
Hindawi Publishing Corporation
Journal of Computer Networks and Communications
Volume 2011, Article ID 195685, 19 pages
doi:10.1155/2011/195685

Research Article

Alert: An Adaptive Low-Latency Event-Driven MAC Protocol for
Wireless Sensor Networks

Vinod Namboodiri1 and Abtin Keshavarzian2

1 Department of Electical Engineering and Computer Science, Wichita State University, Wichita, KS 67260, USA
2 Research and Technology Center, Robert Bosch Corporation, Palo Alto, CA 94304, USA

Correspondence should be addressed to Vinod Namboodiri, vinod.namboodiri@wichita.edu

Received 18 March 2011; Accepted 29 August 2011

Academic Editor: Eduardo Da Silva

Copyright © 2011 V. Namboodiri and A. Keshavarzian. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Collection of rare but delay-critical messages from a group of sensor nodes is a key process in many wireless sensor network
applications. This is particularly important for security-related applications like intrusion detection and fire alarm systems. An
event sensed by multiple sensor nodes in the network can trigger many messages to be sent simultaneously. We present Alert, a
MAC protocol for collecting event-triggered urgent messages from a group of sensor nodes with minimum latency and without
requiring any cooperation or prescheduling among the senders or between senders and receiver during protocol execution. Alert
is designed to handle multiple simultaneous messages from different nodes efficiently and reliably, minimizing the overall delay
to collect all messages along with the delay to get the first message. Moreover, the ability of the network to handle a large number
of simultaneous messages does not come at the cost of excessive delays when only a few messages need to be handled. We analyze
Alert and evaluate its feasibility and performance with an implementation on commodity hardware. We further compare Alert
with existing approaches through simulations and show the performance improvement possible through Alert.

1. Introduction

With the transition of many automated tasks from a wired
to a wireless domain, wireless sensor networks (WSNs) are
increasingly being subjected to new application domains.
Applications of critical nature have been the forte of
wired networks due to their reliability. The ever increasing
reliability of WSNs coupled with cost-effectiveness has led to
their gradual adoption for such critical applications as well.
The nature of such applications, however, require new MAC
protocols for WSNs that meet the requirements and inspire
sufficient confidence about their usage.

The requirements for applications of critical nature can
be fundamentally different from the applications for which
current MAC protocols are designed for. For example, energy
is a valuable resource in sensor devices and most existing
MAC protocols are optimized to conserve energy, trading off

latency, throughput, and other similar performance metrics
in the process. These same protocols are typically not

suitable when the application demands better performance
at the expense of some additional energy. If latency is to
be minimized, with energy consumption only a secondary
issue, protocols need to be redesigned from that application
perspective.

In this paper, we consider applications that require all
wireless sensors to convey urgent messages to a centralized
base station (i.e., a single hop away) with minimum delay
from the time they are generated. These messages are
triggered by events detected by sensor nodes and their
task is to inform the base station for possible action. Such
messages are triggered very rarely, and the aim is to focus
on minimizing latency when they are triggered, even if
some additional energy is expended during those times.
(We describe in Section 3.1 why energy is not a concern
in this application scenario and can be ignored.) Intrusion
detection and fire alarm applications are some examples
which require such a solution. Even though the messages are
typically correlated, the collection of all triggered messages

2 Journal of Computer Networks and Communications

as opposed to one of them provides valuable information
which can be used for detection of false positives or postevent
analysis. (When sensors cover a large area, only a subset
of these nodes will detect events and trigger messages to
be sent to the base station. We require that all messages
generated due to event detection by this subset be reported.)
For example, the European Standard EN 54-25 for fire
alarm systems specifies the duration within which the first
alarm should be reported and by when all alarms must be
received at the base station [1]. The challenges in designing
WSN MAC protocols for such applications are the handling
of a number of simultaneous messages at the same time
without knowledge of how many, and planning for possible
interference. Additionally, it is also important to ensure
implementation feasibility taking into account the additional
constraints imposed on WSNs like time synchronization and
limited computation and storage capabilities.

We present the Alert MAC protocol that is designed
to minimize latency when collecting simultaneous urgent
messages. Alert minimizes contention among nodes by using
a combination of time and frequency multiplexing. Multiple
frequency channels are used within time slots and contention
is minimized by controlling the selection probability of
each channel by the nodes. Note that in spite of the use
of multiple channels, we assume the presence of only one
transceiver in all nodes including the receiver. The important
features of Alert are the following: (a) minimizes delay of
collecting first message as well as all messages; (b) noncarrier
sense protocol; it thus eliminates hidden terminal collision
problems; (c) dynamic shifting of frequency channels to
provide robustness against interference; (d) adaptive charac-
teristic enables operation without knowledge of number of
contending nodes.

We make the following additional contributions in this
paper. (i) Theoretical justifications for the choice of different
design parameters of Alert. Our analytical results are of a
fundamental nature and should prove useful for the design
of other MAC protocols as well. (ii) Detailed performance
analysis of Alert by comparing it with other existing pro-
tocols through simulations. These evaluations examine the
protocols from an implementation perspective and take into
account low level details like degree of time synchronization
available. This further provides great insight into the design
criteria for event-driven MAC protocols that focus on
minimizing latency. (iii) Demonstration of feasibility and
validation of analytical results through an implementation
on commodity hardware. This validation step inspires the
necessary confidence to trust Alert with applications of
critical nature.

The rest of this paper is organized as follows. Section 2
presents the design space of MAC protocols in Wireless
Sensor Networks. Section 3 presents our Alert protocol and
describes some of its features in more detail. Section 4
presents some theoretical considerations in the selection
of design parameters for Alert and our analytical results.
Section 5 describes an adaptive algorithm used with Alert
to handle cases where the number of contending nodes
is unknown. In Section 6, we demonstrate the feasibility
of implementing Alert and validate our analytical results.

We further compare Alert with two other existing MAC
protocols to point out its advantages. Concluding remarks
are made in Section 7.

2. Related Work

The related MAC protocols for wireless sensor networks can
be mainly classified into contention-free, contention-based,
and energy-saving protocols. Contention-free protocols are
mainly the ones based on time-division multiple access
(TDMA) where slots are assigned to each node by the base
station and each node sends its message (if it has one) only
during its assigned slot (e.g., GUARD [2]). Such TDMA-
based protocols perform very poorly when the number of
nodes contending is unknown or keeps varying. For the
specific application targeted in this work, only a subset
(of unknown size) of nodes may have events to report.
This makes assigning slots to all nodes undesirable as it
leads to a significant increase in delay to receive the first
message. For example, consider the case of only one node
having a message to report. The average delay incurred to
collect this message would be half the TDMA cycle with
the worst-case delay being the whole cycle. TDMA schemes
are useful in cases where most of the nodes have events
to report, a rare case for our scenario. Other contention-
free approaches, for example, frequency-division multiple
access (FDMA) [3] face similar limitations as outlined above
in terms of unknown or varying number of nodes that
make scheduling difficult. The work by Chintalapudi and
Venkatraman [4] designs a MAC protocol for low-latency
application scenarios similar to those considered in this
paper, but with some important differences. They assume
multiple base stations while our solution requires only one
base station. Also in their work, many of the concepts are
based on a TDMA schedule which has the same limitations
as pointed out above. Finally, their model assumes that each
message generated has its own deadline. In our scenario, we
are indifferent to the order in which messages are received as
long as constraints are met on the latency to receive the first
message as well as all the messages.

Contention based protocols can be bifurcated into carrier
sense multiple access- (CSMA-) based or non-CSMA-based.
The IEEE 802.11 and 802.15.4 protocols are examples of
CSMA protocols with the latter designed specifically for
applications catered to by wireless sensor networks [5, 6].
They use a variable-sized contention window whose size is
adjusted at each node based on the success of the node
in sending its message, with each node picking a slot in
this window using a uniform probability distribution. These
protocols do a good job in handling scenarios with small
number of nodes but do not handle a large number of simul-
taneous messages well. For a detailed performance evaluation
on contention window-based schemes and description of
deficiencies of the IEEE 802.11 protocol, refer to [7]. The
Sift protocol was designed to overcome these deficiencies for
WSN applications which need to handle such large number
of event-driven spatially corelated messages [8, 9]. Sift is also
CSMA based but uses a fixed-size contention window. Nodes
pick slots from a geometric probability distribution such that

Journal of Computer Networks and Communications 3

only a few nodes contend for the first few slots, and thus
handles a large number of messages easily. A variation based
on replacing the uniform-distribution contention window
of IEEE 802.11 with a p-persistent backoff protocol was
presented in [10]. Protocols based on Aloha on the other
hand do not sense the channel before transmission and rely
on each node picking a slot to transmit on randomly, with
the probability of transmission depending on number of
messages contending [11, 12]. When this number is not
known, these protocols do not adapt well. In general, CSMA-
based protocols outperform Aloha-based protocols when the
propagation time between nodes is small enough to make
carrier sense useful. When the relative effectiveness of a
CSMA-based and a TDMA-based scheme is unknown, a
hybrid MAC protocol like Z-MAC can be used to adapt
between these protocol types based on prevailing conditions
[13].

