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Aldehyde dehydrogenase (ALDH) is a superfamily of enzymes that detoxify a variety of endogenous and exogenous aldehydes and
are required for the biosynthesis of retinoic acid (RA) and other molecular regulators of cellular function. Over the past decade,
high ALDH activity has been increasingly used as a selectable marker for normal cell populations enriched in stem and
progenitor cells, as well as for cell populations from cancer tissues enriched in tumor-initiating stem-like cells. Mounting
evidence suggests that ALDH not only may be used as a marker for stem cells but also may well regulate cellular functions
related to self-renewal, expansion, differentiation, and resistance to drugs and radiation. ALDH exerts its functional actions
partly through RA biosynthesis, as all-trans RA reverses the functional effects of pharmacological inhibition or genetic
suppression of ALDH activity in many cell types in vitro. There is substantial evidence to suggest that the role of ALDH as a
stem cell marker comes down to the specific isoform(s) expressed in a particular tissue. Much emphasis has been placed on the
ALDH1A1 and ALDH1A3 members of the ALDH1 family of cytosolic enzymes required for RA biosynthesis. ALDH1A1 and
ALDH1A3 regulate cellular function in both normal stem cells and tumor-initiating stem-like cells, promoting tumor growth
and resistance to drugs and radiation. An improved understanding of the molecular mechanisms by which ALDH regulates
cellular function will likely open new avenues in many fields, especially in tissue regeneration and oncology.

1. Introduction

Stem cells can be defined as cells that undergo symmetric and
asymmetric divisions to self-renew or differentiate into
mature progeny that can repopulate specific tissues and
organs [1, 2]. A more stringent definition requires that the
self-renewing ability of stem cells is maintained over the full
lifetime of an organism. However, many “stem cell” popula-
tions described in the literature actually do not meet the more
stringent definition. It has been hypothesized that stem
cells in different tissues use common molecular mecha-
nisms to self-renew and differentiate. Hence, common
molecular markers shared by stem cells across tissues have
been searched for [3]. Three independent large-scale gene
array analyses identified putative “stemness” genes in
embryonic stem cells (ESCs), hematopoietic stem cells
(HSCs), or neural stem cells (NCSs) [4–6]. The finding

that only one “stemness” gene (integrin α6) was com-
monly identified in the three studies questioned the exis-
tence of a universal molecular signature of stem cells [6].
Rather, a specific type of stem cell may express certain
“stemness” genes in a species-specific manner but only a
subset of these genes are shared with other stem cell pop-
ulations. Other characteristic features of stem cells include
the absence of markers of cell lineage differentiation (Lin−)
[7], the ability to efflux Hoechst 33342, and multidrug
resistance. The ability to efflux Hoechst 33342, which
defines the so-called side population (SP), is related to
the expression of the ABC transporter Bcrp1/ABCG2 and
other molecular transporters that mediate drug resistance.
SP cells from various types of tissues have been associated
with self-renewal and multilineage differentiation capacity
[8, 9]. However, the metabolic and proliferative state of
the cell may influence the SP phenotype. As an example,
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quiescent populations of self-renewing neural progenitor
cells (NPCs) efflux Hoechst 33342 and are identified as
SP cells, whereas not actively dividing embryonic NSCs
do not efflux Hoechst 33342, despite the fact that they
express high levels of ABCG2 [10].

A metabolic stem cell marker that has been described is
aldehyde dehydrogenase (ALDH) [11]. By oxidizing a wide
range of endogenous and exogenous aldehydes to their corre-
sponding carboxylic acids, this critically important class of
NAD(P)+-dependent enzymes protect living organisms
against oxidative stress. In addition, ALDH plays important
roles in the biosynthesis of molecules that regulate cellular
homeostasis, such as retinoic acid (RA), γ-aminobutyric acid,
and betaine [12, 13]. Many ALDH enzymes in evolutionarily
distant species protect cells by detoxifying endogenous alde-
hydes that are formed during lipid peroxidation. ALDH
upregulation occurs in bacteria in response to environmental
and chemical stressors; in plants in response to dehydration,
salinity, and oxidative stress; in yeasts after exposure to etha-
nol and oxidative stress; and in mammals in response to oxi-
dative stress and lipid peroxidation [14].

High ALDH enzyme activity and a relationship with
cyclophosphamide resistance were first described in human
HSCs [15]. The development of the Aldefluor™ flow cytom-
etry assay that enables sorting of live ALDH-bright
(ALDHbr) cells with high ALDH enzyme activity has been
instrumental in moving forward this research area [16, 17].
ALDHbr populations derived from various types of tissues
are enriched in self-renewing cells endowed with multiline-
age differentiation potential. As an example, a few ALDHbr

pluripotential cells are able to generate all somatic and repro-
ductive cell lineages in tunicates [18]. In addition, ALDHbr

populations from multiple types of cancers are enriched in
cells with stem-like characteristics and tumor-initiating abil-
ity [19, 20]. However, ALDHbr populations described in the
literature typically are heterogeneous, being enriched in, but
not consisting exclusively of, stem cells. Many ALDHbr pop-
ulations that have been reported actually comprised true
stem cells, transit amplifying progenitor cells, differentiating
progenitors, and even mature cells. It should be noted that
the term “ALDHbr

” (or ALDHhigh) refers to the most highly
fluorescent-labeled subset of cells, as assessed with the Alde-
fluor™ reagent, within a cell population. In contrast, the term
“ALDH+

” is ambiguous and should be avoided, as normal tis-
sues commonly express ALDH. In this review of the litera-
ture, the term “ALDH+

” is used when discussing selected
reports that applied this terminology.

