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Diabetes mellitus (DM) is a complex metabolic disorder arising from lack of insulin produc-
tion or insulin resistance (Diagnosis and classification of diabetes mellitus, 2007). DM is a
leading cause of morbidity and mortality in the developed world, particularly from vascular
complications such as atherothrombosis in the coronary vessels. Aldose reductase (AR;
ALR2; EC 1.1.1.21), a key enzyme in the polyol pathway, catalyzes nicotinamide adenosine
dinucleotide phosphate-dependent reduction of glucose to sorbitol, leading to excessive
accumulation of intracellular reactive oxygen species (ROS) in various tissues of DM includ-
ing the heart, vasculature, neurons, eyes, and kidneys. As an example, hyperglycemia
through such polyol pathway induced oxidative stress, may have dual heart actions, on
coronary blood vessel (atherothrombosis) and myocardium (heart failure) leading to severe
morbidity and mortality (reviewed in Heather and Clarke, 2011). In cells cultured under high
glucose conditions, many studies have demonstrated similar AR-dependent increases in
ROS production, confirming AR as an important factor for the pathogenesis of many dia-
betic complications. Moreover, recent studies have shown that AR inhibitors may be able
to prevent or delay the onset of cardiovascular complications such as ischemia/reperfusion
injury, atherosclerosis, and atherothrombosis. In this review, we will focus on describing
pivotal roles of AR in the pathogenesis of cardiovascular diseases as well as other diabetic
complications, and the potential use of AR inhibitors as an emerging therapeutic strategy
in preventing DM complications.
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INTRODUCTION
In mammalian cells, under normoglycemia (3.8–6.1 mmol/L),
cellular glucose is predominantly phosphorylated into glucose
6-phosphate by hexokinase, and enters the glycolytic pathway.
Only trace amounts of non-phosphorylated glucose (about 3%)
enter the polyol pathway (Morrison et al., 1970). However, under
hyperglycemic condition (>7 mmol/L), there is increased flux
through the polyol pathway, accounting for greater than 30%
of glucose metabolism (Gonzalez et al., 1984; Yabe-Nishimura,
1998). The rate limiting step of the polyol pathway is the reduc-
tion of glucose to sorbitol catalyzed by aldose reductase (AR),
at the expense of reduced nicotinamide adenosine dinucleotide
phosphate (NADPH). Sorbitol is, in turn, converted to fruc-
tose by sorbitol dehydrogenase (SDH) with the oxidized form of
nicotinamide adenine dinucleotide (NAD+) as a co-factor (Yabe-
Nishimura, 1998; El-Kabbani et al., 2004; Figure 1). The polyol
pathway was first identified in the seminal vesicle by Hers (1956)
who demonstrated the conversion of blood glucose into fructose,
an energy source for sperm cells. AR has since been isolated and
purified from a number of human and animal tissues including
various regions of the eyes (Srivastava et al., 1984), testis (Kawasaki
et al., 1989), liver (Petrash and Srivastava, 1982), placenta (Das and
Srivastava, 1985a; Vander Jagt et al., 1990a), ovary (Iwata et al.,
1990), kidney (Ansari et al., 1991; Ohta et al., 1991), erythrocyte
(Das and Srivastava, 1985b), cardiac (Vander Jagt et al., 1990b) and
skeletal muscle (Cromlish and Flynn, 1983; Morjana and Flynn,
1989; Vander Jagt et al., 1990b), and the brain (Wermuth et al.,
1982; Cromlish et al., 1985). AR is located in the cytoplasm of

most cells (Flynn, 1982) but is not uniformly distributed in all cell
types of an organ. For example, in the kidney the enzyme is present
in the Henle’s loop, collecting tubules, outer and inner medulla,
but not in the cortex (Terubayashi et al., 1989; Ohta et al., 1991).