Our protocol, Alert, is similar to Sift in that it uses
a similar nonuniform distribution to control contention
among nodes, but is non-CSMA based. Alert separates
message transmissions across different frequency channels
with this distribution while Sift does it over different time
slots. This allows Alert to be free of hidden terminal
issues while Sift is susceptible. (Aside from the performance
perspective, operations performed at the sender side in Alert
are comparatively much simpler than Sift or any other
CSMA-based protocol. So fewer resources (less memory and
less computational power) are required for implementation
of Alert at individual nodes. This makes Alert a more cost-
effective solution.) Alert extends this distribution to handle
different interference levels as well. While Sift is also opti-
mized for unknown number of messages, the adaptiveness
of Alert allows it to perform well even when the number of
contending messages is small.

The topic of energy-saving MAC protocols has been
well researched for wireless sensor networks in the last few
years primarily due to the limited energy supply in these
devices [14–16]. A more general framework and survey
of MAC protocols for wireless sensor networks can be
found in [17]. Our work focuses on applications for which
latency is the primary concern and the goal is to let all
urgent messages reach a receiver node as soon as possible.
Energy is a concern as well, but the rare occurrence of
messages in these applications allows the MAC protocol to
focus solely on the latency aspects. With such applications,
energy efficiency should be built into more common tasks
carried out by each node like time synchronization. Some
researchers have focused on reducing latency in the collection
of messages at a sink node from source nodes through duty
cycling approaches (e.g., [18, 19]). These types of low-latency
protocols solve a fundamentally different problem which is
to sleep as often as possible while ensuring that messages
reach the sink as fast as possible (with latencies in the order
of seconds instead of milliseconds). Our work focuses on
event that driven message generation where the receiver is
always awaiting messages. The receiver is assumed to be wall
powered or periodically rechargeable, and hence, its energy
consumption is not an issue. The transmitters try to send
messages when they have one, and the only latency that needs

to be reduced is the one created due to contention between
nodes trying to send messages at the same time.

In the preliminary version of this work in [20], we had
presented some of the contributions above in terms of the
Alert protocol. In this paper, there is additional emphasis on
our theoretical results. We provide full mathematical proof of
the optimal channel probabilities to use with Alert. Further,
theoretical results on the success probability of sending a
message in an Alert slot with number of nodes tending to
infinity is given. Additionally, the optimal probability distri-
butions for different optimization objectives are compared to
each other.

3. Protocol Description

We present details of our Alert protocol in this section
along with a description of the associated design parameters.
Theoretical considerations for selecting values for these
design parameters will be presented in the following section.

3.1. Alert Protocol Concepts. The protocol actions can be
divided into those at a sender, a node that has a message to
send, and a receiver, a node whose task is to collect messages
from senders. The time is slotted into what we refer to as an
Alert slot or simply a time slot. (We assume all the nodes
in the network are time synchronized with each other. We
use periodic broadcast beacons from our base station in our
implementation in Section 6.) Each Alert slot can be used to
exchange one data packet and its acknowledgment between a
sender-receiver pair.

In each time slot, multiple frequency channels can be
used by the senders or receiver. We denote the number
of frequency channels in each slot by M. These channels
have different priorities. (The topic of how priorities are
calculated and assigned forms the basis for most of the
analysis later in the paper.) The receiver samples them one by
one based on their priority level and tries to receive a packet
from one of the senders.

Each sender selects a frequency channel randomly and
independently of all other senders, but the channels are not
selected with equal probability. Less chance is given to select
a higher-priority channel, that is, the selection probability
decreases as we move toward higher priority channels. An
example is shown in Figure 1 with M = 3 channels and
channel selection distribution (p1, p2, p3) = (0.1, 0.3, 0.6).
This nonuniform distribution is prespecified and known to
all senders. It is designed to reduce the chance of collision
among the senders. We discuss its effect and how to find the
optimum distribution in detail in subsequent sections.

Once a sender selects a frequency channel randomly
based on the prespecified channel selection probabilities, it
switches to the selected frequency and sends a long preamble
before sending its data packet. (Note that the diagrams in
Figures 1 and 2 do not represent the actual timing scales
within a time slot. To present the idea, the sampling and
preamble durations are shown much longer than their actual
value compared to the packet and ack exchange duration.)
After the data packet, the node expects an acknowledgment
packet (ack) from the receiver. If the ack packet is received

4 Journal of Computer Networks and Communications

Packet

Packet

Ack

Ack

Preamble

Sender

Receiver

Sample signal level

of each frequency

Higher priority

10%
30%

60%

(b)(a)

Channel selection probability

f 1 f 2 f 3

f 1

f 2

f 3

Figure 1: (a) Channel selection probability. (b) One Alert time slot.

correctly, the sender stops, otherwise, it tries to send its
message again in the next time slot.

At the beginning of each time slot, the receiver samples
the signal level on each of the M frequency channels starting
with the highest priority channel. If high signal level (high
RSSI (RSSI stands for received signal strength indicator)) is
sensed by the receiver, it stays on the same frequency (locking
to that channel) and stops sampling any more channels.
Then, the receiver waits to receive a packet. If a packet is
received correctly, it sends an acknowledgment packet back
in response, otherwise, after some fixed timeout period, the
receiver stops and continues to the next Alert slot. If the
sensed high signal on a channel is due to the simultaneous
transmission of preambles by more than one sender, then it
is very likely that the received packets are corrupted (Note
that a packet may still be received correctly due to capture
effect.) If the high signal is due to interference or noise, a
packet never arrives from any node, and the receiver simply
repeats the procedure in the following slot.

Note that a transmitter is not aware if a receiver has
successfully “locked” onto its selected frequency and will thus
always transmit the packet even if the receiver is waiting
on some other channel. For the applications under consid-
eration, a sender has a message to send very infrequently.
For example, a typical system may encounter a situation
that requires sending fire alarms only once or twice a year.
The rarity of alarms allows for greater effort to be put into
reducing latency even at the cost of some extra energy.
The receiver, or centralized base station, is typically wall
powered (AC-outlet) and its energy consumption is not
an issue as mentioned in Section 2. This allows the focus
on reducing contention among nodes reporting messages
without worrying about receiver wakeup schedules.

While the number of channels, M, remains the same, the
frequency of channels (and their priority) can change across
time slots. This is illustrated in Figure 2. The frequency table
shown in this example is from a simple expression where
we have 16 channels numbered from 0 to 15 and fm(k)
represents the mth frequency channel in k th Alert slot:

fm(k) = [5k + 9(m− 1)] mod 16, for m = 1, 2, 3. (1)

We assume that the frequency table is prespecified, and
all the nodes in the network know this pattern. Varying fre-
quency channels after each time slot increases the reliability
and robustness against channel fading and interference.

Table 1: Summary of features and assumptions of the Alert
Protocol.

Feature Assumption or detail

Architecture
Single hop with a centralized base station. Base
station is AC Powered

Transceiver
Only one transceiver in each node capable of
switching frequency channels

Messages
Only one message by a node reporting an event

Number of nodes reporting events likely a subset
of entire deployment

Events
Very rare, but correlated among neighboring
nodes

Only one event report needs to reach the base
station

Frequency
table

Prespecified among nodes and switching pattern
known to all nodes

A summary of the protocol design space with all our
assumptions is provided in Table 1 for convenience.

3.2. Collision Avoidance. Alert is designed to avoid collision
among senders such that in most time slots (with high
probability), one message is received correctly. Therefore, the
protocol can collect messages from all senders in as few time
slots as possible. If there is only one sender, there will be no
collision and the frequency channel selected by the sender
does not matter as the receiver will find and lock to the
frequency picked by the sender. If two nodes are contending
to send their messages, the node that selects the higher
priority channel will be successful since the receiver will hear
its preamble/tone first and stay in the channel awaiting its
packet. If both select the same channel, a collision occurs.
The channel selection probabilities are designed to reduce
the chance of collision. As the number of senders increases,
it becomes more probable that one of the senders selects
a higher priority channel, and if only one node selects the
higher priority channel, the message from that sender will be
successfully received. The illustration in Figure 3 shows three
example cases where there are different number of senders.

3.3. Design Parameters. Based on the protocol description,
it should be clear that the two key design parameters are
the number of frequency channels to use in the protocol and

Journal of Computer Networks and Communications 5

(5, 14, 7) (10, 3, 12) (15, 8, 1) (4, 13, 6) (9, 2, 11)

Alert slot 1 Alert slot 2 Alert slot 3 Alert slot 4

Packet Ack Packet Ack Packet Ack Packet Ack

H
ig

h
er

p
ri

o
ri

ty

Alert slot number

(k)

(k)

(k)

5

14

10 3

12

12

15

8

4

1

13

6

9

2

11

14

7

7 0

3

5

· · ·

· · ·

· · ·

k 32 41 6 75

f 1f 2f 3

f 1

f 2

f 3

Figure 2: Frequency channels in each Alert slot.