The ALDH superfamily is comprised of 19 human iso-
zymes subdivided in 11 families and 4 subfamilies. Many of
the ALDH isozymes overlap in relation to subcellular locali-
zation (cytoplasm, mitochondria, or nucleus), tissue distribu-
tion, and substrate specificities but vary in their efficiency in
metabolizing specific aldehydes [12, 13]. In relation to stem
cells, much emphasis has been placed on members of the
ALDH1 family of cytosolic enzymes required for the biosyn-
thesis of RA, particularly ALDH1A1 and ALDH1A3. This
review is aimed at summarizing current evidence suggesting
that ALDH not only may be used as a marker of stem cells
but also may well regulate cellular function.

2. ALDH as a Marker for Normal Stem Cells

Early studies revealed that ALDHbr subpopulations from
human umbilical cord blood [17, 21–26], bone marrow
[27, 28], and cytokine-mobilized peripheral blood [29,
30] are highly enriched in lineage-committed hematopoi-
etic progenitor cells (HPCs). The ALDHbr subset of cord
blood cells includes all long-term and most of the
short-term cells that reconstitute hematopoiesis in xeno-
graft models of cord blood transplantation. Retrospective
analyses revealed an inverse relationship between the dose
of ALDHbr cells administered to patients and the hematopoi-
etic engraftment time [29–31]. A prospective analysis showed
a strong direct correlation between ALDHbr cells and
colony-forming unit potency of cord blood [32]. While the
CD34+ subset of ALDHbr bonemarrow cells comprises hema-
topoietic cells, approximately half of ALDHbr bone marrow
cells do not express CD34 and are highly enriched for
multipotent mesenchymal stem cells (MSCs) and endothe-
lial progenitor cells (EPCs) [27, 28, 33]. ALDHbr cells from
bone marrow or cord blood express genes involved in
angiogenesis, display proangiogenic activities [34, 35] and
promote tissue repair in animal models of limb ischemia
[28] and myocardial infarction [36]. In an initial clinical
trial in patients with peripheral artery disease, however,
autologous ALDHbr bone marrow cell administration
failed to improve limb perfusion and functional outcomes
[37]. More encouraging results were reported in an early
trial in patients with ischemic heart failure [38]. ALDHbr

cells in nonmobilized human peripheral blood mainly con-
sist of EPCs and average 0.07% of total white blood cells.
The number of circulating ALDHbr cells is inversely corre-
lated with patient age and the severity of coronary artery
disease [39].

Regarding the central nervous system, ALDHbr multipo-
tent NPCs have been identified in the developing rat embry-
onic neural tube [40], fetal mouse brain [41], and both
subventricular and subcortical zones of the adult mouse
brain [42]. ALDHbr adult brain NPCs can be induced to form
neurons, astrocytes, and glia in vitro. When cultured under
conditions that facilitate the formation of motor neurons
and transplanted i.t. in mouse models of spinal motor
atrophy, both ALDHbr-derived neurons and uncultured
ALDHbr cells migrated to ventral horns, established func-
tional neuromuscular junctions, and attenuated the pro-
gression of the disease [43, 44].

The ALDHbr subpopulation of human skeletal muscle
cells is enriched in myoblast progenitors that engraft much
more effectively than ALDHdim cells upon transplantation
into skeletal muscle in vivo [45, 46]. Differentiated ALDHbr

myoblasts, but not ALDHdim cells, survive treatment with
H2O2 and diethylaminobenzaldehyde (DEAB), a specific
inhibitor of ALDH, in vitro.

The ALDHbr population from human breast reduction
specimens is enriched in multipotential cells that give rise
to uncommitted, myoepithelial, lumenal epithelial and mixed
colonies, as well as ducts upon transplantation into mam-
mary fat pads in vivo. In contrast, ALDHdim breast cells give
rise to lumenal epithelial cells only [47].
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ALDHbr central acinar/terminal duct cells from periph-
eral acinar duct units of the adult mouse pancreas express
early embryonic pancreas markers and give rise to endocrine
cells with glucose-regulated insulin secretion. When trans-
planted into mouse embryos, ALDHbr central acinar/term-
inal duct cells, but not their ALDHdim counterparts,
contribute to both exocrine and endocrine lineages in the
developing pancreas [48]. It also has been shown that the
ALDHbr subpopulation of human fetal pancreatic cells con-
tains a heterogeneous population enriched in CD133+ cells
and a subset of markers associated with β-cells in the devel-
oping human pancreas [49].

ALDHbr progenitors from prostatic epithelial cells
express stem cell antigen-1 (Sca-1) and generate prostatic tis-
sue much more effectively than their ALDHdim counterparts
do [50]. The ALDHbr subset of murine nonparenchymal liver
cells gives rise to functional hepatocyte-like cells that secrete
albumin and urea and display cytochrome P450 activity [51].
The ALDHbrCD44+ subset of human skin keratinocytes is
enriched in epidermal stem cells with long-term repopulating
ability [52]. Data from our laboratory and other groups indi-
cate that ALDHbrCD34+ cells from human cardiac atrial
appendage tissues (Figure 1) generate mature cardiac myo-
cytes in vitro and in vivo [53, 54]. These findings support
the notion that ALDHbr populations from a variety of normal
tissues are enriched in stem and progenitor cells.