CONTRIBUTION OF ALDOSE REDUCTASE TO
DIABETES-INDUCED OXIDATIVE STRESS
Diabetes mellitus (DM) is characterized by chronic hyperglycemia
and disturbances of carbohydrate, fat, and protein metabolism
resulting from an absolute or relative deficiency of insulin (Diag-
nosis and classification of diabetes mellitus, 2007). Increased
oxidative stress is thought to play an important role in the patho-
genesis of diabetic complications, as supported by increased levels
of oxidized DNA, proteins, and lipids (Wiernsperger, 2003). The
induction of oxidative stress in DM can result from multiple
mechanisms. Excessive levels of glucose can disrupt the electron
transport chain in the mitochondria, leading to overproduction
of superoxide anions (Nishikawa et al., 2000). High glucose can
also stimulate oxidative stress via the auto-oxidation of glucose
(Wolff and Dean, 1987) and through non-enzymatic glycation
(Mullarkey et al., 1990). Reactive oxygen species (ROS) is gen-
erated in the process of advanced glycation endproducts (AGEs)
formation (Kennedy and Lyons, 1997; Yim et al., 2001) and inter-
action between AGEs and their receptors RAGE can also lead to
ROS production (Schmidt et al., 1994). Moreover, glycation can
inactivate antioxidant enzymes, impairing antioxidant defense, as
observed with glycation of superoxide dismutase (Kawamura et al.,
1992; Morgan et al., 2002).
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FIGURE 1 | Role of aldose reductase (AR) in hyperglycemia-induced

oxidative stress. Excessive amount of glucose is shunted to the polyol
pathway, where AR reduces glucose into sorbitol at the expense of
NADPH. Since NADPH is essential for generation of GSH (intracellular
antioxidant) from GSSG, the depletion of NADPH by the AR pathway may
impair intracellular antioxidant defense. Sorbitol is then converted to
fructose by SDH with the production of NADH, potentially leading to
increased ROS via NADH oxidase.

Another important mechanism whereby high glucose can
induce oxidative stress is the polyol pathway. Previous studies using
AR deficient mice have shown that polyol pathway is an important
source of diabetes-induced oxidative stress (Lee and Chung, 1999;
Obrosova et al., 2003, 2005; Drel et al., 2006, 2008; Ho et al., 2006).
There are three potential mechanisms by which the polyol pathway
contributes to oxidative stress. First, under hyperglycemic condi-
tion, 30% of the glucose is channeled into AR-dependent polyol
pathway, which depetes NADPH and consequently reduces GSH
level (Cheng and Gonzalez, 1986). Second, oxidative stress is gen-
erated during the conversion of sorbitol into fructose by SDH
(i.e., the second step of polyol pathway). In this step, the co-factor
NAD+ is converted to NADH by SDH. NADH is a substrate for
NADH oxidase leading to production of superoxide anions (Morre
et al., 2000). Third, the polyol pathway converts glucose to fructose,
and fructose can be further metabolized into fructose-3-phosphate
and 3-deoxyglucosone, which are more potent non-enzymatic gly-
cation agent than glucose (Hamada et al., 1996a,b). Thus, the
flux of glucose through the polyol pathway would increase AGEs
formation, ultimately leading to ROS generation. Thus there is
crosstalk between AR-dependent and AR independent sources of
oxidative stress making it difficult to establish the relative contri-
butions of each. Additionally, the pathways leading to production
of oxidative stress is both tissue and cell dependent. Relative
contributions of oxidative stress remains an outstanding question.

ALDOSE REDUCTASE AND ATHEROTHROMBOTIC
CARDIOVASCULAR DISEASE IN DIABETES
Latest estimates predict that the global prevalence of DM will
increase by 165% from 11 million in 2000 (prevalence of 4.0%)
to 29 million in 2050 (prevalence of 7.2%; Boyle et al., 2001).
Atherothrombotic cardiovascular events account for up to 80% of
all deaths among DM patients (Haffner et al., 1998). While stan-
dard preventative treatments to combat atherothrombosis include
glycemic control and low dose aspirin, challenges remain. The
effectiveness of tight glycemic control has recently been the subject
of considerable debate, with some studies suggesting that it is of

marginal benefit in preventing cardiovascular events relative to less
stringent glycemic control (American Diabetes Association, 2000,
2003; Wilson and Perry, 2009). While low dose aspirin is protec-
tive in many patients, some individuals exhibit aspirin-resistance
(Grotemeyer, 1991; Grotemeyer et al., 1993; Helgason et al., 1994;
Pappas et al., 1994; Buchanan and Brister, 1995; Marshall et al.,
1997; Andersen et al., 2002; Macchi et al., 2002; Grundmann et al.,
2003; Zimmermann et al., 2003). Therefore there is an urgent need
for novel pharmacological agents to reduce the increasing burden
of atherothrombotic cardiovascular disease.

