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Energy efficiency is becoming increasingly important, yet few developers understand how source code
changes affect the energy and power consumption of their programs. To enable them to achieve energy
savings, we must associate energy consumption with software structures, especially at the fine-grained
level of functions and loops. Most research in the field relies on direct power/energy measurements taken
from on-board sensors or performance counters. However, this coarse granularity does not directly provide
the needed fine-grained measurements. This article presents ALEA, a novel fine-grained energy profiling
tool based on probabilistic analysis for fine-grained energy accounting. ALEA overcomes the limitations of
coarse-grained power-sensing instruments to associate energy information effectively with source code at a
fine-grained level. We demonstrate and validate that ALEA can perform accurate energy profiling at various
granularity levels on two different architectures: Intel Sandy Bridge and ARM big.LITTLE. ALEA achieves
a worst case error of only 2% for coarse-grained code structures and 6% for fine-grained ones, with less than
1% runtime overhead. Our use cases demonstrate that ALEA supports energy optimizations, with energy
savings of up to 2.87 times for a latency-critical option pricing workload under a given power budget.

CCS Concepts: rHardware → Power and energy; rSoftware and its engineering → Software nota-

tions and tools;

Additional Key Words and Phrases: Energy profiling, sampling, energy efficiency, power measurement,
ALEA

1. INTRODUCTION

In an era dominated by battery-powered mobile devices and servers hitting the power
wall, increasing the energy efficiency of our computing systems is of paramount im-
portance. While performance optimization is a familiar topic for developers, few are
even aware of the effects that source code changes have on the energy profiles of their
programs. Therefore, developers require tools that analyze the power and energy con-
sumption at the source-code level of their programs.

Prior energy accounting tools can be broadly classified into two categories: tools
that directly measure energy using on-board sensors or external instruments [Chang
et al. 2003; Flinn and Satyanarayanan 1999; Ge et al. 2010; Kansal and Zhao 2008;
Keranidis et al. 2014; McIntire et al. 2007]; and tools that model energy based on
activity vectors derived from hardware performance counters, kernel event counters,
finite state machines, or instruction counters in microbenchmarks [Bertran et al. 2013;
Manousakis et al. 2014; Contreras and Martonosi 2005; Isci and Martonosi 2003;
Curtis-Maury et al. 2008; Shao and Brooks 2013; Tsoi and Luk 2011; Tu et al. 2014;
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Wilke et al. 2013; Pathak et al. 2012; Schubert et al. 2012]. All of these tools can
associate energy measurements with software contexts via manual instrumentation,
context tracing, or profiling. However, these approaches have their limitations.

Direct power measurement: Using direct power measurement instruments, tools can
accurately measure hardware-component-level and system-wide energy consumption.
State-of-the-art external instruments such as the Monsoon power meter [Brouwers
et al. 2014], direct energy measurement and profiling tools [Ge et al. 2010; Flinn and
Satyanarayanan 1999], and internal energy and power sensors such as Intel’s Run-
ning Average Power Limit (RAPL) [Rotem et al. 2012] or on-board sensors [Cao et al.
2012] sample at a rate between 1 kHz and 3.57 kHz. This rate is unsuitable for energy
accounting of individual basic blocks, functions, or even longer code segments that
typically run for short time intervals. Thus, we cannot characterize the power usage of
these fine-grained code units and will miss many optimization opportunities that can
only be discovered through fine-grained energy profiling.

Activity-vector-based measurement: Tools that model energy consumption from ac-
tivity vectors extracted from hardware performance counters can produce estimates
for fine-grained code units but suffer from several shortcomings. Their accuracy
is architecture- and workload-dependent [Curtis-Maury et al. 2008; Contreras and
Martonosi 2005; Isci and Martonosi 2003; Schubert et al. 2012]. Thus, they are only
suitable for a limited set of platforms and applications. Further, targeting a new
platform or workload requires expensive benchmarking and training to calibrate the
model. Finally, as we show later, these tools are not accurate enough to capture the
power variation caused by the execution of different code regions.

To overcome the limitations of prior work, this paper presents ALEA, a new proba-
bilistic approach for estimating power and energy consumption at a fine-grained level.
Specifically, we propose a systematic constant-power probabilistic model (CPM) to es-
timate the power consumption of coarse-grained code regions with latency greater
than the minimum feasible power-sensing interval and an improved variation-aware
probabilistic model (VPM) that estimates power more accurately by identifying high-
frequency variations at the fine-grained level through additional profiling runs. CPM
approximates the power consumption of a region under the assumption that power
is constant between two successive readings of the system’s power sensors. Its accu-
racy depends on the minimum interval that is allowed between two such readings.
VPM relaxes this assumption and identifies power variation over intervals signifi-
cantly shorter than the minimum feasible power-sensing interval. We validate CPM
by comparing the results of profiling with real energy measurements on two different
architectures using a set of diverse benchmarks. The experimental results show that
CPM is highly accurate, with an average error below 2% for coarse-grained regions.
However, for fine-grained regions this model can produce much higher errors. VPM
successfully handles these cases, allowing energy accounting at a frequency that is up
to two orders of magnitude higher than on-board power sensing instruments, with the
error of its estimates at 6%, which is 92% lower than those of CPM.

Finally, we present two use cases of ALEA: fine-grain memoization in financial op-
tion pricing kernels to optimize performance under power caps; and fine-grained DVFS
to optimize energy consumption in a sequence alignment algorithm. These use cases
show that our approach can profile large real-world software systems to understand
the effect of optimizations on energy and power consumption.

The contributions of this paper are:

— A new method for accurate energy accounting in code blocks with finer granularity
than that of power-sensing instruments on real hardware;
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— Two first-of-their-kind, portable probabilistic models for accurate energy accounting
of code fragments of granularity down to 10 µSec, or two orders of magnitude finer
than direct power measurement instruments;

— Low-latency and non-intrusive implementation methods for fine-grained, online en-
ergy accounting in sequential and parallel applications;

— Tangible use cases that demonstrate energy efficiency improvements in realistic ap-
plications, including energy reduction by 2.87× for an industrial strength option pric-
ing code executed under a power cap and up to 9% reduction in energy consumption
in a sequence alignment algorithm.

The rest of this paper is structured as follows. Section 2 provides a short overview
of our profiling approach. Section 3 details our energy sampling and profiling models,
while Section 4 examines the key aspects of their implementation. Section 5 demon-
strates the accuracy of the proposed probabilistic models. Section 6 details opportu-
nities and limitations of ALEA, including the effect of hysteresis on physical power
measurements and an analysis of ALEA’s accuracy compared against power models
based on hardware performance counters. Section 7 presents how ALEA can be used
to improve energy efficiency in realistic applications. Section 8 discusses previous work
in this area and Section 9 summarizes our findings.

2. OVERVIEW OF ALEA

ALEA provides highly accurate energy accounting information at a fine granularity
to reason about the energy consumption of the program. It collects power and perfor-
mance data at runtime without modifying the binary. ALEA uses probabilistic models
based on its profiling data to estimate the energy consumption of code blocks.