3. ALDH as a Marker of Cancer Stem-Like Cells

Over the past decade, investigation of ALDH expression by
stem cells has been focused on so-called cancer stem-like cells
(CSCs) [55, 56]. First described in leukemia [57], CSCs were
subsequently identified in breast cancer [58] and other solid
tumors. In various types of cancers, ALDHbr cells display
stem-like features, such as self-renewal, clonogenic growth,
tumor-initiating capacity, and drug resistance. Whereas the
traditional “stochastic model” of cancer development implies
that all cells within a tumor have an equal chance of acquir-
ing mutations and initiating cancer, the alternative “hierar-
chical model” postulates that only a small subpopulation
of tumor cells (i.e., CSCs) are highly efficient at initiating
tumors while most tumor cells are differentiated and do
not initiate cancer. Designed based on the “stochastic
model” of cancer development, most current chemothera-
peutics are aimed at shrinking the bulk of solid tumors
before surgery and at eradicating cancer cells and metastases
that may remain after surgery. Cytotoxic chemotherapeutics
typically target proliferating cells; however, CSCs generally
are in a quiescent state of the cell cycle [55]. This may be
one of the reasons why these treatments fail to cure cancer
in many patients. Another reason is expression of ABC
transporters by CSCs leading to drug resistance [56]. There
is substantial clinical evidence in the literature to suggest
that the remaining tumor tissues that survive chemotherapy
contain higher numbers of CSCs, including ALDHbr cells, in
comparison to the original tumor tissues [59–65]. However,
the hypothesis that tumor relapse occurs due to CSCs
remains controversial.

The role of ALDH as a potential marker for CSCs has
been discussed in depth by previous reviews of the literature
[20, 66–69]. ALDHbr cells with tumor-initiating ability have
been identified in many types of tissues including breast
[47, 60, 61, 70–74], liver [75], colon [59, 76, 77], lung
[78, 79], prostate [65, 80, 81], pancreas [62–64, 82], ovary
[83], esophagus [84], stomach [85, 86], bone [87], brain
[88], skin [89], and bone marrow [90–92]. Particularly
instructive are comparative data on ALDHbr and ALDHdim

subsets within a whole tumor cell population showing that
ALDHbr cells are more clonogenic and tumorigenic than
ALDHdim cells are [93]. Clinically, the presence of ALDHbr

cells has been associated with poorer outcomes in multiple
types of cancers [47, 64, 65, 70, 79, 83–86, 90–92, 94, 95];
however, only a few studies identified ALDHbr cells as an
independent prognostic factor [47, 70, 95]. Data on
ALDHbr cells in malignant melanoma are mixed [96, 97].
Biopsies from patients with metastatic melanoma contain
large ALDHbr populations. On the other hand, both ALDHbr

and ALDHdim cells exhibit a comparable aggressive behavior
and resistance to antimelanoma drugs [96].

4. ALDH in Drug Resistance
and Radioresistance

ALDH expression by tumor cells imparts resistance to
cytotoxic drugs, such as cyclophosphamide and its active
derivative hydroperoxycyclophosphamide (4-HC) [98, 99],
doxorubicin [100], cisplatin [101], arabinofuranosyl cyti-
dine (Ara-C) [102], and dacarbazine [96], among others.
Cancer cells expressing high levels of ALDH can develop
drug resistance of the ALDH-specific activity that catabo-
lyzes a particular drug through oxidation of the specific
aldehyde group of the drug [102]. ALDH-dependent drug
resistance likewise occurs in normal stem cells. Treatment
with chemical inhibitors of ALDH activity sensitizes nor-
mal human HSCs and HPCs to the alkylating agent
mafosfamide [103], and murine HPCs to 4-HC [104], a
clinically used drug for ex vivo purging of residual cancer
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Figure 1: Flow cytometry analysis of ALDH activity in cells
isolated from a human cardiac atrial appendage tissue specimen
using the Aldefluor™ assay. (a) ALDHbr gating is established by
incubating Aldefluor™-reacted cells with the ALDH inhibitor
DEAB (negative control). An ALDH/side scatter (SSC) plot is
shown. ALDHbr gating was set to include the top 0.05% of
DEAB-treated cells with respect to the intensity of the fluorescent
signal. (b) Aldefluor-reacted cells analyzed in the absence of
DEAB treatment.
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cells and treatment with autologous bone marrow transplan-
tation [105]. In vitro treatment with interleukin-1 (IL-1) and
tumor necrosis factor-α (TNF-α) stimulates ALDH1 expres-
sion and protects human HPCs against 4-HC toxicity. Inhi-
bition of ALDH through DEAB reverses the effect of IL-1
and TNF-α, consistent with functional relevance of ALDH
activity [106].

