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Abstract: With limited retrieval of reserves and restricted capability in plant pathology, automation
of processes becomes essential. All over the world, farmers are struggling to prevent various harm
from bacteria or pathogens such as viruses, fungi, worms, protozoa, and insects. Deep learning is
currently widely used across a wide range of applications, including desktop, web, and mobile. In
this study, the authors attempt to implement the function of AlexNet modification architecture-based
CNN on the Android platform to predict tomato diseases based on leaf image. A dataset with of
18,345 training data and 4,585 testing data was used to create the predictive model. The information
is separated into ten labels for tomato leaf diseases, each with 64 × 64 RGB pixels. The best model
using the Adam optimizer with a realizing rate of 0.0005, the number of epochs 75, batch size 128,
and an uncompromising cross-entropy loss function, has a high model accuracy with an average of
98%, a strictness rate of 0.98, a recall value of 0.99, and an F1-count of 0.98 with a loss of 0.1331, so
that the classification results are good and very precise.

Keywords: AlexNet modification; tomato diseases; leaf image; AI

1. Introduction

Tomatoes grow in almost any moderately dry soil. Nine out of ten farmers grow toma-
toes on their farms. One of the efforts in the cultivation of tomato plants is the prevention of
diseases that attack these plants, which can cause crop failure. However, sometimes farmers
and gardeners are not able to manage the growth of the plants properly [1,2]. Diseases
of this plant could be recognized by changes in leaves, roots, stems, and seeds. However,
the most easily observed are the changes that occur in tomato leaves. Often, diseases that
attack tomato plants cannot be immediately overcome because they must first be examined
and analyzed for the type of disease [3]. Errors in treatment can occur, such as detecting
the wrong type of disease, causing the treatment method to be incorrect.

With the development of artificial intelligence (AI) technology, especially deep learning
with the discovery of the convolutional neural network (CNN) algorithm, it is hoped
that disease identification in tomato plants can be carried out based on changes in leaf
appearance [4]. Thus, treatment can be carried out immediately according to the type of
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disease. CNN is a deep artificial neural network used for image classification, similarity
grouping, and presenting object recognition based on picture visualization [2].

The application of CNNs to extract feature characteristics in an interpretable format
ensures not only its reliability but also allows validation of model authenticity based
on training data without involving individual intuition interference. While some image
approaches were used as is, others had to be improved to achieve a limited layer that
completely captures the features to produce the appropriate results. In addition, by figuring
out the prevented responsiveness maps, we identified several layers that did not contribute
to inference and removed these layers from the network, reducing the number of limitations
by 75% without affecting classification accuracy [5–8]. Aside from academic research, deep
learning is quite common in sectors with a lot of data.

AlexNet is a deep neural network created in 2012 by Alex Krizhevsky et al. [9]. It
was created to classify photos for the ImageNet LSFRC-2010 competition, and it came in
the first place [10]. It can also handle multiple GPUs. More and deeper neural networks,
such as the outstanding VGG and GoogleLeNet, were proposed following that year. The
accuracy rate of its official data model is 57.1%, and the top 1–5 have an accuracy rate of
80.2%. For typical machine learning classification algorithms, this is already impressive.
AlexNet is a deep convolutional network designed to handle large-scale colored images
(224 × 224 × 3). It has over 62 million trainable parameters in total.

Currently, Android as a platform for mobile phones provides its users with a wealth
of smart functions as well as a pleasing appearance. The Android operating system can be
used as a multimedia player (music and video). A camera, an accelerometer, a gyroscope,
and other sensors are among the hardware included. Furthermore, there are various
features that distinguish Android as an operating system worthy of being used by users or
developed by developers [11,12]. An Android application with a high-resolution camera
could aid in the detection of plant diseases by photographing leaves and sending them off
to a cloud server for treatment and detection [13]. However, due to the limited capacity of
smartphones, both in terms of memory size and other features, especially cameras, further
research is needed in the application of the CNN algorithm in mobile-based applications.
An example is implementing CNN with AlexNet architecture in an application that can help
tomato farmers identify the type of disease based on the appearance of leaf images from
smartphone camera shots. Of course, it requires research related to the CNN architecture
that will be used so that the process can still be carried out on smartphone devices.

