). However, several animal studies 

have shown that RA-driven signals may upregulate the inflammatory response; this reflects human data 

associating RA therapy with the development of  inflammatory bowel disease and pointing to Vitamin A 

metabolic pathways as potential instigators of  chronic inflammation (35). In the gut, RA produced by DCs 

plays a central role in mucosal immunity, influencing TGFβ-dependent Treg differentiation (36).

RA functions in several ways. ATRA regulates the expression of  several hundred genes through bind-

ing nuclear RA receptors (RARs including the subfamily retinoic receptor X [RXRs] and activated gene 

transcription by binding to retinoic acid receptor element [RAREs] in target genes). In addition, ATRA 

regulates noncoding RNAs. Furthermore, ATRA exerts regulatory effects through nongenomic pathways, 

largely by modulating protein kinase C (PKC) activity, although other mechanisms have been identified. 

Lastly, RA may exert modulatory effects through retinoylation of  proteins including protein kinase A (37). 

9-cis-RA, like ATRA, modulates gene expression via RARs (38). The paracrine nature of  ALDH/RA activ-

ity, how RA itself  may also positively upregulate ALDH expression (39), and the close proximity in which 

DCs and fibroblasts reside in conjunctival stroma (40) provide evidence that suggests DCs and OMMP 

fibroblasts may maintain ALDH/RA cellular cross-talk between them, ultimately perpetuating OMMP 

fibroblast dysfunction and fibrosis. We describe an example of  this in our companion paper (28)

However, the effects of  retinoids may be both profibrotic and antifibrotic depending on the system and 

model used. These conflicting effects need to be understood when interpreting studies and establishing 

in vitro models. These complexities have been elegantly described with reference to renal fibrosis (41), 

which — with hepatic fibrosis (42, 43) — most closely equate to our findings in the OMMP conjunctiva. 

Rankin et al. give several examples from publications studying lung, liver, and skin in which RA may be 

either antifibrotic or profibrotic, demonstrating that selectivity of  retinoids, cell type-specificity, and choice 

of  profibrotic marker, as well as dose- and condition-dependent factors, may all be important in explaining 

these seemingly opposing effects (41).

ALDH/RA and TGFβ pathways, depending on the model system, may be either synergistic — as 

in the induction of  Tregs — or antagonistic, resulting in suppression of  TGFβ (44). In liver fibrosis, RA 

directly exacerbates hepatic stellate cell (HSC) function by enhancing plasminogen activator (PA) levels 

and thereby inducing proteolytic activation of  latent TGFβ, resulting in enhanced collagen production (43). 

In a mouse model of  hepatic fibrosis, ALDH3 has also been shown to enhance HSC activation, collagen 

production, and TGFβ gene expression, promoting liver fibrosis (42). These findings are consistent with our 

observations in OMMP, and similar mechanisms may be relevant to the mechanism of  ALDH/RA and 

TGFβ interaction in OMMP and resulting fibrosis.

Our hypothesis is that ALDH/RA autoregulation in OMMP fibroblasts may be a rate-limiting step in 

fibrosis in the two models we have described, independent of  an effect on COL gene expression. This might 

be mediated by similar mechanisms to those described in the studies on liver fibrosis (42, 43), through the 

induction of  the TGF gene, and/or through activation of  latent TGFβ by increased PA levels. Active TGFβ 
then drives both fibroblast activation and ECM production in concert with the numerous other cytokines 

and growth factors that affect fibroblast activity (45).