2.1. Definitions

We define terms that we use throughout the paper as follows:

— Code block: a region of code that the user defines at the final profiling stage and
that can include one or more basic blocks or procedures;

— Sampling interval: the time between two consecutive samples;
— Power-sensing interval: the interval during which a single power measurement is

taken in a computing system;
— Fine-grained block: a code block that has an average latency less than the power-

sensing interval;
— Coarse-grained block: a code block that has an average latency of at least the

power-sensing interval.

2.2. Workflow

Figure 1 illustrates the three steps of the ALEA workflow:

Profiling. The instrumented program is profiled using several representative input
data sets. During each run, ALEA periodically samples instruction addresses and
records readings from a power measurement instrument such as an on-board energy
sensor or a software-defined power model (e.g., based on hardware counters).

Disassembling and parsing. After each run, ALEA disassembles the binary and
identifies basic blocks in the code.

Energy accounting. As we show in Section 5, the default model of ALEA (CPM, see
Section 3.1) provides accurate energy and power estimates for coarse-grained blocks.

To obtain accurate energy estimates for specific fine-grained code blocks, the user
should choose to use our second model (VPM). VPM overcomes the coarse-granularity
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Fig. 1. Workflow of ALEA

of the power sensors and provides accurate energy estimates over intervals with la-
tency down to 10 µs. Finally, ALEA probabilistically estimates the execution time and
power consumption of each code block.

3. ENERGY ACCOUNTING BASED ON A PROBABILISTIC MODEL

This section details our probabilistic energy accounting models. We first present our
execution time profiling method in Section 3.1, followed by our sampling method in
Section 3.2. We then describe our constant and variation-aware power models in Sec-
tion 3.3. We extend our methodology to multi-threaded code in Section 3.4. We close
this section with an analytic study of the accuracy of our energy accounting models.

3.1. Execution Time Profiling Model

Our execution time profiler randomly samples the program counter multiple times per
run. Based on the total execution time of the program and the ratio of samples of a
code block to the total number of samples, we estimate the time that a block executes.
More formally, we define a processor clock cycle as a unit of the finite population (U ).
It has been demonstrated that the execution time of code block blm can be estimated
based on the probability to sample this block at a random cycle [Mukhanov et al. 2015;
Graham et al. 1982]:

t̂blm = p̂blm · texec =
nblm · texec

n
(1)

In Equation (1) tblm is the the total execution time estimate of instances of blm, texec is
the program’s total execution time, p̂blm is the probability to sample block blm, nblm is
the number of samples of any instruction from blm, and n is the total number of sam-
ples. Equation (1) captures that the probability of sampling a code block at a random
clock cycle is the ratio of its execution time to the program’s total execution time.
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Fig. 2. Power measurements for CPM

3.2. Systematic Sampling

We use systematic sampling, which approximates random sampling. It selects the first
sample (unit) randomly from the bounded interval [1, length of sampling interval] and
other samples are selected from an ordered population with an identical sampling
interval. We subsequently sample in the same run every sampling interval clock cycles.
The random selection of the first sample ensures that sampling is sufficiently random.
Even if the sampling interval aligns with a pattern in the execution of the program,
we can still obtain accurate estimates by aggregating multiple profiling runs, each one
with a different initial sampling time.

3.3. Probabilistic Power Models

We apply the same probabilistic approach that we use for time profiling in order to
profile power and energy. We consider power consumption as a random variable that
follows a normal distribution and is a characteristic associated with the clock cycle
population. We simultaneously sample the program counter and power consumption,
which we assign to the sampled code block.

Assuming nblm samples of block blm, we estimate its mean power consumption as:

p̂owblm =
1

nblm

·

nblm∑

i=1

powi
blm (2)

where powi
blm is the power consumption associated with the ith sample of block blm.

We estimate the energy consumption of blm as:

êblm = p̂owblm · t̂blm (3)

Our model can derive energy estimates for any system component (e.g. processors,
DRAM, on-chip GPU) for which a hardware or software-defined power sensor exists.
The rest of this paper considers only processor energy accounting. The model implies
that we measure the instantaneous power consumption of a sampled code block. How-
ever, power meters can only average measurements over a certain interval and power
measurement can itself have a latency of hundreds of microseconds. We next discuss
our two approaches to approximate the actual power consumption of the code block.
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Fig. 3. Power measurements for VPM

3.3.1. Constant Power Model. Figure 2 shows an example of the power measurement
process of our Constant Power Model (CPM). When we sample the instruction pointer
(the blue line), we interrupt the profiled threads, which causes the power consumption
to drop quickly to the idle state, where it stays while all threads are paused. If we then
measure power, this behavior would impact our measurement significantly. Thus, we
measure power before sampling the current instruction pointer.

This model provides accurate power estimates for coarse-grained blocks. However,
the power-sensing interval necessarily adjusts power consumption for other code
blocks with potentially different power behavior. CPM, as well as all other existing
energy profiling approaches, assumes that power remains constant throughout the
power-sensing interval. If the power level varies during this interval, these energy
profiling techniques do not capture that power variation.

3.3.2. Variation-Aware Power Model. Accurately measuring power for fine-grained code
blocks requires a more sophisticated approach, which our Variation-aware Power
Model (VPM) provides. We isolate each block’s power consumption from that of the
neighboring code blocks through multiple power measurements for the exact same
sequences of code blocks. By pausing (or not) the execution of the last block in this
sequence, we control whether it contributes (or not) to the power measurement. We
subtract the power associated with a sequence that omits the block from that of one
that includes it to obtain the power and energy consumption of that block.

The top plot in Figure 3 shows this process in more detail. VPM partially decouples
measuring power from sampling. We initiate the power measurement at point A in the
plot. The actual sample is taken after a certain amount of time, at point B. Sampling
causes the program to pause, bringing the power consumption down to powidle. At the

end of the power-sensing interval, point C, we obtain pow
no delay
A→C .

Every time point B occurs at the beginning of an iteration of code block blm, the
power reading is roughly the power consumption of the preceding blocks, excluding
the contribution of blm. To obtain their power consumption including the contribution
of blm, we delay sampling for an interval equal to blm’s latency for half of the samples.
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The bottom half of Figure 3 shows that this delay causes half of the samples that
would be taken at B to be taken at B’ (blm’s end). The power-sensing interval covers
the same preceding blocks as in the case of sampling at B but also includes blm. The
difference of the two power readings gives us the energy and power consumption of
blm:

eiblm = pow
delay
A→C · tavrpow − pow

no delay
A→C · tavrpow + powidle · latency

i
blm. (4)

powi
blm =

pow
delay
A→C − pow

no delay
A→C

latencyiblm
· tavrpow + powidle, (5)

where pow
delay
A→C denotes the power measurements taken when we sample the last in-

struction of blm at B’, powno delay
A→C denotes power measurements taken when the first

instruction of the code block was sampled at B, powidle is the idle power consumption
obtained after interrupting the profiled threads and tavrpow is the power-sensing interval.

