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Background: Somatic gene mutations that facilitate inappropriate intracellular calcium

entrance have been identified in most aldosterone-producing adenomas (APAs). Studies

suggest that angiotensin II and adrenocorticotropic hormone (ACTH) augment

aldosterone production from APAs. Little is known, however, regarding possible

variations in response to hormonal stimuli between APAs with different aldosterone-

driver mutations.

Objective: To analyze the transcript expression of type 1 angiotensin II receptors

(AGTR1), ACTH receptors (MC2R), and melanocortin 2 receptor accessory protein

(MRAP) in APAs with known aldosterone-driver somatic mutations.

Methods: RNA was isolated from APAs with mutations in: KCNJ5 (n = 14), ATP1A1 (n =

14), CACNA1D (n = 14), and ATP2B3 (n = 5), and from normal adjacent adrenal tissue (n =

45). Transcript expression of MC2R, MRAP, AGTR1, aldosterone synthase (CYP11B2),

17a-hydroxylase/17,20-lyase (CYP17A1), and 11b-hydroxylase (CYP11B1) were

quantified using quantitative RT-PCR and normalized to b-actin.

Results: Compared to adjacent normal adrenal tissue, APAs had higher transcript levels

of CYP11B2 (2,216.4 [1,112.0, 2,813.5]-fold, p < 0.001), MC2R (2.88 [2.00, 4.52]-fold,

p < 0.001), and AGTR1 (1.80 [1.02, 2.80]-fold, p < 0.001]), and lower transcript levels of

MRAP, CYP17A1, and CYP11B1 (0.28–0.36, p < 0.001 for all). MC2R and CYP11B2

transcripts were lower in APAs with KCNJ5 vs. other mutations (p < 0.01 for both).MC2R

expression correlated positively with that of AGTR1 in APAs harboring KCNJ5 and

CACNA1D mutations, and with MRAP expression in APAs harboring ATPase mutations.

Conclusions: While MC2R and AGTR1 are expressed in all APAs, differences were

observed based on the underlying aldosterone-driver somatic mutations. In tandem, our

findings suggest that APAs with ATPase-mutations are more responsive to ACTH than

KCNJ5-mutated APAs.
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INTRODUCTION

Primary aldosteronism (PA) is characterized by inappropriate,

renin-independent aldosterone production. PA is the most
common curable form of secondary hypertension, accounting

for up to 20% of resistant hypertension cases (1). Growing

evidence suggests that PA increases the risk of cardiovascular

and renal complications as compared to essential hypertension,

independently of blood pressure control (2–4). Inappropriate

mineralocorticoid receptor activation might promote the release
of pro-inflammatory cytokines (5), oxidative stress (6), and,

consequently, target organ damage (2, 4). Sporadic PA is

broadly classified as bilateral adrenal hyperaldosteronism (BHA)

or unilateral PA, which is often caused by an aldosterone-

producing adenoma (APA). APAs account for 30–50% of PA

cases and they can be cured by adrenalectomy, while BHA requires

life-long targeted medical therapy (7). PA subtyping is typically
established based on adrenal venous sampling (AVS) (7). In many

centers, AVS is performed after administration of cosyntropin, a

synthetic adrenocorticotropic hormone (ACTH), which enhances

the confidence of successful adrenal vein catheterization and

circumvents intrinsic ACTH fluctuations that might occur due

to the stress of the procedure. Reports regarding the impact of
ACTH on APAs, however, have been inconsistent (8–12).

Studies conducted over the past decade have identified a series of

aldosterone–driver gene mutations in familial and sporadic forms of

PA. Affected genes include: KCNJ5 (13), ATP1A1 (14, 15), ATP2B3

(15), CACNA1D (16), CACNA1H (17), CTNNB1 (18), and CLCN2

(19, 20). Next-generation sequencing (NGS) of aldosterone-

producing areas precisely mapped using immunohistochemistry
(IHC) for aldosterone synthase (CYP11B2) has revealed

aldosterone-driver somatic mutations in over 90% of APAs (21–

23). A shared molecular feature of the somatic mutations found in

APAs is that they facilitate intracellular calcium entrance, which

then stimulates aldosterone production by augmenting CYP11B2

expression (23). Nonetheless, APAs harboring different aldosterone-
driver somatic mutations have distinct histopathological features

(24), steroidogenic potential (25), and responses to ACTH

stimulation (26).