The pathogenesis of the diabetic complications is complex with
multiple mechanisms proposed, including (1) non-enzymatic gly-
cation, (2) protein kinase C (PKC) activation, (3) hexosamine
pathway activation, and (4) mitochondrial respiratory chain dis-
ruption. However, one of the major proposed mechanisms for
the development of the diabetic complications involves the polyol
pathway, which mediates the metabolic and osmotic alterations
in many tissues (e.g., neurons, platelets). Increased glucose flux
through the polyol pathway has been associated with the patho-
genesis of diabetic complications via several potential mecha-
nisms, including sorbitol-osmotic effects, depletion of myoinositol
(Kinoshita et al., 1962) and subsequent perturbations in Na+/K+
ATPase activity (Greene et al., 1987; Steele et al., 1993), dis-
turbances in cellular redox and free radical defense, increased
oxidative, and glycation stress, activation of PKC (Steele et al.,
1993; Hamada et al., 2000; Hamada and Nakamura, 2004), nitric
oxide (NO)-mediated vascular tone (Tesfamariam et al., 1993),
and induction of hyperglycemic pseudohypoxia (Van den Enden
et al., 1995; Figure 2). Moreover, polymorphic markers of the
human AR gene demonstrate a strong association with a suscep-
tibility to develop diabetic complications. This suggests that the
polyol pathway plays an important role in the pathogenesis of DM
in human patients. Indeed a number of AR inhibitors are currently
being investigated to prevent diabetic complications such as car-
diomyopathy, neuropathy, nephropathy, and retinopathy (Johnson
et al., 2004; Giannoukakis, 2006; Ramirez and Borja, 2008).

Diabetes has been viewed as a coronary heart disease and
myocardial infarction risk equivalent, in part due to its association
with a hypercoagulable state and elevated concentration of pro-
coagulant factors, including fibrinogen and von Willebrand factor
(Kessler et al., 1998; Boden and Rao, 2007). Even acute increases in
blood glucose concentration cause spontaneous platelet aggrega-
tion, while AR inhibition significantly inhibits platelet aggregation
(May et al., 1990), and has anti-platelet activity both in vitro
and in vivo (Tawata et al., 1992), indicating a direct contribution
to platelet aggregation. During chronic hyperglycemia, platelets
from diabetic patients have increased responsiveness to collagen
and adenosine diphosphate (ADP), which can be normalized by
treatment with the AR inhibitor, sorbinil (Jennings et al., 1990).
Previous animal studies also demonstrated that AR inhibition
improved platelet hyperaggregation in streptozotocin-induced
diabetic rats (Hara et al., 1995; Hotta et al., 1995). A recent pro-
teomic study has shown that AR is abundantly expressed in human
platelets, and its inhibitor, epalrestat, reduces platelet aggregation
(Schulz et al., 2010), supporting a crucial role of AR in platelet
aggregation. Consistent with these findings, inhibition of AR has
also been demonstrated to attenuate the hyperglycemia-induced
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FIGURE 2 | Glucose flux through the polyol pathway has been

associated with the pathogenesis of diabetic complications via several

potential mechanisms. Intracellular accumulation of sorbitol causes

osmotic stress. The end production of the polyol pathway, fructose, is
converted to fructose-6-phosphate (F-6-P) by hexokinase, and is further
converted to glucosamine-6-phosphate by glutamine: fructose-6-phosphate
amidotransferase (GFAT). Fructose-6-phosphate may also form
fructose-1,6-bisphosphate (F-1,6-P), which is converted to dihydroxyacetone
phosphate (DHAP). DHAP and glyceraldehdye-3-phosphate (GA3P) are

