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ALEXANDER IDEALS OF CLASSICAL KNOTS

C. Kearton and S. M. J. Wilson

Abstract
The Alexander ideals of classical knots are characterised, a result
which extends to certain higher dimensional knots.

1. Introduction

Let K be the closed complement of a tubular neighbourhood of a
classical knot k =

(
S3, S1

)
. By theorems of Hurewicz and Alexander,

π1(K, ∗) abelianises to H1 (K) which is isomorphic to the infinite cyclic
group (t :), written multiplicatively. This yields the infinite cyclic cover
K̃ → K, and hence we obtainH1

(
K̃

)
as a finitely generated module over

the ring Λ = Z
[
t, t−1

]
. This module has associated with it a sequence

of ideals of Λ,

E1 ⊆ E2 ⊆ E3 ⊆ · · · ⊆ En = En+1 = · · · = Λ.

The highest common factor of Ei is a Laurent polynomial ∆i(t), defined
up to multiplication by ±tr. These are known as the ith Alexander ideal
and ith Alexander polynomial of the knot.

Definition 1.1. Let Ai be the set of ideals of Λ which arise as the
ith Alexander ideal of some knot, and let A =

⋃∞
i=1 Ai.

It is shown in Corollary 2.3 below that

A1 ⊂ A2 ⊆ A3 ⊆ · · · ⊆ A.
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The first inclusion is strict, since all the ideals in A1 are principal whereas
those in A2 are not necessarily so (see [1] for examples).

A polynomial f(t) ∈ Λ arises as ∆i(t) for some i and some knot k
if and only if f(1) = ±1 and f

(
t−1

)
= ±trf(t) for some r (see [3]

and [5]). The main result of this paper, Theorem 2.5, gives a similar
characterisation of the ideals belonging to A.

2. Results

For us an Alexander matrix U of a knot will be one which presents
H1

(
K̃

)
as a module over Λ. We shall assume that it is square; indeed,

we could assume that U = tV − V ′ where V is a Seifert matrix of the
knot.

Definition 2.1. Let U be an m × n matrix with entries in Λ. For
each integer k ≥ 1, the kth elementary ideal Ek (U) is defined as follows.

(1) If 0 ≤ n − k < m, then Ek (U) is the ideal generated by the
(n− k + 1) × (n− k + 1) minors of U .

(2) If n− k ≥ m, then Ek (U) = (0).
(3) If n− k < 0, then Ek (U) = Λ.

Note that this differs slightly from the definition of elementary ideal
given in [1], because our Alexander matrices are square. As shown in
[1], the elementary ideals of U form an ascending chain

E1 (U) ⊆ E2 (U) ⊆ · · · ⊆ En (U) = En+1 (U) = · · · = Λ.

If U is an Alexander matrix of a knot then, of course, the sequence of
elementary ideals of U depends only on the knot, and is the sequence of
Alexander ideals.

Lemma 2.2. Let U be an n × n matrix with entries in Λ. Then for
every integer r > 0 there is an (n+ r) × (n+ r) matrix V such that the
sequence

E1+r (V ) ⊆ E2+r (V ) ⊆ · · · ⊆ En+r (V )

is the same as
E1 (U) ⊆ E2 (U) ⊆ · · · ⊆ En (U) .

Proof: Let ∆ = detU , and first consider the case r = 1. Let

V =
(
U 0
0 ∆

)
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so that V is an (n + 1) × (n + 1) matrix. For 1 ≤ s ≤ n, Es+1 (V ) is
generated by the (n − s + 1) × (n − s + 1) minors of V , and the only
possible non-zero ones are the (n − s + 1) × (n − s + 1) minors of U
and ones of the form ∆ times an (n − s) × (n − s) minor of U . Since
∆ ∈ (∆) = E1 (U) ⊆ Es (U), these generate Es (U). This establishes the
result for r = 1; repeated application of the argument gives the general
case.

Corollary 2.3.
A1 ⊂ A2 ⊆ A3 ⊆ · · · ⊆ A.

Proof: If U is an Alexander matrix, then (detU) is also an Alexander
matrix, hence so is V in the proof above.

Define the map ε : Λ → Z to be the ring homomorphism sending
t �→ 1, and define conjugation in Λ to be the ring homomorphism sending
t �→ t−1, denoted t. If U is the Alexander matrix of a classical knot, then
the following properties of Ei (U) are well known (see [1]).

Ei (U) = Ei (U) ,
ε (Ei (U)) = Z

for all i ≥ 1.

Lemma 2.4. Let g ∈ Λ satisfy g(1) = 1. Then there is a classical
knot k which has

H1

(
K̃

)
∼= Λ

(g)
⊕ Λ

(g)
.

Proof: Let M be the module above, generated by u, v such that gu =
0 = gv. Define an hermitian pairing

( , ) : M ×M → Λo/Λ,

where Λo is the field of fractions of Λ, by

(u, v) =
1
g

= (v, u),

(u, u) = 0 = (v, v) .