In addition to ion channel or pump mutations, some studies

suggest that the aberrant expression of receptors in APAs, such

as G-protein coupled receptors (GPCRs), might contribute to
their dysregulated aldosterone production (27–29). Under

physiological conditions, angiotensin II, serum potassium, and,

to a lesser extent, ACTH control aldosterone synthesis from the

adrenal zona glomerulosa (ZG) (30, 31). Variability in type 1

angiotensin II receptor (AGTR1) and melanocortin type 2

receptor (MC2R, also known as ACTH receptor) expression,

which is abundant in both APAs and normal adrenals (29),
might modulate aldosterone production (30, 31). Although

cellular models of aldosterone-driver mutations showed that

responses to angiotensin II are increased (32, 33), data on

possible variations in response to hormonal stimuli between

APAs with different somatic mutations are scarce. Herein, we

investigated the transcript expression of AGTR1, MC2R, and
melanocortin-2-receptor accessory protein (MRAP) in APAs

with known aldosterone-driver somatic mutations and in

adjacent normal adrenal tissue. In addition, we assessed the

relationship between aldosterone-regulators and CYP11B2

expression in APAs with different somatic mutations.

MATERIALS AND METHODS

Tissue Samples
The current study included adrenals from 47 patients with APA

who underwent adrenalectomy at the University of Michigan

between 2004 and 2018. Patients were selected based on

availability of formalin-fixed paraffin-embedded (FFPE) adrenal
tumor blocks. The clinical diagnosis of PA was made according to

the institutional consensus available at the time or the Endocrine

Society Clinical Practice guidelines (7). All adrenal specimens

were pathologically diagnosed as adrenocortical adenomas. For

comparison, we used adjacent normal adrenal tissue obtained

from the same patients. Because the availability of adrenal tissue
adjacent to the APA was limited, cortical and medullary tissue

were not dissected separately. Sections from FFPE adrenal tumor

blocks were used for IHC for CYP11B2 and 17a-hydroxylase/

17,20-lyase (CYP17A1) and for genetic analysis, as previously

described (21). This study was approved by Institutional Review

Boards at the University of Michigan (HUM00106809,

HUM00024461, HUM00083056). Written informed consent
was obtained from all patients who underwent adrenalectomy

after February, 2011. A waiver of consent was granted for the use

of archival specimens (HUM00083056).

DNA/RNA Isolation
Genomic DNA (gDNA) and RNA were obtained from APAs

with mutations in: KCNJ5 (n = 14), ATP1A1 (n = 14), CACNA1D

(n = 14), and ATP2B3 (n = 5), and from adjacent normal adrenal

tissues (n = 45). Adrenocortical adenomas that displayed

CYP11B2-expressing cells were considered APAs. After

identification of CYP11B2-positive areas by IHC, four to nine
unstained consecutive 5 µm FFPE slides were used to separately

dissect corresponding CYP11B2-positive areas. Dissection of

FFPE sections was performed using disposable scalpels under

an Olympus SZ-40 microscope. The AllPrep DNA/RNA FFPE

kit (QIAGEN, Hilden, Germany) was used to isolate gDNA and

RNA, as previously described (34).

Next-Generation Sequencing
For mutation analysis, multiplexed PCR–based NGS was

conducted using Ion Torrent Ampliseq sequencing (Thermo
Fisher Scientific), as previously described (21, 34). The panel

for library preparation included amplicons targeting the full

coding regions of known aldosterone-driving genes, including

the most commonly affected: KCNJ5, ATP1A1, CACNA1D, and

ATP2B3. APAs with other aldosterone-driver mutations were

not included in this analysis, due to their low prevalence.