Packet

Packet

Packet

Ack

Preamble

Preamble

PreambleSenders selected

Senders selected

Senders selected

Receiver

(a) (b) (c)

Channel selection probability

Higher priority

Ack

Packet

f 1

f 2

f 3

f 1

f 2

f 3

f 1
p1

p2

p3

Figure 3: Alert protocol illustration. (a) If there is only one sender, it does not matter which channel it picks. (b) With 5 nodes sending, with
high probability only one picks the second channel. (c) With many senders, one is very likely to pick the first channel and succeed.

the probability distribution over the channels that minimizes
the overall time to read all messages. A larger number
of channels should decrease contention among the nodes
that have messages to send. But this increases the size of
a time slot and results in fewer time slots within a given
period of time, exposing a tradeoff. The channel probability
distribution controls the contention among the nodes. When
the number of nodes with messages is large, assigning small
probabilities to the higher priority channels ensures lower
contention for those channels. This increases the chance
that only one node chooses that channel. On the other
hand, when the number of simultaneous messages is small,
that is, the load is low, assigning small probabilities to the
higher priority channels could lead to under utilization of
these channels and higher utilization on the lower priority
channels resulting in collisions and an increase in the overall
latency. In the following section, we construct a theoretical

framework to select these design parameters to optimize the
performance of our protocol.

For final deployment, each node should be preloaded
with information about the number of channels that are to
be used in a slot and the probability distribution from which
to select them. These should be designed taking into account
the application under consideration which might give some
information about the expected number of messages and
interference levels it should be able to handle.

4. Analysis and Design

For selection of the right design parameters to use in the
Alert protocol to minimize latency, we need to consider the
probability of success that a message is sent successfully in a
single slot and extend that to quantify the number of slots
that will be required to read all outstanding messages. We

6 Journal of Computer Networks and Communications

begin our analysis by obtaining an expression for the success
probability of a single slot.

Let p = (p1, p2, . . . , pM) represent a row vector of channel
probabilities corresponding to each channel 1, 2, . . . ,M. In
this section, we assume that the same channel probabilities
p will be used by each node in all slots; that is, p is not
updated during the protocol execution. This allows for a
simpler implementation. Also, the results of this section can
be built upon by more sophisticated approaches (we show
one such approach in the next section).

4.1. Probability of Success in a Single Slot. We assume n nodes
are contending to send their message across in the slot (each
node is assumed to have only one message to send). They
select M channels based on the probability distribution p =
(p1, p2, . . . , pM). Let random variables Xm (for m = 1, . . . ,M)
denote the number of nodes deciding to transmit on channel
m. The variables (X1, . . . ,XM) will have the joint multinomial
distribution

(X1, . . . ,XM) ∼ Multinomial
(

n,
{

p1, . . . , pM
})

, (2)

P(X1 = x1, . . . ,XM = xM)

=

⎧

⎪⎪⎨

⎪⎪⎩

n!

x1! · · · xM !
px1

1 · · · p
xM
M , if

M∑

m=1

xm = n,

0, otherwise,

(3)

for nonnegative integers x1, . . . , xM .
In order to model interference, we use an indicator ran-

dom variable Ym to specify if channel m has been interfered
with or not, if and when the receiver samples the channel. We
assume Yms are independent and have the Bernoulli distribu-
tion:

Ym ∼ Bernoulli(1−Q), (4)

that is,

P
(

Ym = y
)

=

⎧

⎨

⎩

Q, if y = 0 (no interference),

1−Q, if y = 1.
(5)

Parameter Q represents the probability that a channel
sees no interference. The value of Q = 1 corresponds the
ideal case of no interference on any channel. The assumption
of independent interference on different channels is strength-
ened by the periodic switching of channels by all nodes
in Alert protocol. (Our analysis can be easily extended to
consider a correlated model for interference on all channels.)

Assume that c is a non-idle channel that is selected by
at least one of the nodes and node u is transmitting on this
channel. If any other node had transmitted (or interference
had caused a high signal) on another channel before c (in
order of priority), the receiver would never have been waiting
on c to receive u’s packet. If another node v also selects
channel c, the message from these two nodes will collide at
the receiver. Ignoring the possibility of capture effect, the
collision results in a slot failure with no message succeeding
in the whole slot since the receiver will remain on channel c

for the whole slot. Thus, u succeeds on channel c if it is the
only node transmitting on that channel (with no interference
as well). So we have the following rule: if there is only one node
transmitting in the first non-idle channel (in order of priority),
an Alert time slot will be successful.

So a time slot is successful if for any value of m (m bet-
ween 1 to M), only one node selects the mth channel (event
E1 = {Xm = 1}) and no node selects any of the first higher
priority (m− 1) channels (event E2 = {X1 = · · · = Xm−1 =

0}), and there is no interference on any of the m channels,
that is, EInt = {Y1 = · · · = Ym = 0}. So the probability of
successful message delivery in a slot is

P
(p)
n =

M∑

m=1

P(E1 ∩ E2)P(EInt), (6)

where we assume that interference is independent of the
activities of the node, and P(EInt) = P(Y1 = · · · =

Ym = 0) = Qm. Combining this with (3), we find the
the probability of successful message delivery in a slot for a
given Q, M, for known number of senders n and channel
probability distribution p = (p1, . . . , pM) as

P
(p)
n = n

M∑

m=1

⎡

⎢
⎣pmQ

m

⎛

⎝1−
m∑

k=1

pk

⎞

⎠

n−1
⎤

⎥
⎦. (7)

4.2. Number of Time Slots. We use random variable Tn

to denote the number of time slots required to collect n
messages. Next, we find the distribution of Tn for a given
probability distribution p.

If we start with n nodes, in first time slot, with probability
Pn, one message is successfully received and (n − 1) nodes
remain to go in the next time slots, or with probability (1 −
Pn) no node is successful and we still have n messages left.
Hence, we can write the following recursive expression:

ξ(n, k) = Pnξ(n− 1, k − 1) + (1−Pn)ξ(n, k − 1), (8)

where ξ(n, k) � P(Tn = k) is defined as the probability that it
takes k time slots to collect all messages from n nodes. We can
solve (8) numerically using the following initial condition
ξ(0, i) = ξ(i, 0) = 0 for all i = 1, 2, . . ., and ξ(0, 0) = 1.

We define the moment generating function (MGF) of Tn

as

Φn(z) = E
(

zTn

)

=

∞∑

k=0

P(Tn = k)zk, (9)

then from (8), we get

Φn(z) =
n∏

k=1

Pkz

1− (1−Pk)z
. (10)

This shows that the random variable Tn is the sum of
n independent Geometrically distributed random variables
with parameter Pn, that is,

Tn ∼

n∑

k=1

Geom(Pk), (11)

Journal of Computer Networks and Communications 7

where the Geometric distribution (X ∼ Geom(α)) shows the
number of Bernoulli trials needed to get the first success and
is defined as

P(X = k) = α(1− α)k−1 for k = 1, 2, . . . ,

E(X) =
1

α
, Var(X) =

1− α

α2
,

ΦX(z) = E
(

zX
)

=
αz

1− (1− α)z
.

(12)

So from (11), we have

E(Tn) =
n∑

k=1

1

Pk
, Var(Tn) =

n∑

k=1

(

1−Pk

P
2
k

)

. (13)

There is a simple intuitive explanation behind the distri-
bution in (11): when we start with n nodes, the chance of
success in each slot is Pn, so it takes Geom(Pn) trials/slots
for the first message to go through. With the first message
received, there remain (n − 1) senders/messages, so the
second message requires an extra Geom(Pn−1) slots. So, in
general, the kth message requires Geom(Pn−(k−1)) slots.

4.3. Optimum Probability Distribution. The optimum dis-
tribution p depends on the available information about
number of nodes and interference level, and the performance
metric that is optimized. In this subsection, we present
different methods to find the distribution p and rationale
behind each case.

4.3.1. Maximizing Pn for a Given n = N . If we know (or
estimate) the number of senders to be N , we can select p
such that the probability of successful message delivery in
one time slot is maximized for the given value of n = N .
By maximizing PN , we guarantee that the average delay of
receiving the first message is minimized when N nodes are
contending to send. The number of time slots needed to
successfully receive the first message is a random variable
with geometric distribution and mean 1/PN . The optimum
distribution p in this case can be found using the following
recursive expression:

pm =

(

Q − γm
NQ − γm

)⎛

⎝1−
M−m−1∑

k=1

pk

⎞

⎠, (14)

where γ1 = 0, and for m = 2, . . . ,M − 1, we have

γm = QN+1

(

N − 1

NQ − γm−1

)N−1

. (15)

This case is very similar to the results in Sift [8] and our
result is a generalization of their solution with addition of
the effect of interference through parameter Q. The proof is
given by the following lemma.

Lemma 1. Let γ1 = 0 and, γm = QN+1[(N − 1)/(NQ −

γm−1)]N−1. Then given a probability distribution p, if (∂/
∂p j)(Πp(N)/N) = 0 for j = 1, . . . ,M − 1, then

(

NQ − γi
)

pM−i =
(

Q − γi
)

⎛

⎝1−
M−(i+1)

∑

m=1

pm

⎞

⎠. (16)

Proof. We have the success probability:

Πp(N) = N
M−1∑

s=1

ps

⎛

⎝1−
s∑

m=1

pm

⎞

⎠

N−1

Qs. (17)

Now,

∂

∂p j

(

Πp(N)

N

)

=

⎛

⎝1−

j
∑

r=1

pm

⎞

⎠

N−1

Q j

−

M−1∑

s= j

ps(N − 1)

⎛

⎝1−
s∑

m=1

pm

⎞

⎠

N−2

Qs.