This motivates the author to create an application that utilizes deep learning embed-
ded in an Android-based application. The goal of this study is to create a mobile-based
application that could forecast the disease that a tomato plant would develop based on a
picture of the tomato leaves. Thus, this research contributes to:

• Operating deep learning methods, especially the use of the modified AlexNet algo-
rithm as a classifier algorithm.

• Create a mobile-based application where the CNN algorithm with a modified AlexNet
architecture is embedded and can be installed and used by tomato farmers.

• Helping tomato farmers easily obtain disease information about the condition of
tomato plants based on abnormal leaf appearances through scans or photos of the
leaves through an Android-based smartphone platform.

This study is structured as follows: Section 1 discusses artificial intelligence (AI),
especially deep learning, the Android platform, and the motivation and contributions of
this research. Section 2 explains related work used in this research. Section 3 explains
how to develop the application of the AlexNet modified-algorithm-based prediction on
an Android platform. Section 4 explains the plot results of the application development,
followed by the discussion. Finally, the conclusion of the paper is presented in Section 5.

2. Related Works

To overcome the above problems, authors have developed some respective solutions.
In machine learning, different types of characters can be implemented to classify plant
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diseases [2]. Automatic detection of diseases from leaves in the plant is an important
milestone in the land of agriculture. Furthermore, timely detection of plant diseases has a
positive impact on crop yield and quality [2,14]. The requirement of CNN models should
have many parameters and higher computational expense. In this work, we replace the
common convolution with depth convolution or separable convolution, which reduces the
number of parameters and computational cost. The patterns used in this study have been
prepared on an accessible data source that included 14 different plant species, 38 different
categorical disease classes, and healthy plant leaves. The experimental studies were carried
out with the help of the Plant Village Dataset, which includes three pathogens: scar, late
scourge, and leaves fungus. The research framework applied the figure discovered by
the CNN in various processing hierarchies using consideration methods and achieved an
overall rate of 98% on the authentication sets in five-fold cross-validation [1,4,15–17].

Six categories of data enhancement methods were applied: image inversion, gamma
correction, noise injection, principal component analysis (PCA), color enhancement, rota-
tion, and scaling [6]. The proposed model [6] achieved a classification accuracy of 96.46%
after extensive simulation. The accuracy of the proposed work is higher than the accuracy
of traditional machine learning approaches [6]. The data are gathered from the internet and
divided into three sets for use in the experiments: a training set, a validation set, and a test
set. The experimental outcome shows that the recommended models could correctly and
rapidly identify the eleven types of tomato diseases, as well as segment the locations and
shapes of infected areas. For classification, original data of 6208 pictures of four types of
leaf disease detection was obtained from the Plant Village dataset [18–20]. CNN is regarded
as a valuable solution for an extensive kind of image processing briefs, but its architecture
is somewhat complex. To reduce the limitations in CNN, a binary explanation coding
arrangement based on the improved crossover-based Monarch Butterfly Optimization
(ICRMBO) algorithm is proposed [21]. The detection precisions are 86.35%, 99.74%, and
98.54%, respectively, which are greater than those of the deep residual network (ResNet)
and the squeeze-and-excitation network (SENet) before enhancement [10,21–23].

The method for detecting tomato leaf spots early, developed based on the MobileNetv2-
YOLOv3 methods, realizes better stability between accurateness and actual-time detection
of gray leaf spots on tomatoes. F1 score and AP value are used to evaluate the detection
effect of the models, and the testing is compared with Faster RCNN and SSD methods.
The experiment results show that the proposed model’s detection effect is significantly
improved [24].