Quantitative Real-Time RT-PCR (qPCR)
Total RNA was reverse transcribed using the High-Capacity cDNA
Reverse Transcription Kit (Applied Biosystems). qPCR was
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performed using the ABI StepOnePlus Real-Time PCR systems

(Applied Biosystems). CYP11B2, CYP17A1, and CYP11B1 primer/

probe mixtures were prepared as previously described (27, 35). For

HumanMRAP qPCR, the primer (qHsaCID0022591, Bio-Rad) was

mixed with SYBR Green PCR master mix (Applied Biosystems).

Primer/probe mixtures for the amplification of AGTR1
(Hs00258938_m1), MC2R (Hs00300820_s1), and b-actin (ACTB;

Hs01060665_g1) were purchased from Applied Biosystems. In this

study, ACTB transcript was used as a reference gene for

normalization between samples. Relative quantification was

determined using the comparative threshold cycle method (36).

The average DCT value of all adjacent normal tissues was used as
reference when comparing gene expression between APAs with

various underlying mutations.

Statistical Analysis
Statistical analyses were conducted using SAS 9.4 (SAS Institute,
Cary, NC, USA), and GraphPad Prism 8 was used to generate

figures. The Kruskal-Wallis test, followed by the Dwass-Steel-

Critchlow-Fligner test were employed to compare continuous

variables across multiple groups. Distribution of categorical

variables across groups was assessed by the Chi-square or

Fisher’s exact test. Wilcoxon signed-rank test was used for
paired comparison of transcript levels between APAs and the

corresponding adjacent normal adrenal tissues. Correlations

between gene expressions were examined with the Spearman

correlation test. Two-sided p values below 0.05 were considered

statistically significant.

RESULTS

Demographic and clinical characteristics of study participants

are presented in Table 1. Most patients were Caucasian, with

ages between 20 and 79 years (median age 52) and 62% were
men. Patients with APAs harboring KCNJ5 mutations were

younger, leaner, and mostly women (Table 1).

AGTR1, MC2R, MRAP, CYP11B2,
CYP17A1, and CYP11B1 Gene Expressions
in Aldosterone-Producing Adenomas
Overall, APAs displayed higher transcript levels of MC2R (2.88

[2.00, 4.52]-fold, p < 0.001), AGTR1 (1.80 [1.02, 2.80]-fold, p <
0.001), and CYP11B2 (2216.4 [1112.0, 2813.5]-fold, p < 0.001)

compared to the corresponding adjacent normal adrenal tissue,

and these differences remained robust in APAs with CACNA1D

and ATP1A1 mutations (Table 2). AGTR1 and MC2R transcript

levels were only minimally, but not significantly higher in KCNJ5-

mutated APAs as compared to the paired adjacent normal adrenal
tissue. Conversely, APAs had lower transcript levels of MRAP,

CYP17A1, and CYP11B1 (0.28–0.36-fold, p < 0.001, Table 2) than

the corresponding normal adjacent adrenal tissue and these

differences were observed in all mutation subgroups.

APAs harboring KCNJ5 mutations displayed lower MC2R

and CYP11B2 mRNA expressions compared to other APAs

(Figures 1B, C), while AGTR1 and MRAP transcript levels
were relatively similar between mutation groups (Figures

1A, D).

Correlations Between Aldosterone
Regulators and Steroidogenic Enzymes
in Aldosterone-Producing Adenomas
Overall, APA CYP11B2 expression correlated positively with

MC2R (r = 0.77, p < 0.0001) and AGTR1 (r = 0.52, p = 0.0002,

Figure 2), and inversely with CYP17A1 and CYP11B1 (r = −0.3,

p < 0.05 for both). The strongest correlations between CYP11B2
and both MC2R and AGTR1 were observed in ATP1A1-mutated

APAs (r = 0.77, p = 0.001 and r = 0.61, p = 0.021, respectively).

APAs with CACNA1D and KCNJ5 mutations displayed tight

positive correlations between MC2R and AGTR1 transcripts (r =

0.75, p = 0.002 and r = 0.65, p = 0.012, respectively), while no

significant correlations were found in APAs with ATPase

mutations. Conversely, MC2R and MRAP expressions
correlated positively only in ATP1A1- and ATP2B3-mutated

APAs (r = 0.62, p = 0.018 and r = 0.90, p = 0.037, respectively).