Our approach assumes that the power readings correspond to observations of a ran-

dom variable with a normal distribution. Thus, we can average pow
delay
A→C and pow

no delay
A→C

over all samples to estimate the power consumption for blm as:

p̂owblm =
p̂ow

delay
A→C − p̂ow

no delay
A→C

̂latencyblm
· tavrpow + powidle, (6)

where ̂latencyblm is the average latency of the code block.
For VPM to produce accurate results, all power readings associated with the same

sample, delayed or not, must cover the power consumption of the same code blocks.
The time between the start of the power measurement and the sampling point must
be constant, as must the time between the sampling point and the end of the measure-
ment. We carefully implement VPM to meet these requirements as much as possible.
The only source of error that we cannot control is variations of the execution path and
the power consumption before the targeted code block. Given the regular nature of
most applications, these variations are not a significant source of error. In Section 5.2
we validate VPM and we show that it accurately estimates power consumption.

If the latency of profiled code blocks is small enough then the accuracy of power sen-

sors could be insufficient to evaluate the difference between p̂ow
delay
A→C and p̂ow

no delay
A→C

(see Section 5.3). VPM may obtain erratic power measurements due to insufficient
accuracy of the power sensors. To overcome this problem, we force upper and lower
bounds on VPM power readings to correspond to the peak power consumption of the
processor and powidle respectively.

3.4. Multi-threaded Code

Multi-threaded applications execute many code blocks in parallel on different cores. To
profile applications running on the same processor package at the code block level, we
define a vector of code blocks that execute in parallel on different cores as:

−−→
blm = blmthr1 , blmthr2 , . . . , blmthrl . (7)

We use the same time and energy profiling models as in sequential applications.
The only difference is that we associate multi-threading samples with vectors of code
blocks. We distribute the execution time and energy across code block vectors as:

t̂−−→
blm

= p̂−−→
blm

· texec =
n−−→

blm
· texec

n
, (8)
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Fig. 4. Profiling results for the heartwall benchmark on the Exynos platform

p̂ow−−→

blm
=

1

n−−→

blm

·

n−−→

blm∑

i=1

powi
−−→

blm
. (9)

We examine all running threads collectively during sampling, because they share re-
sources. Such shared resources include caches, buses, and network links, all of which
can significantly increase power consumption under contention. We could apportion
power between threads based on dynamic activity vectors that measure the occupancy
of shared hardware resources per thread [Manousakis et al. 2014]. However, these vec-
tors are difficult to collect and to verify as current hardware monitoring infrastructures
do not distinguish between the activity of different threads on shared resources.

Figure 4 shows the results of profiling the heartwall benchmark (Rodinia suite)
on the Exynos platform (see Section 4.1), including 95% confidence intervals for each
estimate. core1:cb100, core2:cb100 denotes the code block with identification 100 ex-
ecuted simultaneously on the first and second cores. Similarly, cb161 is the code block
with identification 161 and sys is a code block from the pthread cond wait() function
of the glibc library; it executes a mutex lock that keeps a core in sleep mode until
the corresponding (pthread cond signal) occurs. We see that cb100 executed in paral-
lel consumes almost twice as much power than when it is co-executed with the sys
block. In the second case, the second core is sleeping and consumes almost no power.
The difference in power consumption between parallel execution of cb161 and cb100
is related to the cache access intensity of these blocks. Our earlier work shows that
dynamic power consumption grows with this intensity [Mukhanov et al. 2015].

The number of sampled code block vectors depends on the number of code blocks
in a parallel region and it grows exponentially with the number of cores. Thus, for
highly parallel regions containing multiple code blocks, the number of code block vec-
tors could render the analysis of profiling results slow, since we should account for
the energy consumption of all vectors. In practice and in all applications with which
we have experimented, strong temporal locality of executing code blocks keeps the
number of vectors of code blocks that execute concurrently (and, thus, are sampled)
low. For example, in heartwall, three code block vectors dominate energy consumption
(Figure 4), while the total number of sampled code block vectors is about 100 in this
benchmark.

3.5. Analysis of Model Accuracy and Convergence

ALEA provides confidence intervals for its time, power, and energy estimates. We have
shown in earlier work [Mukhanov et al. 2015] how to construct confidence intervals for
the time and CPM power estimates.

Using the confidence intervals for execution time and power, we can also evaluate
the worst case upper and lower bounds for energy consumption:

t̂l−−→
blm

· p̂ow
l
−−→

blm
≤ e−−→

blm
≤ t̂u−−→

blm
· p̂ow

u
−−→

blm
. (10)

where t̂l−−→
blm

(t̂u−−→
blm

) is the lower (upper) bound of the confidence interval for the time esti-

mates and p̂ow
l
−−→

blm
(p̂owu

−−→

blm
) is the lower (upper) bound of the power confidence interval.
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Fig. 5. Estimated vs. measured execution time, energy and CPM power for a code block of heartwall(Sandy
Bridge)

We can increase the total number of samples to tighten the confidence interval for ex-
ecution time. We can increase the number of samples of each code block to narrow the
confidence interval for power estimates. Thus, to narrow both confidence intervals, we
can increase the total number of samples and the number of samples per block.

To demonstrate the accuracy improvements of our time, energy and CPM power
estimates as the number of samples increases, Figure 5 shows their evolution for a
coarse-grained code block from the heartwall benchmark. We run this benchmark on
our Sandy Bridge server (see Section 4.1). The dark green line represents the time
(left), energy (middle) and power (right) estimates, whereas the lighter green area
shows the 95% confidence interval for each estimate. The red dashed line in each plot
corresponds to direct measurements for the block averaged over several runs.

The minimum number of samples for the block, collected during the first run of the
experiment, is 16. The error of the energy estimate from the 16 samples, compared to
direct measurement, is 12%. This error stabilizes below 1.7% with 110 samples and
following that drops slowly and becomes lower than 1.5% after 421 samples and lower
than 1.2% after 2300 samples. Other benchmarks exhibit similar behavior.

In the case of VPM, the width of the confidence interval for power estimates depends
on the number of samples of the first instruction and the number of samples of the last
instruction. VPM needs twice as many samples to achieve the accuracy of CPM.

We could reduce the length of the sampling interval to obtain more samples during
each profiling run. However, sampling uses interrupts that distort program execution,
thus introducing errors in the time and energy estimates. We adopt a less intrusive but
costlier solution that performs more profiling runs and combines their samples into a
single set. This approach improves the accuracy of our energy estimates and also in-
creases the probability of sampling fine-grained code blocks. In practice, each run of an
application is unique and the total execution time of the application changes slightly
from run to run, even though the application is executed under the same conditions.
To address this issue, we average the total execution time over the runs.

4. IMPLEMENTATION

ALEA uses an online module that runs as a separate control process. This module
samples the application’s instruction pointer and power levels. It collects profiling in-
formation at random points transparently to the application. The sampling process has
four stages. It first measures power and then attaches to the program threads through
ptrace. Next, it retrieves the current instruction pointer, and finally detaches from the
threads. The control process sleeps between samples to minimize application impact.
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Fig. 6. The ALEA profiling process

The online module transfers the results of profiling, including sampled instruction
addresses and power measurements, to an offline module that derives energy esti-
mates. The offline module uses objdump to disassemble the profiled program, and its
own parsers to identify basic blocks and instructions inside these blocks. It uses this
information to assign samples to specific blocks. Thus, ALEA can estimate the exe-
cution time for each basic block, using the probabilistic model described earlier. To
enable accurate energy and power profiling, the user should identify basic blocks to be
merged into coarse-grained blocks if the default power model (CPM) is used. VPM can
be applied to fine-grained blocks (with latency as low as 10µs, see Section 5.3), how-
ever the user should point ALEA to these blocks. The user obtains the latency of each
basic block by using an additional run and dynamic instrumentation tools, or direct
instrumentation. Finally, we use DWARF debugging information to associate ALEA’s
estimates with specific lines in the source code.