3. Methods

This section explains the steps how to design the Android-based application we pro-
posed, which are generally concentrated on using AI technology to improve the application.
Thus, it has been designed according to Human-centered Concept and Machine Learning
(HCML) in one or more objects in the lifecycle [25].

Next, for application development, Google Colaboratory (Colab) is used in collabora-
tion with the Python programming language and Integrated Development Environment
(IDE), as well as several supporting libraries such as NumPy, Scikit-learn, Pandas, and all
of Python’s built-in libraries. All these libraries are used to manipulate and engineer raw
data for it to match the requirements for input into the main library. The steps carried out
in this research are described in Figure 1.
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Figure 1. Flowchart of the steps in this research.

3.1. Data Preparation and Exploratory Data Analysis (EDA)

A dataset is a collection of interconnected data that may be viewed individually or
in combination as well as maintained as a single entity. A data type is how a dataset is
arranged. The dataset [26] consists of the image data of tomato plant leaf diseases used
in this research. The dataset is obtained from Kaggle and can be accessed through the
application programming interface (API). On the kaggle.com webpage [27], any user could
easily obtain the “kaggle.json” API files.

By using the Google Collab IDE, the installation of the Kaggle API can be completed
and the dataset loaded. The image data of tomato plant leaf diseases are separated into
training data totaling 18,345 photos and test data totaling 4585 images. Bacterial spot, Early
blight (scar), Late blight, Leaves Mold (fungus), Mosaic virus, Yellow Leaf Curl Virus, Septoria leaf
spot, Target spot, Healthy, and Spider mites are among the ten forms of tomato leaf diseases
found in the dataset. The specifics of the dataset consisting of tested dataset and trained
dataset are presented in Table 1.



Electronics 2022, 11, 951 5 of 17

Table 1. The details of tomato diseases in the dataset [26] consisting of tested dataset and
trained dataset.

Tomato Disease Trained Data Tested Data

Bacterial spot 1702 425
Early blight 1921 481
Late blight 1852 464

Leaves Mold 1881 471
Mosaic virus 1791 449

Yellow Leaf Curl Virus 1962 491
Septoria leaf spot 1744 436

Target spot 1827 457
Spider mites 1741 435

Healthy 1926 481

Total 18,345 4585

Then, the data collected during the exploration phase, EDA, are analyzed. The goal of
EDA is to deliver data in such a way that the amount of data in the training and test data,
as well as the relationship between variables, can be comprehended. The variables referred
to here are the pixel values at the same location of the images that have been transformed
along the red, green, and blue axes. The color image is the composite result of the basic
colors, such as red, green, and blue.

The process of importing the Python libraries required for EDA is carried out for this
purpose. By importing Python libraries and the exploratory data analysis function, the
dataset can be divided into two categories of data: training data and valid data, each of
which contains 10 different forms of leaf diseases in tomato plants.

The result of the exploratory data analysis function produces a graph which is listed
in the form of the total training data set and test data set presented as follows.

Figure 2a shows the total training data from the image of leaf diseases in tomato plants.
For example, the most of the data which is came from the yellow leaf curl virus with a total
of 1961 images. The least amount of data which is came from bacterial spots with a total
of 1702 images. The part of the code for tomato leaf disease detection using CNN [26] is
shown in Figure 2b.

Figure 2. (a) Graph of Total Training Data. (b) The part of the code for tomato leaf disease detection
using CNN [26].

Furthermore, Figure 3a shows the total valid images data for the leaf diseases on
tomato plants. From the picture, it could be seen that most of the image data came from
the yellow leaf curl virus, with a total of 490 images. The least amount of data came from
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bacterial spots, with a total of 425 images. Figure 3b shows the part of the code for tomato
leaf disease detection using CNN [26].

Figure 3. (a) The image count of each tomato leave disease in testing data. (b) The part of the code
for tomato leaf disease detection using CNN [26].