TABLE 1 | Baseline characteristics of patients with APA participating in this study.

Total (n = 47) KCNJ5 (n = 14) ATP1A1 (n = 14) CACNA1D (n = 14) ATP2B3 (n = 5) p value

Age (years) 52.0 (20, 79) 42.0 (20, 56) 55.5 (41, 79) 53.0 (32, 78) 59.0 (53, 75) 0.002

Sex (n men, %) 29 (61.7%) 1 (7.1%) 12 (85.7%) 11 (78.6%) 5 (100%) <0.001

Race (n) C (38), AA (4), A (1), U (4) C (10), AA (1), A (1), U (2) C (13), U (1) C (11), AA (2), U (1) C (4), AA (1) 0.496

BMI (kg/m2) [n = 33] 30.6 [26.2, 35.7] 25.2 [23.2, 33.4] 34.7 [31.9, 40.6] 30.6 [26.8, 33.9] 29.1 [26.1, 30.6] 0.024

SBP (mmHg) [n = 44] 145.5 [130.3, 167.5] 141.0 [128.0, 175.0] 158.5 [130.5, 182.0] 145.0 [134.3, 159.8] 149.0 [135.5, 165.5] 0.779

DBP (mmHg) [n = 44] 86.0 [74.0, 91.8] 76.0 [70.0, 92.5] 90.0 [83.0, 96.3] 85.5 [74.5, 98.0] 78.0 [73.0, 84.5] 0.270

Serum Cr (mg/dl) [n = 30] 0.90 [0.79, 1.10] 0.78 [0.69, 0.90] 0.94 [0.81, 1.09] 1.03 [0.83, 1.23] 1.50 [1.20, 3.43] 0.003

Serum potassium (mmol/L) [n = 43] 3.4 [2.9, 3.8] 3.3 [2.9, 3.9] 3.4 [2.9, 3.7] 3.6 [3.4, 3.8] 3.2 [3.0, 3.9] 0.462

PAC (ng/dl) [n = 44] 29.1 [21.7, 60.2] 26.2 [19.6, 36.1] 29.7 [23.3, 98.4] 27.4 [21.7, 48.1] 80.0 [27.1, 230.0] 0.296

PRA (ng/ml/hr) [n = 31] 0.20 [0.10, 0.60] 0.10 [0.07, 0.60] 0.10 [0.10, 0.40] 0.30 [0.15, 0.75] 0.30 [0.10, 0.73] 0.399

Continuous variables are expressed as median [interquartile range], except for age, which is expressed as median (range).

APA, aldosterone-producing adenoma; C, Caucasian; AA, African American; A, Asian; U, unknown; BMI, body mass index; SBP, systolic blood pressure; DBP, diastolic blood pressure;

Cr, creatinine; PAC, plasma aldosterone concentration; PRA, plasma renin activity.
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DISCUSSION

In this study, we delineate differential gene expression of the

primary aldosterone regulatory receptors in APAs with different

underlying mutations. We found that APAs displayed higher

mRNA expression of both MC2R and AGTR1 than adjacent
normal adrenal tissue. In addition, we show that the expression

patterns of MC2R and AGTR1, and their associations with

CYP11B2 transcripts differ between APAs with various

underlying aldosterone-driver somatic mutations.

Under physiological conditions, angiotensin II induces Gi-

mediated cell membrane depolarization and increases
intracellular calcium signaling, thereby stimulating acute

steroid production as a result of increased steroidogenic acute

regulatory protein (StAR) protein expression (31). Furthermore,

this elevation in intracellular calcium activates a cascade of

signaling events that lead to increased CYP11B2 transcription

and aldosterone secretion from ZG cells (30, 37). Although PA is
theoretically renin-independent, aldosterone excess may also