Figure 6 illustrates the process of profiling from the user perspective. During the
first run of ALEA, the user identifies execution time, energy and power estimates for
each basic block using CPM. From this point the user can do additional runs and se-
lect basic blocks where more accurate estimates are needed. This step can also be au-
tomated with hotspot analysis, using, for example, clustering and classification tech-
niques similar to the ones used in architectural simulators [Sherwood et al. 2001]. The
user should point ALEA which basic blocks should be merged into code blocks using
addresses of these blocks. If latency of a merged code block is greater than the power-
sensing interval then the results of the first profiling run could be used to get accurate
power and energy estimates for this code block. If the latency of the code block is less
than the power-sensing interval and no lower than 10 µs, then the user needs to run
VPM for the specific code block and pass to ALEA the addresses of the first and last
instructions and the latency of the block. The user can initiate any desirable number
of profiling runs using CPM or VPM to achieve the desirable accuracy.

We note that ALEA can be implemented in the kernel space, which would reduce its
overhead and allow sampling at a higher frequency than a user-level implementation.
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Nonetheless, we opted for a user-level implementation to enable easier deployment of
the tool in environments where the user can not have access to the kernel.

4.1. Platforms and Energy Measurement

ALEA builds on platform-specific capabilities to measure power. It can use direct power
instrumentation, integrated power sensors, or software-defined power models. ALEA
operates under the sampling rate constraints of the underlying sensors, but is not
limited by them since its probabilistic models can estimate power at finer code block
granularity. To demonstrate the independence of our approach from the specifics of the
hardware, we use two platforms that differ in architectural characteristics and support
for power instrumentation.

Our first platform, a Xeon Sandy Bridge server, uses RAPL for on-chip software-
defined modeling of energy consumption, which we obtain by accessing the RAPL
MSRs [Rotem et al. 2012]. The server includes 4 Intel Xeon E7-4860 v2 processors,
each with 12 physical cores (24 logical cores) per processor, 32 KB I and D caches per
core, a 3 MB shared L2 cache, and a 30 MB shared L3 cache per package. The system
runs CentOS 6.5 and has a maximum frequency of 2.6 GHz.

Our second platform, an ODROID-XU+E board [Hardkernel 2016], has a single
Exynos 5 Octa processor based on the ARM Big.LITTLE architecture, with four Cortex-
A15 cores and four Cortex-A7 cores. In our experiments we only use the Cortex-A15
cores at their maximum frequency of 1.6 GHz. Each core has 32 KB I and D-caches,
while the big cores also share a 2 MB L2 cache. We measure power through the board’s
integrated sensors. The system runs Ubuntu 14.04 LTS.

4.2. Power-Sensing Interval

Our Intel Sandy Bridge server provides energy estimates through RAPL, but not power
measurements. We measure processor power consumption on it by dividing energy
measurements taken at the start and end of the power-sensing interval by the size of
this interval. The energy counter is updated only once per millisecond, which is the
server’s minimum feasible power-sensing interval. Our Exynos platform includes the
TI INA231 power meters [TI 2013], which directly sample power consumption for the
whole system-on-chip and several of its components. These samples are averaged over
a user-defined interval. The minimum available interval on the Exynos is 280µs.

Shorter power-sensing intervals improve CPM estimates for the fine-grained blocks.
Thus, our CPM experiments use the minimum power-sensing interval on both plat-
forms.

VPM assumes that we can precisely control when power is measured. Unfortunately,
on Intel processors, RAPL energy counters are updated by the hardware at unknown
points and transparently to software, with an update frequency of one ms. Thus, we
cannot use VPM for Intel processors with RAPL. On the Exynos platform, even though
we initiate the power measurement, a small variable delay occurs between the system
call to read the power counters and the actual reading. Still, we can assume that this
delay remains fixed on average and converges to its mean value as the number of
samples increases.

In theory, the granularity of the power meters does not limit VPM so the power-
sensing interval is not critical. In practice, our experiments show that the maximum
overall latency of the first stage of sampling in VPM is about 650 µs. At the first stage
ALEA calls the interface that starts power measurements and the attach interface that
stops all threads. At the second stage the tool calls the interface that takes the power
reading, delivers the instruction pointer for each thread and then detaches from all
threads. While in CPM the attach interface is called after the power measurement, in
VPM it is part of the measurement. For our power reading to contain any information
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Fig. 7. Overhead per sample versus number of threads with ALEA running on a dedicated or a shared core.

about the profiled code block, the power sensing interval must be longer than the first
stage sampling latency. For this reason we set the power-sensing interval to 1100µs.

4.3. Sampling Interval and Overhead

The attach, deliver, and detach phases of the tool introduce overhead. The attach phase
interrupts the execution of all threads. Threads continue to execute after completion
of the detach phase.

We use a set of benchmarks from the NAS suite (BT, CG, IS and MG) to illustrate the
profiling overhead of the ALEA online module, with a core dedicated to each applica-
tion thread. We choose benchmarks that scale well so we can evaluate the overhead
of ALEA under a difficult scenario in which the application utilizes the processor re-
sources fully and is sensitive to sharing them with ALEA.

Figure 7 shows the overhead of ALEA, which clearly depends on the number of ap-
plication threads, since the tool has to deliver the instruction pointer for each thread.
With more threads the delivery overhead necessarily increases. The profiler can share
a core with the program or it can use a dedicated core. We observe higher overhead
when the tool and the program share a core, which is caused by a delay in the de-
livery phase. This delay grows significantly, up to 10×, when the tool attaches to the
application thread on the shared core due to the overhead of switching between an ap-
plication thread and the ALEA profiler. The profiler leverages the OS load-balancing
mechanisms to exploit idle cores, if available. The benchmarks occasionally leave cores
idle and this slack grows as the benchmark uses more threads. Linux dynamically
migrates profiled threads from a core used by ALEA to an idle one to eliminate the
context-switching overhead, which leads to an overhead reduction as the number of
threads grows on the Sandy Bridge platform when ALEA uses a shared core. Still, if
the benchmarks use more than 30 threads the context-switching overhead becomes
negligible in comparison to the overhead caused by the attach, deliver, and detach
phases.

These findings suggest that we should choose the sampling interval based on the
number of threads and the availability of a dedicated core in order to reduce the bias
in the estimates. However, for most programs the thread count is not constant, so the
overhead and the optimal sampling interval vary during execution. We cannot change
the sampling interval dynamically since our probabilistic model assumes a uniform
sampling process. Instead, the sampling interval should reflect the average overhead
measured over a whole run of the application. ALEA reports the average overhead for
each profiling run by measuring the runtime of the sampling phases. Thus, the user
can easily find a sampling interval with an acceptable overhead. By default, ALEA
uses a sampling interval that keeps overhead under 1% when all available cores are
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Fig. 8. Average error of energy estimates across all loops on Sandy Bridge

used by an application. It also estimates the optimal sampling interval that gives the
minimum overhead and the maximum number of samples after a profiling run.