(18)

Equating the left-hand side to 0, we have

(N − 1)
M−1∑

s= j

ps

⎛

⎝1−
s∑

r=1

pm

⎞

⎠

N−2

Qs =

⎛

⎝1−

j
∑

r=1

pm

⎞

⎠

N−1

Q j .

(19)

Now, we will use induction to prove (16).
For i = 1, set j =M − 1 in (19) to get

(N − 1)pM−1

⎛

⎝1−
M−1∑

r=1

pm

⎞

⎠

N−2

QM−1

=

⎛

⎝1−
M−1∑

r=1

pm

⎞

⎠

N−1

QM−1,

(20)

which can be simplified as NpM−1 = 1 −
∑M−2

r=1 pm which
proves Lemma 1 for i = 1 since γ1 = 0.

Next, assume Lemma 1 true for i = l. That is,

(

NQ − γl
)

pM−l =
(

Q − γl
)

⎛

⎝1−
M−(l+1)

∑

m=1

pm

⎞

⎠, (21)

which can be rearranged as

(N − 1)QpM−l =
(

Q − γl
)

⎛

⎝1−
M−l∑

m=1

pm

⎞

⎠. (22)

8 Journal of Computer Networks and Communications

Now, we set j = M − (l + 1) in (19) which gives (along with
splitting the left-hand side into two terms)

(N − 1)pM−(l+1)

⎛

⎝1−
M−(l+1)

∑

m=1

pm

⎞

⎠

N−2

QM−(l+1)

+ (N − 1)
M−1∑

s=M−l

ps

⎛

⎝1−
s∑

m=1

pm

⎞

⎠

N−2

Qs

=

⎛

⎝1−
M−(l+1)

∑

m=1

pm

⎞

⎠

N−1

QM−(l+1).

(23)

Using (19), we can write the above equation as

(N − 1)pM−(l+1)

⎛

⎝1−
M−(l+1)

∑

m=1

pm

⎞

⎠

N−2

QM−(l+1)

+

⎛

⎝1−
M−l∑

m=1

pm

⎞

⎠

N−1

QM−l

=

⎛

⎝1−
M−(l+1)

∑

m=1

pm

⎞

⎠

N−1

QM−(l+1).

(24)

It follows from (21) and (22) that

(N − 1)pM−(l+1)

[

NQ − γl
Q − γl

]N−2

pN−2
M−lQ

M−(l+1)

+ pN−1
M−lQ

N−1

[

N − 1

Q − γl

]N−1

QM−l

=

[

NQ − γl
Q − γl

]N−1

QM−(l+1)pN−1
M−l .

(25)

Dividing through by pM−(l+1)QM−(l+1)[(NQ−γl)/(Q−γl)]N−2

and simplifying eventually gives

(N − 1)pM−(l+1) +

[

N − 1

NQ − γl

]N−1

QN+1

[

NQ − γl
Q − γl

]

1

Q

=

[

NQ − γl
Q − γl

]N−1

pM−l.

(26)

But from Lemma 1, γl+1 = [(N − 1)/(NQ − γl)]N−1QN+1.
Thus, with some rearranging, we get

(N − 1)pM−(l+1) =

(

1−
γl+1

Q

)[

NQ − γl
Q − γl

]

pM−l (27)

or

(N − 1)QpM−(l+1) =
(

Q − γl+1

)

[

NQ − γl
Q − γl

]

pM−l. (28)

From (21), we have

[

NQ − γl
Q − γl

]

pM−l =

⎛

⎝1−
M−(l+1)

∑

m=1

pm

⎞

⎠. (29)

Thus, (28) becomes

(N − 1)QpM−(l+1) =
(

Q − γl+1

)

⎛

⎝1−
M−(l+1)

∑

m=1

pm

⎞

⎠, (30)

which is the same as (22) for l + 1 instead of l. Thus, by rear-
ranging, we can get (21) for l + 1 as well. That is,

(

NQ − γl+1

)

pM−(l+1) =
(

Q − γl+1

)

⎛

⎝1−
M−(l+2)

∑

m=1

pm

⎞

⎠.

(31)

Thus, the lemma is true for i = l + 1 as well, completing the
proof by induction.

Note that for N = 1, the optimal probabilities are
p(1) = 1 and all p(m) = 0, m = 2, . . . ,M since success in
the later channels after first is smaller since they require all
previous channels to be interference free as well. With these
probabilities, the probability of success for N = 1 becomes
p(1)×Q = Q.

4.3.2. Minimizing E(Tn) for a Given n = N . Here, we find
the probability distribution p such that the expected number
of time slots needed to collect from n = N senders is
minimized. In this way, we guarantee that all messages are
collected in as few time slots as possible. The optimization
problem can be solved by using numerical methods and
gradient descent techniques [21]. The gradient of the E(Tn)
is

∇E(Tn) =

[

∂E(Tn)

∂p1

∂E(Tn)

∂p2
. . .

∂E(Tn)

∂pM−1

]T

, (32)

and we have

∂E(Tn)

∂p j
=

n∑

k=1

−1

P
2
k

∂Pk

∂p j
,

∂Pn

∂p j
= nQ j

(

1− s j
)n−1

−

M−1∑

k= j

n(n− 1)Qk pk(1− sk)n−2,

(33)

for n ≥ 2 and sm �
∑m

k=1pk. For n = 1, we have

∂P1

∂p j
= Q j −QM . (34)

4.3.3. Maximizing min Pn for a Given Range for n ≤ N . If we
do not know the number of nodes in the system, we can select
the distribution p such that the probability of successful
message delivery in a time slot is high across a given range.

Journal of Computer Networks and Communications 9

Essentially, we try to find the solution which maximizes the
minimum value of Pn in the given range, that is,

maximize
N

min
n=1

Pn. (35)

We used the subgradient method [21] to solve this optimiza-
tion problem numerically.

4.4. Comparison of Optimal Distributions. We will present
numerical examples and compare the different methods
introduced in the previous subsection used to select the
probability distribution p.

Figure 4 shows the success probability of an Alert slot,
Pn, as a function of number of senders, n, for different values
of N , with M = 3 channels and Q = 0.95. In Figure 4(a) (case
1), the probability distribution p is calculated to maximize
PN . In Figure 4(b) (case 2), the probability distribution p
is found to minimize the expected number of time slots
required to receive from N nodes. Figure 4(c), (case 3)
corresponds to case where p is found such that minimum
of Pn over the range 1 ≤ n ≤ N , is maximized.

Note that there are two variables representing number
of nodes or senders: N denoting the estimated number of
senders based on which the distribution p is calculated and n
which is the actual number of senders (the horizontal axis).

For the first case (Figure 4(a)) the probability of success
is maximized if the estimated n is correct, that is, for n = N ,
but for smaller values of n < N , the probability of success
decreases. So for this case, the delay of getting the first
message is smallest. The second case on the other hand puts
emphasis on collecting all messages as fast as possible. The
third case provides a more flat Pn for all values.

Figure 5 shows the average number of time slots required
to receive the first message or all the messages in the network
for the three cases. The results are calculated for N = 50
messages, with M = 3 channels, and Q = 0.95 (interference
probability of 5%). For correct number of senders n ≈ N ,
we see that case 2 (minimizing E(TN)) achieves the smallest
number of time slots (on average) to collect all messages; case
3 follows closely, then we have case 1. This is expected as
the optimization parameter in case 2 is the delay to collect
all nodes. Case 1 (maximizing PN) gives the best delay for
collecting the first message at n ≈ N and for n > N , but for
smaller values n < N , the delay of the first message and the
overall delay to collect all messages are worse than the other
two cases. Case 3 (maximizing minN

n=1 P n) gives an overall
good performance between the two other cases and tries to
keep delay of collecting all messages and the delay of the first
message low for the whole range of 1 ≤ n ≤ N .

4.4.1. Asymptotic Limit of Pn for n → ∞. It is interesting to
see if n → ∞, how the probability of successful message
delivery in a time slot scales. If we fix the probability dis-
tribution p, it is easy to see that lim Pn = 0 as n → ∞.
However, if we let the distribution p to change with n, we
can get nonzero limits for the probability of success. These
limits represent the asymptotic bounds on the performance

of Alert. The distribution pn = (p(n)
1 , . . . , p(n)

M) which gives

10 20 30 40 50 60 70 80 90 1000

n (number of senders)

0.2

0.4

0

(a) Case 1: maximum success probability for known N

0 10 20 30 40 50 60 70 80 90 100

0.2

0.4

0.6

0

n (number of senders)

(b) Case 2: minimum average delay

0 10 20 30 40 50 60 70 80 90 100

0.2

0.4

0.6

0

n (number of senders)

=10N

=30N

=5N =50N

=80N

(c) Case 3: maximize min of success probability for a given range
for n

Figure 4: Probability of success of one Alert slot for different
cases: case 1 (a) maximizing the success probability for a given N ,
case 2 (b) Minimizing the average number of time slots, case 3 (c)
Maximizing minimum of success probability over 1 ≤ n ≤ N .

a nonzero lim P
(pn)
n should have the following form: p(n)

m =

αm/n for m = 1, . . . ,M − 1, and pM = 1 −
∑M−1

k=1 pk, which
gives

P∞ � lim
n→∞

P
(pn)
n =

M−1∑

m=1

αmQ
m exp

⎛

⎝−

m∑

k=1

αk

⎞

⎠. (36)

We claim that the values of αm which maximize P∞ can
be found from the recurrence αm = 1 − Qe−αm+1 for m =

1, . . . ,M − 2, with αM−1 = 1. These values give the following
asymptotic (upper) bound on the probability of successful
message delivery in a time slot:

P∞ = Qe−α1 =
Q

e
e(Q/e)e(Q/e)···eQ/e

︸ ︷︷ ︸

(M−2) times

. (37)

The proof of above result can be obtained as follows.