result from aberrant receptor expression within APAs and/or

hypersensitivity to physiological stimuli. A variety of autocrine

and paracrine regulatory factors (38) can activate ectopic or

aberrant receptors, which may govern aldosterone secretion

independently from the suppressed renin-angiotensin system

(29, 39). Indeed, mRNA expressions of AGTRI and MC2R
were previously reported to be higher in APA tissues

compared to healthy adult adrenals (27, 29, 40). The effects of

posture, angiotensin II infusion, and angiotensin converting

enzyme inhibitors have been shown to differ in APA when

compared to BHA, although results have been variable (7, 41–

43). In our study, AGTR1 transcript levels tended to be higher in

APAs as compared to adjacent normal adrenal tissue. Tunny and

colleagues found that angiotensin II-unresponsive APAs were
more common in women, while those responsive to angiotensin

II were more prevalent in men (41). Indeed, we herein found that

KCNJ5-mutated APAs, which are most prevalent in women of all

races (44–46), expressed AGTR1 transcript levels comparable to

those found in the corresponding normal adrenal tissue.

In contrast with angiotensin II and potassium, ACTH

stimulates aldosterone secretion acutely but transiently (31,
47). Aldosterone production follows a circadian rhythm that

parallels that of ACTH both in normal individuals, as well as in

patients with PA (48, 49). In patients with aldosterone-secreting

tumors, plasma aldosterone concentration starts to fall around

mid-morning, as ACTH levels decrease, in spite of upright

posture (39). The relative impact of ACTH on aldosterone
production from APA vs. BHA and normal ZG cells remains

incompletely understood. Small studies suggest that APAs might

be more sensitive to ACTH stimulation and suppression than

BHA and normal adrenals (49). Asian studies (50–52) indicated

that the response of aldosterone to cosyntropin stimulation, with

or without a priori overnight suppression with 1mg

dexamethasone, is higher in patients with APA than in those
with BHA. Nevertheless, AVS data have shown that aldosterone

lateralization might be apparent only prior to or exclusively after

cosyntropin stimulation (8, 9, 53). Washout of a baseline

aldosterone gradient between the two adrenal glands following

cosyntropin stimulation indicates a relatively higher response

TABLE 2 | Paired comparisons of transcript levels of AGTR1, MC2R, MRAP, and steroidogenic enzymes between APAs and adjacent normal adrenal tissue.

AGTR1 MC2R CYP11B2 MRAP CYP17A1 CYP11B1

All APAs

APAs 1.80 [1.02, 2.80] 2.88 [2.00, 4.52] 2,216.40

[1,111.98, 2,813.45]

0.36 [0.18, 0.59] 0.30 [0.15, 0.43] 0.28 [0.19, 0.56]

Adjacent adrenal tissue 0.99 [0.64, 1.49] 0.99 [0.65, 1.43] 1.07 [0.35, 2.70] 0.97 [0.64, 1.65] 0.99 [0.78, 1.31] 1.04 [0.78, 1.27]

p value <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

KCNJ5-mutated APAs

APAs 1.37 [1.06, 2.11] 1.90 [1.13, 2.52] 911.30

[502.92, 1,212.01]

0.41 [0.23, 0.66] 0.32 [0.28, 0.53] 0.53 [0.20, 0.81]

Adjacent adrenal tissue 0.99 [0.58, 1.35] 0.98 [0.53, 1.80] 0.38 [0.15, 2.31] 1.15 [0.83, 1.85] 0.92 [0.80, 1.17] 1.06 [0.75, 1.30]

p value 0.101 0.064 0.001 0.004 0.002 0.002

CACNA1D-mutated APAs

APAs 2.25 [1.52, 2.89] 3.48 [2.57, 4.36] 2,559.10

[1,506.43, 3,273.80]

0.32 [0.12, 0.58] 0.28 [0.19, 0.45] 0.20 [0.15, 0.36]

Adjacent adrenal tissue 1.14 [0.79, 1.61] 1.08 [0.67, 1.51] 1.09 [0.49, 2.20] 1.29 [0.89, 2.36] 1.34 [0.90, 1.49] 1.04 [0.77, 1.20]

p value 0.013 0.001 0.001 0.001 0.001 0.001

ATP1A1-mutated APAs

APAs 1.57 [0.98, 3.01] 5.13 [2.35, 7.55] 2,329.07

[1,519.96, 4,213.90]