interconvertible by triosephosphate isomerase. They can lead to the formation
of methylglyoxal, resulting in advanced glycation end-product. DHAP can
further be converted to diacylglycerol (DAG), leading to PKC activation. The
continuous conversion of glycerol-3-phosphate (G-3-P) to DHAP results in
concomitant transfer of electrons from reduced cytosolic NADH to
mitochondrial oxidized FAD, which can generate high mitochondrial
membrane potentials and inhibition of the electron transport chain at complex
III. The oxidation of NADH by NADH oxidase produces reactive oxygen
species (ROS), which can attack the mitochondrial membrane.

platelet hyperaggregation in human platelet by reducing oxida-
tive stress (Tang et al., 2011). All these findings suggest that AR
plays a central role in platelet aggregation, particularly during
hyperglycemic conditions. Oxidative stress generated by the AR-
dependent polyol pathway likely plays a major role in diabetic
platelet hyperaggregation.

Interestingly, generalized overexpression of human AR in dia-
betic mice demonstrated increased expression of inflammatory
markers and uptake of modified lipoprotein in macrophages.
This AR overexpression increases atherosclerosis on a low-
density lipoprotein receptor knockout background; a relatively low
endogenous AR expression is found in wild-type mice (Vikra-
madithyan et al., 2005). Another study in ApoE−/− mice also
demonstrated that human AR expression is proatherogenic and
that expression, specifically in endothelial cells, leads to more
severe disease (Vedantham et al., 2011). AR also contributes to
diabetes abnormalities in vascular smooth muscle cell growth

by increasing the intracellular oxidative stress, translocation, and
phosphorylation of signaling targets (e.g., PKC) as well as release of
TNF-α and related cytokines (Ramana et al., 2005; Srivastava et al.,
2006; Reddy et al., 2009). Hyperglycemia-stimulated release of
TNF-α and related cytokines from VSMCs might potentially medi-
ate diabetes-induced acceleration of atherogenesis and endothelial
dysfunction in humans. These data suggest that AR plays a crit-
ical role in atherothrombotic cardiovascular disease, and hyper-
glycemia in diabetic patients provides sufficient substrate for the
vasculotoxic effects of this enzyme.

Besides diabetic vasculopathy, AR has also been found to
play an important role in diabetic cardiomyopathy, characterized
by myocardial contractile dysfunction independent of coronary
artery disease (Rubler et al., 1972). A study using mouse hearts
demonstrated that the activity of AR was increased (but its gene
expression was suppressed) during the early stage of diabetes
(Iwata et al., 2007). Despite low abundance of AR in mouse hearts,

www.frontiersin.org May 2012 | Volume 3 | Article 87 | 3

http://www.frontiersin.org
http://www.frontiersin.org/Experimental_Pharmacology_and_Drug_Discovery/archive


Tang et al. Aldose reductase and diabetes mellitus

it is believed that the increased AR activity (as with hyperglycemia)
may exacerbate myocardial dysfunction, leading to diabetic car-
diomyopathy. AR may lead to hyperosmotic stress and may induce
cardiac myocyte apoptosis (Galvez et al., 2003). Recently, the activ-
ity of AR was found to increase NADH/NAD+ ratio in diabetic
rat heart, and inhibition of AR in diabetic hearts lowered the
NADH/NAD+ ratio, normalizing the response to glucose metab-
olism and improving cardiac function (Ramasamy et al., 1997).
Furthermore, the AR inhibitor, fidarestat, has been shown to
improve contractile dysfunction and normalize Ca2+ signaling in
the hearts of diabetic db/db obese mice. The intracellular super-
oxide induced by diabetes was also attenuated by treatment with
fidarestat, suggesting that the polyol pathway activity contributes
to contractile dysfunction by increasing superoxide formation in
cardiac myocytes under hyperglycemic condition (Dong and Ren,
2007).