10 Journal of Computer Networks and Communications

10 20 30 40 50 60 70 80 90 100

n (number of senders)

0

100

200

300

Average number of time slot to collect all messages

(a)

10 20 30 40 50 60 70 80 90 100

n (number of senders)

0

2

4

6

Average number of time slot to collect first message

Case 1

Case 2

Case 3

(b)

Figure 5: Expected number of time slots to collect all message or first message for N = 50, M = 3, and Q = 0.95.

From (7) for n > 1, we have

Pn =

M−1∑

m=1

⎡

⎢
⎣pmQ

mn

⎛

⎝1−
m∑

k=1

pk

⎞

⎠

n−1
⎤

⎥
⎦. (38)

If p is fixed and p1 > 0, then the limit of Pn as n → ∞

will be

lim
n→∞

Pn =

M−1∑

m=1

⎛

⎜
⎝pmQ

m × lim
n→∞

n

⎛

⎝1−
m∑

k=1

pk

⎞

⎠

n−1
⎞

⎟
⎠ = 0.

(39)

This follows from the fact that

lim
n→∞

n

⎛

⎝1−
m∑

k=1

pk

⎞

⎠

n−1

= 0 m = 1, 2, . . . ,M − 1.

(40)

Note that with p1 > 0, it is guaranteed that (1−
∑m

k=1pk) <
1 for all m = 1, . . . ,M − 1.

In order to get a nonzero limit, we need to let the vector p
be a function of n as well. The form pm = αm/n gives a simple
expression for Pn which has a nonzero limit:

Pn =

M−1∑

m=1

αmQ
m

(

1−

∑m
k=1αk
n

)n−1

, (41)

with the following limit as n → ∞:

P∞ � lim
n→∞

Pn =

M−1∑

m=1

αmQ
m lim
n→∞

(

1−

∑m
k=1αk
n

)n−1

=

M−1∑

m=1

αmQ
me(−

∑m
k=1αk).

(42)

The value of α j which maximizes P∞ should satisfy

∂P∞

∂α j
= 0, for j = 1, 2, . . . ,M − 1. (43)

we have

∂P∞

∂α j
= Q je(−

∑ j
k=1αk) −

M−1∑

m= j

αmQ
me(−

∑m
k=1αk)

= Q je(−
∑ j

k=1αk)

⎛

⎝1−
M−1∑

m= j

αmQ
m− je(−

∑m
k= j+1αk)

⎞

⎠,

(44)

which gives the following conditions for the optimum values
of (α1, . . . ,αM−1):

M−1∑

m= j

αm Qm− j e(−
∑m

k= j+1αk) = 1, for j = 1, 2, . . . ,M − 1.

(45)

For j =M − 1, we can simplify previous condition to get

αM−1 = 1, (46)

and for j = 1, 2, . . . ,M − 2, we expand the sum and take out
the first term (the term for m = j) and factor out Qe−α j+1

from the remaining terms in the sum:

1 =
M−1∑

m= j

αm Qm− j e(−
∑m

k= j+1αk)

= α j +
M−1∑

m= j+1

αm Qm− j e(−
∑m

k= j+1αk)

= α j + Qe−α j+1

⎛

⎝

M−1∑

m= j+1

αm Qm− j−1 e(−
∑m

k= j+2αk)

⎞

⎠

︸ ︷︷ ︸

=1

.

(47)

Note that the expression in parenthesis is the condition (45)
for (j + 1) and, therefore, should be equal to one. So, we
obtain the following recursive expression to solve for α j in
terms of α j + 1 (with initial value of αM−1 = 1):

α j = 1−Qe−α j+1 for j = 1, 2, . . . ,M − 2. (48)

Journal of Computer Networks and Communications 11

The value of P∞ for the optimum (α1, . . . ,αM−1) can be
found from (42) and (45) as follows:

P∞ =

M−1∑

m=1

αm Qm e(−
∑m

k=1αk)

= Qe−α1

M−1∑

m=1

αm Qm−1 e(−
∑m

k=2αk)

︸ ︷︷ ︸

=1 from (45) for j=1

.
(49)

We get close to this asymptotic bound for relatively, small
values of n, for example, with Q = 0.9 and M ≥ 3 the
maximum possible Pn is close to P∞ for n ≥ 20.

4.5. Optimum Number of Channels. When multiple nodes
contend to send messages in a slot, a larger value of M
(larger number of channels) decreases the contention among
them by increasing the likelihood that they select different
channels. Thus, one would think that we should use as many
channels per slot as we can. However, there are practical
considerations that present a tradeoff. For each channel used,
the receiver has to sample it, and switch to the next channel.
Thus, for each channel used, there is a sensing plus switching
delay added to the size of a time slot. On one hand, as we
increase M, the length of each time slot is increased, on
the other hand, with larger M, we can get better success
probabilities Pn and, therefore, we can collect all messages
in fewer time slots. Thus, selecting M poses a tradeoff. We
select M to optimize this tradeoff and minimize the overall
delay.

To find the optimum M, we need to have some timing
constants from the radio. In general, we can write the length
of a time slot as τslot(M) = Mτ1 + τ2, where τ1 specifies the
time duration required by the receiver to sample the presence
of tone/preamble on one channel and switch to the next
channel, and τ2 is the time for completion of the packet,
ack message, and other constant times in one time slot (see
Figure 11 for more details). Since the number of channels is a
positive integer value and bounded by a small number (total
number of channels), we elected to calculate the optimum
probabilities p for each value of M and pick the optimum
Mopt (and corresponding popt) as the one which minimizes
the expected value of overall delay to collect from N nodes,

that is, E(DN) � E(TN)×τslot. (Considering each value of M
has additional benefits as explained in the following section.)

Figure 6 shows the normalized delay (E(DN)/N) as a
function of M for Q = 0.95. For timing constants, we used
τ1 = 0.4 ms and τ2 = 6.0 ms which are representative values
based on our measurements with the implementation on
Bosch CC2420 node boards (see Section 6). The optimum M
which minimizes the delay is shown on each graph by a filled
marker. The optimum value of M depends on value of N and
Q. However, it is not very sensitive to N as we see that close to
Mopt, the curves are flat. So we can increase or decrease M by
one or two and expect to get almost the same performance.

Here we find out the optimal channel probabilities P to
be used by nodes for known values of N and Q. This can
be useful if the application is such that every node can fairly

2 4 6 8 10 12
9

10

11

12

13

14

15

16

17

18

(number of channels in each alert slot)M

N

=10N

=20N

=50N

=5N =30N

=100N

E
xp

ec
te

d
d

el
ay

/
(m

s
p

er
n

o
d

e)

Figure 6: Normalized delay (ms per node) versus number of chan-
nels in each Alert slot.

accurately estimate the number of nodes that will respond to
any event it detects itself within an environment with known,
unvarying interference levels.

4.6. Impact of Q on Probability of Successful Message Delivery
in a Slot. Given N , Q, and M, the optimal channel proba-
bilities can be calculated based on (14). In this subsection,
we evaluate numerically the impact various values of Q and
N have on the probability of successful message delivery in
a slot. These results are important because in subsequent
sections, we will assume we do not know the level of
interference Q during protocol execution. Using (14), we
study the sensitivity of optimum channel probabilities p to
the interference level Q. The aim was to see if an estimate
of Q would be sufficient to compute close to optimal p. We
calculated the optimal probabilities for three values of Q;
Q = 1, Q = 0.6, and Q = 0.1 for various values of N keeping
M = 3. The results are plotted in Figure 7. (For Q = 0.1,
for large N , some values are undefined and hence those data
points are missing.)

It can be seen that the probability of successful message
delivery in a slot, for all values of Q on which channel
probabilities were calculated, does not change much. This is
because the computed channel probabilities themselves do
not vary much across different values of Q. This does not
mean that Q has no effect on probability of success in a slot;
as actual Q varies, the slot success probability decreases as
shown in the plots. We saw similar results for other values of
M as well. Thus, we can conclude that a reasonable estimate
on Q is good enough for calculating optimal probabilities.

5. Adaptive Algorithm for Alert

The previous section presented different theoretical ap-
proaches to minimize the number of time slots to collect
all messages. These approaches focused on using a single

12 Journal of Computer Networks and Communications

P
ro

b
ab

il
it

y
o

f
su

cc
es

s

Actual Q varying from

1 to 0.1 in steps of 0.1

1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Probability of success for an alarm slot with M

with optimal probabilities calculated for 1

log2N

= 3

=Q

(a) Q = 1

1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

P
ro

b
ab

il
it

y
o

f
su

cc
es

s

Actual Q varying from

1 to 0.1 in steps of 0.1

Probability of success with M = 3

= 0.6

log2N

with optimal probabilities calculated for Q

(b) Q = 0.6

1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

P
ro

b
ab

il
it

y
o

f
su

cc
es

s

Actual Q varies from 1 to 0.1

in steps of 0.1

Probability of success of alarm slot with M = 3

using optimal probabilities calculated for Q = 0.1

log2N

(c) Q = 0.1

Figure 7: Effect of Q on which probabilities are calculated as a function of probability of success in an alarm slot.

set of channel probabilities p throughout the execution of
Alert. Though this results in a simpler implementation, we
can do better by adapting these probabilities as the protocol
executes. We present one such approach in this section where
the probabilities to use are updated every time unit t. We
thus seek a set of channel probabilities used throughout
the protocol execution represented as a list of vectors P =

(p(1); . . . ; p(F)), or equivalently in matrix form:

P =

⎛

⎜
⎜
⎜
⎜
⎝

p(1)

...

p(F)

⎞

⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

p(1)
1 · · · p(1)

M

. · · · .