Cancer cells with high ALDH activity and other stem-like
features have been implicated in drug resistance and tumor
relapse; however, this hypothesis remains a matter of debate,
as mentioned above. Patients with mantle cell lymphoma
(MCL) often respond to initial cytotoxic treatment but sub-
sequently relapse, which is suggestive of the emergence of a
clonogenic population of resistant cells. A small population
of relatively quiescent, highly clonogenic ALDH+ cells resis-
tant to a wide range of chemotherapeutics has actually been
identified in MCL patients [107]. Similarly, high-grade
serous epithelial ovarian cancer generally responds well to
the initial platinum-based chemotherapy but relapses as a
result of drug resistance. Treatment with inhibitors of
ALDH activity sensitizes drug-resistant ALDHbr ovarian
CSCs to chemotherapy [108].

Data from over 100 breast cancer patients who underwent
neoadjuvant chemotherapy with paclitaxel and epirubicin
suggest that ALDH1+ cells, but not CD44+CD24− cells, con-
tribute to resistance against chemotherapy [61]. It also has
been shown that ALDH1+ breast cancers are characterized
by negative estrogen receptor (ER−), positive human epider-
mal growth factor receptor type 2 (EGFRII+), high expression
of the proliferation marker Ki-67, and significantly lower
pathologic complete response rates to neoadjuvant chemo-
therapy compared to ALDH− breast cancers. This study
showed that ALDH1, ER, and Ki-67 status are mutually inde-
pendent predictors of responses to paclitaxel and epirubicin
[109]. ALDHbr endothelial cells resistant to fluorouracil
in vitro and in vivo have been described in tumor vessels [110].

High ALDH activity has also been implicated in the phe-
nomenon of cellular resistance against radiation. It has been
shown that the HER2+CD44+CD24−/lo subpopulation of
breast cancer cells displays high ALDH activity, in vivo
tumorigenic potential, and radioresistance [111]. Suppress-
ing ALDH activity through disulfiram prevents the reexpres-
sion of stemness genes and the appearance of stem-like
properties in breast cancer cells after radiation [112]. A sim-
ilar relationship between high ALDH activity and radioresis-
tance has been described in prostate cancer progenitor cells
[113]. Moreover, the ALDH1 gene is significantly upregu-
lated in the radiation complete response group of human cer-
vical cancer specimens compared to the nonresponsive
group. Pretreatment with RA induces the death receptor
TRAIL and sensitizes cervical cancer to radiation [114]. Sup-
pressing ALDH1A1 through specific siRNA in murine HSCs
induces the expansion of HSCs with radioprotective proper-
ties [115]. Collectively, these findings support a central role
for ALDH in cellular resistance against chemotherapy and
radiation therapy. The underlying mechanism is incom-
pletely understood, but RA biosynthesis and scavenging of
reactive oxygen species (ROS) and toxic aldehydes are likely
involved [14, 20, 116].

5. ALDH and RA Biosynthesis

Members of the cytosolic ALDH1 family are the primary
enzymes involved in the biosynthesis of RA, which comprises
the most biologically potent retinoid all-trans RA (ATRA),
9-cis-RA, and 13-cis-RA. Retinol (vitamin A) is first oxidized
by alcohol dehydrogenase (ADH) to retinaldehyde in a revers-
ible reaction. Retinaldehyde is then metabolized to RA by
specificALDH isozymes (ALDH1A1,ALDH1A2, ALDH1A3,
and ALDH8A1) in a tightly regulated, irreversible reaction
[12, 117, 118]. Binding of RA with the nuclear RA receptor
(RAR; α, β, or γ isoforms)/retinoid X receptor (RXR; α, β, or
γ isoforms) heterodimer to the regulatory region (i.e., the
RA response element (RARE)) of retinoid-responsive genes
triggers transcriptional activation. RA regulates a variety of
physiological processes in embryonic development and adult
tissue remodeling [119–121]. Chemical inhibition of ALDH
through DEAB leads to a decrease in RAR-mediated signal-
ing, delayed cytokine-mediated cell differentiation, and
expansion of the most primitive human HSCs in culture.
Treatment with ATRA reverses these changes induced by
DEAB. These results suggest that ALDH may regulate HSC
fate through RA synthesis and that inhibition of ALDH
may promote HSC self-renewal through a decrease in RA
activity [122].

The regulatory role of retinoid signaling in breast CSC
differentiation has been investigated by treating different
breast cancer cell lines with DEAB or ATRA and by measur-
ing the respective gene expression profiles. Cells treated with
DEAB overexpress genes enriched in a pre-defined breast
CSC signature [70], whereas cells treated with ATRA under-
express these genes and contain less CSCs but larger pro-
portions of differentiated cells [123]. ATRA-mediated
induction of differentiation in leukemic stem cells has
been exploited clinically for the treatment of acute pro-
myelocytic leukemia [124]. Similarly, treatment with RA
promotes the differentiation of glioblastoma CSCs and
reduces the glioblastoma CSC pool. Constitutive activation
of Notch signaling, a downstream target of retinoids, by
the Notch intracellular domain abrogates the effect of RA
on glioblastoma CSCs [125]. Moreover, treatment with
RA activates the phosphatidylinositol-3-kinase (PI3K) sig-
naling pathway through activation of RARs in SH-SY5Y
neuroblastoma cells. Activation of PI3K is required for
RA-mediated differentiation of neuroblastoma cells [126].
ATRA has also been shown to interact directly with pro-
tein kinase C (PKC) [127]. Moreover, RARs and RXRs
can form heterodimers with other receptors including
ERα [128, 129] and peroxisome proliferator-activated
receptors (PPAR) β/δ [130]. Cooperative interaction
between RARα and ERα is reflected by the requirement
for RARα for efficient ERα-mediated transcription and cell
proliferation, as well as by its relationship with tamoxifen
resistance in breast cancer [128, 129]. In ALDHbr multiple
myeloma cells, ALDH1A1 activates RXRα, which upregu-
lates NIMA-related kinase 2 (NEK2), thereby activating the
drug efflux pump and inducing resistance against bortezomib
and doxorubicin [131]. These findings suggest that ALDH
may promote drug resistance through retinoid signaling.
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6. ALDH and Oxidative Stress