The studies described here identify ALDH/RA autoregulation in OMMP fibroblasts as a mechanism 

underlying progressive conjunctival scarring in this disease. Although this has been recognized in clinical 

studies, the pathogenesis has been unknown. ALDH/RA autoregulation has been identified as important in 

adipogenesis in both in vitro and in vivo mouse studies (46). The companion paper by Saban and colleagues 
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(28), using the AED model described by them in 2012, also provides evidence that DCs mediate induction of  

pathogenic fibroblast behavior through ALDH/RA paracrine signaling soon after the induction of  inflam-

mation. Depletion of  the conjunctival DCs, using diphtheria toxin in CD11c DTR GFP mice, or impair-

ing DC-derived ALDH production prevents the development of  scar tissue in this model without reducing 

inflammation. In addition, the profibrotic effect of  the RA receptor agonist bexarotene, in this model, iden-

tifies the importance of  RA in this process. These findings raise the possibility that, in human OMMP, a 

similar paracrine effect of  DCs early in inflammation may result in an abnormal phenotype in fibroblasts, 

which then develop the capacity to autoregulate, as demonstrated here, and perpetuate the scarring process. 

The DC/fibroblast interactions shown in the mouse model deserve evaluation in human tissue and may be 

relevant to the mechanism of  ALDH/RA-induced fibrosis in liver and kidney summarized above.

The pathogenesis of  inflammation and scarring in OMMP is incompletely understood (3, 23, 47), and 

our findings implicating the role of  pathogenic fibroblast autoregulation, mediated by ALDH/RA, in this 

process are new. We have shown both that ALDH overexpression can be identified in the conjunctiva and 

that we can screen for the effects of  ALDH inhibition using in vitro–cultured fibroblast assays from pheno-

typed patients. Other mucosal scarring diseases are potential targets for further study using these techniques. 

Conjunctival diseases that may share the fibrotic mechanism that we have demonstrated for OMMP are SJS, 

AKC, and trachoma. Our new finding that the OVA-induced mouse model of  severe conjunctival inflamma-

tion developed for AED studies (26, 27) can also be used to study inflammation-induced conjunctival fibrosis 

should provide a valuable tool for further investigation of  the mechanisms underlying conjunctival fibrosis. 

The studies in the companion paper (28) provide evidence for a paracrine effect of  DCs on fibroblasts at the 

initiation of  inflammation, and that is also mediated by ALDH/RA.

Collectively, there is evidence — including that from our data — that ALDH has critical roles in inflam-

mation and conjunctival fibrosis and is produced by DCs and fibroblasts. This makes ALDH inhibition, 

particularly if  it can be achieved by local application to affected tissues, an attractive therapeutic target. One 

of  the ALDH inhibitors used in these studies, disulfiram, is already licensed for the treatment of  alcohol 

abuse. The evidence presented suggests that the repurposing of  disulfiram, for the topical treatment of  con-

junctival scarring in OMMP, may result in an effective topical antifibrotic therapy and provides justification 

for a randomized controlled trial of  disulfiram therapy for scarring in OMMP.

Methods

Patient and control subject consent and selection

All biopsies were taken from the bulbar conjunctiva. Biopsies were placed in Leibovitz’s L-15 medium (Invi-

trogen), 10% (v/v) formalin (Sigma-Aldrich) or RNAlater (Qiagen), for explant culture, paraffin-embedding, 

or RNA extraction. OMMP biopsies were obtained from patients having a diagnosis of  MMP confirmed 

by DIF microscopy, which is required for the gold standard diagnosis of  MMP (48). Three phenotypes 

of  patients were included: OMMP patients with conjunctival inflammation (PemI), OMMP patients with 

an uninflamed conjunctiva after systemic immunosuppression (PemU), and age- and sex-matched control 

patients with healthy conjunctiva (C) undergoing surgery for cataract or Fuchs’ corneal dystrophy. Exclu-

sion criteria for controls included use of  any topical medication apart from artificial tears, active secondary 

malignancy, HIV infection, pregnancy, or breastfeeding. Conjunctival inflammation was assessed from a 

photographic scale used by the Moorfields Eye Hospital authors (unpublished) and was ≥ 5 (more than 

minimal) for inflamed compared with uninflamed eyes on a scale ranging from 1–4 for each of  the 4 bulbar 

conjunctival quadrants (maximum score 16). The degree of  scarring in the OMMP conjunctiva was mea-

sured using the Tauber scoring system (49) in which minimal subconjunctival scarring is scored as stage I, 

progressing through increasing degrees of  lower conjunctival fornix reduction (stage IIa–d) and horizontal 

involvement by symblepharon (stage IIIa–d [n] ), where [n] is the number of  symblephara, and finally pro-

gressing to a frozen globe (stage IV).