. · · · .

p(F)
1 · · · p(F)

M

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (50)

where F is the number of time units required for reading all
messages, with a new set of channel probabilities calculated
for each unit. A time unit can be either a single time slot
or a whole frame of time slots in the context of Alert. (The
actual implementation of Alert is based on the concept of
frames. A specific amount of time per frame is allocated for
reading messages, with the rest used for other operations
like time synchronization, maintenance among others. This
time can be divided up into any number of slots depending
on the size of a slot.) In this section, we specifically look
at the case where no knowledge of number of messages is
assumed and present an adaptive algorithm (Algorithm 1).
We believe this to be the most important case to handle
for the protocol. For simplicity, we assume that all initial
messages arrive simultaneously. This can be justified when

Journal of Computer Networks and Communications 13

(1) Get Mopt for some guess on number of nodes Nguess,
〈Mopt〉 = get M(Nguess).

(2) Start with some initial value of N = Ninit

(3) Get some estimate on value of Q.
(4) Get P, and expected number of frames needed, F,

based on current estimate N and for Mopt,
〈P,F〉 = get P(N ,Mopt)

(5) while message not read do
(6) for frame t = 1 to F do
(7) for all slots in frame t do
(8) Execute protocol for calculated p(t) for frame t
(9) Terminate execution if message read and reset

to initial state
(10) end for
(11) end for
(12) Increase estimate by a constant factor N = N + Cincf

(13) Get P, and expected number of frames needed, F,
based on current N for Mopt

〈P,F〉 = get P(N ,Mopt)
(14) end while

Algorithm 1: Adaptive alert protocol.

messages are rare, but correlated, and usually occur due to
some event observed by a subset of the nodes resulting in the
generation of simultaneous messages. Generation of alarms
by surveillance systems is such an example.

We begin by describing how we calculate P for our
proposed adaptive algorithm. Then, we give the details of our
algorithm along with our strategy to calculate the number of
channels to be used per slot considering we do not know the
number of nodes sending messages.

5.1. Calculation of Channel Probabilities. The distribution
p(t) controls the contention of nodes with messages to send
in a time unit t. Given M, the p(t) used for each time
unit must control contention such that the probability of
successful message delivery in that time unit is maximized.
As the protocol progresses, maintaining our assumption of
simultaneous arrivals of messages, the number of remaining
messages, n, decreases as they are successfully received by
the base station. Thus, for subsequent slots, after the first
slot, a new value of p(t) must be calculated before each slot
t taking into account the current value of n. For large initial
n, the time to read all messages can be quite large, and the
requirement of recalculation of p(t) before each slot t can
prove infeasible. Moreover, we would prefer that the values of
p(t) used in each slot be precalculated and stored in memory.
Thus, due to the computational and memory limitations on
wireless sensor devices, we adopt a perframe recalculation
strategy.

Let Rn be the number of messages that go through in
frame t with n messages contending at the beginning of the
frame. We seek for frame t the channel probabilities p(t) that
maximize the number of messages read, that is, the channel
probabilities to use in a frame satisfies

maximize
p(t)

E(Rn). (51)

This can be solved through numerical methods using a recur-
sive algorithm or through Markov chains in conjunction with
(14). The distribution p(t) is updated at the beginning of each
frame t. The number of remaining messages is updated at
the end of each frame by subtracting the expected number
of messages read in the frame for the p(t) used in the frame.
Thus, if M is the number of channels used in a slot and F is
the number of frames that are expected to be required by the
protocol to read all messages, the distribution P is in the form
of a F ×M matrix. Each row of P is the distribution to use in
the frame corresponding to that row. The steps to calculate P
are given in Algorithm 2.

This procedure calculates the number of frames required
to read all messages up to some small threshold, Nthr, and
then repeats the last p(t) in the final frame F. The constant
Nthr is used to ensure that an underestimate of number of
messages remaining (compared to the actual value) does not
result in using channel probabilities that will make it almost
impossible for further messages to go through. (For example,
channel probabilities chosen when estimated number of
messages is 2, but actual number of messages is 10, will result
in probabilities that does not allow any of the 10 messages
to go and may delay reading any message for next 100–500
attempts. On the other hand if estimated number is 10 and
actual number is 2, the additional delay is much smaller and
is of the order of 1–10 extra attempts. So by setting Nthr

to some small value, say 10, we ensure that the estimated
number left allows further messages to go through still with
a high probability.)

5.2. Adaptive Algorithm Details. When the actual number of
messages to be sent is unknown, we desire that the protocol
itself try to estimate it and calculate the corresponding
design parameters for this estimate. We employ an adaptive
approach where we vary a node’s estimate of number of
senders, N , until it succeeds in sending its message. The
algorithm starts out by selecting the number of channels
to use per slot, Mopt, based on some guess on the initial
number of nodes (or messages with our assumption of one
message per node), Nguess, which need not be accurate due
to insensitivity of M to number of nodes. Further details of
calculation of Mopt are explained in Section 5. The algorithm
sets its estimate of number of messages, N , to a small
value Ninit as the starting point of its upward adaptation
to larger values. Upward adaptation is chosen because
changing to a different estimate only requires waiting a small
time before realizing that the estimate may be incorrect.
Q is a deployment environment specific parameter that is
measurable, and, hence, can be estimated. As mentioned in
Section 4.6, a reasonable estimate is enough. In the next step,
the algorithm finds the optimal channel probabilities, P, and
the expected maximum number of frames F within which
the message will be read for this estimate. If, after F frames of
protocol execution, the node’s message is still not successful,
it increases the estimate N by a constant additive factor Cincf

(Cincf > 0) and recalculates F and P to use in the subsequent
frames. The algorithm continues until the message is finally
read, after which the node resets back to the initial state and
on the next event will reexecute the algorithm. The algorithm

14 Journal of Computer Networks and Communications

(1) for each frame t do

(2) Calculate (and store) p(t) for the given M with

current value of n using (51)

(3) Reduce n by expected no. of messages read so far,

that is,

n = n− E(Rn)

(4) if n ≤ Nthr then

(5) Store number of frames F = t + 1

(6) Repeat last p(t), that is, p(F) = p(t).

(7) Break from for loop

(8) end if

(9) end for

(10) Return F and P = (p(1); . . . ; p(F))

Algorithm 2: Procedure get P(n,M).

is designed such that all the calculations of Mopt and P can be
prestored and used from memory. The same initial N and
constant increase factor Cincf ensures that we just need to
store Mopt calculated for some constant Nguess, and P, F for
all estimates N which can only have the following values:
{Ninit,Ninit + Cincf,Ninit + 2Cincf, . . .} up to some maximum
limit on the value of N or memory capacity available.

5.3. Number of Channels Per Slot. When the Alert protocol is
deployed, we desire that only a single value of M be used.
Changing the number of channels per slot dynamically as
number of messages N that remain to be read changes is
difficult to implement in practice. Next, we describe our
method to derive Mopt given in Algorithm 3. It begins with
some initial guess of N , Nguess, not necessarily close to the
actual N , but not a small value. The optimal number of
channels Mopt to use is calculated based on this Nguess.
Because we do not recalculate Mopt, we need to ensure that
the initial value of Nguess used gives us a good Mopt to use
for the rest of the protocol execution, as adaptive estimates
on N changes. From our earlier analysis (mentioned in
Section 4.5), it was found that optimal M is quite insensitive
to N .

The calculation of Mopt uses the same method explained
in Section 4.5 but with a small difference. Assume Mtemp

is the optimal value of M for reading all messages with
minimum delay. But this value may not be good for getting
the first message through with minimum delay, for which a
larger number of channels might be better. So we introduce a
design factor β,β ≥ 0 by which we look for possibly larger
number of channels to use without incurring an expected

time penalty greater than (1 + β)t
Mtemp

val , where t
Mtemp

val is the
expected time to read all messages using Mtemp. Parameter β
allows us to control our optimization criteria: β = 0 specifies
selection of Mopt that optimizes the time to read all messages,
while larger values of β increasingly look to optimize the
time to send the first message by considering usage of larger
number of channels.

(1) Use timing constants τ1 and τ2 of specific radio used
(2) for each M ≤Mmax do
(3) τslot(M) =Mτ1 + τ2

(4) Get the expected number of frames needed, F(M),
based on value of Nguess:
〈P,F(M)〉 = get P(Nguess,M)

(5) end for
(6) Get optimal M for reading all messages:

Mtemp = arg minMF(M)× τslot(M)
(7) Get associated time to read all messages:

t
Mtemp

val = F(Mtemp)× τslot(Mtemp)

(8) Find largest M within some factor β of t
Mtemp

val :

Mopt = max{M | tMval ≤ (1 + β)t
Mtemp

val }

(9) Return Mopt

Algorithm 3: Procedure getM(Nguess).