5. VALIDATION

In this section we validate the accuracy of our approach under extreme scenarios,
where the power consumption changes rapidly and widely. We use multiple bench-
marks on both hardware platforms to establish the generality of our results. We val-
idate ALEA using loops with coarse-grained blocks for each platform. We then show
that CPM (Section 5.1) can accurately estimate the energy consumption of coarse-
grained blocks, while VPM (Section 5.2) does so even for fine-grained blocks.

5.1. Constant Power Model Validation

To validate the accuracy of ALEA’s energy consumption estimates, we use ten parallel
benchmarks from the NAS and Rodinia suites. We use a wide range of benchmarks
to achieve good coverage of loop features in terms of execution time and energy con-
sumption, including loops with distinct power profiles and power variation between
their samples. For each benchmark we compare CPM time and energy estimates for
each loop with direct measurements. These direct measurements use instrumentation
at the entry and exit points of the loops. On the Sandy Bridge platform we instru-
ment the code using the rdtsc instruction and the RAPL interface for time and energy
respectively. On Exynos we use clock gettime() to measure time and the ioctl()
interfaces to access the INA231 power sensors.

We compile the Rodinia benchmarks using the flags specified by the benchmark
suite and run them with the default inputs. The benchmarks from NAS are built
using option CLASS=B and run with the default options. We use the abbreviation
suite.benchmark to indicate the benchmarks on our graphs. For example, R.sc cor-
responds to the StreamCluster (SC) benchmark from the Rodinia suite.

5.1.1. Sandy Bridge. We run each benchmark using 96 threads on the Sandy Bridge
platform. ALEA shares a core with an application thread. We use a three second sam-
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Fig. 9. Average error of energy estimates across all loops on Exynos

pling interval to achieve a runtime overhead of under 1%. The average latency of most
instrumented loops is less than this sampling interval.

We combine samples from multiple runs for each benchmark to achieve accurate
estimates. We collected 500 runs for each benchmark but found the accuracy with 180
to be sufficient. Using more runs has little effect, so our remaining experiments use
180 runs.

Figure 8 shows how the error of energy estimates changes with the number of com-
bined runs. Ignoring StreamCluster, the mean error is as high as 32% when we profile
each benchmark only once. Predicting energy for StreamCluster requires more than
one run. The total execution time of one instrumented loop is shorter than the sam-
pling interval, so the loop may not be sampled during a run.

Increasing the number of combined runs reduces the error. On average, the error
decreases to 2.1% after 180 profiling runs. Even for StreamCluster the error is only
slightly above average at 2.3%. Regarding the estimation of the total energy consump-
tion of the program, the average error across all benchmarks is 1.6% for 180 runs. The
energy estimates errors of ALEA are thus comparable to ALEA’s runtime overhead.
For completeness, we also profile a 94-thread version of each benchmark with ALEA
using a dedicated core. We used a sampling interval of 3 seconds to keep overhead
low (under 1%). The minimum error of 1.9% with 155 runs is again comparable to the
runtime overhead.

5.1.2. Exynos. We similarly validate ALEA on the Exynos platform. We used the same
experimental setup, except that we use two threads for the benchmarks to give ALEA
a dedicated core and set the sampling interval to 500 ms with the aim of keeping the
overhead slightly below 1%. Figure 9 presents the trade-off between the number of
runs and the average error in our energy estimates for the loops. The sampling interval
is longer than the average latency of almost all instrumented loops. The average error
of the energy estimates is about 21% for a single profiling run but decreases to 1%
with 50 or more profiling runs. The whole program absolute error for energy, averaged
across all benchmarks, is 1.1% for 50 profiling runs.
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Fig. 10. Power estimates provided by VPM for the microbenchmark

ALEA exhibits its highest error in the energy estimates of heartwall from the Ro-
dinia suite. A loop at line 57 in avimod.c, has a total execution time of 0.31 seconds, less
than the sampling interval. Thus, it was sampled only once during the first profiling
run and the error in terms of both execution time and energy exceeded 120%. How-
ever, this error falls below 5% within 50 runs. While ALEA can theoretically achieve
any desirable accuracy, in practice the lower limit of the error is about 1% due to the
instrumentation overhead and measurement interference.

We repeat our experiments using 4 threads for each benchmark, with ALEA shar-
ing a core. The results show the same patterns, with the average error of the energy
estimates at about 1.3% and stabilizing after 110 profiling runs.

5.2. Variation-Aware Power Model Validation

Next we validate the estimates produced by our Variation-Aware Power Model (VPM).
These experiments only use the Exynos platform due to RAPL’s limitations (see Sec-
tion 4.2). We design VPM to capture fine-grained program power behavior. Thus, we
validate it on programs with significant power variation between fine-grained blocks:
loops with latency less than the power-sensing interval. We use a 1100µs power-
sensing interval for the reasons discussed in Section 4.2. On the other hand, to validate
VPM we must use loops with known power consumption and latency. To measure them
directly, latency must be above the minimum power-sensing interval (280µs).

5.2.1. Context-driven power variation. Our experiments show that processor dynamic
power consumption is primarily affected by cache and memory access inten-
sity [Mukhanov et al. 2015]. Thus, we use a microbenchmark that consists of two loops.
The first loop contains a block with nop instructions, consuming 1.68 Watts. The sec-
ond loop contains a block with memory access instructions engineered to hit in the
L1 cache, and consumes 2.54 Watts. We control the latency of each loop through the
number of iterations. We set the latency of each loop close to 400µs, which is within
the range of latencies discussed above.

We profile a 2-thread version of the microbenchmark 1000 times (ALEA runs on
a dedicated core) to collect at least 80 samples, which ensures at least a 95% confi-
dence interval of the power measurements within 1% of the mean. Figure 10 shows
the trade-off between the number of samples and the average error of the power esti-
mates provided by the VPM model, which we compare to direct power measurements.
In this figure the darkness of the color indicates the average error of the power esti-
mates. We change the power-sensing interval from 1 ms to 8 ms and use a one second
sampling interval to keep overhead under 1%.

Figure 10 demonstrates that the average error of VPM power estimates decreases
with the number of samples. 40 samples are enough to estimate the power consump-
tion of the loops with an error less than 4%, even if we use an 8 ms power-sensing
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interval, which is 20× more than the latency of these loops. The average error of VPM
power estimates is about 3.5% for each power-sensing interval when the number of
samples is close to 80 (∼3.5% for the energy estimates).

Even though VPM provides precise power estimates, interference from power mea-
surements impacts its accuracy. While we expect the average error to be higher for a 4
ms interval than a 2 ms interval, our results show the opposite. We speculate that this
happens because of OS interference, but performing kernel modifications to validate
this hypothesis was beyond the scope of this paper.

We use the same experiment and 1000 runs to test CPM’s accuracy. Similarly to
VPM, we vary the power-sensing interval from 1 ms to 8 ms. Regardless of the interval,
the average error of CPM power estimates is 45.5% after 1000 runs (∼45.5% for the
energy estimates), which is 12× higher than the average error of VPM. Clearly, VPM
can successfully handle power variations across fine-grained blocks, which CPM and
other known power measurement and modeling techniques can not.