ROS are constantly produced in living organisms. The inabil-
ity to handle ROS burden boosts oxidative stress leading to
modification of proteins and DNA. Oxidative stress triggers
lipid peroxidation of cellular phospholipids yielding over
200 species of reactive aldehydes (e.g., 4-hydroxynonenal
(4-HNE)). By metabolizing a wide range of aldehydes, ALDH
can attenuate oxidative stress [14]. For example, ALDH2 and
ALDH1A1 catabolize 4-HNE to 4-hydroxynon-2-enoic acid
[132]. The finding that ALDHbr human skeletal myoblasts,
but not ALDHdim myoblasts, resist toxic effects of H2O2

in vitro suggests that ALDH activity may impart protection
against oxidative stress [46]. CSCs often display lower oxida-
tive stress than differentiated tumor cells, in part due to aber-
rant cell metabolism of the latter [133]. ALDHbr cells from
ovarian clear cell carcinoma exhibit CSC features, contain
lower levels of ROS in comparison to ALDHdim cells, and
display upregulation of Nrf2, a key transcriptional factor of
the antioxidant scavenger system [134]. ALDHbr Hodgkin
lymphoma cells likewise contain lower levels of ROS com-
pared to their ALDHdim counterparts [135]. Pharmacologic
inhibition of ALDH in an epigenetically determined revers-
ibly drug-tolerant subpopulation of cancer cells with CSC
characteristics led to the accumulation of ROS to toxic levels
specifically in the drug-tolerant subpopulation, suggesting
ALDH-mediated protection against oxidative stress in this
subpopulation [136]. Inhibition of ALDH in breast cancer
cells is associated with increased levels of ROS and downreg-
ulation of hypoxia-inducible factor- (HIF-) 2α. Treatment
with the ROS scavenger N-acetylcysteine abrogates HIF-2α
downregulation caused by ALDH inhibition. This observa-
tion suggests that ALDH activity may stimulate stem cell
properties in breast cancer cells through activation of HIF-2α
[137]. Because chemotherapeutics and radiation produce ele-
vated levels of oxidative stress in cancer cells as part of their
beneficial effects, the “ROS scavenging” activity of ALDH
could protect cancer cells against these therapeutic
approaches by maintaining ROS at low levels [138].

7. Regulation of ALDH1A1 and ALDH1A3 Gene
Expression and Activity

The molecular mechanisms underlying the regulation of
ALDH1A1 gene expression are only partly understood.
These mechanisms are schematically depicted in Figure 2.
Several putative regulatory elements, putative response ele-
ments for IL-6 and other molecules, a noncanonical TATA

box (ATAAA), and a CCAAT box in the 5′-flanking region
of the human ALDH1 gene have been identified. Functional
characterization of this region revealed that the CCAAT
box region is the main cis-acting element that mediates basal
ALDH1 promoter activity in Hep3B cells, which express
ALDH1, but not in erythroleukemic K562 cells or in fibro-
blast LTK-cells, which do not express ALDH1. This observa-
tion may be related to the finding that cell type-specific
factors regulate ALDH1 gene expression [139]. The onco-
genic subunit of mucin 1 (MUC1-C), which is aberrantly
overexpressed in many human breast cancers, activates

ERK signaling and the CCAAT/enhancer-binding protein β
(CEBPβ) transcription factor in breast cancer cells. By form-
ing a complex on the ALDH1A1 promoter, MUC1-C and
CEBPβ activate ALDH1A1 gene transcription. These find-
ings suggest the existence of a MUC1-C→ERK→CEBPβ
→ALDH1A1 pathway in breast cancer [140]. Moreover,
the β-catenin/T-cell factor (TCF) transcriptional complex
directly regulates ALDH1A1 gene expression and is associ-
ated with radioresistance in prostate cancer progenitors. Sup-
pressing β-catenin through specific siRNA reduces the
ALDH+population and sensitizes it to radiation. These results
support the existence of a β-catenin/TCF→ALDH1A1
pathway in prostate cancer progenitors [113]. In these
cells, ALDH1 expression is inversely correlated with
expression of Smad4, a major mediator of transforming
growth factor- (TGF-) β signaling. Suppressing Smad4
through specific RNAi upregulates ALDH1A1 mRNA
expression whereas Smad4 overexpression downregulates
ALDH1A1 mRNA expression in pancreatic adenocarci-
noma cells. Negative regulation of ALDH1A1 mRNA tran-
scription by TGF-β through binding of Smad4 to the
regulatory sequence of the ALDH1A1 gene reduces both
the ALDHbr population and the tumor-initiating activity of
pancreatic cancer cells [141]. In murine HPCs, Tlx1/Hox11,
an oncogenic transcription factor involved in human T-cell
leukemia, transcriptionally regulates ALDH1A1 gene expres-
sion. ALDH1A1 overexpression alters murine hematopoiesis,
favoring myeloid differentiation over lymphopoiesis [142].