6. Protocol Evaluation

In this section, we evaluate the feasibility and performance of
Alert through an implementation on commodity hardware
and also simulations. We begin with our implementations
focusing on the feasibility of Alert.

6.1. Feasibility of Alert. We implemented the Alert protocol
on Bosch CC2420-based wireless nodes. The Bosch boards
use Chipcon/TI CC2420 radio which is an IEEE 802.15.4
compliant transceiver operating at 2.4 GHz band with direct
sequence spread spectrum (DSSS) O-QPSK modulation and
250 Kbps data rate. An external power amplifier (max trans-
mit power 10 mW) is used to improve the communication
range.

In the first experiment setup, we deployed 15 senders in
an office in Palo Alto, Calif, as shown in Figure 8. The receiver
(base station) is in communication range of all nodes and
it kept them in sync by sending periodic beacon messages.
Every second, all the nodes sent a message simultaneously
using Alert protocol with the following fixed probability
distribution:

p = (0.05, 0.063, 0.092, 0.182, 0.613). (52)

The receiver measured the number of time slots to receive
the first message and number of time slots to collect all the
15 messages. Each time slot is 8 ms long.

Figure 10 shows the measured distribution of the number
of time slots (for both the first and all messages). We see that
the Alert protocol is performing better in real deployment
(the experiment setup) than what the analysis predicts. The
calculations show that in average we need 24.82 time slots to
collect from all 15 nodes, but our experiment gives an average
of 17.60 time slots. This improvement in performance is
mainly due to Capture effect. When two nodes are sending
simultaneously, in our analysis, we assume that there will
be a failure, but in many cases the receiver can correctly
decode one of the packets while treating the signal from
the other sender as noise. Since the CC2420 radio employs

Journal of Computer Networks and Communications 15

1

3

10

11

9

7

12

13

6

2

4

14
8

5

15

Receiver
Base station

Figure 8: Experiment setup number 1: 15 Bosch CC2420 nodes
deployed in an office building.

Figure 9: Experiment setup number 2: nodes on a table close to
base station.

spread spectrum techniques, it can tolerate higher level of
interference and this helps increase the chance of capture
effect. Note that Alert, by reducing the number of contending
nodes at higher priority channels, increases the likelihood of
capture effect.

To validate our analysis we reduced the chance of the
capture effect by repeating the experiment with a different
setup. In the second setup, all the 15 nodes were placed close
to each other and close to the receiver on a table. The network
configuration is shown in Figure 9. Since all nodes are close
to one another, the received power at the receiver from all
senders is high and equal. This reduces the chance of capture
effect. The results are shown in Figure 10. We see that the
measurements distribution with the second setup matches
very closely to what the analysis predicts.

6.2. Simulation Setup. Using simulations enables us to eval-
uate the performance of Alert with a large number of nodes
with messages to send, that is, for scalability, and also
compare against other protocols. We compare Alert with
two other contention-based MAC protocols—Sift [8] and
Slotted Aloha (S-Aloha) [11]. Sift was chosen because it is
a CSMA-based protocol (unlike Alert) and previously shown
to do better than variable contention window protocols like
802.11 for the target application scenario (refer to Section 2
for more details). S-Aloha is a simple protocol, allowing each
time slot to be very small, possibly providing advantages
in reducing time required to read messages. We believe

comparisons of Alert with these two protocols covers a wide
design space for MAC protocols for the target application.
We had discussed the infeasibility of other possible MAC
protocols (e.g., TDMA) in Section 2.

For the evaluations, we wrote a simulator in MATLAB.
The important abstraction was the concept of time across
different protocols from an implementation perspective. The
interference was modeled as pointed out in Section 4. All
protocols send messages to the receiver (or base station)
in fixed time slots. (The 802.15.4 protocol also has a fixed
slot structure with both a contention access period and a
contention-free period within each frame [6].) The size of
a time slot for each protocol is different (but of fixed size)
based on how it is used. The timing of all three protocols
as used in our simulations are shown in Figure 11. In this
figure, t1 is the guard time plus the rx/tx switching time, tSkew

is the maximum clock skew, t2 is the channel sensing time,
t3 is the channel switching time, and t4 is the total time to
exchange a packet and ack. Based on the implementation of
Alert and measurement on the CC2420 radio, the values used
for these constants are t1 = 0.5 ms, t2 = 0.1 ms, t3 = 0.3 ms,
t4 = 2.5 ms.

In the S-Aloha protocol, each node tries to send its
message in a slot with probability 1/N until it finally succeeds
in doing so, where N is the current estimate of number
of messages. We let the S-Aloha protocol use the same
methodology of adapting N as Alert, and chose an initial
value and increment factors that gave best results; this was
initial N = 10 with additive increments Cincf = 50. For S-
Aloha, a slot duration consists of the guard time plus RX/TX
switching time t1, a single adjustment for clock skew tSkew and
the time to exchange a Packet and Ack.

Sift uses a fixed contention window (CW) size and
relies on a geometric probability distribution with which
nodes pick a backoff slot for transmission. Once a node
counts down to its chosen backoff slot and is the only one
that has chosen that slot, it completes the packet and ack
exchange with the receiver and all nodes move onto the
beginning of the next protocol time slot. For simplicity, we
do not implement RTS/CTS with Sift and do not consider
the hidden terminal effect in our evaluations. The Sift slot
duration consists of the guard time t1, the length of each
backoff slot which is the sum of adjustment for clock skew
and the channel sensing time, tSkew + t2, and the time
to exchange a packet and ack, t4. (We will mention how
that consideration would effect the comparison between the
protocols when we present our results.) Since a node might
capture the channel in some backoff slot within the CW and
begin packet transmission at that time, there is the possibility
of some time left over after the ack is sent back until the
next slot begins. This limitation is due to implementation
considerations for which a fixed slot duration is highly
desirable, and often, the most practical.

For Alert, a slot duration consists of the guard time t1,
adjustment for possible clock skew tSkew both before and
after the sampling time by receiver, multiple copies of time
to sample channel plus channel switching time, t2 + t3, and
the time to exchange a packet and ack, t4. Because each
transmitter is sending a continuous tone the whole time

16 Journal of Computer Networks and Communications

1

0.5

0
0 5

0.2

0.1

0
15 20 25 30 35 40

All messages1st message

Exp number 1

Average number of slots = 17.60

Average = 1.13

(a)

1

0.5

0
0 5 15 20 25 30 35 40

All messages

0.2

0.1

0

1st message

Exp number 2

Average number of slots = 23.07

Average = 1.94

(b)

Analytical

1

0.5

0
0 5

0.2

0.1

0
15 20 25 30 35 40

All messages1st message

Average number of slots = 24.82
Average = 1.80

(c)

Figure 10: Experiment results: measured distribution of number of time slots needed to send the first message (left) and all messages (right)
for experiment setup number 1 (a) and number 2 (b) and comparison with analytical results (c).

the receiver is sampling channels, we do not need to adjust
for clock skew (tSkew) anytime except before and after the
sampling is done when the transmitter is not sending the
tone. Alert does not have any spare time left over in a slot-
like Sift because the packet and Ack exchange takes place at
a specified time in the slot regardless of which channel is
used. The receiver simply waits on that channel at the time
to receive a packet and return an ack. In our simulations,
Ninit was taken as 10 with additive increments Cincf = 50.
The value of M was calculated for Nguess = 50 and Nthr = 10.
The value of β was set to 0.1 which provided a good balance
between minimizing delay of collecting first message and
collecting all messages.

Two levels of time synchronization were considered; tight
and loose. Note that these are relative terms that are used
to convey the compensation required for expected clock
skew within slots. The tight synchronization allows smaller
compensation times to be used with all protocols, but can

prove to be a heavy burden on the higher level protocol that
is responsible for it. Tight synchronization would require all
nodes to participate in the synchronization protocol more
frequently and would consume a lot of energy, even when
the nodes have no messages to send. Thus, for applications
targeting rare events, tight synchronization may not be
feasible and a “looser” form of synchronization may be more
desirable. We use the values tSkew = 0.7 or 0.2 ms for loose
and tight synchronization, respectively. (Note that, for tight
synchronization, the values used (tSkew = 0.2, t2 = 0.1 ms)
give roughly the specified backoff slot duration of 0.32 ms in
the IEEE 802.15.4 standard [6].)

To get a sense of the effectiveness of the adaptive version
of Alert, we also show a plot of the expected number of
slots required to read all messages when exact value of N is
known throughout the protocol execution. This is calculated
theoretically using (13) for a known N . The scheme is termed
ExOptAlert. Each data plot shown is the average of 150 runs

Journal of Computer Networks and Communications 17

Sift slot: Contention window

· · ·

· · · Packet Ack

Packet Ack

t1

Guard time

Guard time +
tSkew t2

t2

Sensing time

Sensing time

t4

Packet and Ack

Packet and Ack

RX/TX switching time

S-Aloha slot:

t1

t1

tSkew tSkew

tSkew

t4

t4

Alert slot

Preamble Packet

Ack

Clock skew

t3 Frequency switching time

Figure 11: Timing within slots of Sift, S-Aloha, and Alert protocols.