3.2. Making the CNN Model

The CNN model was created with the goal of simulating the biological processes that
occur in human vision. Multiple layers were used in the networks, which were organized
in different ways to create diverse network topologies. However, it can be divided into
three different sorts of layers:

• Layers of Convolution: The convolution operations are performed using two-
dimensional convolution layers using trainable kernels or filters, which may include
an optional trainable bias for each kernel. The kernels are moved over the input in
“strides” during these convolution operations. The larger the stride, the more space
the kernels skipped between each convolution in general. As a result, there were fewer
overall convolutions and a smaller output size. A multiplication operation was done
between the input section and the kernel for each placement of a given kernel, with the
bias summed to the result. It resulted in a feature map with the convolved outcome.
To give input for the next layer, the feature maps were usually routed through an
activation function. The output size of the feature map was calculated by Equation (1),
where N is the input size, F is the kernel size, P is the padding, and S is the stride.

Output size =
N − F + 2P

S
+ 1 (1)

• Layers of subsampling: Non-trainable kernels or windows are used in two-dimensional
subsampling layers to down-sample input characteristics. This often minimizes the
amount of features and helps to eliminate a network’s reliance on position. Average
pooling and maximal pooling were the two most used kinds of subsampling. The
average or maximum of the values present in each kernel to be included in the resultant
feature map is computed by both approaches. For subsampling layers, the feature
map size was determined in the same way as for the convolution layers. To aid with
overall model learning, some implementations of these layers incorporate certain
trainable parameters.

• Fully Connected Layers: CNNs had the only fully connected layers. They are usually
found in the last few layers of most CNNs, appearing after multiple convolution
and subsampling processes. The fully connected layer has several hidden layers, an
activation function, an output layer, and a loss function. Their operations consisted
of multiplying their inputs by trainable weight vectors with a trainable bias and
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summing the outcomes. Activation functions, similar to convolution layers, were used
to deliver the output of these layers in the past. To avoid overfitting, CNN has dropped
regularization. A dropout will randomly assign a value of 0 to a neuron during the
backpropagation and forward learning processes. This is a simple technique so that
the neural network does not get caught up in overfitting.

This section describes the CNN design used in this research, which includes dataset
separation and CNN learning.

• Dataset separation The obtained dataset is separated into two portions, training data
and test data, prior to CNN training. Data that becomes CNN’s learning material is
referred to as training data. The training data has a different composition than the test
data. Using the 10-fold cross-validation approach, the training data is separated into
two subsets, a training subset, and the validation subset, after being loaded into the
software. The best CNN model will be reloaded when the learning process is complete
to predict from each test dataset.

• CNN learning It is crucial to determine which CNN architecture will be employed
before starting the learning process. The highest performance will come from an
architecture that is appropriate for the dataset. The CNN design used in this study is
basically a modification of the AlexNet architecture. The choice of this architecture
is based on the good performance of this architecture but also its applicability to
platforms with limited capacities, such as Android mobile. The architecture consists
of three convolution layers, three fully connected layers, and one output layer. The
gradient descent method, which is included in the parameters employed in the neural
network, is the most significant algorithm in the learning process (optimizer). The
weights of each neuron will be updated using this algorithm. There are many types of
optimizers in deep learning, such as adagrad, sgd, adadelta, adam, rmsprop, and others.
In this research, the Adam optimizer was used with a learning rate of 0.005. Adaptive
moment estimation (Adam) is a method that calculates the adaptive learning rate for
each parameter. Adam keeps the decay rate exponentially on the previous gradient
mt, similar to momentum:

m̂t =
mt

1− βt
1

(2)

v̂t =
vt

1− βt
2

(3)

Equations (2) and (3) show that mt and vt are estimates of the first moment (mean) and
second moment (decentralized variance) of each gradient. Then, the final formula for the
parameter is updated to:

θt + 1 = θt −
η√

v̂t − ε
m̂t (4)

The value of β1 is 0.9, β2 is 0.9999, and ε is 10−8.