The regulation of ALDH1A3 gene has been investigated
in the chemoresistant subpopulation of malignant pleural
mesothelioma cells, which express ALDH1A3 as the main
ALDH isozyme responsible for ALDH activity in these cells.
Suppressing ALDH1A3 through RNAi prevents the survival
of ALDHbr malignant pleural mesothelioma cells, especially
after treatment with chemotherapeutics. Binding of CEBPβ
to the ALDH1A3 promoter activates ALDH1A3 gene expres-
sion in these cells. CEBPβ forms a complex with DDIT3/CH-
OP/GADD153. STAT3-NFκB activity represses DDIT3
mRNA leading to CEBPβ-dependent ALDH1A3 promoter
activation. Conversely, inhibition of STAT3-NFκB activity
increases DDIT3 expression and DDIT3-CEBPβ complex
formation, which reduces the occupancy of the ALDH1A3
promoter by CEBPβ and ALDH1A3 expression, resulting
in an increase in pemetrexed or cisplatin-induced ALDHbr

cell death [143]. In A549 lung alveolar adenocarcinoma cells,
the Oct4 paralog Oct1, a transcription factor associated with
the expression of stem cell markers, positively regulates the
ALDHbr subpopulation [144].

Mounting evidence suggests that epigenetic regulation of
stem cell-related genes is involved in drug resistance [145].
The bromodomain and extraterminal (BET) family of pro-
teins play an important role in this regard. BET proteins
including BRD4 recognize acetylated lysine on histones
through their bromodomains and control transcription of
their target genes either directly by recruiting the tran-
scriptional machinery or indirectly through enhancer
elements. Genes hypersensitive to inhibition by BET pro-
teins typically exhibit BRD4 occupancy at superenhancer
elements [146]. BRD4 targets the promoters of stem
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cell-related genes [147]. It has been shown that a clinically
applicable small-molecule inhibitor of BET suppresses
ALDH activity by abrogating BRD4-mediated ALDH1A1
expression through a superenhancer element and its associ-
ated enhancer RNA (eRNA) in ovarian cancer cells [148].
The formation of chromatin looping that allows enhancer
and promoter interaction is a significant part of enhancer
function [149]. Direct examination of chromatin looping
between the superenhancer and ALDH1A1 gene promoter
using chromosome conformation capture (3C) in cells with
or without treatment with the BET inhibitor revealed that
the BET inhibitor abrogates the chromatin looping between
the superenhancer and the promoter of the ALDH1A1 gene.

These findings support a role for BRD4 in the transcriptional
control of the ALDH1A1 gene through regulation of its
superenhancer and the associated eRNA. The BET inhibitor
suppresses the outgrowth of ovarian cancer cells treated with
cisplatin in vitro and in vivowhile also improving the survival
of ovarian cancer bearing mice treated with cisplatin [148].

Posttranslational regulatory mechanisms of ALDH activ-
ity have also been described. The acetylation state of lysine
353 (K353), which is modulated by acetyltransferase
P300/CBP-associated factor (PCAF) and deacetylase sirtuin
2 (SIRT2), regulates ALDH1A1 activity. ALDH1br human
breast cancer cells with low levels of ALDH1A1 acetylation
display self-renewal characteristics. In contrast, high levels
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of ALDH1A1 acetylation are associated with a depletion of
the stem cell population and decreased self-renewal. Notch
induces ALDH1A1 deacetylation through SIRT2 activation,
thereby promoting ALDH activity and stem-like cellular fea-
tures [150]. Stimulation with sphingosine-1-phosphate (S1P)
expands the ALDH1+ subpopulation of ER+ MCF-7 breast
cancer cells which display CSC features. S1P binding to the
S1P receptor 3 (S1PR3) stimulates ligand-independent Notch
activation. Overexpression of sphingosine kinase 1 induces
an increase in the levels of S1P and an expansion of the
CSC pool [151]. Similar correlations between Notch signal-
ing, ALDH activity, and CSCs have been observed in murine
osteosarcoma [152] and non-small cell lung cancer. Chemi-
cal or genetic suppression of the Notch pathway decreases
the number of ALDH+ cells and the clonogenic potency of
lung adenocarcinoma cells [94]. A549 lung cancer cells
express both ALDH1A1 and ALDH3A1. Incubation of these
cells with ATRA or other commercially available retinoids
decreases protein levels and enzyme activity of ALDH1A1
and ALDH3A1, but not the corresponding mRNAs, and
increases cytotoxicity of 4-HC and acetaldehyde. These find-
ings suggest a posttranslational mechanism by which reti-
noids may decrease the expression of both ALDH1A1 and
ALDH3A1 [153]. Collectively, these reports illustrate several
molecular mechanisms that regulate ALDH gene expression
and enzyme activity.