5.2.2. Concurrency-driven power variation. We next investigate how CPM and VPM han-
dle power variations due to switching from executing parallel coarse-grained loops
to executing sequential fine-grained loops. The sequential loops consume less power
since fewer cores are active. The following benchmarks have sequential fine-grained
loops that are surrounded by parallel coarse-grained loops: Srad (Rodinia) and
StreamCluster (Rodinia). For those fine-grained loops, we artificially inflate their ex-
ecution time, to allow direct measurements.

Similarly to the microbenchmark experiments, we run each benchmark 1000 times.
We use 2 threads for each benchmark and run ALEA on a dedicated core. Similarly to
the context-driven power variation experiment, we use a one second sampling interval
to keep the overhead negligible. Our experiments show that the average error of VPM
power estimates is 5.4% (∼5.5% for energy estimates), while the average error of CPM
estimates is 15.7% (∼16% for energy estimates), almost 3× higher.

We repeat the experiments with 4 application threads (so ALEA must share a core)
and a 1 ms power-sensing interval. Our results demonstrate that the average error of
VPM power estimates is 6% (∼6% for energy estimates), while the average error of
CPM estimates is 25% (∼25% for energy estimates). Again, VPM can handle programs
with fast changing power behavior better than CPM and produces accurate estimates.

5.3. Limitations of ALEA

ALEA is a tool for fine-grained energy profiling. The probabilistic model of the tool
makes it possible to estimate the execution time of a code block with high accuracy
even if the average execution time of the block is a few microseconds, while the sam-
pling interval can be several seconds. However, our base power model (CPM) assumes
that power remains constant during the power-sensing interval. VPM relaxes this as-
sumption and captures power variation over intervals that are shorter than the power-
sensing interval. Nonetheless, the resolution of this model is also limited.

To explore how VPM captures power variation over an interval with a latency of
a few microseconds or nanoseconds, we employ a microbenchmark similar to the one
with which we validated VPM. The microbenchmark contains two loops: the first loop
executes only nop instructions and in each iteration of the second loop we access the
same 368 bytes fetched into the L1 cache after their initialization. We test the res-
olution limit of VPM by progressively reducing the execution time of the loops. We
control loop execution time by changing the number of iterations. We ensure that each
iteration executes the same instructions and the same number of L1 cache accesses
in particular. Thus, loop power consumption should remain constant when we reduce
the iteration count, but the difficulty of estimating it accurately will progressively in-
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Fig. 11. Power estimates provided by VPM for the microbenchmark with reduced latencies of the loops

crease. We do not use the parallel version of the microbenchmark since the system calls
starting and synchronizing threads inside the parallel regions already take hundreds
of microseconds.

Figure 11 shows the results for the microbenchmark with loop latencies between 1
and 400µs. Dashed red lines correspond to the power consumption of each loop found
in the experiments in Section 5.2.1. The leftmost plot depicts how the power estimates
for the loops change with their latency. The middle plot shows how the power esti-
mates for the loop with nops change with the number of samples, while the rightmost
plot demonstrates the same for the loop with cache accesses. While we cannot directly
validate the power consumption since the loop latencies are less than the minimum
power-sensing interval (280 µs), we expect that the difference in power consumption
between these loops should remain constant for all loop latencies.

We observe the expected difference for latencies of at least 10µs (leftmost subplot of
Figure 11). While ALEA can theoretically achieve any desirable accuracy, in practice
the lower limit of the error is about 1% due to the instrumentation overhead and mea-
surement interference. The error of the power estimates for 10µs is 6.9%. This latency
is the maximum resolution of the power estimates provided by VPM. On the other
two subplots, we also observe that the power estimates for the loops with this latency
clearly converge to the measured power as the number of samples grows. For latencies
below 10µs, the estimates never converge due to the limited accuracy of the power sen-
sors. To capture power variations over intervals with 1µs latency, the sensors should
provide accuracy of measurements within 10−4 Watts if a 1100 µs power-sensing in-
terval is used. Moreover, the time required to measure power varies over samples and
this variation exceeds 1µs, which negatively impacts the power estimates.

ALEA could not reliably capture power variation between code blocks with execution
times less than 10µs. Nonetheless, this interval is still 110 times shorter than the used
power-sensing interval and 28 times shorter than the minimum feasible power-sensing
interval in our platforms. As we show later, this resolution is sufficient to support
energy optimization. To the best of our knowledge, ALEA is the first tool that provides
accurate power estimates at this resolution.

6. DISCUSSION

6.1. Hysteresis in Power Measurements

Physical power measurements are affected by bypass capacitance, inductance and
impedance components [Gupta et al. 2007; Smith et al. 1999]. A voltage regulator
module delivers power to a processor through a Power Distribution Network (PDN).
This network contains impedance and inductance components located at different lev-
els: motherboard, package and die. By executing different code blocks, a processor pro-
duces variations in current demand. Due to current spikes and impedance components,
a voltage drop can occur across the network [Bertran et al. 2014]. In turn, the induc-
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tance components introduce voltage fluctuations because of the di/dt effect [Joseph
et al. 2003; Zhang et al. 2013; Das et al. 2015]. Thus, voltage variations occur.

The voltage regulator module adjusts the voltage level to mitigate these variations.
However, it cannot always change voltage quickly enough. To maintain voltage at safe
levels when the current increases significantly, the PDN uses decoupling capacitors
close to the processor (or package or motherboard). On the Exynos board the power
sensors (INA231) take power measurements on a power rail that connects the PMIC
(Power Management Integrated Circuits, MAX77802), which provide a voltage regulator,
with the chip. Decoupling capacitors, inductance and impedance components located
between the power sensors and the die affect instantaneous power dissipation. Thus,
the effect of a code block on the measured power is not instantaneous and hysteresis oc-
curs between execution of the block and its effect on the measured power consumption.
Moreover, capacitance components also smooth out instantaneous power dissipation.

ALEA’s probabilistic sampling can theoretically capture power shifts during instruc-
tion execution at any granularity. In practice, several factors, including software over-
heads and the overheads and measurement error of the power sensing instruments,
prevent such very fine granularity. The length of the hysteresis, i.e. the typical re-
sponse time of the PDN, is orders of magnitude less than the minimum code block
duration for which ALEA can probabilistically estimate power. The literature reports
PDN response times in the range of 75 nanoseconds [Grochowski et al. 2002], versus
ALEA’s 10 µs minimum code block length and minimum power-sensing intervals on
the order of hundreds of µs on the Exynos and Intel platforms.