The map (1 − t) : M → M is an isomorphism. In fact,

(g(1) − g(t))u = g(1)u− g(t)u = u
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and
g(1) − g(t) = (1 − t)a(t)

for some a(t) ∈ Λ. A similar argument holds for v, g; hence the map is
onto. Suppose that (1 − t)w = 0. Then tw = w, and so

g(t)w = g(1)w = w,

g(t)w = g(1)w = w.

But g(t)g(t) annihilates M , so 0 = g(t)g(t)w = g(t)w = w, and hence
the map is one-one.

The pairing defined above is nonsingular, in the sense that the adjoint
map

θ : M → Hom (M,Λo/Λ)

is an isomorphism. To see this, suppose that θ(w) = 0, where w =
au+ bv. Then

0 = (au+ bv, u) =
b

g
∈ Λo/Λ

and so b = βg for some β ∈ Λ. Thus w = au+ bv = au+βgv = au. Now

0 = (au, v) =
a

g
∈ Λo/Λ

and so a = αg for some α ∈ Λ. Thus w = au = αgu = 0. Hence θ is a
monomorphism.

Let f ∈ Hom (M,Λo/Λ), and let a, b ∈ Λ satisfy

f(u) =
a

g
, f(v) =

b

g
.

Then

(bu+ av, u) = a (v, u) =
a

g
= f(u)

(bu+ av, v) = b (u, v) =
b

g
= f(v)

and so θ (bu+ av) = f .
It is shown in [2] (or [4], or [6]) that any finitely generated Λ-torsion-

module M for which multiplication by 1−t is an isomorphism and which
supports a nonsingular hermitian pairing arises as H1

(
K̃

)
for some clas-

sical knot.
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Theorem 2.5. Let E be an ideal of Λ. Then E ∈ A if and only if E
satisfies E = E and ε (E) = Z.

Proof: As remarked above, the necessity is well known. So suppose
that E satisfies the two conditions. By the Hilbert Basis Theorem, the
ideal E ∩ Z[t] of Z[t] is finitely generated over Z[t]. A set of generators
of E ∩Z[t] over Z[t] is clearly a set of generators of E over Z

[
t, t−1

]
, so

E is finitely generated, say E = (f1(t), . . . , fn(t)).
We claim that E has a set of generators g1(t), . . . , gn(t) with

g1(1) = · · · = gn(1) = 1. For not all of the fi(1) can be zero, since
ε (E) = Z. Multiplying by −1 if necessary, we can renumber so that

f1(1) ≥ f2(1) ≥ f3(1) ≥ · · · ≥ fn(1) ≥ 0.

If fn(1) = 0, then replace this set of generators by f1(t), . . . , fn−1(t),
f1(t) + fn(t). Repeat this process of replacement and renumbering until
we have a set of generators f1(t), . . . , fn(t) with

f1(1) ≥ f2(1) ≥ f3(1) ≥ · · · ≥ fn(1) > 0.

If they all evaluate to 1, well and good. If not, we must have f1(1) >
fn(1), since ε (E) = Z. Replace f1(t) by f1(t) − fn(t). If the new set of
generators is denoted by f ′

1(t), . . . , f
′
n(t), then f ′

i(1) > 0 for all i and

n ≤
n∑

i=1

f ′
i(1) <

n∑
i=1

fi(1).

Continuing in this way we arrive at the desired set of generators
g1(t), . . . , gn(t).

For each gi, let ki be the knot whose existence is guaranteed by
Lemma 2.4, and let k = k1 + · · · + kn. Then H1

(
K̃

)
is the orthog-

onal direct sum of the H1

(
K̃i

)
, and has a diagonal Alexander matrix U

with entries g1, g1, . . . , gn, gn on the diagonal. Clearly E2n(U) = E.

Remark. Using the results of [2] (or [4], or [6]), we see that the set
of Alexander ideals is the same for each set of simple (4q + 1)-knots,
q = 0, 1, 2, . . . , since the set of modules and pairings which arise is the
same in each dimension. This extends easily to the simple (4q − 1)-
knots, q = 1, 2, . . . , by defining a skew-hermitian pairing instead of an
hermitian pairing in the proof of Lemma 2.4, and noting that the form of
the pairing ensures that the signature of the associated quadratic form
is zero (this is needed for the case q = 1, where the signature must be a
multiple of 16).
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3. Questions

As mentioned in the Introduction, it is known that A1 �= A2. Is it true
that An �= An+1 for all n? For finitely many n? Only for n = 1? Can one
characterise An? And what of the sequence of ideals? Can any sequence
be realised, subject to each Ei satisfying the two conditions known to be
necessary? The corresponding question for Alexander polynomials has
been answered in the affirmative by Levine in [3].
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