Gene expression microarray

Conjunctival biopsies were immediately put into 500 μl of  RNAlater, stored at 4˚C overnight and then 

frozen at –80˚C until RNA extraction. Tissue samples (C, n = 5; PemI, n = 5; and PemU, n = 5) were 

homogenized using a Wheaton glass dounce (Fisher Scientific) and then further homogenized with a 19G 

needle (Fisher Scientific). RNA was isolated from the homogenate using a Qiagen RNeasy kit (Qiagen) 

http://dx.doi.org/10.1172/jci.insight.87001


1 3insight.jci.org   doi:10.1172/jci.insight.87001

R E S E A R C H  A R T I C L E

as per the manufacturer’s instructions. The gene expression array was carried out at Illumina using the 

HumanHT-12 v4 BeadChip. Analysis of  the data was performed using the method of  Burton et al. (50). 

The microarray data has been deposited in the NCBI Gene Expression Omnibus accessible as GEO series 

accession number GSE77361. Other than statistical significance, two considerations governed the way 

in which the microarray data were analyzed. The first related to our hypothesis that an in vitro fibro-

blast model, using primary conjunctival fibroblasts, could be used to understand more complex in vivo 

scarring processes. For this reason, we chose to focus only on genes that were differentially expressed 

in both diseased whole tissue and in diseased fibroblast cultures. The second consideration related to 

the fact that conjunctival scarring continues to progress in clinically uninflamed conjunctiva (5, 6). This 

requires therapeutic targets to address the fibrotic process in both clinically inflamed and clinically unin-

flamed conjunctiva. With these considerations in mind, only those gene transcripts that were differen-

tially expressed (at least 1.5-fold difference, P < 0.05) in both PemI and PemU whole conjunctiva, and in 

F-PemI and F-PemU conjunctival fibroblasts, were selected as potential targets. Only 10 genes met these 

criteria: KCNK6, CCNF, ECGF1, BOLA2, LGMN, HIST1H2BK, GFPT1, SEC13, CD24, and ALDH1A3. At 

the time of  this experiment, the F-C (n = 2), F-PemI (n = 2), and F-PemU (n = 2) fibroblast cultures were 

available so that qPCR experiments on 4 further donor cultures of  each cell type were carried out to con-

firm the microarray findings.

Histology

Human conjunctival biopsies C (n = 3), PemI (n = 3), and PemU (n = 3) were fixed in 10% (v/v) for-

malin, processed by the standard methods and embedded in paraffin. Sections (5 μm) were stained for 

ALDH1A3 using the following IHC protocol. Slides were deparaffinised and pretreated with heat-induced 

epitope retrieval (HIER) solution and Tris-EDTA Buffer at a pH of  9 for 20 minutes followed by washing 

in running tap water for 10 minutes. Endogenous peroxidase was quenched by incubating sections in 3% 

(v/v) H
2
O

2
 in distilled water. After blocking with Protein Block, Serum-Free for 45 minutes (Dako), the 

slides were then stained with a rabbit polyclonal antibody to ALDH1A3 (ab12985, Abcam) or rabbit IgG 

(ab27472, Abcam) 1 μg/ml at 4˚C overnight. Antibody binding was visualized using anti–rabbit HRP–

labeled IgG (P044801-2, Dako) followed by AEC Substrate System (Vector Laboratories), and the sections 

were counterstained with Mayer’s hematoxylin. Images of  the conjunctiva were taken using a Zeiss Axio-

phot microscope, followed by image analysis using Trio version 1.0.2 software from Caliper Life Sciences.