ALDOSE REDUCTASE AND MYOCARDIAL
ISCHEMIA/REPERFUSION INJURY
Myocardial ischemia/reperfusion (I/R) injury is one of the major
causes of morbidity and mortality in patients with DM. Previ-
ous studies have indicated that ROS formed in the ischemic heart
activate AR by modifying its cysteine residues to sulfenic acids
(Kaiserova et al., 2008). Increased activity of AR in I/R rat hearts
depletes intracellular NADPH, thereby reducing cellular GSH lev-
els, increasing oxidative stress, as NADPH is also needed for the
activity of glutathione reductase. AR was also reported to act as
a mediator of late phase ischemic preconditioning. The increased
AR activity at 24 h after ischemic preconditioning reduced the for-
mation of HNE and the accumulation of HNE-modified proteins
during myocardial I/R (Shinmura et al., 2002). Thus, a complete
picture concerning the role of AR during myocardial ischemia
remains elusive.

In recent years, it has been shown that AR is a key component
of I/R injury in diabetic as well as non-diabetic heart (Ramasamy
et al., 1997; Hwang et al., 2004). The protective mechanism con-
tributed by AR inhibition is thought to be due to the preservation
of high-energy phosphates and maintenance for a lower cytosolic
NADH/NAD+ ratio, which can prevent the depletion of ATP and
redox imbalance during myocardial I/R. Further studies showed
that AR mediated the myocardial I/R injury in mice by deplet-
ing the ATP level thus increasing ROS generation (Iwata et al.,
2006). Oxidative stress generated by AR is believed to be in part
contributed to by enhanced mitochondrial permeability transi-
tion pore openings (Ananthakrishnan et al., 2009). Moreover, the
AR-dependent polyol pathway was also found to contribute to
myocardial contractile dysfunction and tissue damage by increas-
ing oxidative stress in I/R rat hearts (Tang et al., 2008, 2010).
Therefore, it is believed that the pharmacological inhibition of
AR presents a novel adjunctive approach for protecting ischemic
hearts in both diabetic and non-diabetic patients.

Apart from AR, SDH (converting sorbitol to fructose) has also
been found to be another novel target for adjunctive protection
of the ischemic myocardium. Studies indicate that inhibition of
SDH attenuated the increased cytosolic NADH/NAD+ ratio and
increased glycolysis as well as glucose oxidation (Hwang et al.,
2003). This further supported the role of the polyol pathway in

myocardial I/R injury, and suggests a mechanism for SDH com-
peting with glyceraldehyde 3-phosphate dehydrogenase (GAPDH)
for NAD+. Thus, AR and SDH are both potential targets for
pharmacological intervention for myocardial I/R injury.

ALDOSE REDUCTASE AND OTHER COMPLICATIONS IN
DIABETES
The pathogenic role of AR in diabetes is not limited to cardiovas-
cular complications, and similar mechanisms are also involved
in other complications, such as retinopathy, nephropathy, and
neuropathy. The AR-dependent polyol pathway plays a major
role in diabetic cataractogenesis. Previous studies showed that
structurally diverse AR inhibitors prevented cataract formation in
streptozotocin-induced diabetic rats (Sun et al., 2006; Drel et al.,
2008). The key role for AR in diabetic cataractogenesis is further
supported by studies in AR-overexpressing mice. Sugar cataracts
form in transgenic diabetic mice expressing human AR in the lens,
but not in wild-type streptozotocin-induced diabetic mice which
have very low expression of AR (Varma and Kinoshita, 1974; Lee
et al., 1995). AR siRNA transfection and inhibition suppressed
high glucose-induced ROS formation, NF-kappaB activation, and
apoptosis in rat lens epithelial cells (Nambu et al., 2008). Stud-
ies on slow cataract formation showed that metabolic imbalance
caused by increased AR activity plays a major role in slow cataract
development in mature diabetic animals (Sun et al., 2006; Drel
et al., 2008), which is more relevant to diabetic patients. Two fur-
ther studies suggested an important role for AR in high glucose-
and diabetes-induced impairment of lenticular signaling (Ramana
et al., 2003; Zatechka et al., 2003). Therefore, increased AR activ-
ity is likely to contribute to diabetic cataract formation through
oxidative signaling mechanisms.