0.43 [0.22, 0.58] 0.18 [0.10, 0.40] 0.31 [0.25, 0.48]

Adjacent adrenal tissue 1.16 [0.65, 1.56] 1.16 [0.73, 1.36] 1.59 [0.87, 7.77] 0.66 [0.60, 1.17] 0.85 [0.67, 1.24] 0.96 [0.76, 1.66]

p value 0.013 0.001 0.001 0.002 0.001 0.001

ATP2B3-mutated APAs

APAs 2.91 [1.02, 6.97] 4.18 [2.58, 6.34] 2,736.94

[1,755.25, 4,163.27]

0.36 [0.14, 0.63] 0.20 [0.03, 0.49] 0.19 [0.16, 0.55]

Adjacent adrenal tissue 0.69 [0.57, 0.98] 0.73 [0.48, 1.14] 0.51 [0.25, 1.94] 0.65 [0.52, 0.78] 0.88 [0.72, 1.04] 1.07 [0.73, 1.09]

p value 0.144 0.068 0.068 0.068 0.068 0.068

qPCR data are shown as fold changes normalized to b-actin (ACTB). Continuous variables are expressed as median [interquartile range].

APA, aldosterone-producing adenoma; AGTR1, type 1 angiotensin II receptor; MC2R, melanocortin type 2 receptors (ACTH receptors); CYP11B2, aldosterone synthase; MRAP,

melanocortin 2 receptor accessory protein; CYP17A1, 17a-hydroxylase; CYP11B1, 11b-hydroxylase.
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from either normal ZG cells or from asymmetrical BHA.

Conversely, amplification of a baseline aldosterone

lateralization points towards a highly ACTH-sensitive APA.

The impact of ACTH on aldosterone secretion is dependent

on the expression of MC2R in CYP11B2-positive cells (31). As
ACTH is the primary regulator of cortisol synthesis, MC2R is

abundantly expressed in the zona fasciculata (ZF) cells (54).

Previous studies have shown that APAs have higher MC2R

transcript levels than normal adrenal tissue, non-functional

adrenal adenomas, or carcinomas (27, 29, 40, 55–57), although

the levels reported have been somewhat variable. Our study is the

first to quantify the expression of MC2R and AGTR1 transcript
levels in APAs confirmed by CYP11B2 IHC. Non-functional

cortical adenomas can be present in patients with PA, and these

tumors display lower MC2R expression than APAs or normal

cortical tissue (40, 55); this might explain previously reported

variability of MC2R expression in presumed APAs that were not

functionally confirmed by examining CYP11B2 expression.
Another cause of variability relates to the APA genotype.

While all APAs had higher transcript levels of MC2R

compared to adjacent normal adrenal tissue, KCNJ5-mutated

APAs displayed lower MC2R transcripts than other APAs.

Considering that BHA are often caused by multiple APCCs

that harbor CACNA1D mutations (58), it is not surprising that

East Asians studies that assessed the aldosterone response to

ACTH stimulation or suppression in patients with APA vs. BHA

found considerable overlap. As confirmed by several cohorts,

KCNJ5 mutations account for the vast majority of APAs in East
Asian populations (45, 59). In line with these findings, we have

previously reported that aldosterone lateralization during AVS

often dampens following cosyntropin stimulation in patients

with APAs harboring KCNJ5 mutations, while the opposite

happens in patients with ATPase mutations (26).