Whole eyes were obtained from mice (n = 5), stored in 10% (v/v) formalin, processed by the stan-

dard methods, and embedded in paraffin. Sections (5 μm) were processed and stained with Martius 

Scarlet Blue stain (MSB) and H&E in the Pathology Core Laboratories (UCL Institute of  Ophthal-

mology). Images were taken of  the bulbar conjunctiva using the Motic BA400 light microscope and 

Moticam 2300 camera.

Conjunctiva excised from whole eyes obtained from mice were fixed in 4% (v/v) paraformaldehyde 

(PFA) for 1.5 hours and washed 3 times for 5 minutes. The samples were then blocked with 5% (v/v) goat 

serum (Sigma-Aldrich) in PBS for 30 minutes and subsequently stained with rabbit anti–mouse ALDH1 

(ab23375, Abcam), primary antibody in 5% (v/v) goat serum (Invitrogen) for 48 hours at 4˚C in the 

dark. Samples were washed 3 times with PBS, and antibody binding was visualized with goat anti–rabbit 

AlexaFlour 594 (A-11037, Invitrogen) secondary antibody in 5% (v/v) goat serum in PBS, which was 

incubated with the samples for 1 hour at room temperature. Samples were washed 5 times with PBS and 

mounted onto glass coverslips with mounting medium containing DAPI (Vector Laboratories), and images 

were obtained from a Leica SP8 confocal (Leica Microsystems).

qPCR

Human TaqMan primers for ALDH1A3 (Hs00167476_m1) and Human HRPT1 (Hs02800695_m1) genes 

were purchased from Applied Biosystems. HRPT1 was used to normalize gene expression, as the expres-

sion of  this gene was stable across the experimental groups. The cDNA was obtained using an Eppen-

dorf  Mastercycler, and the qPCR was carried out using the Taqman (Applied Biosystems) on F-C (n = 4), 

F-PemI (n = 4), and F-PemU (n = 4). To ensure the purity of  the cDNA, enzymatic digestion of  genomic 

DNA (gDNA) was incorporated in the isolation of  template RNA and in the Qiagen Quantitect reverse 

transcription kit. The Quantitect reverse transcription step was carried out as per the manufacturer’s 

instructions using 200 ng of  RNA per reaction. Each qPCR experiment was run as per the manufacturer’s 
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instructions. The expression level of  gene transcripts was standardized relative to that of  HPRT1 in the 

same reaction using the ΔΔCT method. qPCR was also carried out for COL1A1, COL3A1, and ACTA2 

on F-C (n = 3), F-PemU (n = 3), and F-PemI (n = 3) using the Quantifast SYBR Green PCR kit (Qia-

gen) in a Rotorgene 6000 (Qiagen). TATA binding protein was used as the housekeeping gene (primers: 

forward 5′- AGTGACCCAGCATCACTGTTT-3′ and reverse 5′-GGCAAACCAGAAACCCTTGC-3′). 
For the human collagen genes, the following primers were used. COL1A2: forward 5′-TGCTTGCAG-

TAACCTTATGCCTA-3′ and reverse 5′-CAGCAAAGTTCCCACCGAGA-3′; COL1A1: forward 

5′-CCCCTGGAAAGAATGGAGAT-3′ and reverse 5′-AATCCTCGAGCACCCTGA-3′; and COL3A1: 

forward 5′-TTCTGGAGGATGGTTGCACG-3′ and reverse 5′-GGTAGTCTCACAGCCTTGCG-3′. 
For the mouse collagen genes, the following primers were used. Col1a2: forward 5′-TAGCCAACCGT-

GCTTCTC-3′ and reverse 5′-TCTTGCCCCATTCATTTGTC-3′; Col1a1: forward 5′-TGGAAGAGCG-

GACAGTAC-3′ and reverse 5′-GCGCAGGAAGGTCAGCTG-3′; 18S: forward 5′-TTGACGGAAG-

GGCACCACCAG-3′ and reverse 5′-GCACCACCACCCACGGAATCG-3′; and Col3a1: forward 

5′-CCCACAGCCTTCTACACCTG-3′ and reverse 5′-CCAGGGTCACCATTTCTCCC-3′.