8. Functional Roles of ALDH1A1 and
ALDH1A3 in Normal Stem and
Progenitor Cells

ALDH isozymes are widely expressed across tissues but
regulate cellular function in a species- and tissue-specific
manner [12, 13]. The ALDH inhibitor DEAB used as a
negative control in the Aldefluor™ assay was originally
viewed as a specific inhibitor of the ALDH1 family; hence,
ALDH enzyme activity measured with this assay was
assumed to reflect the expression of ALDH1 isozymes
[154]. However, recent data indicate that DEAB is not a
specific inhibitor when assayed in vitro versus ALDH1,
ALDH2, and ALDH3 family members [155]. Several stud-
ies have correlated ALDHbr cells, as assessed with the
Aldefluor™ reagent, and cells staining positive with
ALDH1-targeting antibodies, in various tissues and cell
populations, such as human breast epithelium [47] and
MSCs [156]. However, many reports lacked clarification
of isozyme specificity due to limited information about
the isozyme specificity of both the Aldefluor™ assay and
ALDH-targeting antibodies [66].

Gene expression profiling has revealed higher expression
levels of ALDH1A1 in normal human HSCs [157] and in
normal mouse HSCs [158, 159] in comparison to less primi-
tive hematopoietic cells. Suppressing ALDH1A1 through
specific siRNA delays RA-mediated differentiation of murine
HSCs, resulting in the expansion of primitive cells with
radioprotective features [115]. Of note, ALDH1A1 deficiency
does not alter ALDH activity nor does it affect HSC and NSC
functions in the ALDH1A1−/− mouse [160]. This finding

suggests that other ALDH isozymes may compensate for
the loss of ALDH1A1 function in the ALDH1A1−/− mouse.

ALDH1A3 is the most highly expressed ALDH gene in
normal human mammary tissue. In contrast, ALDH1A1 is
expressed at low levels in all mammary epithelial cells. While
the most primitive human mammary stem cells with biline-
age differentiation potential are associated with low ALDH
activity, marked upregulation of ALDH1A3 expression and
ALDH activity occurs at the point of commitment to the
lumenal lineage [161]. We recently measured mRNA expres-
sion of all 19 human ALDH isozymes and identified
ALDH1A3 as the most highly expressed ALDH isozyme in
human cardiac-derived progenitor cells. ALDH1A3 expres-
sion was confirmed at the protein level. Suppressing
ALDH1A3 (but not ALDH1A1, ALDH1A2, ALDH2A,
ALDH4A1, or ALDH8A1) through specific siRNA markedly
decreased ALDH activity and cell proliferation. ALDHbr cells
exhibited higher propensity for differentiating into mature
cardiac myocytes, as compared to ALDHdim cells [53].
Another study demonstrated high expression levels of
RNA-binding protein Sam68 (Khdrbs1) in neurogenic areas
of the neocortex. Khdrbs1 regulates ALDH1A3 pre-mRNA

3′-end processing and promotes self-renewal in mouse
embryonic NPCs. The Khdrbs1−/− mouse displays decreases
in ALDH1A3 expression and ALDH enzyme activity in
NPCs, a depleted embryonic NPC pool, and reduced cortical
expansion [162]. Taken together, these results document
functional roles of ALDH1A1 and ALDH1A3 in normal
stem and progenitor cells.

9. Functional Roles of ALDH1A1 and
ALDH1A3 in CSCs

It has been proposed that the role of ALDH as a CSC
marker comes down to the specific isoform(s) expressed
[163]. The investigational focus has been on the ALDH1
family owing to its role in RA biosynthesis and drug resis-
tance. Expression of ALDH1A1 by CSCs has been demon-
strated in multiple types of cancers [164], such as human
breast cancer [47], lung cancer [94], and colon cancer.
Suppressing ALDH1A1 through specific siRNA sensitizes
colon cancer cells to chemotherapy [165]. The expression
of ALDH1A2 [101, 155, 166], ALDH1A3 [71, 72, 74, 77,
89, 167–171], ALDH1B1 [76, 172], ALDH2 [155],
ALDH3A1 [80, 173–176], ALDH3B1 [177, 178], ALDH4A1
[179], ALDH5A1 [180–183], ALDH6A1 [184], ALDH7A1
[185, 186], and ALDH10 [187] has been reported in vari-
ous malignancies.

A recent study showed that the majority of small-sized
Ki-67+ proliferating progenitors within human HCC1937
breast cancer cells selectively express high levels of ALDH1A3
[74]. Analyses of breast patient tumors revealed that high
levels of ALDH1A3 are correlated with the expression of
RA-inducible genes containing RAREs, poorer patient
survival, and triple-negative breast cancers. Both ALDH1A3
and treatment with ATRA promoted the expression of
RA-inducible genes in MDA-MB-231, MDA-MB-468, and
MDA-MB-435 breast cancer cell lines. ALDH1A3 had
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opposing effects in tumor xenografts, increasing tumor
growth and metastasis of MDA-MB-231 and MDA-MB-435
cells but decreasing them in MDA-MB-468 cells. Treatment
with ATRA replaced ALDH1A3 in inducing the same
opposing tumor growth and metastasis effects, suggesting
that ALDH1A3 exerted these effects through activation of
RA signaling. ALDH1A3 induced largely divergent gene
expression profiles in MDA-MB-231 and MDA-MB-468
cells, in line with the opposing tumor growth effects. Treat-

ment with the DNA methylation inhibitor 5-aza-2′-deoxy-
cytidine restored RA inducibility of RARE-containing
HOXA1 and MUC4 in MDA-MB-231 and MDA-MB-468
cells. These results indicate that differences in epigenetic
modifications contribute to differential ALDH1A3/RA-in-
duced gene expression, thereby influencing tumor growth
and metastasis in breast cancer [72].