The AR-dependent polyol pathway is one of the more promis-
ing targets for diabetic neuropathy. Increased AR activity leads to
more severe diabetic neuropathy (Yagihashi et al., 2001; Song et al.,
2003) and decreased levels of GSH (Song et al., 2003). Previous
studies demonstrated that hyperglycemia-induced oxidative stress
led to the activation of mitogen-activated protein kinase (MAPK),
which may have contributed to neuronal pathogenesis (Wang et al.,
1998; Purves et al., 2001). Fidarestat, an AR inhibitor, was shown to
prevent activation of MAPK and nerve conduction velocity deficits
in diabetes (Price et al., 2004), indicating that AR inhibitors could
reduce the diabetes-induced oxidative stress. Other studies using
AR knockout mice (Ho et al., 2000) also demonstrated that AR
deficiency could prevent diabetes-induced oxidative stress in nerve
cells in the retina (Cheung et al., 2005). Moreover, both AR defi-
ciency and AR inhibition reduced oxidative stress in the peripheral
nerves and markedly protected mice from diabetes-induced func-
tional deficits (Ho et al., 2006). All these findings suggest that
AR contributes to the pathogenesis of diabetic neuropathy via
oxidative stress.

AR is differentially expressed in mammalian kidney, where AR
expression is low under physiological condition in the glomeru-
lus but significantly increased in diabetic human patients (Corder
et al., 1979; Kasajima et al., 2001). In diabetic rats, it was found
that hyperglycemia-induced increase in glomerular sorbitol levels
was attenuated by treatment with an AR inhibitor, sorbinil (Beyer-
Mears et al., 1984). Hyperactivation of AR in renal cells have been
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linked with aberrant activation of PKC (Ishii et al., 1998; Kapor-
Drezgic et al., 1999; Noh and King, 2007), generation of advanced
glycation products, increased expression of TGF-β and generation
of ROS (Oates and Mylari, 1999). A recent study using mice with
AR deficiency in all tissues except in the renal medulla, showed that
genetic ablation of AR significantly ameliorates the development
of diabetic nephropathy in streptozotocin-induced diabetic mice
(Liu et al., 2011). Together these data suggest that activation of AR
by hyperglycemia in the renal glomeruli contributes to the onset
and progression of diabetic nephropathy via oxidative stress.

SUMMARY
Accumulating evidence in experimental studies has demonstrated
the mechanistic role of AR in various metabolic diseases asso-
ciated with diabetes and its complications. Although a number
of AR inhibitors have been tested or are currently undergoing
testing in clinical trials (reviewed in Giannoukakis, 2008), the
clinical efficacy is uncertain and there are concerns with associ-
ated adverse effects such as hepatic damage. One of the possible
reasons for the discrepancy between experimental animal stud-
ies and human clinical studies (besides species differences) is the
length of time between the onset of diabetes and start of the AR

inhibitor treatment. In many experimental studies, treatment with
AR inhibitors are often commenced before the onset of diabetic
complications and induction of AR. In contrast, treatment with AR
inhibitors are usually administrated to patients with longstanding
DM where the affected tissues (e.g., nerves and retina) have already
undergone extensive damage. Thus it is not surprising that the
clinical efficacy of AR inhibitors is relatively low. However, human
platelets (a critical contributor to atherothrombosis in DM) has a
short life span with a high turnover rate and thus may respond to
AR inhibitor therapy in conjunction with low dose aspirin. As dis-
cussed in this review, under hyperglycemic conditions, activation
of the AR pathway upregulates many other glucose toxicity path-
ways (e.g., non-enzymatic glycation, PKC pathway, hexosamine
pathway, and disruption of mitochondrial respiratory chain), so
treatment with AR inhibitors alone may not be as effective. AR
inhibitors may serve as an effective adjunct therapy for prevention
of diabetic complications.
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