Flow cytometry

Fibroblasts C (n = 3), F-PemI (n = 3), and F-PemU (n = 3) were seeded at 5 × 104 cells/ml in 6-well plates 

overnight in 37˚C with 5% (v/v) CO
2
 in air. The cells were trypsinized, centrifuged, and resuspended in 

ALDEFLOUR buffer (Stemcell Technologies). The samples were then subjected to the ALDEFLOUR 

assay (Stemcell Technologies) according to the manufacturer’s instructions. Samples were analyzed by flow 

cytometry on a FACScan (BD Biosciences).

SDS-PAGE and Western blotting analysis

Total cell lysates from F-C (n = 3), F-PemU (n = 3), and F-PemI (n = 3) were prepared using ice-cold RIPA 

extraction buffer. Extraction buffers were supplemented with protease (complete mini; Roche Diagnos-

tics) and phosphatase inhibitors (phosphatase inhibitor cocktails 2 and 3; Sigma-Aldrich). Protein concen-

tration was assessed using the BCA assay (Pierce; Fisher Scientific). Total cell lysates were subjected to 

Western blot analysis for Collagen Type I (ab758, EMD Millipore), Collagen Type III (ab7778, Abcam), 

and ACTA2 (A2547, Sigma-Aldrich) expression. The housekeeping gene GAPDH was used as a loading 

control (ab8245, Abcam). Full uncut gels are shown in Supplemental Figure 4.

Primary conjunctival fibroblast explant cultures

The biopsy was placed under a coverslip and air dried at 37˚C with 5% (v/v) CO
2
 in air for 30–35 minutes. 

Conjunctival fibroblast medium consisting of  10% (v/v) FCS (Invitrogen) and 1× (50 IU/ml) antibiotic-an-

timycotic (Invitrogen) in DMEM plus Glutamax (Invitrogen) was then added to the biopsy sample. When 

cells that grew out the biopsy reached at least 60% confluency (2–4 weeks after coverslip application), they 

were trypsinized and passaged. Subsequently, cells were passaged (1 in 3) once per week at 60% confluen-

cy. Fibroblasts were primarily characterized by their spindle-shaped morphology and were passaged up to 

passage 7. For experiments, cells that were between passages 4–7 were utilized.

Fibroblast assays

For each assay, F-C (n = 4), F-PemI (n = 4), and F-PemU (n-4) were used.

Collagen production ELISA. Fibroblasts (3 × 104 cells/well) were seeded in 24-well plates for 24 hours. 

The cells were lysed using 0.05 M acetic acid (Sigma-Aldrich), and then a 2-step digestion process using 

pepsin (Sigma-Aldrich) and pancreatic elastase (Sigma-Aldrich) was carried out to solubilize intracellu-

lar collagen. Collagen was solubilized and measured using a Collagen type 1 ELISA (MD Bioproducts) 

according to the manufacturer’s protocol.

Collagen production Sircol. Media was collected from the fibrobast cultures used to evaluate intracellular 

collagen production and assayed for the presence of  secreted collagen. Collagen released into the media 

by the fibroblasts was analyzed using the Sircol assay. An additional step of  solubilizing the collagen with 

pepsin (Sigma-Aldrich), 0.1 mg/ml, 0.5 M acetic acid was carried out to solubilize the collagen. The sol-

ubilization and quantification of  the collagen was carried out according to the manufacturer’s protocol.