1 5 10 30 50 75 100
0

10

20

30

40

50

Time required to read first message:

Q = 0.95, tight synchronization

N

T
im

e
(m

s)

(a)

1 5 10 30 50 75 100
0

10

20

30

40

50

Time required to read first message:
Q = 0.95, loose synchronization

N

T
im

e
(m

s)

S-Aloha

Sift

Alert

ExOptAlert

(b)

Figure 12: Average time required to receive first message with Q = 0.95.

1 5 10 30 50 75 100
0

500

1000

1500

2000

Time required to read all messages:
Q = 0.95, tight synchronization

N

T
im

e
(m

s)

(a)

1 5 10 30 50 75 100
0

1000

2000

3000

Time required to read all messages:

Q = 0.95, loose synchronization

N

T
im

e
(m

s)

S-Aloha

Sift

Alert

ExOptAlert

(b)

Figure 13: Average time required to receive all messages with Q = 0.95.

18 Journal of Computer Networks and Communications

Time required to read all messages:
Q = 0.8, loose synchronization

1 5 10 30 50 75 100
0

1000

2000

3000

N

T
im

e
(m

s)

(a)

1 5 10 30 50 75 100
0

1000

2000

3000

Time required to read all messages:

Q = 0.8, tight synchronization

N

T
im

e
(m

s)

S-Aloha

Sift

Alert

ExOptAlert

(b)

Figure 14: Average time required to receive all messages with Q = 0.8.

and 95% confidence intervals are shown for plots that show
time required to read all messages. The maximum number of
nodes was set at 100 which is a reasonably large number for
a one hop centralized network.

6.3. Comparisons Through Simulations. Figure 12 shows the
comparison between all 4 schemes for the average time
required to send the first message. (Confidence intervals
are not shown for this plot to allow a close up snapshot
of the schemes other than S-Aloha.) It can be seen that
Alert manages to send the first message out far earlier than
Sift and S-Aloha, and is quite close to its optimal expected
performance ExOptAlert. The chosen channel probabilities
of Alert allow the first message to go through in the initial
few slots. The same happens for Sift, but more backoff slots
in its contention window mean it takes more time to send
the first message even though it may be successful in the
first time slot. A smaller contention window for Sift could be
useful here, but that could have a negative impact on success
probability of a single slot and, hence, the delay to send all
messages. S-Aloha seems to have the most delay since the
random slots picked by nodes to send may not be the initial
slots, or if they are, may not be successful due to collisions.
The small slot time does not seem to have helped S-Aloha in
this case.

Figure 13 shows the comparisons for all schemes to read
all messages when Q = 0.95 (interference level of 5%).
For the tight synchronization case, we see that Alert does
slightly better than Sift. Note that this result does not take
into account additional procedures like RTS-CTS which Sift
might need to employ to handle hidden terminal collisions.
Alert being a noncarrier sense protocol does not suffer from
such issues. When loose time synchronization is used, the
difference between Alert and Sift increases; in fact, S-Aloha
does better than Sift now due to the much smaller slot
structure it uses. When a higher level of interference (Q =

0.8) is taken into consideration, Sift does better than Alert for
the tight synchronization case because the latter has a higher
possibility to be affected due to its use of multiple frequency
channels (see Figure 14). The possibility of such high levels of
interference (Q = 0.8 = 20% interference) is, however, very

unlikely. In practice, Alert switches the frequency channels
it uses periodically so that an interference source on some
channel does not affect performance for long.

7. Conclusions

We presented Alert, a MAC protocol to collect rare event-
driven messages from multiple wireless sensor nodes with
low latency. The protocol uses a novel time slot structure with
nodes separated by prioritized frequency channels, which
allows one node to succeed per slot with high probability.
We provided extensive theoretical justifications for selecting
values for the design parameters involved, and designed an
adaptive algorithm for Alert to adjust parameter values based
on the level of contention in the network. The feasibility
and effectiveness of the protocol were demonstrated through
both an implementation as well as extensive simulation-
based comparisons with other protocols.

Disclosure

A preliminary version of this paper appeared in proceedings
of ACM/IEEE International conference on Information
Processing in Sensor Networks (ACM/IEEE IPSN), April
2008.

References

[1] “Fire detection and fire alarm systems. part 25. components
using radio links and system requirements,” Tech. Rep. EN54-
25, European Committee for Standardization, 2005.

[2] I. Chlamtac and A. Farago, “Making transmission schedules
immune to topology changes in multi-hop packet radio
networks,” IEEE/ACM Transactions on Networking, vol. 2, no.
1, pp. 23–29, 1994.

[3] A. Goldsmith, Wireless Communications, Cambridge Univer-
sity Press, 2005.

[4] K. K. Chintalapudi and L. Venkatraman, “On the design of
MAC protocols for low-latency hard real-time discrete control
applications over 802.15.4 hardware,” in Proceedings of the
International Conference on Information Processing in Sensor
Networks (IPSN ’08), pp. 356–367, April 2008.

Journal of Computer Networks and Communications 19

[5] IEEE802.11, “Wireless medium access control (MAC) and
PHY) specifications for low rate wireless personal area net-
works,” IEEE Standard 802, part 15.4, (WPANs), 1999.

[6] IEEE802.15.4, “Wireless medium access control (MAC) and
PHY) specifications for low rate wireless personal area net-
works,” IEEE Standard 802, part 15.4, (WPANs), 2003.

[7] A. Woo and D. Culler, “A Transmission control scheme
for media access in sensor networks,” in Proceedings of the
7th International ACM Conference on Mobile Computing and
Networking (MOBICOM ’01), Rome, Italy, 2001.

[8] K. Jamieson, H. Balakrishnan, and Y. C. Tay, “Sift: a MAC
protocol for event-driven wireless sensor networks,” in Pro-
ceedings of the European Workshop on Wireless Sensor Networks
(EWSN ’06), 2006.

[9] Y. C. Tay, K. Jamieson, and H. Balakrishnan, “Collision-
minimizing CSMA and its applications to wireless sensor
networks,” IEEE Journal on Selected Areas in Communications,
vol. 22, no. 6, pp. 1048–1057, 2004.

[10] F. Calı̀, M. Conti, and E. Gregori, “Dynamic tuning of the IEEE
802.11 protocol to achieve a theoretical throughput limit,”
IEEE/ACM Transactions on Networking, vol. 8, no. 6, pp. 785–
799, 2000.

[11] D. Bertsekas and R. Gallager, Data Networks, Prentice Hall,
2nd edition, 1992.

[12] N. Chirdchoo, W. S. Soh, and K. C. Chua, “Aloha-based MAC
protocols with collision avoidance for underwater acoustic
networks,” in Proceedings of the 26th IEEE International
Conference on Computer Communications (INFOCOM ’07),
pp. 2271–2275, May 2007.

[13] I. Rhee, A. Warrier, M. Aia, J. Min, and M. L. Sichitiu, “Z-
MAC: a hybrid MAC for wireless sensor networks,” IEEE/ACM
Transactions on Networking, vol. 16, no. 3, pp. 511–524, 2008.

[14] W. Ye, J. Heidemann, and D. Estrin, “Medium access control
with coordinated adaptive sleeping for wireless sensor net-
works,” IEEE/ACM Transactions on Networking, vol. 12, no. 3,
pp. 493–506, 2004.

[15] J. Polastre, J. Hill, and D. Culler, “Versatile low power media
access for wireless sensor netwo%rks,” in Proceedings of the
2nd International Conference on Embedded Networked Sensor
Systems, pp. 95–107, November 2004.

[16] T. Van Dam and K. Langendoen, “An adaptive energy-
efficient MAC protocol for wireless sensor networks,” in
Proceedings of the 1st International Conference on Embedded
Networked Sensor Systems, pp. 171–180, Los Angeles, Calif,
USA, November 2003.

[17] I. Demirkol, C. Ersoy, and F. Alagöz, “MAC protocols for
wireless sensor networks: a survey,” IEEE Communications
Magazine, vol. 44, no. 4, pp. 115–121, 2006.

[18] G. Lu, B. Krishnamachari, and C. S. Raghavendra, “An adap-
tive energy-efficient and low-latency MAC for data gathering
in wireless sensor networks,” in Proceedings of the18th Interna-
tional Parallel and Distributed Processing Symposium (IPDPS
’04), pp. 3091–3098, Los Alamitos, Calif, USA, April 2004.

[19] M. Strasser, A. Meier, K. Langendoen, and P. Blum, “Dwarf:
delay-aWAre robust forwarding for energy-constrained wire-
less sensor networks,” in Proceedings of the 3rd Interna-
tional Conference on Distributed Computing in Sensor Systems
(DCOSS ’07), Santa Fe, NM, USA, 2007.

[20] V. Namboodiri and A. Keshavarzian, “Alert: an adaptive
low-latency event-driven MAC protocol for wireless sensor
networks,” in Proceedings of the 7th International Conference on
Information Processing in Sensor Networks, pp. 159–170, April
2008.

[21] S. Boyd and L. Vandenberghe, Convex Optimization, Cam-
bridge University Press, New York, NY, USA, 2004.

International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2010

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014
Hindawi Publishing Corporation

http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at

http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Advances in

OptoElectronics

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of