6.2. Power modeling with performance counters

One of the possible solutions to break the coarse granularity of power sensors and miti-
gate hysteresis effects is to predict power consumption from hardware activity vectors.
Previous research has extensively investigated the use of regression models on activ-
ity vectors of hardware performance counters to estimate power consumption. These
models assume that processor power consumption correlates with the frequency of cer-
tain performance impacting events. Performance counters can be accessed with low
overhead on most modern processors, which makes them appropriate for fine-grained
power modeling. We modify ALEA to use a regression model for power modeling fol-
lowing Shen et al [Shen et al. 2013]. We use PAPI to measure non-halt core cycles,
retired instructions per CPU cycle, floating point operations per cycle, last-level cache
requests per cycle, and memory transactions per cycle over the power-sensing interval
and then correlate these measurements to the sampled power consumption. We build
the regression model for each platform individually on the basis of ten benchmarks
used for validation of CPM and VPM with varying thread counts. We use a sampling
interval that keeps runtime overhead under 1%. We add L1 cache accesses to the model
because its power consumption is highly sensitive to this event and omitting it loses
significant accuracy.

In this experiment we use linear regression to predict power consumption for sam-
ples that we use for training and compare the results of prediction with the power
measurements taken for these samples. The average error of the power estimates pro-
vided by the model is about 10% on both platforms, which is acceptable and consistent
with the results demonstrated by Shen et al. However, the regression models produce
anomalies by predicting the power of cache access intensive code blocks to be lower
than the power of code blocks with nop instructions. Thus, accuracy of the modeling
could be insufficient to capture the effect of code blocks on power consumption, even
though the average error of the linear regression is relatively small.

Intel’s RAPL provides access to a digital power meter which predicts power con-
sumption on the basis of performance event counters, similar to linear regression mod-
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Fig. 12. Latency, energy and power for the binomial option pricing kernel. The rightmost plot presents
power changes during run of the workload for the optimized kernel(512 nodes)

els [Rotem et al. 2012]. However, RAPL uses about 100 internal micro-architecture
counters [Rotem et al. 2011]. Unfortunately, no more than 12 performance counters
can be accessed by system software at once through the Performance Monitoring Unit
(PMU). On the Exynos platform, the PMU module allows the user to sample only 7
performance counters at once. Thus, it is likely that RAPL achieves better accuracy by
having fast hardware-supported access to many more performance counters than our
model.

7. USE CASES

We now present practical examples of how ALEA enables energy-aware optimizations
We first explore the effect of energy optimizations on power consumption in a latency-
critical financial risk application where we apply VPM. We then demonstrate results
for energy optimization based on runtime DVFS control using CPM.

7.1. Energy optimization of a latency-critical workload

We applied ALEA to profile and optimize a real-time and latency-critical option pric-
ing workload. An option pricing model allows financial institutions to predict a future
payoff using the current price and volatility of an underlying instrument. However, the
current price is valid only for a limited interval, which implies that a decision about
buying or selling the instrument is time critical. Binomial option pricing is a popu-
lar pricing model that enables accurate prediction with low computational require-
ments [Georgakoudis et al. 2016]. We use a commercial binomial option pricing kernel
and a realistic setup that delivers requests to a worker thread running the kernel. The
setup consists of two threads: the first thread listens to a TCP/IP socket, receives mes-
sages and fills a queue with the messages; the second thread parses the messages and
transfers requests to the worker thread. A third thread, the worker thread, processes
option pricing requests.

The option pricing kernel uses the current price, volatility and number of nodes in
the binomial tree as input parameters. The latency of the kernel depends only on the
number of nodes since variation of the current price or volatility does not affect control
and data flows of the kernel. Accuracy of the prediction is also primarily affected by
the number of nodes in the binomial tree. While the current price and volatility could
change in option pricing requests, in practice financial institutions use the minimal
number of nodes which guarantees an acceptable quality of the prediction to reduce a
pricing kernel response time. Consistent with this, the latency of the kernel should be
a constant if the number of nodes does not vary. Following private communication with
a leading financial institution, we used 512 nodes for realistic runs. The latency of the
binomial option pricing kernel, which is about 177 µs, is less than the power-sensing
interval (280 µs) for this number of nodes on the Exynos platform.
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According to the results of energy profiling, two code blocks of the kernel with co-
running system threads consume more than 98% of the energy spent per request: the
first code block builds a binomial tree and the second block computes the value of
the option used to estimate the future payoff. To build the binomial tree, the first code
block calls the exponential function in a loop, which is expensive in terms of energy and
performance. The parameters of the function depend on an iteration of the loop and the
underlying volatility, which is constant per request. To improve energy efficiency, we
modified the kernel to dynamically identify the most frequently occurring volatility in
option pricing requests and build at runtime an array containing the results of the
exponent call for each iteration and this volatility (an example of memoization). In
the optimized version of the kernel, we use the precomputed results instead of calls
of the exponential function when the volatility of a request conforms with the most
frequently occurring volatility.

Our experiments show that in 99.9 % of the samples, the first system thread executes
the do futex wait system call and the second thread executes the epoll wait system
call when the worker thread runs the kernel. Both system calls keep a core in sleep
mode waiting for an incoming network message (the first thread) or a message from
the queue (the second thread). The highest power consumption is observed when the
worker thread runs the kernel.

We apply VPM to profile the kernel while reproducing a real workload of option pric-
ing requests from an actual trading day in the NYSE. Figure 12 shows latency, energy
and power consumption of the optimized and non-optimized versions of the kernel.
By applying memoization, we managed to reduce latency of the kernel by 2.98 times
and energy consumption by 2.87 times with binomial trees of 1024 nodes. We also re-
duced latency by 4.54 times for trees with 512 nodes. However, the energy reduction
in this case was only 2.73 times. We explain this by a power spike that accompanied
the latency reduction: the difference in the power consumption between the optimized
and non-optimized versions for 512 nodes is 1.7 times, while this difference is only
4% for 1024 nodes. The explanation for the spike is that the number of cache accesses
executed per second is higher in the optimized kernel with 512 nodes. These results
demonstrate that energy and performance optimizations could lead to a significant
rise in power consumption – which is a critical parameter for datacenter operators.
ALEA provides the user with an option to choose an acceptable level of performance
and energy optimization that meets a power budget. For example, on our Exynos plat-
form, the user should not use the optimized version for binomial tress with 512 nodes
and power capped at 2 Watt. As follows, ALEA enables users to optimize code under
controlled power consumed at the fine-grained level without applying more intrusive
power capping techniques such as DVFS [Petoumenos et al. 2015].

ALEA reveals a further interesting finding. The average power consumption over
the entire workload run with the optimized kernel (512 nodes) is 0.2 Watt (rightmost
plot of Figure 12); this is 10 times less than the power consumption of the kernel. The
difference is due to power variations during the workload run: the minimum power
consumption (0.12 Watt) is observed when all threads stay idle waiting for incoming
requests and the maximum power consumption (2 Watt) is observed when the kernel
is running. Furthermore, the average power consumption over the entire run with the
non-optimized version is 0.28 Watt, which is 40% higher than the average power con-
sumption of the workload for the optimized version (0.2 Watt). In contrast, the power
consumption of the optimized kernel is 1.7 times higher than the power consumption
of the non-optimized kernel. This observation suggests that the average power con-
sumption of the entire workload cannot characterize the power consumption of the key
kernel in the workload.
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Fig. 13. Energy consumption vs frequency and number of threads for the Needleman-Wunsch benchmark

7.2. Energy optimization with runtime DVFS control

The frequency that minimizes energy consumption depends on how intensely the cores
interact with parts of the system not affected by frequency scaling, especially the main
memory. Most existing approaches control frequency at the phase granularity, based
on performance profiling, performance counter information, or direct energy measure-
ments. We show how to use ALEA to drive decisions at any DVFS-supported granular-
ity.