Matrix contraction assays. Fibroblasts (125 μl, 1.6 × 106 cells/ml) and 10× MEM (125 μl; Invitrogen) 

were added to 1 ml of  collagen type 1 solution (2 mg/ml; First Link) dissolved in 0.6% (v/v) acetic acid 
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that was previously neutralized with 5 M NaOH (Sigma-Aldrich). The collagen/fibroblast mixture (60 μl) 

was pipetted into individual wells of  a 96-well plate and left to set at 37˚C for 30 minutes in 5% (v/v) CO
2
 

in air. Conjunctival fibroblast medium was added to each of  the gels, and the gels were released from the 

edges of  the wells. The gels were incubated at 37˚C in a humidified atmosphere of  5% (v/v) CO
2
 in air. 

Images were taken of  the gels on day 1, 2, and 3 using an ELPH 340 Canon camera, and the gel areas were 

measured using NIH Image J.

Proliferation assay. Fibroblast proliferation was analyzed using the CyQuant proliferation assay (Invitro-

gen). Fibroblasts (100 μl, 5 × 104 cells/ml) were seeded in a 96-well plate, and then the CyQuant prolifera-

tion assay was carried out as per the manufacturer’s protocol.

αSMA expression. Expression of  αSMA was assessed by confocal microscopy of  tethered collagen type 

1 gels populated with fibroblasts. The gels were formed in the same manner as the free-floating gels in the 

contraction assay. However, after the gels were set and the conjunctival fibroblast medium was added, the 

gels were not released from the edges of  the well. After 24 hours, the gels were stained with αSMA antibody 

that was directly conjugated with Cy3 (Sigma-Aldrich) using the staining protocol recommended by the 

manufacturer. Confocal microscopy was carried out using the Zeiss LSM 710 followed by image analysis 

with Zeiss (Zen) software.

Preparation of ALDH inhibitors and ATRA

For in vitro experiments, DEAB (Sigma-Aldrich), disulfiram (Tocris Biosciences), and ATRA (Sigma-Al-

drich) were all initially dissolved in 100% DMSO forming 100 mM stock solutions. Inhibitors were subse-

quently diluted in PBS (Invitrogen) such that the final concentration of  DMSO was 0.01% (v/v). Vehicle 

was 0.01% DMSO.

For in vivo experiments, disulfiram (300 μM) was dissolved in distilled water. DEAB was dissolved 

to 600 mM in 100% ethanol and then diluted into a working concentration of  300 μM DEAB in PBS 

containing 0.01% (v/v) ethanol. The vehicle for DEAB was PBS containing 0.01% (v/v) ethanol, and for 

disulfiram, distilled water was the vehicle control.

Animal model

Immune-mediated conjunctivitis was induced in C57/BL6 mice (Charles River Laboratories) by i.p. injec-

tion of  200 μl of  immunization mix containing: OVA (10 μg; Sigma-Aldrich), aluminium hydroxide (4 mg; 

Thermo Scientific), and pertussis toxin (300 ng; Sigma-Aldrich). After 2 weeks, mice received topical OVA 

challenge once a day for 7 days. Both eyes of  each mouse were challenged and scored in the same manner. 

For the scoring, a cumulative score was taken from the scores of  eyelid swelling (out of  3) and tearing (out of  

3). As clinical manifestations were uniformly present in all mice, 5 mice were used per experimental group. 

Statistics

For each in vitro fibroblast assay, more than triplicate data points were collected from at least 3 sepa-

rate fibroblast cultures from separate donor conjunctival tissue, and the experiments were repeated at least 

twice. Where whole tissue samples were utilized, for example in the microarray, at least 5 independent 

donor samples were used. For the in vivo experiments, there were 5 mice per experimental condition, as 

disease was consistently exhibited across all mice. Analysis for ±SEM and statistical significance for all 

experiments was carried out by 1-way ANOVA followed by Bonferonni correction. P < 0.05 was considered 

significant.
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Conjunctival biopsies were taken from patients with consent and ethical approval from the local ethics 

committee (Hertfordshire REC reference 10/H0311/40, Protocol SAWV1005).
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