3.2.1. The Architecture of CNN Is based on Alex Net Modification

The CNN in this study is based on the AlexNet architecture which has eleven layers.
However, in this research, the authors modified by fewer layers. The AlexNet modification
architecture in this research is made up of six layers: three convolution layers, three fully
related levels, and one output layer [28]. Figure 4 describes the AlexNet architecture
modification used in this research.
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Figure 4. The AlexNet modification architecture.

The size of the input image is 64 × 64 RGB pixels. In the first convolution layer’s filter,
which is 32 with a kernel size of 3 × 3, the rectified linear unit (ReLU) initiation operation
is applied. ReLU is an activation function, which is shown by Equation (5).

f (x) = max(0, x) (5)

The activation function is a non-linear transformation performed on the signal. The
output of this transformation is then sent from a neuron as an input to the next layer. It
runs with a threshold value of 0. If x is less than zero, the value of f(x) is zero; otherwise,
the value of f(x) is the value of x itself. The first max pooling layer after an initial Conv2D
layer is 2 × 2 with a dropout value of 0.2. The ReLU activation function is also used in the
secondary convolution layer, which has 64 filters with a kernel size of 3 × 3.

The first convolution layer’s output and the prior pooling are fed into the second
convolution layer. The pooling size in the second max pooling layer is 2 × 2 with a dropout
value of 0.2. The ReLU activation function is used in the third convolution layer, which has
a filter size of 64 and a kernel size of 3 × 3. The second convolution layer’s output and the
prior pooling are fed into the third convolution layer. In the second max pooling layer, the
pooling size is also 2 × 2 with a dropout value of 0.4. The ReLU activation function is used
in the third convolution layer, which has a filter size of 128 and a kernel size of 3 × 3.

The AlexNet architecture for all datasets up to the flattening layer produces the same
number of inputs and outputs. The output of this flatten layer will be used for the input
of the dense layer. Table 2 shows the specifications of CNN with the AlexNet architecture
used in the implementation of the leaf disease detection system in tomato plants. The
neurons in the first hidden layer are 64 units, the second hidden layer are 128 units, and
the third hidden layer are 256 units. The activation function used in the hidden layer is
ReLu. One output with a hidden layer is as much as the number of existing classes, namely,
10 units with a Softmax activation function.

Softmax serves to distribute learning results or predictions from previous layers in
the range [0, 1], with the result of the total value of all elements being 1. The highest value
produced by Softmax is the class predicted by CNN. The formula of the Softmax function
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can be seen in Equation (6), where j is the index of each element z and N is the total number
z of all elements. The Softmax equation [29] is translated into Equation (6).

σ(z)j =
ezj

∑N
k=1 ezk

, j = {1, 2, . . . , N} (6)

The architecture employed in this study was determined through multiple experiments
based on the number of layers to be used to find the best CNN model.

Table 2. AlexNet Architecture.

Layer (Type) Output Shape Parameters

Conv2D (None, 62, 62, 32) 896
MaxPooling2D (None, 31, 31, 32) 0

Dropout (None, 31, 31, 32) 0

Conv2D_1 (None, 29, 29, 64) 18,496
MaxPooling2D_1 (None, 14, 14, 64) 0

Dropout_1 (None, 14, 14, 64) 0

Conv2D_2 (None, 6, 6, 32) 73,856
MaxPooling2D_2 (None, 6, 6, 128) 0

Dropout_2 (None, 6, 6, 128) 0
Flatten (None, 4608) 0
Dense (None, 64) 294,976

Dense_1 (None, 128) 8320
Dense_2 (None, 64) 8256
Dense_3 (None, 10) 650

3.2.2. Implementation of CNN Based on AlexNet Modification Architecture

After the data set is downloaded and the EDA process is carried out, it is continued
with the implementation of the modified AlexNet-based CNN Architecture. Because the
architecture in this research is a modification of the existing AlexNet model, the authors
tried to implement it starting from the use of 1 layer up to 4 layers, which is the most
optimal architecture in this CNN model.