ACTH binds to its MC2R, and induces the activation of

adenylate cyclase and the generation of intracellular cAMP (54,
60). Subsequently, the increased cAMP activates protein kinase

A, which augments CREB phosphorylation and CYP11B2

transcription (30, 31). MRAP, a small transmembrane protein,

is an essential factor in regulating trafficking and functional

expression of the MC2R in the adrenal gland (61, 62). Both

MC2R and MRAP are known to be highly expressed in the
undifferentiated zone as well as the ZF cells (63). Furthermore,

the acute steroidogenic responses to ACTH stimulation depend

on adequate amounts of MC2R and MRAP on the plasma

membrane surface (61). In this study, MC2R transcripts

correlated positively with MRAP expression only in ATPase-

A B

D E F

C

FIGURE 1 | Transcript expression of AGTR1 (A), MC2R (B), CYP11B2 (C), MRAP (D), CYP17A1 (E), and CYP11B1 (F) in aldosterone-producing adenomas with

different aldosterone-driver somatic mutations. qPCR data are shown as the fold changes normalized to b-actin (ACTB). AGTR1, type 1 angiotensin II receptor;

MC2R, melanocortin type 2 receptors (ACTH receptors); CYP11B2, aldosterone synthase; MRAP, melanocortin 2 receptor accessory protein; CYP17A1, 17a-

hydroxylase; CYP11B1, 11b-hydroxylase. Comparisons between groups were done using the Kruskal-Wallis test, followed by the Dwass-Steel-Critchlow-Fligner test.

*p < 0.05, **p < 0.01, ***p < 0.001, compared with KCNJ5-mutated APAs. The boxes contain the 25th and 75th percentiles, the whiskers mark the 10th and 90th

percentiles, and the horizontal line within the box indicates the median, and the ⚫ represent outliers.
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FIGURE 2 | Correlations between transcript levels of AGTR1, MC2R, MRAP, and steroidogenic enzymes in aldosterone-producing adenomas and adjacent normal adrenal

tissue. AGTR1, type 1 angiotensin II receptor; MC2R, melanocortin type 2 receptors (ACTH receptors); CYP11B2, aldosterone synthase; MRAP, melanocortin 2 receptor

accessory protein; CYP17A1, 17a-hydroxylase; CYP11B1, 11b-hydroxylase. Correlation analyses were done using the Spearman correlation test. *p < 0.05, **p < 0.01,

***p < 0.001.
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mutated APAs. These findings further support the high

responsivity of ATPase-mutated APAs to cosyntropin observed

during AVS (26), in contrast with KCNJ5 or CACNA1D-mutated

APAs. Conversely, MC2R transcript levels correlated positively

with those of AGTR1 in APAs harboring KCNJ5 or CACNA1D

mutations, but not in those with ATPase mutations. Together
these results highlight molecular differences between APAs,

which go beyond those illustrated by recent histopathological

studies (23, 24). Additional downstream molecular mechanisms

might be impacted differently by various aldosterone-driver

mutations and deserve further investigation. For example, in

vitro studies suggest that angiotensin II upregulates NR4A1,
NR4A2, and NR4A3 gene expression (64, 65), and that NR4A2

andNR4A3 are upregulated in cell models overexpressing KCNJ5

mutations (66, 67). Other transcriptome and methylome

variations have been shown between APA with and without

KCNJ5 mutations (68). In addition, differences in the expression

of inhibitory regulators, such as dopamine receptors (69, 70)
across APAs with various aldosterone-driver mutations deserve

further investigation.

In summary, we found that ACTH and angiotensin II

receptors are expressed in functionally confirmed APAs

harboring the four most common aldosterone-driver somatic

mutations. Additionally, we show that these key aldosterone

regulatory receptors display several differences in expression
across APAs with distinct underlying mutations. Specifically,

KCNJ5-mutated APAs express lower mRNA transcript levels of

both MC2R and CYP11B2 as compared to other APAs, and they

display no association between MC2R and MRAP expression,

possibly explaining their relatively modest response to

cosyntropin stimulation observed during AVS. Conversely,
ATP1A1-mutated APAs showed robust positive correlation of

MC2R with both MRAP and CYP11B2 expression, supporting

their ACTH-sensitivity. The relatively small number of tissue

samples and individual variability from APAs with distinct

somatic mutation are limitation of our study. Another

important limitation is the lack of protein translation

assessment, and thus conclusions regarding protein function
remain limited. Such studies will be critical once highly

selective human MC2R antibodies become available.

Nevertheless, this initial study provides insight into the

possible actions of ACTH and angiotensin II in APA with

various aldosterone-driver mutations.
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