We use the Needleman-Wunsch benchmark from the Rodinia suite with a
40000×40000 matrix (∼6GB) as its input, executed on the Sandy Bridge platform.
We first identify the optimal frequency and amount of parallelism for the whole pro-
gram by taking energy measurements for the entire program. We test all combinations
of frequency and number of threads. The leftmost plot of Figure 13 shows the results.
The x-axis is the number of threads (1 to 96), the y-axis is frequency (1.2 to 2.6+ GHz),
while the darkness of the color indicates energy consumption. The highest point on
the y-axis, 2.6+ GHz, corresponds to enabled Intel Turbo Boost, in which case the pro-
cessor can automatically raise the frequency above 2.6 GHz. The minimum energy
consumption (2801 Joules) is observed when using 21 threads at 2.2 GHz.

ALEA finds two distinct code blocks that consume 99% of the total energy. The first
code block uses one thread to initialize the arrays used by the benchmark. The second
code block processes these arrays in parallel. We profile these blocks using CPM at
different frequencies and with different thread counts for the second block. The middle
and the rightmost plots of Figure 13 show the profiling results for the second and
first blocks respectively. The two blocks consume their minimum energy at different
frequencies, 2.5 GHz for the initialization block and 1.2 GHz for the computing block.

The blocks have different memory access patterns, which explains their energy pro-
files. Both read data from an array much larger than the caches with similar frequency.
However, the initialization block has high temporal and spatial locality so most mem-
ory loads are serviced by the caches, processor stalls are few, and performance depends
only on frequency. Thus, limiting the frequency too much increases execution time
more than power reduction compensates. Alternatively, the computing block reuses
data once or not at all, reading data from completely different pages in each iteration.
Most accesses result in cache and TLB misses, stalling the processor and making it run
effectively at the speed of main memory. Lowering the frequency of the processor has
little effect on performance, so the optimal choice is to use the lowest frequency.

With this knowledge, we dynamically set the frequency to the optimal one at the
beginning of each block. Compared to using a single frequency, optimal for the program
as a whole, we reduced energy consumption by almost 9% (2581 Joules). In terms

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.



A:22 L. Mukhanov et al.

of peak power, which is reached when executing the parallel computing group, the
improvement is significant, 41.6%, while performance degradation is only 3.5%.

Several works consider different approaches to reduce energy consumption through
runtime DVFS [Wu et al. 2005]. However, most of these works use analytical mod-
els to predict the voltage and frequency setting which reduces energy consumption
without a significant performance degradation. Central to such approaches is that
the analytical models typically rely on parameters which have to be discovered for
each platform individually. Moreover, the identified parameters do not guarantee the
optimal voltage/frequency in terms of energy consumption. ALEA mitigates these re-
strictions by assigning accurate power and energy estimates to source code for each
voltage/frequency set.

8. RELATED WORK

PowerScope [Flinn and Satyanarayanan 1999], an early energy profiling mechanism,
profiles mobile systems through sampling of the system activity and power consump-
tion, which it attributes to processes and procedures.

The tool does not use a probabilistic model and does not address randomness of the
sampling process to enable fine-grained energy profiling. PowerScope assumes that for
most samples the program executes only one procedure during the sampling interval.
This assumption holds only for coarse-grained procedures with latency greater than
the sampling interval, which is approximately 1.6 ms in PowerScope. Therefore, the
tool cannot perform energy accounting at a fine-grained level. Furthermore, the accu-
racy of energy estimates is limited by the minimum feasible power-sensing interval
provided by hardware sensors. In this paper we demonstrate that ALEA effectively
mitigates all these restrictions by following a probabilistic approach.

Several tools for energy profiling use manual instrumentation to collect samples of
hardware event rates from hardware performance monitors (HPMs) [Curtis-Maury
et al. 2008; Bertran et al. 2013; Isci and Martonosi 2003; Li et al. 2013; Contreras
and Martonosi 2005; Schubert et al. 2012]. These tools empirically model power con-
sumption as a function of activity rates. These rates attempt to capture the utilization
and dynamic power consumption of specific hardware components. HPM-based tools
and their models have guided several power-aware optimization methods in comput-
ing systems. However, they often estimate power with low accuracy. Further, they rely
on architecture-specific training and calibration.

Eprof [Pathak et al. 2012] models hardware components as finite state machines
with discrete power states and emulates their transitions to attribute energy use to
system call executions. JouleUnit [Wilke et al. 2013] correlates workload profiles with
external power measurement to derive energy profiles across method calls. JouleMe-
ter [Kansal and Zhao 2008] uses post-execution event tracing to map measured energy
consumption to threads or processes. While useful, these tools can only perform energy
accounting of coarse-grained functions or system calls, which severely limits the scope
of power-aware optimizations that can be applied at compile time or run time.

Other approaches measure power consumption of distinct components. Power-
Pack [Ge et al. 2010] uses manual code instrumentation and platform-specific hard-
ware instrumentation for component-level power measurement to associate power
samples with functions. NITOS [Keranidis et al. 2014] measures the energy consump-
tion of mobile device components with a custom instrumentation device. Similarly,
LEAP [McIntire et al. 2007] measures energy consumption of networked sensors with
custom instrumentation hardware. These tools profile power at the hardware compo-
nent level, thus capturing the contributions of non-CPU components, such as memo-
ries, interconnects, storage and networking devices. ALEA complements these efforts.
ALEA’s sampling method can account for energy consumed by any hardware compo-
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nent between code blocks, while its statistical approach overcomes the limitations of
coarse and variable power sampling frequency in system components.

Other energy profiling tools build instruction-level power models bottom-up from
gate-level or design-time models to provide power profiles to simulators and hardware
prototyping environments [Tu et al. 2014; Tsoi and Luk 2011]. These inherently static
models fail to capture the variability in instruction-level power consumption due to
the context in which instructions execute. Similarly, using microbenchmarks [Shao
and Brooks 2013] to estimate the energy per instruction (EPI) or per code blocks based
on their instruction mix does not capture the impact of the execution context.

9. CONCLUSION

We presented and evaluated ALEA, a tool for fine-grained energy profiling based on a
novel probabilistic approach. We introduced two probabilistic energy accounting mod-
els that provide different levels of accuracy for power and energy estimates, depending
on the targeted code granularity. We demonstrated that ALEA achieves highly accu-
rate energy estimates with worst-case errors under 2% for coarse-grained code blocks
and 6% for fine-grained ones.

ALEA overcomes the fundamental limitation of the low sampling frequency of power
sensors. Thus, ALEA is more accurate than existing energy profiling tools, when pro-
filing programs with fast changing power behavior. ALEA opens up previously unex-
ploited opportunities for power-aware optimization in computing systems. Its portable
user space module does not require modifications to the application or the OS for de-
ployment. Using ALEA, we profiled two realistic applications and evaluate the effect
of optimizations enabled uniquely by ALEA on their energy and power. Overall, ALEA
supports simpler, more targeted application optimization.
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