The modified AlexNet implementation uses three convolution layers, three fully
connected layers, and one output. The functions used in layer convolution are ReLu with
dropout values of 0.2, 0.2, and 0.4. Meanwhile, the output layer uses the Softmax activation
function [29,30] and the number of the dense layer.

After the model is made, the next step is to compile it with three parameters, namely:
optimizer, loss, and metrics. By initializing the Adam optimizer, the implementation of the
model compilation is started.

The implementation of the training model is carried out by creating the steps per
epoch argument, which contain the value of 75 data points for one epoch. Then there is
the batch size argument. The batch size argument is the number of images entered in each
training step, which is 128. Finally, there is a validation split argument. A validation split is
a validation technique by dividing the data into two parts randomly. The authors make a
value of 0.2 for the validation split.

3.3. Prediction and Evaluation Using CNN Model

This step is carried out to measure the ability of the best CNN model to predict from
the results of previous training. The CNN model was given input from the test data. For
each incoming leaf disease image, the CNN output layer will give the probability of each
class using the Softmax activation function formula [29,30]. The result of CNN is an i-th
neuron with the highest output probability value prediction.

The next step is to measure the performance of the model. At this stage, the prediction
results of the model are compared with ground truth. To make it easier, a confusion
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matrix was made to calculate the accuracy, precision, recall, and F-measure values for each
evaluation model.

3.3.1. Implementation of CNN Prediction Model

Implementation of model predictions is carried out to measure the ability of the
training model to produce results. The Keras library has provided a function to predict the
model, where its name is predict (·) function [31] The input image is loaded with a size of
64 × 64 to be converted into an array. Then, the predicted value and prediction result class
are calculated.

3.3.2. Implementation of CNN Evaluation Model

The model is evaluated to determine the loss and accuracy values that are contained in
the model. The implementation of the model evaluation is carried out by using the evaluate
(·) function in Keras libraries [31].

The model prediction outcomes are displayed in the form of accuracy, precision, recall,
and F-measure in the confusion matrix generated during the training.

3.4. Converting Model

The final step is to convert the CNN model so that the CNN model becomes an entity
that can provide predictive results from live data. Then, the CNN model is converted to
Tensorflow Lite [31].

Lite is a set of tools that enable on-device machine learning by helping developers run
their models on mobile devices. Before converting, the model is saved first to a directory
with the extension h5 format model [31].

3.5. Implementing to Mobile Application

Leaf disease image recognition in tomato plants (image recognition) is implemented
into a mobile-based application. This application is implemented using the Android Image
Recognition with Deep Learning library, in which there are algorithms and other libraries
related to the image recognition process of leaf diseases in tomato plants. The activities
carried out at this stage are as follows:

• Create user interfaces and user experiences.
• Create use case diagrams.
• Create activity diagrams.
• Create class diagrams.

4. Results and Discussion

The data were obtained by photographing the object of tomato leaves suspected of
having the disease using a mobile phone as shown in Figures 5 and 6.

Next, by using the input data processing procedure, the trial begins by transforming
the RGB image to a vector image. To check for correctness, the classification results were
compared with the leaf disease database’s training data on tomato plants. The accuracy,
precision, recall, and F-measure values of the classification findings are evaluated as part
of the truth test. The epoch value, the optimizer, the batch size, the loss function, and
the learning rate used are all parameters used in the pilot scenario in this study. The test
parameters are listed in Table 3. Based on various research, the learning rate value of 0.001
was chosen. The best value of the model was found in the learning rate range of 0.0005 to
0.001. Because the dataset employed is a multi-label dataset, definite cross entropy was
chosen as a loss function.
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Table 3. The Parameters.

Number of Epochs 75

Optimizer Adam

Batch size 128

Loss function Categorical cross entropy

Learning rate 0.0005

Some parts of the test results of cases by using the built application are shown in
Table 4.