Recent data suggest that expression of ALDH1A3 may
affect in vitro proliferation and invasion of colon cancer cells
dependent on the CXCR4 status [77]. In patients with
high-grade glioma, two subtypes of glioma CSCs have been
described: proneural CSC and mesenchymal glioma CSCs.
The latter are maintained by activated glycolytic metabolism
involving ALDH1A3 and display a more aggressive behavior
than proneural CSCs. Inhibition of ALDH1A3 selectively
suppresses the growth of mesenchymal glioma CSCs [188].
In mesenchymal glioma CSCs, ALDH1A3 has been shown
to regulate the expression of the survival factor tissue trans-
glutaminase [189]. In neuroblastoma cell lines expressing
high levels of ALDH1A3, ALDH1A3 knockout via CRISPR/-
Cas9 gene editing results in decreased clonogenicity of
tumor-initiating cells [88]. In melanoma cells, ALDH1A3 is
upregulated through epigenetic mechanisms, as compared
to normal melanocytes. Melanoma treatment with a novel
irreversible isoform-specific ALDH1 inhibitor (DIMATE)
or depletion of ALDH1A1 and/or ALDH1A3 results in the
accumulation of toxic aldehydes, increased apoptosis, and
decreased tumor growth in xenograft mouse models [190].

As to the role of ALDH isozymes in mediating drug
resistance, ALDH1A1, ALDH1A3, andALDH3A1 are known
to convert active 4-HC to inactive carboxyphosphamide
[15, 104]. De novo expression of ALDH1 through trans-
fection of cell lines induces resistance against anti-cancer
alkylating agents in hamster V79 cell lines. This effect is
completely reversed by pretreatment with DEAB [191].
Overexpression of ALDH1 using a retroviral vector imparts
4-HC resistance to human HPCs in vitro and after bone
marrow transplantation in vivo [192]. High ALDH3A1
expression and activity correlate with cell proliferation and
increased tolerance to the cytostatic and cytotoxic effects of
lipidic aldehydes [176].

Taken together, these findings indicate that ALDH1A1,
ALDH1A3, and ALDH3A1 exert important functions in
CSCs. Functional roles of other ALDH isozymes in CSCs
remain to be elucidated.

10. ALDH and Other Stem Cell Markers

Various combinations of markers including ALDH, CD34,
CD133, Sca-1, CD44, and integrin α2β1 have been used to

identify putative stem cells, as exemplified by ALDHbrCD34+

human cardiac atrial stem cells [53, 54], ALDHbrCD133+

human fetal pancreatic stem cells [49], ALDHbrSca-1+

murine prostatic stem cells [50], and ALDHbrCD44+ human
epidermal stem/progenitor cells [52]. It is worth noting that,
besides ALDH, other stem cell-associated markers, such as
CD133 and CD44, may also play functional roles in stem
cells [193, 194]. Unfortunately, only a limited number of
comparative marker analyses are available. A prospective
study identified ALDH, but not CD34, as a predictor of
colony-forming unit potency of cord blood [32]. Another
report showed lack of correlation of stem cell markers in
breast cancer stem cells. ALDH activity and other com-
monly used stem cell markers including CD24, CD44,
SOX2 expression, mammosphere-forming ability, and the
SP phenotype were variably present in populations from
human breast cancer tissue and breast cancer cell lines
and identified cancer cell subpopulations with no reliable
therapeutic implications [73]. Further comparative studies
of ALDH and other stem cell markers are warranted.
Although ALDH may represent a superior stem cell
marker for selected applications, such as cord blood trans-
plantation, and a useful marker of CSCs in multiple types
of malignancies, it cannot be viewed as the best universal
stem cell marker within all biological contexts.

11. Conclusions

Both normal stem cells and CSCs are typically characterized
by increased ALDH enzyme activity with concomitant upreg-
ulation of specific ALDH isozymes, primarily ALDH1A1,
ALDH1A3, and ALDH3A1. Suppressing ALDH activity by
knocking down ALDH1A1 or ALDH1A3 results in a deple-
tion of the stem cell pool while also sensitizing stem cells to
chemotherapy in multiple types of tissues. ALDH regulates
cellular function primarily through retinoid signaling and
detoxification of a variety of aldehydes. Molecular mecha-
nisms that regulate ALDH expression and activity have been
described. Unlike cell surface antigens, ALDH represents an
intracellular, metabolic marker. In analogy to the former,
however, ALDH shows limited specificity for true stem cells.
As an example, the most primitive human mammary stem
cells with bilineage differentiation potential display low
ALDH activity whereas mammary stem cells at the point of
commitment to the lumenal lineage exhibit highest ALDH
activity [161], as mentioned above. ALDHbr transient
amplifying progenitors, and even ALDHbr differentiated
cells, such as tumor endothelial cells, have been described
[110]. Measuring specific ALDH isozymes expressed by a
particular type of stem or progenitor cell will likely improve
the sensitivity and specificity of the markers and, most
important, pinpoint novel therapeutic targets. In this
regard, ALDH1A subfamily-selective inhibitors [195]
including clinically applicable small-molecule inhibitors
[148] have been developed. An improved understanding
of the functional roles specific ALDH isozymes play in stem
cell biology will help design novel strategies for regenerative
medicine and in the fight against cancer.
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