Table 4. Some parts of the test results were outputted from the built application by using the valid
dataset [27].

Case 1: Through dealing with the valid testing data, this case is identifyed the tomato with
Bacterial Spot disease. The result shows that the accuracy rate equals 0.9999993.

Image with JPG
Size 64 × 64 :

Classification result : Bacterial Spot

Accuracy
Remark

:
:

0.9999993
It matched to the valid data because the accuracy equals to 1.

Case 2: This case is dealing with the valid data in the testing phase for identifying the tomato
with Spider mites disease. The result shows that the accuracy rate equals 0.9893751.

Image with JPG
Size 64 × 64 :

Classification result : Spider_mites (with Two-spotted_spider_mites)

Accuracy
Remark

:
:

0.9893751
It matched to the valid data because the accuracy equals to 1.

Case 3: This case is identifyed the tomato with Yellow Leaf Curl Virus disease via dealing with
the valid testing data,. The result shows that the accuracy rate equals 0.99838257.

Image whit JPG
Size 64 × 64 :

Classification result : Yellow Leaf Curl Virus

Accuracy
Remark

:
:

0.99838257
It matched to the valid data because the accuracy equals to 1.
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Table 4. Cont.

Case 4: This case is dealing with the valid data in the testing phase for identifying the tomato
with no disease (Healthy). The result shows that the accuracy rate equals 1.

Image with JPG
Size 64 × 64 :

Classification result : Healthy Leaf

Accuracy
Remark

:
:

1
It matched to the valid data because the accuracy equals to 1.

Case 5: This case is identifyed the tomato with Septoria leaf spot disease through dealing with the
valid testing data,. The result shows that the accuracy rate equals 1.

Image with JPG
Size 64 × 64 :

Classification result : Septoria leaf spot

Accuracy
Remark

:
:

1
It matched to the valid data because the accuracy equals to 1.

The performance of the model using the optimizer on each dataset is utilized as the
test parameter. The accurateness, precision, recall, and f-measure confusion matrix are used
to test the model’s ability. Figure 7 shows the confusion matrix to predict the model.

Figure 7. The Confusion Matrix.

The description of the confusion matrix on the ability of model to predict the type of
disease is shown in Table 5.
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Table 5. Precision, Recall, and F1-Score Values of the Model.

No Disease Precision Recall F-Measure Accuracy

1 Bacterial Spot 0.98 0.96 0.97

0.96

2 Early blight 0.94 0.94 0.94
3 Late blight 0.95 0.95 0.95
4 Leaves mold 0.98 0.97 0.97
5 Septoria leaf mold 0.95 0.95 0.95
6 Spider mites 0.95 0.96 0.96
7 Target spot 0.93 0.94 0.94
8 Yellow leaf curl virus 0.97 0.99 0.98
9 Tomato mosaic virus 0.98 1 0.99
10 Healthy 1 0.97 0.98

5. Conclusions

According to various trials conducted in this research, the preprocessing approach
and classification method by using the CNN algorithm with an architecture based on
the modified AlexNet can be relied upon to determine the correctness of object image
classification. The average accuracy value of 96%, precision value of 98%, recall value of
95%, and F-Measure value of 97% demonstrate this. This algorithm can be embedded in
applications that have a mobile-based platform, which in this research uses Android as
a platform. This is very appropriate because of the limited memory capacity of Android-
based gadgets. On the other hand, the results of this study are expected to be useful for
farmers or planters of tomatoes. Users can identify the types of diseases suffered by these
plants in a timely manner by uploading photos of the leaves via Android gadgets. In this
way, it is possible to determine how to manage disease at an early stage.

More experimental setups and structural modifications to other CNN architectures
that perform better than AlexNet, such as GoogLeNet, ResNet, etc., are recommended so
that they can be embedded in mobile-based applications in future research to accelerate the
training process and generate faster classifications and reliable predictions.
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